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Abstract

We prove that under mild positivity assumptions, the entropy rate of a continuous-
state hidden Markov chain, observed when passing a finite-state Markov chain through
a discrete-time continuous-output channel, is analytic as a function of the transition
probabilities of the underlying Markov chain. We further prove that the entropy rate
of a continuous-state hidden Markov chain, observed when passing a mixing finite-type
constrained Markov chain through a discrete-time Gaussian channel, is smooth as a
function of the transition probabilities of the underlying Markov chain.

1 Main Results

Consider a discrete-time channel with a finite input alphabet Y and the continuous output
alphabet Z = R. Assume that the input process is a Y-valued first order stationary Markov
chain Y with transition probability matrix Π = (πij)|Y|×|Y| and stationary vector π = (πi)|Y|
(here we assume Y is first order only for simplicity; an usual “blocking” approach can be
used to reduce higher order case to first order case). Assume that the channel is memoryless
in the sense that at each time, the distribution of the output z ∈ Z, given the input y ∈ Y ,
is independent of the past and future inputs and outputs, and is distributed according to
probability density function q(z|y).

The corresponding output process of this channel is a continuous-state hidden Markov
chain, which will be denoted by Z throughout the paper. The entropy rate H(Z) is defined
as

H(Z) = lim
n→∞

1

n+ 1
H(Z0

−n),

when the limit exists, where

H(Z0
−n) = −

∫
Zn+1

p(z0
−n) log p(z0

−n)dz0
−n,



here z0
−n := (z−n, z−n+1, · · · , z0) denotes an instance of Z0

−n := (Z−n, Z−n+1, · · · , Z0), and
p(z0
−n) denotes the probability density of z0

−n. It is well-known (e.g., see page 60 of [3]) that
if H(Z0

−n) is finite for all n, H(Z) is well-defined and can be written as

H(Z) = lim
n→∞

Hn(Z),

where

Hn(Z) = −
∫
Zn+1

p(z0
−n) log p(z0|z−1

−n)dz0
−n, (1)

here p(z0|z−1
−n) denotes the conditional density of z0 given z−1

−n. Since the channel considered
in this paper is memoryless, and Y, Z are stationary, we have

H(Z0
−n|Y 0

−n) = (n+ 1)H(Z0|Y0),

where H(Z0|Y0) can be computed as

H(Z0|Y0) = −
∑
i∈Y

πi

∫
z∈Z

q(z|i) log q(z|i)dz.

It then follows from

H(Z0
−n|Y 0

−n) ≤ H(Z0
−n) ≤ H(Y 0

−n) +H(Z0
−n|Y 0

−n)

that if ∫
z∈Z

q(z|i) log q(z|i)dz

is finite for all i, H(Z) is well-defined and finite.
The following theorem states that under positivity assumptions, H(Z) is analytic as a

function of Π.

Theorem 1.1. Consider a discrete-time memoryless continuous-output channel as above.
Assume that Π is analytically parameterized by ~ε = (ε1, ε2, · · · , εm) ∈ Ω, where Ω denotes
an open and bounded subset of Rm, and assume that q(z|y) > 0 for all (y, z) ∈ (Y ,Z), and
the integral ∫

z∈Z
q(z|i) log q(z|i)dz

is finite for all i. If Π is strictly positive at ~ε0, then H(Z) is analytic around ~ε0.

Our next result deals with a discrete-time memoryless Gaussian channel, a special type
of discrete-time memoryless continuous-output channel. We shall relax the positivity as-
sumptions in Theorem 1.1, and we assume that the input Markov chain is supported on a
mixing finite-type constraint. The consideration of such channels mainly comes from prac-
tice: Gaussian channels are of great importance in a variety of scenarios in real applications,
and often (particularly in magnetic recording) input sequences are required to satisfy certain
constraints in order to eliminate the most damaging error events [8] and the constraints are
often mixing finite-type constraints.
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Let X be a finite alphabet, and let X n denote the set of words over X of length n. Let
X ∗ = ∪nX n. A finite-type constraint S over X is a subset of X ∗ defined by a finite list F
of forbidden words [7, 8]; in other words, S is the set of words over X that do not contain
any element in F as a contiguous subsequence. We define Sn = S ∩ X n. The constraint S
is said to be mixing if there exists N such that, for any u, v ∈ S and any n ≥ N , there is a
w ∈ Sn such that uwv ∈ S.

The maximal length of a forbidden list F is the length of the longest word in F . In
general, there can be many forbidden lists F which define the same finite type constraint S.
However, we may always choose a list with smallest maximal length. The (topological) order
of S is defined to be m̂ = m̂(S) where m̂+ 1 is the smallest maximal length of any forbidden
list that defines S (the order of the trivial constraint X ∗ is taken to be 0). For example,
one checks that the order of the (d, k)-RLL constraint [7], which is a commonly seen mixing
finite-type constraint, is k when k <∞, and is d when k =∞.

For a stationary stochastic process X over X , the set of allowed words with respect to X
is defined as

A(X) = {w0
−n : n ≥ 0, P (X0

−n = w0
−n) > 0}.

For any m-th order Markov process X, we say X is supported on a constraint S if S = A(X);
note that in this case, the constraint S is necessarily of finite-type with order m̂ ≤ m. Also,
X is mixing if and only if S is mixing (recall that a Markov chain is mixing if its transition
probability matrix (obtained by appropriately enlarging the state space) is irreducible and
aperiodic).

Now, consider a discrete-time memoryless Gaussian channel, which is a special case of
the generic channel model described in the beginning of this paper. More specifically, for
any input y ∈ Y , the channel is characterized by the transition probability density function

q(z|y) =
1√

2πσy
e−(z−y)2/(2σ2

y), (2)

where σy > 0, and z ∈ Z denotes a possible output of the channel.
The following theorem states that under certain assumptions, H(Z) is smooth (infinitely

differentiable) as a function of the transition probabilities of Y . More specifically, we state
our second result of this paper as follows.

Theorem 1.2. Consider a discrete-time memoryless Gaussian channel as above. Assume
that Π is analytically parameterized by ~ε = (ε1, ε2, · · · , εm) ∈ Ω, where Ω denotes an open
and bounded subset of Rm, and assume that at ~ε0 ∈ Ω, the input Markov chain Y is supported
on a mixing finite-type constraint S, i.e., A(X) = S, then H(Z) is smooth around ~ε0.

The rest of the paper is organized as follows. In Section 2, we briefly review the Hilber
metric and introduce a complex Hilbert. In Section 3, using the complex Hilbert metric, we
prove that for any continuous channel, under mild positivity assumptions, H(Z) is analytic
with respect to the input Markov parameters (Theorem 1.1). In Section 4, we prove that
for a Gaussian channel, where the input Markov chain is supported on a mixing finite-type
constraint, H(Z) is smooth with respect to the input Markov parameters (Theorem 1.2).

3



2 A Complex Hilbert Metric

In this section, we briefly review the classical Hilbert metric and review a new complex
Hilbert metric, which we will use to prove Theorem 1.1.

Let W be the standard simplex in |Y|-dimensional real Euclidean space,

W = {w = (w1, w2, · · · , w|Y|) ∈ R|Y| : wi ≥ 0,
∑
i

wi = 1},

and let W ◦ denote its interior, consisting of the vectors with positive coordinates. For any
two vectors v, w ∈ W ◦, the Hilbert metric [9] is defined as

dH(w, v) = max
i,j

log

(
wi/wj
vi/vj

)
. (3)

For a |Y| × |Y| strictly positive matrix T = (tij), the mapping fT induced by T on W is
defined by

fT (w) =
wT

(wT1)
, (4)

where 1 is the all 1 column vector. It is well known that fT is a contraction mapping under
the Hilbert metric [9]. The contraction coefficient of T , which is also called the Birkhoff
coefficient, is given by

τ(T ) = sup
v 6=w

dH(vT, wT )

dH(v, w)
=

1−
√
φ(T )

1 +
√
φ(T )

, (5)

where φ(T ) = mini,j,k,l
tiktjl
tjktil

.

Let Ŵ denote the complex version of W ,

Ŵ = {w = (w1, w2, · · · , w|Y|) ∈ C|Y| :
∑
i

wi = 1}.

Let Ŵ+ = {v ∈ Ŵ : <(vi/vj) > 0 for all i, j}. For v, w ∈ Ŵ+, let

d̂H(v, w) = max
i,j

∣∣∣∣log

(
wi/wj
vi/vj

)∣∣∣∣ , (6)

where log is taken as the principal branch of the complex log(·) function (i.e., the branch
whose branch cut is the negative real axis). Since the principal branch of log is additive on
the right-half plane, d̂H is a metric on Ŵ+, which we call a complex Hilbert metric.

Let M denote the set of all stochastic matrices with dimension |Y| × |Y|, i.e.,

M = {Π = (πij) ∈ R|Y|×|Y| : πij ≥ 0,

|Y|∑
j=1

πij = 1}.

Let M̂ denote the complex version of M , defined as

M̂ = {Π = (πij) ∈ C|Y|×|Y| :
|Y|∑
j=1

πij = 1}.
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For a given positive Π and a small δ1 > 0, let M̂Π(δ1) denote the δ1-neighborhood around
Π within M̂ . For an element Π̂ ∈ M̂Π(δ1), similar to (4), Π̂ will induce a mapping fΠ̂ on

Ŵ . For a small δ2 > 0, let Ŵ ◦
H(δ2) denote the δ2-neighborhood of W ◦ within Ŵ+ under the

complex Hilbert metric, i.e.,

Ŵ ◦
H(δ2) = {v = (v1, v2, · · · , v|Y|) ∈ Ŵ+ : ∃u ∈ W ◦, d̂H(v, u) ≤ δ2}.

The main theorem in [5] says:

Theorem 2.1. For sufficiently small δ1, δ2 > 0, there exists 0 < ρ1 < 0 such that for any
Π̂ ∈ M̂Π(δ1), fΠ̂ is a ρ1-contraction mapping on Ŵ ◦

H(δ2) under the complex Hilbert metric in
(6).

3 Proof of Theorem 1.1

In this section, we consider a discrete-time memoryless continuous-output channel as in
Theorem 1.1, which was described in the beginning of Section 1.

For each z ∈ Z, define Π(z) as a |Y| × |Y| matrix with the entries

Π(z)ij = πij(~ε)q(z|j), for all i, j, (7)

here we suppressed the dependence of Π(z) on ~ε for notational simplicity. By (4), Π(z) will
induce a mapping f~εz := fΠ(z) from W to W . For any fixed n and z0

−n, define

x~εi = x~εi (z
i
−n) = p(yi = · |zi, zi−1, · · · , z−n), (8)

(here · represent the states of the Markov chain Y ,) then similar to Blackwell [1], {x~εi}
satisfies the random dynamical system

x~εi+1 = f~εzi+1
(x~εi ), (9)

starting with
x~ε−n−1 = π(~ε). (10)

And obviously we have
p~ε(z0|z−n) = x~ε−1Π(z0)1, (11)

and
p~ε(z0

−n) = π(~ε)Π(z−n)Π(z−n+1) · · ·Π(z0)1. (12)

Apparently x~εi , p
~ε(z0|z−n) and p~ε(z0

−n) all depend on the real vector ~ε ∈ Ω. In what
follows, we shall show that they can be “complexified”. For r > 0, let Cm

~ε0
(r) denote a r-ball

around ~ε0 in Cm. For any ~ε ∈ Cm
~ε0

(r), one checks that for r small enough, the following
system of equations with respect to π(~ε)

π(~ε)Π = π(~ε),
∑
y

π(~ε)y = 1
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has a unique solution π(~ε), which is analytic on Cm
~ε0

(r) as a function of ~ε. Then through

(10) and (9), x~εi can be analytically extended to Cm
~ε0

(r); furthermore, through (11) and (12),

p~ε(z0|z−n) and p~ε(z0
−n) can be analytically extended to Cm

~ε0
(r). Eventually, H~ε

n(Z) can be
analytically extended to Cm

~ε0
(r) as well.

For any z ∈ Z, by the definition of Π(z), one checks that for any u, v ∈ Ŵ , we have

d̂H(uΠ(z), vΠ(z)) = d̂H(uΠ, vΠ). (13)

Then immediately by Theorem 2.1, we have the following lemma, which, roughly speaking,
says that if we perturb ~ε0 “a bit” to ~ε, f~εz is a contraction mapping on a complex neighborhood
of W ◦, and the contraction coefficient is uniform over all the values of z.

Lemma 3.1. For sufficiently small r, δ > 0, there exists 0 < ρ1 < 1 such that for any
~ε ∈ Cm

~ε0
(r) and any z ∈ Z, f~εz is a ρ1-contraction mapping on Ŵ ◦

H(δ) under the complex
Hilbert metric in (6).

The following lemma, roughly speaking, says that if we perturb ~ε0 “a bit” to ~ε, the image
of any point in W under f~εz , for any z ∈ Z, does not change much.

Lemma 3.2. Consider any ~ε0 ∈ Ω with πij(~ε0) > 0 for all i, j. For any δ > 0, there exists
r > 0 such that for any ~ε ∈ Cm

~ε0
(r), any z ∈ Z and any x ∈ W , we have

d̂H(f~εz (x), f~ε0z (x)) ≤ δ.

Proof. Since all πij(~ε0) are strictly positive, for any δ1 > 0, there exists r > 0 such that for
all i, j and all ~ε ∈ C~ε0(r), we have

|πij(~ε)− πij(~ε0)|
πij(~ε0)

≤ δ1.

Now for any x = (x1, x2, · · · , x|Y|) ∈ W and for any j and for all ~ε ∈ C~ε0(r), we have∣∣∣∣∣
∑|Y|

i=1 xi(πij(~ε)− πij(~ε0))∑|Y|
i=1 xiπij(~ε0)

∣∣∣∣∣ =

∣∣∣∣∣
∑|Y|

i=1 xiπij(~ε0)(πij(~ε)− πij(~ε0))/πij(~ε0)∑|Y|
i=1 xiπij(~ε0)

∣∣∣∣∣ ≤ δ1.

Thus, for δ1 small enough, we have∣∣∣∣∣log

∑|Y|
i=1 xiπij(~ε)∑|Y|
i=1 xiπij(~ε0)

∣∣∣∣∣ =

∣∣∣∣∣log

(
1 +

∑|Y|
i=1 xi(πij(~ε)− πij(~ε0))∑|Y|

i=1 xiπij(~ε0)

)∣∣∣∣∣ ≤ δ1.

Notice that

d̂H(f~εz (x), f~ε0z (x)) = max
j,k

(
log

∑|Y|
i=1 xiπij(~ε)q(z|j)∑|Y|
i=1 xiπij(~ε0)q(z|j)

− log

∑|Y|
i=1 xiπik(~ε)q(z|k)∑|Y|
i=1 xiπik(~ε0)q(z|k)

)

= max
j,k

(
log

∑|Y|
i=1 xiπij(~ε)∑|Y|
i=1 xiπij(~ε0)

− log

∑|Y|
i=1 xiπik(~ε)∑|Y|
i=1 xiπik(~ε0)

)
.
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It then follows that for any δ > 0, there exists r > 0 such that for any ~ε ∈ C~ε0(r) and any
x ∈ W , we have

d̂H(f~εz (x), f~ε0z (x)) ≤ δ.

For δ > 0, let CR+ [δ] denote the “relative” δ-neighborhood of R+ := {x ∈ R : x > 0}
within C, i.e.,

CR+ [δ] = {z ∈ C : |z − x| ≤ δx, for some x > 0}.
The following lemma, which is implied by the proof of Lemma 1.3 in [5], allows us to connect
the complex Hilbert metric and the Euclidean metric. We give a proof for completeness.

Lemma 3.3. 1. For any δ > 0, there exists ξ > 0 such that for any x̂ ∈ Ŵ+, x ∈ W ◦

with d̂H(x̂, x) ≤ ξ, we have x̂i ∈ CR+ [δ] for all i.

2. For any ζ > 0 and any δ > 0, there exists ξ > 0 such that for any x̂, ŷ ∈ Ŵ+ with
|x̂− x|, |ŷ − y| ≤ ζ for some x, y ∈ W ◦, and d̂H(x̂, ŷ) ≤ ξ, we have |x̂− ŷ| ≤ δ.

Proof. 1. Fix certain ξ > 0 and assume that d̂(x̂, x) ≤ ξ. Then we have for all i, j,∣∣∣∣log

(
x̂i/xi
x̂j/xj

)∣∣∣∣ < ξ.

It follows that for some L > 0 and for all i, j,
∣∣∣ x̂i/xix̂j/xj

− 1
∣∣∣ < Lξ. Let αj = x̂j/xj. Then for all

i, j,
|x̂i − αjxi| ≤ Lξ|αj|xi,

and so

|1− αj| =

∣∣∣∣∣
n∑
i=1

(x̂i − αjxi)

∣∣∣∣∣ ≤
n∑
i=1

|x̂i − αjxi| ≤ Lξ|αj|
n∑
i=1

xi = Lξ|αj|.

It follows that |x̂j − xj| ≤ Lξ|x̂j|, and so |x̂j| ≤ xj
1−Lξ , and so |x̂j − xj| ≤ Lξ

1−Lξxj ≤ 2Lξxj,
which implies 1., if ξ is sufficiently small.

2. Fix certain ξ > 0 and assume that d̂(x̂, ŷ) ≤ ξ. Then we have for all i, j,∣∣∣∣log

(
x̂i/ŷi
x̂j/ŷj

)∣∣∣∣ < ξ.

It follows that for some L > 0 and for all i, j,
∣∣∣ x̂i/ŷix̂j/ŷj

− 1
∣∣∣ < Lξ. Let αj = x̂j/ŷj. Then for all

i, j,
|x̂i − αj ŷi| ≤ Lξ|αj||ŷi|,

and so

|1− αj| =

∣∣∣∣∣
n∑
i=1

(x̂i − αj ŷi)

∣∣∣∣∣ ≤
n∑
i=1

|x̂i − αj ŷi| ≤ Lξ|αj|
n∑
i=1

|ŷi| = L(1 +Bζ)ξ|αj|.

It follows that |x̂j − ŷj| ≤ L(1 + Bζ)ξ|x̂j| ≤ L(1 + Bζ)ξ(xj + ζ), which implies 2., if ξ is
sufficiently small.
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We are now ready for the following lemma, whose proof can be roughly described as
follows. As before, we complexify the real random dynamical system corresponding to (9).
Lemma 3.1 and Lemma 3.2 can guarantee the complex orbit will be exponentially close to
the original real orbit under the complex Hilbert metric, thus implying the complex orbit
will be close to W under the Euclidan metric and further, with (11), establishing part 1). For
part 2), again by Lemma 3.1, we can show that the complex orbits, starting from possibly
different initial points, get exponentially close under the complex Hilbert metric, then with
(11) and Lemma 3.3, we can establish part 2).

Lemma 3.4. 1) For any δ > 0, there exists r > 0 such that for any ~ε ∈ Cm
~ε0

(r) and for all
z0
−n ∈ Zn+1,

p~ε(z0|z−1
−n) ∈ CR+ [δ].

2) For sufficiently small r > 0, there exist 0 < ρ1 < 1 and a positive constant L1 such that
for any two Z-valued sequences {a0

−n1
} and {b0

−n2
} with a0

−n = b0
−n and for all ~ε ∈ Cm

~ε0
(r),

we have
|p~ε(a0|a−1

−n1
)− p~ε(b0|b−1

−n2
)| ≤ L1ρ

n
1p

~ε0(a0).

Proof. By Lemma 3.1, we can choose r and δ sufficiently small such that

for some 0 < ρ1 < 1, f~εz is analytic on C~ε0(r) and is a ρ1 − contraction on Ŵ ◦
H(δ)

under the complex Hilbert metric. (14)

Further, we claim that by choosing r smaller, if necessary, such that

for all ~ε ∈ C~ε0(r), all i, n and all choices of zi−n, x
ε̂
i ∈ Ŵ ◦

H(δ), (15)

To see this, fixing ρ1 and δ, choose r > 0 so small (the existence of r is guaranteed by
Lemma 3.2) such that

d̂H(f~εz (x), f~ε0z (x)) ≤ δ(1− ρ1), for any z ∈ Z, for all x ∈ W, all ~ε ∈ C~ε0(r) (16)

and
d̂H(π(~ε), π(~ε0)) ≤ δ(1− ρ1), for all ~ε ∈ C~ε0(r). (17)

Now consider the Hilbert distance

d̂H(x~εi+1, x
~ε0
i+1) = d̂H(f~εzi+1

(x~εi ), f
~ε0
zi+1

(x~ε0i )) ≤ d̂H(f~εzi+1
(x~εi ), f

~ε
zi+1

(x~ε0i )) + d̂H(f~εzi+1
(x~ε0i ), f~ε0zi+1

(x~ε0i )). (18)

Then by (14), (16) and (17), and (18), for i > −n− 1, we have

d̂H(x~εi+1, x
~ε0
i+1) ≤ ρd̂H(x~εi , x

~ε0
i ) + δ(1− ρ1).

So, for all i,
d̂H(x~εi+1, x

~ε0
i+1) ≤ δ,

and thus for all i, we have x~εi+1 ∈ Ŵ ◦
H(δ), yielding (15). Each x~εi is the composition of

analytic functions on C~ε0(r) and so is complex analytic on C~ε0(r).
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Through analytic continuation as before, we have for all ~ε ∈ C~ε0(r),

x~εi,a = x~εi (a
i
−n1

) = f~ε(yi = · |ai−n1
),

x~εi,b = x~εi (b
i
−n2

) = f~ε(yi = · |bi−n2
).

Apparently we still have

x~εi+1,a = f~εai+1
(x~εi,a), x~εi+1,b = f~εbi+1

(x~εi,b).

First note that there exists a positive constant L′1 such that

d̂H(x~ε−n,a, x
~ε
−n,b) ≤ L′1,

for all ~ε ∈ C~ε0(r), where r is chosen sufficiently small as above. Then from (14) and (15),
we have

d̂H(x~ε−1,a, x
~ε
−1,b) ≤ L′1ρ

n−1
1 .

Then by Lemma 3.3, there exists a positive constant L′′1 independent of n1, n2 such that for
any ~ε ∈ C~ε0(r), we have

|x~ε−1,a − x~ε−1,b| ≤ L′′1ρ
n
1 , (19)

Naturally for any sequence z0
−n, we have

p~ε(z0|z−1
−n) = x~ε−1(z−1

−n)Π(z0)1. (20)

Together with the fact that

p~ε0(a0) =
∑
i

π(~ε0)q(a0|i),

here π(~ε0), q(a0|i) are all strictly positive and bounded from above, we conclude that that
there is a positive constant L1, independent of n1, n2, such that

|p~ε(a0|a−1
−n1

)− p~ε(b0|b−1
−n2

)| ≤ L1ρ
n
1p

~ε0(a0). (21)

We will need the following lemma for the proof of Theorem 1.1 as well, which can be
easily proved.

Lemma 3.5. For any δ > 0, there exists r > 0 such that for all z0
−n and for all ~ε ∈ Cm

~ε0
(r),

we have
|p~ε(z0

−n)| ≤ (1 + δ)np~ε0(z0
−n).

Proof. Note that

p~ε0(z0
−n) =

∑
y0−n

πy−n(~ε0)
−1∏
i=−n

πyiyi+1
(~ε0)

0∏
i=−n

q(zi|yi),
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and

p~ε(z0
−n) =

∑
y0−n

πy−n(~ε)
−1∏
i=−n

πyiyi+1
(~ε)

0∏
i=−n

q(zi|yi).

Notice that for any given δ, there exists r such that |πy−n(~ε)| ≤ (1 + δ)πy−n(~ε0) and
|πyiyi+1

(~ε)| ≤ (1 + δ)πyiyi+1
(~ε0). The lemma then immediately follows.

We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1. We only need to prove that there is a r > 0 such that the H~ε
n(Z), as

n→∞, uniformly converges on Cm
~ε0

(r). Note that

|H~ε
n+1(Z)−H~ε

n(Z)| =

∣∣∣∣∣
∫
Z0

−n−1

p~ε(z0
−n−1) log p~ε(z0|z−1

−n−1)dz0
−n−1

−
∫
Z0

−n

p~ε(z0
−n) log p~ε(z0|z−1

−n)dz0
−n

∣∣∣∣∣
=

∣∣∣∣∣
∫
Z0

−n−1

p~ε(z0
−n−1)(log f~ε(z0|z−1

−n−1)− log p~ε(z0|z−1
−n))dz0

−n−1

∣∣∣∣∣ .
Note that for sufficiently small δ′1 > 0, by the mean value theorem, there exists a positive

constant L′1 such that for any α, β ∈ CR+ [δ′1]

| logα− log β| ≤ L′1 max

(
|α− β|
|α|

,
|α− β|
|β|

)
.

Now fix ~ε ∈ Cm
~ε0

(r), then by Lemma 3.4, either we have, for some 0 < ρ1 < 1 and some
δ1 with (1 + δ1)ρ1 < 1,

|p~ε(z0
−n−1)(log p~ε(z0|z−1

−n−1)− log p~ε(z0|z−1
−n))|

≤ L′1

∣∣∣∣p~ε(z0
−n−1)

p~ε(z0|z−1
−n−1)− p~ε(z0|z−1

−n)

p~ε(z0|z−1
−n−1)

∣∣∣∣
≤ L′1|p~ε(z−1

−n−1)|L1ρ
n
1p

~ε0(z0) ≤ L′1L1ρ
n
1 (1 + δ1)np~ε0(z−1

−n−1)p~ε0(z0),

or we have, for some 0 < ρ1 < 1 and some δ1 with (1 + δ1)ρ1 < 1,

|p~ε(z0
−n−1)(log p~ε(z0|z−1

−n−1)− log p~ε(z0|z−1
−n))|

≤ L′1

∣∣∣∣p~ε(z0
−n−1)

p~ε(z0|z−1
−n−1)− p~ε(z0|z−1

−n))

p~ε(z0|z−1
−n)

∣∣∣∣
≤ L′1|p~ε(z−1

−n)p~ε(z−n−1|z0
−n)|L1ρ

n
1p

~ε0(z0)

≤ L′1L1ρ
n
1 (1 + δ1)np~ε0(z0)p~ε0(z−n−1)p~ε0(z−1

−n).
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Combining all the inequalities above gives us some L > 0 and some 0 < ρ < 1 such that
for all ~ε ∈ Cm

~ε0
(r),

|H~ε
n+1(Z)−H~ε

n(Z)| ≤
∫
Z0

−n−1

|p~ε(z0
−n−1)

(log p~ε(z0|z−1
−n−1)− log p~ε(z0|z−1

−n))|dz0
−n−1 ≤ Lρn,

which implies the analyticity of H~ε(Z) around ~ε0.

Remark 3.6. Consider a discrete-time memoryless discrete-output (with a possibly infinite
output alphabet) channel with channel transition probability q(z|y). With essentially the
same proof, we can show that if q(z|y) > 0 for all (y, z) ∈ (Y ,Z), and∑

z∈Z

q(z|i) log q(z|i)

is finite for all i, and the transition probability matrix Π of the input Markov chain Y ,
analytically parameterized by ~ε, is strictly positive at ~ε0, then for the corresponding output
discrete hidden Markov chain Z, H(Z) is analytic around ~ε0. More precisely, all the lemmas
above still hold, and one only has to replace the integral sign

∫
in the main proof with a

summation sign
∑

.
In the case when the channel only has a finite output alphabet, analyticity of H(Z) is

already proven by the main result of [4]. The flow of the proof of Theorem 1.1, in fact,
mainly follows from that of the proof of the main result of [4]. However, in the proof of
Theorem 1.1, based on equality (13), we used the new complex Hilbert metric in a critical
way ((13) does not hold for the Euclidean metric, which was employed in the proof of the
main result in [4]), and we have to deal with some technical details differently.

4 Proof of Theorem 1.2

In this section, we consider a discrete-time memoryless Gaussian channel as in Theorem 1.2,
which was described in Section 1. For simplicity, we assume both the order of the constraint
S and the order of the input Markov chain Y are 1; the higher order case can reduced to
order 1 case by the usual “blocking” technique.

Assume that e is the smallest positive integer such that at ~ε0, Πe is strictly positive. For
the Markov chain Y , define Ỹ = {Ỹi : i ∈ Y} to be a “blocked” process taking values in
Ỹ = Ye by

Ỹi = (Yei, Yei−1, · · · , Yei−e+1);

correspondingly, for the hidden Markov chain Z, define Z̃ = {Z̃i : i ∈ Z} to be a “blocked”
process taking values in Z̃ = Ze by

Z̃i = (Zei, Zei−1, · · · , Zei−e+1).

It follows that Hn(Z̃)/e will converge to H(Z) as n goes to∞, thus to prove the smoothness
of H(Z), it suffices to prove that Hn(Z̃) and all its derivatives uniformly converge within a
real neighborhood of ~ε0.

11



For each z̃ ∈ Z̃, define Π(z̃) by

Π(z̃) = Π(z̃1)Π(z̃2) · · ·Π(z̃e). (22)

Similarly as in Section 3, Π(z̃) will induce a mapping fz̃ := fΠ(z̃) from W to W . For any
fixed n and z̃0

−n, define

x̃i = x̃i(z̃
i
−n) = p(ỹi = · |z̃i, z̃i−1, · · · , z̃−n), (23)

(here · represent the states of the Markov chain Ỹ ,) then {x̃~εi} satisfies the random dynamical
system

x̃i+1 = fz̃i+1
(x̃i), (24)

starting with
x̃−n−1 = π(~ε). (25)

Again similarly, we have
p(z̃0|z̃−n) = x̃−1Π(z̃0)1, (26)

and
p(z̃0
−n) = π(~ε)Π(z̃−n)Π(z̃−n+1) · · ·Π(z̃0)1. (27)

For any fixed M > 0, 0 < α < 1, an instance (with finite length) z̃−1
−n of the above-

mentioned Z̃-process, is said to be (M,α)-typical if the number of i (−n ≤ i ≤ −1) with
|z̃i| ≤M (here | · |∞ denotes `∞-norm of a sequence) is bigger than αn. Let TM,α

n denote the
set of all the (M,α)-typical Z̃-sequences with length n.

The following lemma says that non-(M,α)-typical sequences only occur with exponen-
tially small probability, thus we only have to focus on (M,α)-typical sequences. The proof
uses the fact that the Gaussian channel transition function q(z|y) (see (2)), decreases “very
fast” when z goes to ∞.

Lemma 4.1. Fix 0 < α < 1. For sufficiently large M , there exists 0 < ρ < 1 such that∫
z̃−1
−n 6∈T

M,α
n

p(z̃−1
−n)dz̃−1

−n = O(ρn).

Proof. Note that for a given “blocked” hidden Markov sequence z̃−1
−n,

p(z̃−1
−n) =

∑
ỹ−1
−n

p(ỹ−1
−n)p(z̃−1

−n|ỹ−1
−n).

So we have∫
z̃−1
−n 6∈T

M,α
n

p(z̃−1
−n)dz̃−1

−n =

∫
z̃−1
−n 6∈T

M,α
n

∑
ỹ−1
−n

p(ỹ−1
−n)p(z̃−1

−n|ỹ−1
−n)dz̃−1

−n =
∑
ỹ−1
−n

p(ỹ−1
−n)

∫
z̃−1
−n 6∈T

M,α
n

p(z̃−1
−n|ỹ−1

−n)dz̃−1
−n.

Let µ denote the largest among all |µi| and let σ denote the smallest among all σi, then∣∣∣∣∣
∫
z̃−1
−n 6∈T

M,α
n

p(z̃−1
−n|ỹ−1

−n)dz̃−1
−n

∣∣∣∣∣ ≤
(∫
|z|>M

1√
2πσ

e−
(z−µ)2

σ2 dz

)(1−α)n

(C(1−α)n
n + · · ·+ Cn

n);

12



noticing that C
(1−α)n
n + · · ·+ Cn

n ≤ 2n, we then have∣∣∣∣∣
∫
z−1
−n 6∈TM,α

p(z−1
−n)dz−1

−n

∣∣∣∣∣ ≤ |Y|n2n
(∫
|z|>M

1√
2πσ

e−
(z−µ)2

σ2 dz

)(1−α)n

.

It then follows that for sufficiently large M , there exists 0 < ρ < 1 such that∫
z̃−1
−n 6∈T

M,α
n

p(z̃−1
−n)dz̃−1

−n = O(ρn).

The above lemma says that non-(M,α)-typical sequences only occur with exponentially
small probability, thus we only have to focus on (M,α)-typical sequences. More precisely,
define

HM,α
n (Z̃) =

∫
z̃−1
−n∈T

M,α
n ,z̃0

−p(z̃0
−n) log p(z̃0|z̃−1

−n)dz̃0
−n.

Note that for any zji , we have

min
l

∑
k

πl,k√
2πσk

e−(zj−k)2/(2σ2
k) ≤ p(zj|zj−1

i )

= xj−1Πzj1 ≤ max
l

∑
k

πl,k√
2πσk

e−(zj−k)2/(2σ2
k).

It then follows from
p(z̃0|z̃−1

−n) log p(z̃0|z̃−1
−n)

=
0∏

i=−e+1

p(zi|zi−1
−en−e+1)

0∑
i=−e+1

log p(zi|zi−1
−en−e+1)

that |p(z0|z−1
−n) log p(z0|z−1

−n)| is upper bounded by an integrable function g(z̃0), which is
independent of z̃−1

−n. It then follows from Lemma 4.1 that there exists 0 < ρ < 1 such that

|HM,α
n (Z̃)−Hn(Z̃)| =

∣∣∣∣∣
∫
z̃−1
−n 6∈T

M,α
n ,z̃0

−p(z̃0
−n) log p(z̃0|z̃−1

−n)dz̃0
−n

∣∣∣∣∣
=

∣∣∣∣∣
∫
z̃−1
−n 6∈T

M,α
n ,z̃0

−p(z̃−1
−n)p(z̃0|z̃−1

−n) log p(z̃0|z̃−1
−n)dz̃0

−n

∣∣∣∣∣
≤

∣∣∣∣∣
∫
z̃−1
−n 6∈T

M,α
n ,z̃0

−p(z̃−1
−n)dz̃−1

−n

∫
z̃0

g(z̃0)dz̃0

∣∣∣∣∣ = O(ρn),

which implies that, like Hn(Z̃), HM,α
n (Z̃) converges to H(Z̃), as n→∞.

To prove smoothness ofH(Z) at ~ε0, it suffices to prove thatHM,α
n (Z̃) and all its derivatives

uniformly converge on a neighborhood of ~ε0. In the following, In the following, we use
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α(zji ) = Ô(β(zji )) to denote that there exist positive constants C,K, which are independent
of zji , such that

|α(zji )| ≤ Cβ(zji )
K .

For any smooth function f of ~ε and ~n = (n1, n2, · · · , nm) ∈ Zm, define

f (~n) =
∂|~n|f

∂εn1
1 ∂ε

n2
2 · · · ∂εnmm

,

here |~n| denotes the order of the ~n-th derivative of f with respect to ~ε, and is defined as

|~n| = n1 + n2 + · · ·+ nm.

We say ~l � ~n, if every component of ~l is less or equal to the corresponding one of ~n. For any
~l = (l1, l2, · · · , lm) ∈ Zm, ~l! is defined as ~l! =

∏m
i=1 li!. For any ~l � ~n, define C

~l
~n = ~n!

~l!(~n−~l)!
.

Proof of Theorem 1.2. In the following we shall prove that HM,α
n (Z̃) and all its derivatives

with respect to ~ε uniformly converge within certain neighborhood of ~ε0, thus implying
smoothness of HM,α

n (Z̃). Although the convergence of HM,α
n (Z̃) and its derivatives can

be proven through the same argument at once, we first prove the convergence of HM,α
n (Z̃)

only for illustrative purpose.
Using the inequalities

| logα− log β| ≤ max (|(α− β)/β)|, |(β − α)/α|), (28)

we have

|HM,α
n (Z̃)−HM,α

n+1 (Z̃)| =

∣∣∣∣∣
∫
z̃−1
−n∈T

M,α
n ,z̃0

−p(z̃0
−n) log p(z̃0|z̃−1

−n)dz̃0
−n −

∫
z̃−1
−n−1∈T

M,α
n+1 ,z̃0

−p(z̃0
−n−1) log p(z̃0|z̃−1

−n−1)dz̃0
−n−1

∣∣∣∣∣
=

∣∣∣∣∣
(∫

z̃−1
−n∈T

M,α
n ,z̃−1

−n−1∈T
M,α
n+1 ,z̃0

+

∫
z̃−1
−n∈T

M,α
n ,z̃−1

−n−1 6∈T
M,α
n+1 ,z̃0

)
− p(z̃0

−n−1) log p(z̃0|z̃−1
−n)dz̃0

−n−1

−

(∫
z̃−1
−n∈T

M,α
n ,z̃−1

−n−1∈T
M,α
n+1 ,z̃0

+

∫
z̃−1
−n 6∈T

M,α
n ,z̃−1

−n−1∈T
M,α
n+1 ,z̃0

)
− p(z̃0

−n−1) log p(z̃0|z̃−1
−n−1)dz̃0

−n−1

∣∣∣∣∣
≤

∣∣∣∣∣
∫
z̃−1
−n∈T

M,α
n ,z̃−1

−n−1∈T
M,α
n+1 ,z̃0

−p(z̃0
−n−1)(log p(z̃0|z̃−1

−n)− log p(z̃0|z̃−1
−n−1))dz̃0

−n−1

∣∣∣∣∣
+

∣∣∣∣∣
∫
z̃−1
−n∈T

M,α
n ,z̃−1

−n−1 6∈T
M,α
n+1 ,z̃0

−p(z̃0
−n−1) log p(z̃0|z̃−1

−n)dz̃0
−n−1

∣∣∣∣∣+
∣∣∣∣∣
∫
z̃−1
−n 6∈T

M,α
n ,z̃−1

−n−1∈T
M,α
n+1 ,z̃0

−p(z̃0
−n−1) log p(z̃0|z̃−1

−n−1)dz̃0
−n−1

∣∣∣∣∣
≤

∣∣∣∣∣
∫
z̃−1
−n∈TnM,α,z̃

−1
−n−1∈TnM,α,z̃0

−p(z̃0
−n−1) max

(∣∣∣∣p(z̃0|z̃−1
−n)− p(z̃0|z̃−1

−n−1)

p(z̃0|z̃−1
−n)

∣∣∣∣ , ∣∣∣∣p(z̃0|z̃−1
−n)− p(z̃0|z̃−1

−n−1)

p(z̃0|z̃−1
−n−1)

∣∣∣∣) dz̃0
−n−1

∣∣∣∣∣
+

∣∣∣∣∣
∫
z̃−1
−n∈T

M,α
n ,z̃−1

−n−1 6∈T
M,α
n+1 ,z̃0

−p(z̃0
−n−1) log p(z̃0|z̃−1

−n)dz̃0
−n−1

∣∣∣∣∣+
∣∣∣∣∣
∫
z̃−1
−n 6∈T

M,α
n ,z̃−1

−n−1∈T
M,α
n+1 ,z̃0

−p(z̃0
−n−1) log p(z̃0|z̃−1

−n−1)dz̃0
−n−1

∣∣∣∣∣ .
(29)
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We first show that the second and the third terms above are O(ρn) for some 0 < ρ < 1.
Similarly as before, one checks that

|p(z̃0|z̃−1
−n−1) log p(z̃0|z̃−1

−n)|

is upper bounded by an integrable function g0(z̃0), which is independent of z̃−1
−n. So we have,

by Lemma 4.1, for some 0 < ρ < 1,∣∣∣∣∣
∫
z̃−1
−n∈TnM,α,z̃

−1
−n−1 6∈T

n+1
M,α ,z̃0

−p(z̃0
−n−1) log p(z̃0|z̃−1

−n)dz̃0
−n−1

∣∣∣∣∣
=

∣∣∣∣∣
∫
z̃−1
−n∈TnM,α,z̃

−1
−n−1 6∈T

n+1
M,α ,z̃0

−p(z̃−1
−n−1)p(z̃0|z̃−1

−n−1) log p(z̃0|z̃−1
−n)dz̃0

−n−1

∣∣∣∣∣
≤

∣∣∣∣∣
∫
z̃−1
−n−1 6∈T

n+1
M,α

−p(z̃−1
−n−1)dz̃−1

−n−1

∫
z̃0

g0(z̃0)dz̃0

∣∣∣∣∣ = O(ρn).

Similarly |p(z̃−n−1|z̃−1
−n)|, |p(z̃0|z̃−1

−n−1) log p(z̃0|z̃−1
−n−1)| are upper bounded integrable func-

tions g1(z̃−n−1), g2(z̃0), respectively. So we have, again by Lemma 4.1, for some 0 < ρ < 1,∣∣∣∣∣
∫
z̃−1
−n 6∈TnM,α,z̃

−1
−n−1∈T

n+1
M,α ,z̃0

−p(z̃−1
−n)p(z̃−n−1|z̃−1

−n)p(z̃0|z̃−1
−n−1) log p(z̃0|z̃−1

−n−1)dz̃0
−n−1

∣∣∣∣∣
≤
∫
z̃−1
−n 6∈TnM,α

p(z̃−1
−n)dz̃−1

−n

∫
z̃−n−1

g1(z̃−n−1)dz̃−n−1

∫
z̃0

g2(z̃0)dz̃0 = O(ρn).

To show the first term is also O(ρn), we need to estimate |x̃ai − x̃bi | where we rewrite
x̃i(z̃

i
−n), x̃i(z̃

i
−n−1) as x̃ai , x̃

b
i , respectively. Note that for |z̃i|∞ ≤M , there is a 0 < ρ1 < 1 such

that
dH(x̃ai , x̃

b
i) ≤ ρ1dH(x̃ai−1, x̃

b
i−1),

while otherwise trivially we have

dH(x̃ai , x̃
b
i) ≤ dH(x̃ai−1, x̃

b
i−1).

Then for any sequence z̃−1
−n ∈ TM,α

n , let i0 denote the smallest index such that |z̃i0|∞ ≤ M ,
then we have

dH(x̃a−1, x̃
b
−1) ≤ ραn−1

1 dH(x̃ai0 , x̃
b
i0

),

which implies that there exists 0 < ρ < 1 such that |x̃a−1 − x̃b−1| ≤ O(ρn). It then follows
that there exists 0 < ρ < 1 such that |p(z̃0|z̃−1

−n)− p(z̃0|z̃−1
−n−1)| ≤ ρng3(z̃0), where g3(z̃0) is an

integrable function of z̃0. This, together with the fact that p(z̃−n−1|z̃0
−n) is upper bounded

by g4(z̃−n−1), which is an integrable function of z̃−n−1, will establish the case when |~l| = 0,
thus implying that HM,α

n (Z) uniformly converge to H(Z̃).
Apply multivariate Faa Di Bruno formula [2, 6] to the function f(y) = log y, we have for

~l with |~l| 6= 0,

f(y)(~l) =
∑

D(~a1,~a2, · · · ,~ak)(y(~a1)/y)(y(~a2)/y) · · · (y(~ak)/y),
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where the summation is over the set of unordered sequences of non-negative vectors ~a1,~a2, · · · ,~ak
with ~a1 +~a2 + · · ·+~ak = ~l and D(~a1,~a2, · · · ,~ak) is the corresponding coefficient. So for any
~m, we have

(HM,α
n )(~m)(Z) =

∫
z̃−1
−n∈T

M,α
n ,z̃0

∑
~l�~m

−C~l~mp(~m−~l)(z̃0
−n)(log p(z̃0|z̃−1

−n))(~l)dz̃0
−n

=

∫
z̃−1
−n∈T

M,α
n ,z̃0

∑
|~l|6=0,~l�~m

∑
~a1+~a2+···+~ak=~l

−C~l~mD(~a1, · · · ,~ak)p(~m−~l)(z̃0
−n)

p(z̃0|z̃−1
−n)(~a1)

p(z̃0|z̃−1
−n)

· · · p(z̃0|z̃−1
−n)(~ak)

p(z̃0|z̃−1
−n)

dz̃0
−n

+

∫
z̃−1
−n∈T

M,α
n ,z̃0

−p(~m)(z̃0
−n) log p(z̃0|z̃−1

−n)dz̃0
−n.

Notice that there exists a positive constant Cm such that for any z̃0
−n, we have

|p(m)(z̃0
−n)| ≤ Cmn

|~m|p(z̃0
−n).

Again using the inequalities (28) and with a parallel argument through replacing p(z̃0
−n), p(z̃0

−n−1)
by p(m)(z̃0

−n), p(m)(z̃0
−n−1), respectively, we can show that∣∣∣∣∣

∫
z̃−1
−n∈Tαn ,z̃0

−p(~m)(z̃0
−n) log p(z̃0|z̃−1

−n)dz̃0
−n −

∫
z̃−1
−n−1∈Tαn+1,z̃0

−p(~m)(z̃0
−n−1) log p(z̃0|z̃−1

−n−1)dz̃0
−n−1

∣∣∣∣∣ = O(ρn).

And using the identity

α1α2 · · ·αn−β1β2 · · · βn = (α1−β1)α2 · · ·αn+β1(α2−β2)α3 · · ·αn+· · ·+β1 · · · βn−1(αn−βn),

we have ∣∣∣∣p(z̃0|z̃−1
−n)(~a1)

p(z̃0|z̃−1
−n)

· · · p(z̃0|z̃−1
−n)(~ak)

p(z̃0|z̃−1
−n)

−
p(z̃0|z̃−1

−n−1)(~a1)

p(z̃0|z̃−1
−n−1)

· · ·
p(z̃0|z̃−1

−n−1)(~ak)

p(z̃0|z̃−1
−n−1)

∣∣∣∣
≤
∣∣∣∣(p(z̃0|z̃−1

−n)(~a1)

p(z̃0|z̃−1
−n)

−
p(z̃0|z̃−1

−n−1)(~a1)

p(z̃0|z̃−1
−n−1)

)
p(z̃0|z̃−1

−n)(~a2)

p(z̃0|z̃−1
−n)

· · · p(z̃0|z̃−1
−n)(~ak)

p(z̃0|z̃−1
−n)

∣∣∣∣
+

∣∣∣∣p(z̃0|z̃−1
−n−1)(~a1)

p(z̃0|z̃−1
−n−1)

(
p(z̃0|z̃−1

−n)(~a2)

p(z̃0|z̃−1
−n)

−
p(z̃0|z̃−1

−n−1)(~a2)

p(z̃0|z̃−1
−n−1)

)
p(z̃0|z̃−1

−n)(~a3)

p(z̃0|z̃−1
−n)

· · · p(z̃0|z̃−1
−n)(~ak)

p(z̃0|z̃−1
−n)

∣∣∣∣+ · · ·

+

∣∣∣∣p(z̃0|z̃−1
−n−1)(~a1)

p(z̃0|z̃−1
−n−1)

· · ·
p(z̃0|z̃−1

−n−1)(~ak−1)

p(z̃0|z̃−1
−n−1)

(
p(z̃0|z̃−1

−n)(~ak)

p(z̃0|z̃−1
−n)

−
p(z̃0|z̃−1

−n−1)(~ak)

p(z̃0|z̃−1
−n−1)

)∣∣∣∣ .
Now apply the inequality∣∣∣∣β1

α1

− β2

α2

∣∣∣∣ =

∣∣∣∣β1

α1

− β1

α2

+
β1

α2

− β2

α2

∣∣∣∣ ≤ |β1/(α1α2)||α1 − α2|+ |1/(α2)||β1 − β2|,

we have for any feasible i, ∣∣∣∣p(z̃0|z̃−1
−n)(~ai)

p(z̃0|z̃−1
−n)

−
p(z̃0|z̃−1

−n−1)(~ai)

p(z̃0|z̃−1
−n−1)

∣∣∣∣
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≤
∣∣∣∣ p(z̃0|z̃−1

−n)(~ai)

p(z̃0|z̃−1
−n)p(z̃0|z̃−1

−n−1)

∣∣∣∣ |p(z̃0|z̃−1
−n)−p(z̃0|z̃−1

−n−1)|+
∣∣∣∣ 1

p(z̃0|z̃−1
−n−1)

∣∣∣∣ |p(z̃0|z̃−1
−n)(~ai)−p(z̃0|z̃−1

−n−1)(~ai)|.

To estimate |p(z̃0|z̃−1
−n)(~ai)− p(z̃0|z̃−1

−n−1)(~ai)|, we shall first estimate the difference between
the derivatives of x̃ai and x̃bi .

In what follows, we prove that for any ~k with |~k| = 1, the ~k-th order derivatives of
x̃ai , x̃

b
i get exponentially close with respect to n along any (M,α)-typical sequence z̃−1

−n (up
to certain integrable functions). Note that

x̃
(~k)
i+1,a =

∂fz̃i+1

∂~ε
(~ε, x̃i,a) +

∂fz̃i+1

∂x
(~ε, x̃i,a)x̃

(~k)
i,a .

Similarly, we also have

x̃
(~k)
i+1,b =

∂fz̃i+1

∂~ε
(~ε, x̃i,b) +

∂fz̃i+1

∂x
(~ε, x̃i,b)x̃

(~k)
i,b .

Note that ∣∣∣∣∂fz̃∂x (~ε, x)

∣∣∣∣ , ∣∣∣∣∂fz̃∂~ε (~ε, x)

∣∣∣∣ = Ô(e|z̃|1),

where | · |1 denotes the `1 norm and the constants in Ô(e|z̃|1) is independent of all z̃ ∈ Z̃ and
all x ∈ W . It then follows from an inductive argument, using the iterations above, that for
any z̃−1

−n,

|x̃(~k)
−1,a|, |x̃

(~k)
−1,b| = Ô(ne|z̃−n|1+|z̃−n+1|1+···+|z̃−1|1),

where the constants in Ô only depend on ~k.
Take the difference of the iterative equations, we then have

x̃
(~k)
i+1,a − x̃

(~k)
i+1,b =

∂fz̃i+1

∂~ε
(~ε, x̃i,a)−

∂fz̃i+1

∂~ε
(~ε, x̃i,b) +

∂fz̃i+1

∂x
(~ε, x̃i,a)x̃

(~k)
i,a −

∂fz̃i+1

∂x
(~ε, x̃i,b)x̃

(~k)
i,b

=
∂fz̃i+1

∂~ε
(~ε, x̃i,a)−

∂fz̃i+1

∂~ε
(~ε, x̃i,b) +

∂fz̃i+1

∂x
(~ε, x̃i,a)x̃

(~k)
i,a −

∂fz̃i+1

∂x
(~ε, x̃i,b)x̃

(~k)
i,a

+
∂fz̃i+1

∂x
(~ε, x̃i,b)x̃

(~k)
i,a −

∂fz̃i+1

∂x
(~ε, x̃i,b)x̃

(~k)
i,b

=
∂fz̃i+1

∂x
(~ε, x̃i,b)(x̃

(~k)
i,a − x̃

(~k)
i,b ) + gi+1(z̃i+1

−n ),

where we defined

gi+1(z̃i+1
−n ) =

∂fz̃i+1

∂~ε
(~ε, x̃i,a)−

∂fz̃i+1

∂~ε
(~ε, x̃i,b) +

∂fz̃i+1

∂x
(~ε, x̃i,a)x̃

(~k)
i,a −

∂fz̃i+1

∂x
(~ε, x̃i,b)x̃

(~k)
i,a .

Applying the mean value theorem, one checks that

gi+1(z̃i+1
−n ) = Ô(e|z̃−n|1+|z̃−n+1|1+···+|z̃−1|1)(x̃i,a − x̃i,b).

Letting the dynamical system evolve, we obtain

x̃
(~k)
−1,a − x̃

(~k)
−1,b =

−2∏
i=−n

∂fz̃i+1

∂x
(~ε, x̃i,b)(x̃

(~k)
−n,a − x̃

(~k)
−n,b) +

−2∏
i=−n+1

∂fz̃i+1

∂x
(~ε, x̃i,b)g−n+1(z̃−n+1

−n )
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+ · · ·+ (
∂fz̃−1

∂x
(~ε, x̃−2,b))g−2(z̃−2

−n) + g−1(z̃−1
−n).

Consider any individual term above,

−2∏
i=j

∂fz̃i+1

∂x
(~ε, x̃i,b)gj(z̃

j
−n).

When j + n is larger than 2(1 − α)n, |x̃j−1,a − x̃j−1,b| = O(ρn1 ) for some 0 < ρ1 < 1; while
j + n is smaller than 2(1 − α)n, it follows from the fact that fz̃−1 ◦ · · · ◦ fz̃−n+1 ◦ fz̃−n is a
contraction mapping under Hilbert metric and Lemma 3.3 that for some 0 < ρ1 < 1, we
have

−2∏
i=j

∂fz̃i+1

∂x
(~ε, x̃i,b) ≤ ρn1 Ô(|z̃j+1|1 + · · ·+ |z̃−1|1).

In any case, there exists 0 < ρ1 < 1 such that

−2∏
i=j

∂fz̃i+1

∂x
(~ε, x̃i,b)gj(z̃

j
−n) = ρn1 Ô(e|z̃−n−1|1+···+|z̃−1|1),

which implies that there exists 0 < ρ1 < 1 such that

|x̃(~k)
−1,a − x̃

(~k)
−1,b| = ρn1 Ô(e|z̃−n−1|1+···+|z̃−1|1).

Most importantly, one checks that there exists 0 < ρ1 < 1 such that∫
z̃−1
−n∈T

M,α
n ,z̃−1

−n−1∈T
M,α
n ,z̃0

p(m−l)(z̃0
−n−1)

p(z̃0|z̃−1
−n−1)(~a1)

p(z̃0|z̃−1
−n−1)

· · ·
p(z̃0|z̃−1

−n−1)(~ai−1)

p(z̃0|z̃−1
−n−1)∣∣∣∣ p(z̃0|z̃−1

−n)(~ai)

p(z̃0|z̃−1
−n)p(z̃0|z̃−1

−n−1)

∣∣∣∣ |p(z̃0|z̃−1
−n)−p(z̃0|z̃−1

−n−1)|
p(z̃0|z̃−1

−n−1)(~ai+1)

p(z̃0|z̃−1
−n)

· · ·
p(z̃0|z̃−1

−n−1)(~am)

p(z̃0|z̃−1
−n)

dz̃0
−n−1 ≤ ρn1 ,

and ∫
z̃−1
−n∈T

M,α
n ,z̃−1

−n−1∈T
M,α
n ,z̃0

p(m−l)(z̃0
−n−1)

p(z̃0|z̃−1
−n−1)(~a1)

p(z̃0|z̃−1
−n−1)

· · ·
p(z̃0|z̃−1

−n−1)(~ai−1)

p(z̃0|z̃−1
−n−1)∣∣∣∣ 1

p(z̃0|z̃−1
−n−1)

∣∣∣∣ |p(z̃0|z̃−1
−n)(~ai) − p(z̃0|z̃−1

−n−1)(~ai)|
p(z̃0|z̃−1

−n−1)(~ai+1)

p(z̃0|z̃−1
−n)

· · ·
p(z̃0|z̃−1

−n−1)(~am)

p(z̃0|z̃−1
−n)

dz̃0
−n−1 ≤ ρn1 ,

where we used the facts that there exists C|~m−~l| such that

|p(~m−~l)(z̃0
−n−1)| ≤ C|~m−~l|p(z̃

0
−n−1);

and there exists 0 < ρ2 < 1 such that

|p(z̃0|z̃−1
−n)(~ai) − p(z̃0|z̃−1

−n−1)(~ai)| = ρn2p(z̃0)Ô(e|z̃−n−1|+···+|z̃0 |);

and
p(z̃0|z̃−1

−n−1)(~ai)

p(z̃0|z̃−1
−n)

= Ô(e|z̃−n|1+···+|z̃−1|1).
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A completely parallel yet more tedious argument can be applied to higher derivatives to
establish that for any ~m, we have

|(HM,α
n )(~m)(Z̃)− (HM,α

n )(~m)(Z̃)| = O(ρn),

which implies that HM,α
n (Z̃) and its derivatives with respect to ~ε uniformly converge to the

function H(Z̃) and correspondingly its derivatives on some neighborhood of ~ε0, which implies
the smoothness of H(Z̃).

Remark 4.2. Unlike Theorem 1.1, the complex Hilbert metric can not be applied because
of the possible zero entries of Π.

Problem 4.3. Can Blackwell’s measure be generalized to continuous-state hidden Markov
chains? It seems like doable when the transition probability matrix of the Markov chain is
strictly positive, since we have strict contract along any hidden Markov chain sequence.

For analyticity, what about treating entropy rate as a function of channel parameters. It
appears that given the positivity assumptions, entropy rate should be analytic with respect
to channel parameters too. For this, we may have to prove perturbation of the channel
parameters will uniformly act on the real simplex.

What about asymptotic behavior of entropy rate? Remember BSC is an extreme version
of Gaussian channel.
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