REMARKS ON GIESEKER’S DEGENERATION
AND ITS NORMALIZATION

XIAOTAO SUN

INTRODUCTION

Let X be a smooth projective curve of genus g > 2 and let Ux (r, d) be the moduli
space of stable vector bundles of rank r and degree d on X. Assume (r,d) = 1, then
Ux (r,d) is a smooth projective variety of dimension 7?(g—1)+1. Let ¢;(Ux (r,d)) be
the Chern classes Ci(be(r, ) in the deRham cohomology of Ux (r,d). A conjecture
of Newstead and Ramanan states that

ciUx(2,1)) =0 fori>2(g—1).

It was proved by Gieseker [Gi] on 1984 by using degeneration. In fact, by degener-
ating X into an irreducible curve Xy with one node, Gieseker constructs a degen-
eration Gx,(2,1) of Ux(2,1) which has normal crossing singularities. The normal-
ization Ng (2,1) of Gx,(2,1), where Xy is the normalization of Xy, is smooth and
the vanishing of ¢;(Ux(2,1)) is equivalent to the vanishing of ci(Qle%O(z’l)(logD)),

where D is the divisor which maps to the singular locus of Gx,(2,1). Then he shows
that \V/ %o (2,1) can be obtained, by explicit blowing up and blowing down, from a
fibre bundle over Uy (2,1) with fibre being the so called wonderful compactification

of GL(2), where X, has genus g — 1. Thus he is able to prove the vanishing of Chern
classes by using induction to genus g. Gieseker proposed also in [Gi] to generalize
his theory to higher rank.

Gieseker’s degeneration Gx,(2,1) consists of pairs (X, F) such that the curve
X, embedding through F in a Grassmannian is a stable Hilbert point. In rank two
case, Gieseker was able to write down all of the types of (X, E), which is however
difficult to generalize to higher rank. Around 1999, D. S. Nagaraj and C. S. Seshadri
made an important observation that one should relate Gieseker’s degeneration to
moduli spaces of stable torsion free sheaves on Xy. Let m : X — Xg be the
canonical morphism contractiong the chain of projective lines. They consider in
[NS] the pairs (X, E') such that m,F is a stable sheaf on Xy and construct their
moduli space as a GIT quotient Gx,(r,d) which has normal crossing singularities.
It remains difficult to work out the relationship between Gx, (r,d) and Ug, (r,d) so
that the induction on the genus g is applicable.

In a very recent work [KL], Young-Hoon Kiem and Jun Li provide an alternate
construction of the degeneration. They construct the degeneration as an algebraic
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space with normal crossing singularities, which parameterizes (X, F) such that
E is a suitable defined stable bundle on X (See Definition 1.1 of [KL] where a
sufficiently small € > 0 is needed). With the cost that the moduli spaces may not be
projective varieties, they construct a family of proper separated smooth algebraic
spaces M* (0 < a < 1), which are moduli spaces of certain bundles, so that
M'" is normalization of the degeneration and M°" is a fiber bundle over U %, (15 d)
with fiber being the wonderful compactification of GL(r) (studied carefully by Ivan
Kausz in [K1]). When « moves from 0% to 17, they work out a very precise
description of the variation of M“ in the case of rank 3. By using these description
and the inductive assumption of U %o (3,1), they prove that

ciUx(3,1)) =0 fori>6g—5.

Base on the proved vanishing result, we would like to make the following

Conjecture. Let (r,d) =1 and Ux(r,d) be the moduli space of stable bundles of
rank r and degree d over a smooth projective curve X of genus g > 2. Then

ciUx(r,d)) =0 fori>r(r—1)(g—1).

In trying of understand the work [KL] of Young-Hoon Kiem and Jun Li, we
show in this note that their degeneration coincides with the degeneration Gx, (7, d)
of Nagaraj and Seshadri. We also construct a family of GIT quotients M* (0 <
a < 1) which are fine moduli spaces of a-stable Gieseker vector bundle data except

finite number of a € I.. The moduli space M* is the normalization N %, (1 d) of
Gx,(r,d) and M 0" is a fiber bundle over Ug, (r,d) with fiber being the wonderful
compactification of GL(r). The vanishing of Chern classes for M 0" has been proved
very recently by Michel Brion and Ivan Kausz in [BK]. Thus it remains to work out
the relationship between M® and M o’ When o € 1.

Acknowledgement. The work was done during my stay at the university of Hong
Kong. I would like to thank Prof. Ngaiming Mok for many helpful discussions.

§1 GENERALIZED GIESEKER MODULI SPACES

Let Xy be the irreducible curve with one node zq, let 7 : )?0 — X be the
normalization and 7~ !(zg) = {71, x2}. The semistable models of Xy, by definition,
are semistable curves Xg, X = )?0 UR (k=12...), where R is a chain of k projectives
lines and Xo N R = {z1,22}. We still use 7 : Xy — X to denote all of the
morphisms that contract the chain R. The generalized Gieseker’s moduli spaces
are moduli spaces of suitable defined semistable pairs (X, E'), where E is a vector
bundle on Xj;. Two pairs (X, E), (X}, E’) are called equivalent if £ = o*E’,
where o : X}, — X, is an isomorphism that is identity on )Z'O.

Assume (r,d) = 1, Nagaraj and Seshadri [NS] prove that there is a canonical
structure of projective variety Gx,(r,d) on the set

Equivalence classes of pairs (X, F), where E is a vector
G(r,d) = { bundle on Xy, of rank r and degree d which is strictly

positive on each P of R and 7,(FE) is stable on Xj.
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Remark that stability of 7, (F) implies k& < r. The singularities of Gx,(r,d) are
(analytic) normal crossings. Nagaraj and Seshadri construct Gx,(r,d) as a GIT
quotient, which we are going to recall briefly.

Fix a line bundle Ox,(1) = Ox,(z), * # xo. Let N be large enough such that
E(N) := E®n*Ox,(N) is generated by global sections and H*(E(N)) = 0 for any
(X, E) € G(r,d). Let P(N) =rN +d+r(l — g). Then we define the functor

Y : (C-schemes) — (Sets),

V(T) := set of closed subschemes C C Xy x T' x Gr(P(N),r) such that

(1) the induced projection map C — T x Gr(P(N),r) is a closed embedding

over T. Let O(I; (M), F = 0 be the pull-back of tautological quotient on

Gr(P(N),r).

(2) the projection C — T is a flat family of curves {C;}er such that C; = Xy,
and the projection C — Xy x T over T is the canonical morphism 7 : C —
Xy x T contracting the chains of projective lines.

(3) the vector bundles F; = Fl¢, on C; (t € T) are of rank r and degree

d+rN = P(N)+r(g—1). The qoutients OZ(N) — F; induce isomorphisms
H (05 ™) = H(F).

Proposition 1.1 ([Gi], [NS]). Y is represented by a SL(P(N))-stable subscheme
H C Hilb™ (Xo x Gr(P(N),r)). The H is irreducible with only normal crossing
singularities.

Let C C Xo x H x Gr(P(N),7), 7 : C — Xo x H and OF™) — F — 0 be the
universal objects. Let £ = F@n*Ox,(—N) and CPM) @ 1*Ox,(-N) % £ — 0 on
C. Fory = (CPM @ Oy, (-N) 2% &y — 0) € H, where Ox, (—N) =1*Ox,(—N),
the quotient defines an embedding X, C X¢ x Gr(P(N),r) such that £,(N) is the
pull-back of the tautological quotient bundle. For any g € SL(P(N)),

g-y=(C"Mg0x, (-N) L cPM g0k, (-N) 5 £, — 0) € H.

It is easy to see that y; = g - yo if and only if (Cy,,&,, ) is equivalent to (Cy,, Ey,)-

By CPW™) @ m*Ox,(-N) -5 £ — 0, we get CP’™) @ Oy, xn(~N) — 7. — 0
on Xy x H, which induces a morphism 6 : H — R, where R is the open set
of Q1 = Quotp(Ox,(—N)PWM)) consisting of quotients Ox,(—N)’WN) — F — 0
which induces CPN) =~ O(F(N)) and H*(F(N)) = 0.

Proposition 1.2 ([NS]). The morphism 6 : H — R is a proper SL(P(N))-
equivariant birational morphism.

Let H, R be the closure of H, R in the Hilbert scheme and @ respectively,
let Ox(1), Oz (1) be the ample line bundles pulling back from the Hilbert scheme
and Q;. Let Z C H x R be the closure of the graph of § : H — R, and Oz(a)
be the pull-back of Oz (1) ® Og(a). Let Z7 (resp. Z:%) be the set of GIT stable
(resp. semistable) points under Oz (a). Similarly, let RS (resp. R2%) be the set
of GIT stable (resp. semistable) points under Oz (a). It is now well-known that
RS = R C R is the set R® := {Ox,(—N)'WN) — F — 0| F is stable}. It is
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standard that 671(RS) C Z: C Z2* C 071(R3°) when a is large enough, where
0 : Z — R induced by the projection H x R — R which coincides with § on
H. By Proposition 1.2, # is proper, we have ~'(R:) = 071(R3%) = 671 (R?).
Thus Z5* = Z5 = 071 (R?). The projective variety structure on G(r,d) of [NS] is
Gx,(r,d) = Z://SL(P(N)). We will show that Gx,(r,d) is also the coarse moduli
space of the functor defined in [KL] where the coarse moduli space exists as a
separated and proper algebraic space.

Definition 1.3. A pair (Xy, E) is called semistable if deg(FE
for any subsheaf F C E we have

Rr,) >0 for all i and

E
‘() < kPl o)

(X, E) is called stable if it is semistable and when rank(F|x, {z,}) # 0

E
X(F) < ank(ﬂxo\{mo}).

Remark 1.4. In [KL], (X, E) is called semistable (resp. stable) if deg(E|g,) > 0
for all i and for any subsheaf F C E we have x(F') < @TE(F) (resp. <), where
€ > 0 s a sufficiently small rational number and r.(F) := (1—ek)rank(F'|x, {zo})+
€ Zle rank(F|g,). This e-stability makes sense only when x(E) > 0: For any line
bundle L C E|g,, the e-stability implies deg(L) — 1 < @6 < 0 when x(F) <0,
which contradicts to deg(E|g,) > 0. If we assume (r,x(E)) = 1 and x(E) > 0,
then the two stability are equivalent.

Lemma 1.5. If (Xy, E) is stable, then E|gr is strictly standard, i.e., on each
component R; of R, we have E|r, = OF © Og,(1)""% and a; < r. Moreover,
HO(E’R(—xl — $2)) =0.

Proof. Let p1, p2 be the intersection points of R; with other components of R. Use
stability to any line bundle L C E|g,, we have x(L(—p1 — p2)) = deg(L) — 1 < 0.
On the other hand, let F' be the kernel of surjection £ — E|r, — L. Then, by
stability of E, x(L) = x(E) — x(F) > 0. Thus 0 < deg(L) < 1.

If there is s € HY(E|gr(—x1 — x2)) with s # 0, then s generates a subsheaf
L C E|gr(—z1 —x2) C E with x(£) > 1. By stability of £, x(£) < 0. This is a
contradiction.

Proposition 1.6. Let 7 : X, — Xy be the canonical morphism contracting the
chain R of projective lines. If (X, E) is semistable (resp. stable), then m.(E) is
semistable (resp. stable). If E|g is strictly positive and m.(E) is semistable (resp.
stable). then (X, E) is semistable (resp. stable).

Proof. Assume k > 0, let X, = XgUR, Xo N R = {1, 25}, E = Bz F = E|g.

Consider F being obtained by isomorphisms ﬁmfl O, E,,, ﬁx; P, E,,. Then

HO(R,ﬁ) s—(s(z1),s(z3)) va’l @ﬁmé 01D02 Exl @Ex2

gives the GPB on X, which defines (E) as follows: the canonical exact sequence
0— F(—x1 —x3) - E — E — 0 induces the defining sequence

0= m(F) = mu(F) — & Hl(ﬁ(—xl —x9)) — 0.

0
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It is enough to show that this GPB is semistable (resp. stable) when (X, E)
semistable (resp. stable). For any subsheaf £’ C E (on Xy), let j; : E, — E,, and

K = {s € H'(R, F)| (6:(s(x1)), 62(s(25))) € j1(Eu,) @ jo(Eus)}-
Then, if r; = dim(jl(Eél)), ro = dim(jg(EéjQ)), it is enough to show

X(E") 4 dim(K) — 1 — 1o - X(E) + dim(H°(R, F)) — 2r

rank(E") T

(resp. <).

Let K C F be the subsheaf generated by K ¢ HO(R, F) (thus H(K) = 0), we are
going to glue E’ and K into a subsheaf E' C E. By the choice of K, the diagram

= = 01D02
—c

e e 01002 . E/ : El
J1(Kay) @ 55 (Kyy) — Ji(Ey,) @ J2(E3,)

is commutative, where j; : Ker — EE; is the map induced by K C F. Let P
)?0 LR — X} be the gluing morphism. Then there is a subsheaf £’ C E defined by

0—FE — @*(K D E/) - xljl(Ea/cl) D $2j2(E;2> — 0.

Since x(E') = X(E') + X(K) —r —ry = Y(E') 4+ dim(H°(R,K)) — r1 — 75 and
X(E) = x(E)+dim(H°(R, F))—2r, semistability (resp. stability) of (X.E) implies

X(E") 4+ dim(H(R,K)) — r1 — 14 - X(E) + dim(H°(R, F)) — 2r

rank(E') r

(resp. <).

Thus 7, (F) is semistable (resp. stable).
Assume 7, (F) semistable (resp. stable), for any E; C E, we need to show

x(F)

X(E1) < rank(FE.

%,)

(resp. x(E71) < @Tcmk(EﬂXO) when rank(E1 |5 ) # 0). Consider exact sequence

0— F(—x1 —13) = E— E — 0,

let £y C E be the image of E7 and K C l::(—scl — x9) be the kernel of E; — E.
Then we have 0 — m,(Ey) — m(Ey) — R'm.(K) = o, HY(K) since 7, F(—z1 —
x3) = 0. Thus x(E1) = x(E1) + x(K) = x(7mE1) — dim(HY(K)) < x(m«E1). The
assumption of F|r being positive implies x(m.E) = x(E). Then the semistability
(resp. stability) of 7, (F) implies the semistability (resp. stability) of (X, E).

For any scheme T, a family (X7,Er) of stable Gieseker bundles of rank r and
degree d over T consists (1) a flat family fr : Xp — T of curves X, (0 < k <)
with the canonical morphism 7 : X — Xy x T contracting the chains of projective
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lines such that fr = pp - 7 where pr : Xo x T'— T is the projection, (2) a rank r
vector bundle & on X1 such that on each fiber E7 is stable of Euler characteristic
X =d+r(1—g). Two families (X7, Er) and (X7}, L) are equivalent if there is an
T-isomorphism o7 : Xp — X7 and a line bundle £ on T such that

m=1"-or, op(€r)=Er @ fr(Lr).
Define the moduli functor
GV?®(r, x) : {Schemes} — {Sets},

for any scheme T', GV?®(r, x)(T) is the set of equivalence classes of families (X7, Er)
of stable Gieseker bundles of rank r and Euler characteristic x = d + (1 — g).

Theorem 1.7. When (r,x) = 1, the projective variety Gx,(r,d) corepresents the
functor GV®(r,x). That is, there is a natural transformation

®: GV (r,x) — Hom(e, Gx,(r,d))

of functors such that for any other scheme M and any other natural transformation
& GV (r,x) — Hom(e, M)
there is a unique morphism t : Gx,(r,d) — M satisfying ® = h(t) - ®.
Proof. To define ®, we define for any scheme T the map
Op : GV (r, X)(T') = Hom(T', Gx, (r,d)).
For any (Xr,&r) € GV*(r,x)(T), let {T;};c; be an affine covering of T" such that

fr«Er(N) is trivial on each T;. If we fix a trivialization on each T;, we get morphisms
o Xr, &) Li — Z?$ such that &7, is the pullback of the universal quotient C¥ M)

™ Ox,(—N) 5 & — 0 on C. It is clear that these morphisms define a morphism
Pxrer) T — Z5//SL(P(N)) = Gx, (1, d)
since the dependences of trivializations are precisely modulated by the group ac-

tion. Define ®1((Xr,Er)) = dxp.er) € Hom(T,Gx,(r,d)), we get the natural
transformation

D : &s(r, X) - Hom( ®, gXo(ra d))
For any other scheme M and any other natural transformation
®' : GV®(r,x) — Hom(e, M),

the unique morphism ¢ : Gx,(r,d) — M is induced by the morphism ®’,.((C,&)) €
Hom(Z:, M), where (C,€) € GV®(r, x)(ZZ) is the universal object.
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§2 THE NORMALIZATION OF GENERALIZED GIESEKER MODULI SPACES

Recall that H C Hilb™' (Xy x Gr(P(N),r)) is the SL(P(NN))-stable subscheme
parametrizes the curves in Gr(P(N),r) of type Xj, and C C XoxY xGr(P(N),r)
is the universal curve. The action of SL(P(N)) on X x H x Gr(P(N),r) induces
clearly an action on C such that the projection ps : C — H is a SL(P(N))-linear
morphism. It is known that the subscheme H C C defined by the first Fitting ideal
of the sheaf QO /3¢ 18 the normalization of H (See [K2], proof of Theorem 4.9).

Lemma 2.1. The smooth variety H represents a functor
Y : (C-schemes) — (Sets),

where Y(T) is defined to be the set of pairs (Cr,st), Cr € Y(T) and sp : T — Cr
s a section of nodes in the fibres of Cp — T.

Proof. Straightforward.

The normalization py : H — M is a SL(P(N))-linear morphism. Recall in
Section 1 we have compactified H by a projective variety Z and have chosen an
ample line bundle Oz(a) so that Z3° = Z8 C ‘H and Gx,(r,d) = Z5//SL(P(N)).
We can similarly compactify H by a projective variety Z and choose an ample line
bundle O3 (a) so that 755 = 75 = p; ' (Z5) € H. Thus N, (r,d) = 75/ /SL(P(N))
is the normalization of Gx,(7,d). The smooth projective variety N %, (7 d) itself is
a moduli space of marked stable Gieseker bundles that we are going to define.

For any scheme T, a family (X, Ep, sp) of marked stable Gieseker bundles of
rank 7 and degree d over T consists (1) a flat family fr : X — T of curves Xy
(0 < k < r) with the canonical morphism 7 : Xr — Xy x T contracting the chains
of projective lines such that fr = pp - ™ where pr : Xo x T'— T is the projection,
(2) a rank r vector bundle & on X7 such that on each fiber &r is stable of Euler
characteristic x = d + r(1 — g), (3) a section st : T'— Xr of nodes in the fibres of
fr: Xp — T. Two families (Xr,Er, s7) and (X, £, s7) are equivalent if there is
an T-isomorphism o : Xp — X7 and a line bundle £ on T such that

m=n-or, or-sp=sp, on(Er)=ErQ f7(LT).
Define the moduli functor
GV (r, x) : {Schemes} — {Sets},

for any scheme T', GV"™*(r, x)(T) is the set of equivalence classes of families of
marked stable Gieseker bundles of rank r and Euler characteristic x = d+7(1— g).

Theorem 2.2. When (r,x) = 1, the projective variety NXO (r,d) corepresents the
functor GV™(r,x). That is, there is a natural transformation

®: GV™(r,x) — Hom(e, N (r,d))
of functors such that for any other scheme M and any other natural transformation

o' GV™(r,x) — Hom(e, M)
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there is a unique morphism t : N (r,d) — M satisfying ® = h(t) - ®.
Proof. Straightforward and similarly with the proof of Theorem 1.7.

In the rest of this section, we will give another construction of Nz (r,d). In

fact, we will construct a sequence {M*}o<n<1 of GIT quotients such that M1 is
Nk, (r,d) and M 0" is a fibre bundle over U %, (1 d) with fibre being the wonderful
compactification of GL(r), where ¢~ (resp. £T) denote rational numbers which are
smaller (resp. bigger) than ¢ and are sufficiently closing to ¢. We give firstly an
interpretation of the functor GV™*(r, x) from another point of view.

Recall X being the normalization of Xy and x1, x2 being the two preimages of
the node. Follow the notation of [K2], a modification of (X, z1,22) at 21 and 22

is a morphism of two pointed curves (Y, m, Y1, y2) LN ()?0, x1,x2) where

Yom=XoURUR', R =|JR, R'=|]JR/
i=1 i=1
R', R" are chains of P's of length n, m such that h(R') = x1, h(R") = z2, 11 € R,
y2 € R!! are smooth points of Y, ,, and R' N X, = RN X, = {z1}, R N X, =
RN X, = {z3}. A GPB of rank r and degree d on Y, consists of a vector
bundle V' of rank r and degree d on Y, ,,, with an isomorphism ¢ : V,,, = V,,. Let

r, cV, @V,, be the graph of ¢. Then we can define a marked Gieseker bundle
(Xn+m,y, E) of rank r and Euler characteristic y = d 4 r(1 — g) as follows

(1) Identify y1, yo into a point y, we get j : (Yo m,y1,y2) — (Xntm, ¥y)-
(2) The bundle FE on X,,,, is defined by exact sequence

Vyl D V?JZ N

%)

Follow [K2], (Y5, m, 1,92, V,T'y) is called a Gieseker vector bundle data.

Definition 2.3. For any subsheaf V' C V, let ro(V') denote the rank of V'|% .
When ro(V') £ 0 and V/V' torsion free, let
. vy
x(V') = (1 = a)dim(V,, ®V,,) — adzm(vy,l@vyé)%m

pa (V') == ro(V')

Then the Gieseker vector bundle data (Ym,y1,y2,V,Iy) is called a-semistable
(resp. a-stable) if V' has positive degree on each projective line,

V)—(2—a)r
pa(V') < pa(V) = ) : : (resp. <),
and x (V') — dim% < 0 when ro(V') = 0.

Remark 2.4. For a € [0,1], there may exist V' C V with ro(V') # 0 such that the
equality in Definition 2.3 holds. These critical points form a finite subset I,. C [0, 1].
For any o € [0, 1] \ I., a-semistability is equivalent to a-stability. It is clear that 0
and 1 are not in I, when (r,d) = 1.
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Lemma 2.5. If (r,d) =1, then (Yo,m,v1,Y2,V,T',) is 17 -stable if and only if the
associated marked Gieseker bundle (X, +m,y, E) is stable.

Proof. A straightforward computation.

We can define familes of a-stable Gieseker vector bundle data over a scheme T
(See Definition 4.7 of [K2] for details). It consists of (1) a modification (), s1, 2, h)

of ()?0, x1,T2) over T that is a commutative diagram

yL))N(()XT

e |

T T

with two sections s; : T"— Y (i = 1,2) such that (), s1(t), s2(t), he) is a modifica-
tion of (Xo, 21, 22) for any ¢t € T, (2) a vector bundle V of rank r and degree d on Y
and an isomorphism ¢ : s7V = s3V such that (), s1(t), s2(t), Vi, ¢1) is a-stable for
any t € T. Two families (), s1,s2,h,V, @) and ()', s}, s5, ', V', ¢') are equivalent
if there is an T-isomorphism o7 : Y — )’ and a line bundle £1 on T such that
h="h-op,or-si=s;(i=1,2)and 0.(V') 2V f7(Lr), where the isomorphisms
satisfy the commutative diagram

(1) V' = siop (V') —— (siV) @ Lr

@’l <p®idl
(s2)" V' = 8307 (V') —— (s3V) @ L.
Define the functor

GVD“(r, X) : {Schemes} — {Sets},

GVD®(r,x)(T) is the set of equivalence classes of families of a-stable Gieseker
vector bundle data of rank r» and Euler characteristic Yy = x + r.

Lemma 2.6. When a =17, the functor GVD"(r,X) is canonically isomorphic to
the functor GV™*(r,x) of marked stable Gieseker bundles.

Proof. For any ()Y, s1,s2,h,V, ) € GVD*(r, X)(T'), by identifying the two sections
s1 and sy (cf. [K2]), we get T-morphism j : (), s1,s2) — (X, s) and a vector bundle
& on X defined by

57V @ 53V
_

T, 0.

0—&—7.(V) = s

By Lemma 2.5, (X, &, s) is a family of marked stable Gieseker bundles. This defines
the canonical isomorphism

GVD®(r,X) — GV™(r, x)

whose inverse is defined as follows: for any (X, &,s) € GV™(r, x)(T), let

(Y, s1,52) LN Xo xT
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be the pull-back of (X,s) — Xy x T by the base change XoxT — Xox T,V be
the pull-back of £ and ¢ the natural identification. Then, when o =17,

(Y, 81,82,h,V, ) € GVD(r, x)(T).

Let P(N) = rN 4%, Q C Quotﬁ(Oko(—N)P(N)) be the open subscheme of
Quot scheme consisting of locally free quotients and F be the universal quotient on
XoxQ. Let PO = P((Hom/(Fs,, Fuy )®0Oq)Y) — Q. It contains the open subvariety
V(Hom(F,,, Fu,)"). For any scheme T', the T-valued points of V(Hom(F,,, Fz,)")
are the pairs (z,&) where z : T' — Q is a morphism of schemes and £ : z*F,, —
x*Fy, is a morphism of Op-modules. For i € [0,7—1],1let Y/ C V(Hom(Fy,, Fz,)")
be the closed subvariety whose T-valued points are (z,£) where £ is of rank at
most i and let Y? be the closure of Y/ in PY. Let ZJ be the complement of
V(Hom(F,,, Fs,)") inside P? and define Z? to be the intersection of Y2 . with
Z3 (i € 1,7 —1]). Now H = KGL(F,,,F.,) may be defined as the result of the
following successive blowing ups:

H=KGL(Fy,,Fp,) =P ' =P2 ... - P! - PO

Here, P! is the blow up of P? along the union of Yy and Z°_; (one might equally
well blow up first along Y and then along Z2_; or vice versa since these subvarieties
are disjoint). Now denote by Y;!, Z! the proper transforms of Y?, Z?. Then Y;!
and Z!_, are disjoint and smooth and P? is the blow up of P! along Y{! U Z! .
The general step consists in blowing up P? along Y;! U Z . ;. According to [K1],
H = KGL(F,,,F.,) has a modular interpretation. The T-valued points of H =
KGL(F,,,Fy,) consist of pairs (z,¢), where z : T'— Q is a morphism of schemes
and ¢ is (an equivalence class of) a generalized isomorphism from z*F,, to z*F,,.
In [K2], Ivan Kausz proved further that the functor of Gieseker vector bundle data
is isomorphic to the functor of generalized isomorphisms. In particular, there is
firstly a modification (C — H, s1, s2) LN (Xo x H,z1,22) of (Xo,x1,22) over H
(see Definition 4.4 of [K2]), where s; : H — C (i = 1,2) are sections that map
(under h) to the sections {z;} x H (i = 1,2). Secondly, there is an admissible
(€,¢) on C such that he(€) = F on X, x H.

Let G = Grass,(Fy,,®Fz,) — Q be the Grassmanian variety over Q which
parametrizes subbundles of rank r of F,, & F,,. By Proposition 10.1 of [K1], there
is a proper birational Q-morphism

f H=KGL(F,,,Fo,) = G =Grass,(Fp,, BFz,)-

To see the birational morphism f : H — G, let p € H be a closed point. Then
the fibre C,, = Xo U R’ U R" is the curve X, attached two disjoint chains R, R" of
rational lines at x1, xo with two marked points y; € R), y» € R | where

R:Qm,ngm

and x; € R}, x2 € RY. The morphism h : C, — X, contracts the chains R’, R".
The pair (€, ¢) is an admissible vector bundle £ on C, of rank r and degree d with
an isomorphism ¢ : £, — &,,. Then, by definition,

he(€) = (h«&(—y1 — y2))(z1 + 22) == F.
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To see the GPB structure on F, note that R'h.E(—y; — y2) = 0, we have
0— h*g(_yl - y2) — h& — (9615?41) ©® (ﬂﬁzgyz) — 0

where we use .,V to denote Skyscraper sheaf at point x with fiber space V. The
canonical morphism h,(€) — h.(€)(x1 + z2) induces a morphism

hi(€) = (h&(—y1 — y2)) (1 + 22) = F,
thus a morphism (5,&y,) @ (2,Ey,) LN Flz, 4+, which gives the GPB structure

Ty &y @ Eyy D Fay & Fay.

The kernel of morphism 3 := Ble, : &y, — Fu, (vesp. B2 : &y, — Fu,) is the
image of H*(E|p/(—x1)) — &y, (vesp. HO(E|pr(—x2)) — &,,) that send any section
s € HY(E|r/ (—x1)) to s(y1) € &, (resp. s € HY(E|pr(—x2)) to s(y2) € Ey,). Thus
B induces an injection 3 : I'y, — F,, & F,,. Now the image of f at p € H is

f(p) = (F,B(L,) C Fu, ® Fu,) € G.

Definition 2.7. A GPB (F,K C F,, ®F,,) is called a-semistable (resp. a-stable)
if for any proper subbundle F' C F one has

Jq:‘/ f‘/ _
T1 D T2 S (’I“BSp. <) X(f) CW’T

AN d
M) —adim s 5 ) r

(F).

Proposition 2.8. The Gieseker vector bundle data (Cp, E, ) is a-semistable (resp.
a-stable) if and only if the GPB f(p) = (F,B8(Ly) C Fuy ® Fau,) is a-semistable
(resp. a-stable).

Proof. We prove firstly that a-semistability of (F,3(I'y) C Fs, ® Fy,) implies a-
semistability of (Cp, £, ¢). To recall the definition of 5: &, ® &, — Fuy B Fau, (see
[K2]), consider the commutative diagram

h*g(_yl - Z/2) - h*g - $18y1 D $28y2

! l ]
hl&(=y1 —y2)(x1 + 22) —— h&(z1 +22) —— 4,Ey, (¥1) B 2,8y, (22)
where the vertical maps are induced by the canonical map Oz — Ox, (x1 + x2).
Thus the middle vertical map induces ' : ho& — h&(—y1 — y2)(x1 + 22) = F,
which then induces 8 : &, ® &y, — Fo, ® F,, through the commutative diagram

0 —— hl(—y1—y2) —— hl —— 5.6, ® 1,&, —— 0

| /| |

0 —— h*g(—?ﬂ —yz) _ F — wlj:ml D xzfm —s 0.
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For any & C £ with £/&’ torsion free, if ro(E’) = 0, it is clear that & satisfies
the definition of a-semistability since £ is admissible. Thus we assume 7¢(E") > 0.
Let F' = h.&' (—y1 — y2)(x1 + x2), then we have

0 — haE'(—y1 — 1) —— M —— L E @, E

L1™y1 T2™y2
T
0 —— h&'(-pn-y2) —— F —— o, F, ®uFy, —— 0
In particular, 8 maps &, @ &,, to F,, © F,,, thus we have
(2.1) dim 'y, N (€, ®&,,) < dim B(Ty) N (F,, & F,,).

Since R'h.E(—y1 —y2) =0, and R'h.E'(—y1 — y2) is a torsion sheaf, let r’ be the
rank of 7/, we have

(2.2) X(&) < x(F') +dim(E, ®&,,) —2r'.
By using (2.1) and (2.2), note r¢(E’') =/, we have

Fay ©Fay
BN, 67,
,r./

X(F) — adim

(2.3) Hal€') < ~2(1-a).

When (F,5(I'y) C Fuy @ Fg,) is a-semistable (resp. a-stable), we have

71, 07,
T )N(FL &F, F) —

X(F') — adim

—2(1 — a) = pa(8).

Thus the Gieseker vector bundle data (Cp, &, ¢) is a-semistable (resp. a-stable).
To prove that a-semistability of (C,, €, ¢) implies a-semistability of (F, 8(I',) C
Fr, ® Fu,), we describe the map 3 in detail. Let T, C &,, (resp. T, C &)
be the image of H(E|p/(—y1)) — &z, (vesp. H°(E|r(—y2)) — &z,) that sends a
section s to its value s(x1) (resp. s(z2)). Similarly, T,, C &,, (resp. Ty, C &)
is the image of HO(Er/(—21)) (resp. HO(Epy(—x3))). Let € = €|, the canonical

sequece 0 — Ep/(—x1 — y1) ® Epr (=22 — y2) — E(—y1 — y2) — € — 0 induces

~ & &
hoE(—yy — R e
0—> g( yl y2) —>g—> liz'vx1 EB QT;(;Z —>O

such that h.E(—y; — y2) = F(—x1 — x2) is the Hecke modification of € at 1,
x5 along the subspaces Ty, C &, (note &, = &,). In [KL], a homomorphism
&1 : &y, — &, /Ty, (vesp. &o: &y, — &4, /Th,) is introduced, which assigns to each
ce &y (resp. c € &) the class [s(z1)] € &, /Ty, (resp. [s(x2)] € Euy/Ty,) for
some s € H(Eg/) (resp. s € H(Egn)) such that s(y1) = ¢ (resp. s(y2) = ¢). The

homomorphism & = (£1,&2) : €, ® &y, — ;: - % makes the diagram

0 —— h&(—y1 —y2) —— hé —— .&, @ 2,6, —— 0

H | 2

~ Ery

Ex
0 —— hé(-pn—p) —— & —— @5 ——0
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being commutative. Similarly, the canomcal map £ — & (:c1 + x2) induces an

injection & - F, thus an injection - T =L @ :1:2 — 0, Fz, ® 2, F, satistying
0 —— h&(—y1 — y2) 3 :63— rFt —— 0
H /| |
0 —— h&(=y1 —12) F o1 Fay © 2, Fp, — 0.

Then it is easy to see that ﬁ' h«& — F (resp. ﬁ Syl ®Ey, = Fuy ® Fy,) is the
= fml ® Fr,)-

For any proper subbundle 7' C F of rank 7/, let 5’ = ker{é' = F — ]:/.7:'}
(which is a subbundle of € since F/F' is a bundle). We still use &, e, C &,
denote the image of E/ml - sz under the identification gml =&, Let BCTy, be
the subspace such that 5(B) = 3(I',) N (F,, @f;Q) and B; C &,, be projections of
B. Then it is easy to check that &;(B;) C 0;(€’;,) under the canonical projection
Epy, 25 &,./Ty,. By Lemma 2.2 of [KL], there is a subsheaf & C Eg (resp.
g, C Epv) such that Im{&]|s, — Erle,} = Eurs IM{Elly, — Erly} = B
(resp. Im{géliﬂz - 5R”|:1?2} = 81172? Im{5é|y2 - ER”‘yz} = BQ) and X(gz/) >
dim(&',,)+dim(B;)-dim 0;(£',,). Glue the subsheaves & C Elg,» €1 C &R, E C
Er together, one get a subsheaf & C & such that ro(E') = rk(F’) = r’ and

homomorphism h.& — & - F (resp. Eyy @ 5y2

Im{E), @&, — &y ®ERY=DB1®Ba, x(&)=x(E)+ x(&]) + x(&) —2r'.
Note (&) — dim o1 (&', )—dim 03(E4,) = x(F') — 2r, we have
(2.3) X(&E) > x(F) —2r' + dim(B; @ Ba).
Using (2.3) and 3(B) = B(I'y) N (F,, ® F,,), one has

7,07,

X(F') — adim g itz

< pa (&) +2(1 - ).

7"/

Then (14 (E') < p1a(€) (resp. pa(E') < pa(€)) implies

X(F)—Oﬂ_

pa(E) +2(1 —a) < (resp. <) .

Thus a-semistability (resp. a-stability) of (C,,E, ) implies a-semistability (resp.
a-stability) of (F,5(I'y) C Fuy @ Fa,).

The action of PGL(P(N)) on the Quot scheme induces actions on H and G
such that f : H — G is a PGL(P(N))-equivariant morphism.  Let Q be the
closure of Q in the Quot scheme with universal quotient F on XO X Q Let G C
GrassT(]:ml ® .7-}2) be the closure of G and H be the closure of H in P where
P is obtained by performing blowing ups of P((Hom(}}l,fm) ® Og)")- Then it

is clear that H and G have the induced PGL(P(N))-action. Let W ¢ H x G
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be the graph of the rational map f : H — G and p: W — G the projection,
which is a PGL(P(N))-equivariant morphism and p|g = f. Thus we have the
PGL(P(N))-equivariant factorization

| el

G—G.

According to [B], there exist a family of polarizations L, (0 < o < 1) on G such
that GIT stability (resp. semistability) for L, is equivalent to a-stability (resp.
a-semistability) of the corresponding GPB. Fix a polarization Ow (1) and consider
the polarization £, = Ow (1) ® p*(LY') on W. Then, when m is sufficiently large,
we have the following relationships of GIT stable (resp. semistable) locus

(2.4) P HG(La)*) € W(La)* € W(La)™ Cp H(G(La)™)

by the general facts of GIT. Let G¢ (resp. G2°) be the open set of G consisting of
a-stable (resp. a-semistable) GPB, and let H?, (resp. H?®) be the open set of H
consisting of a-stable (resp. a-semistable) Gieseker vector bundle data. Then, by
the results of [B], we have G(La)* = G and G(Ly)®® = G2, Since f is proper,
we have p~1(G3) = f~1(G?), p~H(G2®) = f~1(G3%). By Proposition 2.8, we have

Lemma 2.9. For any 0 < a < 1, when m is large enough, we have
H’ Cc W(L,)° C W(L,)* C H.
When o & I, (the set of critical values), we have

H;, = W(La)* = W(La)* = H.

Theorem 2.10. Let M® := W(L,)*//PGL(P(N)) be the GIT quotient. Then,
when a & I., M is the fine moduli space of a-stable Gieseker vector bundle data.

Proof. Tt is not difficult to check that two points of H are in the same orbit if and
only if the corresponding Gieseker vector bundle data are equivalent. When o ¢ I,
by Lemma 2.9, M“ is a smooth projective variety whose closed points are precisely
the equivalent classes of a-stable Gieseker vector bundle data.

To show the existence of a universal object, we show the universal generalized
isomorphism from F,, to F,, on HS = W(L,)® descends to M, where F is the
pullback of the universal quotient. From the construction of universal generalized
isomorphism (see [K1]), it is enough to show the bundles F,, and the divisors Z;,
Y; descend to M“. To see this, note firstly the stabilizer of any point of H?, consists
of scales A - I € GL(P(N)), and H = KGL(F,,,F,,) is unchanged if we tensor F
by a line bundle on the Quot scheme. Then, by tensor F with a line bundle on the
Quot scheme, we can make any scale acting on F trivially since (x,r) = 1. Thus
there is a universal generalized isomorphism on H? that descends to M, which
gives a universal Gieseker vector bundle data on M“ by the construction of [K2].
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