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1 Introduction

The study of holomorphic isometries between Kähler manifolds endowed with
real-analytic Kähler metrics originated with the works of Bochner and Calabi.
Especially, Calabi [Ca53] established results on the existence, uniqueness and
analytic continuation of germs of holomorphic isometries into Fubini-Study
spaces of finite or countably infinite dimension. Embedding any bounded do-
main U b Cn into the countably infinite-dimensional Fubini-Study space
(P∞, ds2FS) of constant holomorphic sectional curvature +2 by means of an
orthonormal basis of the Hilbert space H2(U) of square-integrable holomor-
phic functions on U , it follows from [Ca53] that any germ of holomorphic
isometry f : (U1, λds

2
U1

;x1)→ (U2, ds
2
U2

;x2) extends to a proper holomorphic
isometric embedding F : (U1, λds

2
U1

;x1) ↪→ (U2, ds
2
U2

;x2) provided that the
Bergman metrics on the bounded domains U1 and U2 are complete. (Here ds2U
stands for the Bergman metric on U and λ > 0 is a real constant.) Moti-
vated by questions on holomorphic isometries on bounded symmetric domains
in Clozel-Ullmo [CU03] arising from the study of commutants of Hecke corre-
spondences, the second author studied in [Mok12] the general question of alge-
braic extension of germs f : (U1, λds

2
U1

;x1)→ (U2, ds
2
U2

;x2), and proved that
Graph(f) extends as an affine-algebraic variety provided that the Bergman
kernel KU (z, w) is a rational function in (z, w) for U = U1, U2.

Restricting to the study of bounded symmetric domains there arises natu-
rally the question of existence and classification of such maps. In view of Her-
mitian metric rigidity when rank(U1) ≥ 2, the essential question is to classify
holomorphic isometric embeddings up to normalizing constants from a com-
plex unit ball Bm to a bounded symmetric domain Ω. In [Mok12] examples of
nonstandard holomorphic isometries from the Poincaré disk into polydisks and
into certain Siegel upper half-planes were constructed, and the first examples
of nonstandard holomorphic isometries from Bm, m ≥ 2, were constructed in
[Mok16]. They are holomorphic isometries F : (Bp+1, gBp+1) ↪→ (Ω, gΩ), where
Ω is an arbitrary irreducible bounded symmetric domain of rank ≥ 2, the
positive integer p = p(Xc) is defined by c1(Xc) = (p + 2)δ for the compact
dual manifold Xc of Ω and the positive generator δ of H2(Xc,Z) ∼= Z, and
gBm resp. gΩ denotes the normalized Kähler-Einstein metric on Bm, m ≥ 1,
resp.Ω with respect to which minimal disks are of constant Gaussian cur-
vature −2. These examples arise from varieties of minimal rational tangents
on Xc and they are at the same time bona fide holomorphic isometries F :
(Bp+1, ds2Bp+1) ↪→ (Ω, ds2Ω) with respect to the Bergman metric.

We consider here primarily holomorphic isometries F : (Bm, gBm) ↪→ (Ω, gΩ)
where Ω is irreducible, leaving aside the general case to future works. Essen-
tial to the study of such maps is the duality between Ω and Xc in the sense
both of algebraic geometry and differential geometry. We prove first of all a
principal result that the image S := F (Bm) is an irreducible component of the
intersection of Ω with a linear section of Xc ↪→ P

(
Γ (Xc,O(1))∗

)
projectively

embedded via the minimal embedding. In the special case of Lie balls, i.e.,
type-IV domains DIV

n , n ≥ 3, we give a complete classification of such maps
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(which yields at the same time the full classification with arbitrary normalizing
constants). The case of type-IV domains is especially relevant to uniqueness
questions arising from [Mok16]. In fact, when m = p(Ω) + 1, possible iso-
morphism classes of tangent spaces to S have been identified in Mok-Yang
[MY16] by an application of duality and the Gauss equation, leading already
to uniqueness theorems for holomorphic isometries of Bm into Ω for some se-
ries of classical irreducible bounded symmetric domains of rank ≥ 2 and for
the two exceptional bounded symmetric domains. The latter approach fails
completely precisely in the case of type-IV domains and our result in the
current article shows in particular that there exist in this case nonstandard
holomorphic isometries which are incongruent to the examples in [Mok16].

After circulating and posting a first version of the article, it has recently
been brought to our attention that there are preprints of Xiao-Yuan [XY]
and of Upmeier-Wang-Zhang [UWZ] studying holomorphic isometries of the
complex unit ball into bounded symmetric domains. Results of both articles
overlap with the second half of the current article. Especially, both articles gave
explicit parametrizations of all holomorphic isometric embeddings of complex
unit balls of codimension 1 into DIV

n , whereas we give a full classification
of images of holomorphic isometric embeddings of complex unit balls of any
dimension. While functional equations are made use of in [XY], the article
[UWZ] is based on entirely different methods, viz., the theory of Jordan al-
gebras and the study of norm-preserving linear operators on Hilbert spaces
arising from holomorphic isometries.

2 General properties of holomorphic isometric embeddings of the
complex unit ball into irreducible bounded symmetric domains

Let Ω b CN be an irreducible bounded symmetric domain in its Harish-
Chandra realization and Xc be the compact dual Hermitian symmetric space
of Ω. Recall that Bn ⊂ Cn is the complex unit ball with respect to the stan-
dard complex Euclidean metric on Cn. Throughout this article, given an irre-
ducible bounded symmetric domain D, we denote by gD the canonical Kähler-
Einstein metric on D normalized so that minimal disks are of constant Gaus-
sian curvature −2. Denote by HIλ(Bn, Ω) the space of holomorphic isometries
(Bn, λgBn)→ (Ω, gΩ) for a positive real constant λ > 0. We will show that λ is
an integer satisfying 1 ≤ λ ≤ rank(Ω). Note that our notation HIλ(Bn, Ω) is
in general different from the notation in [Mok11, p. 261], since the background
metrics in [Mok11, loc. cit.] are the Bergman metrics, which on both Bn and
Ω are canonical Kähler-Einstein metrics of constant Ricci curvature −1, while
we make different choices for the canonical Kähler-Einstein metrics gBn and gΩ
in the current article. Note also that in this section for notational convenience
the complex unit ball is taken to be of dimension n.
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2.1 Preliminaries

Let (X0, g0) be the Hermitian symmetric manifold of the noncompact type
underlying a bounded symmetric domain Ω. Let G0 be the identity compo-
nent of the group of holomorphic isometries of X0, K ⊂ G0 be a maximal
compact subgroup, and write β : X0 = G0/K ↪→ Xc = Gc/K ∼= GC/P for
the Borel embedding, where (Xc, gc) is the compact dual of (X0, g0), Gc is
the group of holomorphic isometries of (Xc, gc), K ⊂ Gc is a maximal proper
subgroup (being isomorphic to and identified with K ⊂ G0), GC stands for the
complexification of both G0 and Gc, and P ⊂ GC is the isotropy (parabolic)
subgroup at a base point of Xc. Writing gC = m− ⊕ kC ⊕ m+ for the Harish-
Chandra decomposition in standard notation of the Lie algebra gC of GC,
there is a biholomorphism ξ : m+ ∼= CN ↪→ Xc ≡ GC/P onto a dense open
subset of Xc containing the Hermitian symmetric space X0 ≡ G0/K, and the
bounded symmetric domain will from now on be identified with ξ−1(X0), giv-
ing the Harish-Chandra realization Ω b CN (cf. [Mok89, p. 94] or Wolf [Wo72,
pp. 278-281]).

Suppose that the bounded symmetric domain Ω is irreducible. Then, we
let f : (D, gΩ) → (Ω, gΩ) be a holomorphic isometric embedding, where D is
an irreducible bounded symmetric domain. We will look for general properties
of the image f(D) in P

(
Γ (Xc,O(1))∗

) ∼= PN ′ via the minimal embedding

ι : Xc ↪→ P
(
Γ (Xc,O(1))∗

)
defined by the positive generator O(1) of the

Picard group Pic(Xc) ∼= Z of Xc. In the case where D is of rank ≥ 2, Clozel-
Ullmo [CU03] noted that it already follows from the proof of Hermitian metric
rigidity of Mok [Mok87] that f is necessarily totally geodesic. Therefore, we
will focus on the case where D = Bn.

The Borel embedding Ω ⊂ Xc identifies the irreducible bounded symmetric
domain Ω as an open subset of its dual Hermitian symmetric space of the
compact type Xc, which is a Fano manifold of Picard number 1, and the
minimal canonical embedding ι : Xc ↪→ PN ′ identifies Xc as a projective
submanifold uniruled by projective lines. For uniruled projective manifolds X
Hwang-Mok [HM99] introduced the notion of the variety of minimal rational
tangents (VMRT) at a general point x ∈ X. In the special case of a projective
submanifold X ⊂ Pm uniruled by projective lines, as is the case of X =
ι(Xc) ⊂ PN ′ , the VMRT Cx(X) ⊂ P(Tx(X)) consists of all [α] ∈ P(Tx(X))
such that, defining `(α) to be the unique line on Pm passing through x and
satisfying Tx(`(α)) = Cα, we have `(α) ⊂ X. Moreover, for a general point
[α] ∈ Cx(X), we have T (X)|`(α) = O(2)⊕O(1)p⊕Oq for nonnegative integers
p, q depending only on X, and we have dim Cx(X) = p. For Ω ⊂ Xc and for a
point x ∈ Ω we will speak of the VMRT Cx(Ω) at x ∈ Ω to mean Cx(Xc). The
subvariety Cx(Ω) ⊂ P(Tx(Ω)) is equivalently the collection of projectivizations
of nonzero vectors α ∈ Tx(Ω) tangent to minimal disks on Ω passing through
the point x.

From now on we denote also by Xc the image of Xc in P
(
Γ (Xc,O(1))∗

) ∼=
PN ′ via the minimal embedding, i.e., we identify Xc with ι(Xc). From [DL08,
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p. 2341], we may assume that the minimal embedding ι : Xc ↪→ P
(
Γ (Xc,O(1))∗

)
∼= PN ′ maps CN biholomorphically onto the set Xc r {[ξ0, . . . , ξN ′ ] ∈ PN ′ :

ξ0 = 0} = Xc∩U0 ⊂ PN ′ , where U0 =
{

[ξ0, . . . , ξN ′ ] ∈ PN ′ : ξ0 6= 0
}

. Let ωPN′

be the Kähler form on PN ′ which corresponds to the normalized Fubini-Study
metric gPN′ on PN ′ such that (PN ′ , gPN′ ) is of constant holomorphic sectional

curvature +2. Then, the pullback of the Kähler form ωPN′ to CN ′+1 r {0} is

given by ωPN′ =
√
−1∂∂ log

(∑N ′

j=0 |ξj |2
)

for (ξ0, . . . , ξN ′) ∈ CN ′+1 r {0} so

that the induced Kähler form ωXc on Xc is given by the restriction of ωPN′ to
Xc. Therefore, in terms of the Harish-Chandra coordinates z = (z1, . . . , zN ) ∈
CN , we may assume that ι is written as ι(z) = [σ0(z), . . . , σN ′(z)], σk ∈
Γ (Xc,O(1)) for 0 ≤ k ≤ N ′, such that σl(0) = 0 for 1 ≤ l ≤ N ′ and σ0
is non-vanishing on CN . Here, the key point is the existence of a holomor-
phic section in Γ (Xc,O(1)) which does not vanish on the Harish-Chandra
coordinate chart CN ⊃ Ω. In particular, replacing σl by Gl := σl

σ0
for 1 ≤

l ≤ N ′, the restriction of the Kähler form ωXc to CN is given by ωXc
∣∣
CN =

√
−1∂∂ log

(
1 +

∑N ′

l=1 |Gl(z)|2
)

. On the other hand, the Bergman kernel of Ω

can be written as KΩ(z, w) = 1
(CΩhΩ(z,w))mΩ (cf. [FK90, p.77]), where hΩ(z, w)

is a polynomial in (z, w) satisfying hΩ(z,0) = 1, hΩ(w, z) = hΩ(z, w), and mΩ

is some positive integer depending on Ω. Actually, CmΩΩ = Vol(Ω) is the Eu-
clidean volume of Ω, hΩ(z, w) = N(z, w) is the generic norm (cf. [Lo77])
and c1(Xc) = mΩ · δ so that mΩ = p(Ω) + 2, where p(Ω) := p(Xc) =
dim Co(Xc) is the complex dimension of the VMRT Co(Xc) ⊆ P(To(Xc))
of Xc at some base point o ∈ Xc (cf. [Mok16]). More precisely, KΩ(z, w) =

1
Vol(Ω)hΩ(z, w)−(p(Ω)+2). Then, we have the Kähler forms

ωgΩ = −
√
−1∂∂ log hΩ(z, z), ωXc

∣∣
CN =

√
−1∂∂ log hΩ(z,−z)

(cf. [LM11, p. 1061]) so that the minimal disks (resp. minimal rational curves)
are of constant Gaussian curvature −2 (resp. +2) with respect to the induced
Kähler metric. In other words,

√
−1∂∂ log hΩ(z,−z) =

√
−1∂∂ log

1 +

N ′∑
l=1

|Gl(z)|2
 .

Lemma 1 Let Ω b CN be an irreducible bounded symmetric domain of rank
≥ 2 in its Harish-Chandra realization. Then, there are Harish-Chandra coor-
dinates z = (z1, . . . , zN ) on Ω b CN such that

hΩ(z, z) = 1−
N∑
j=1

zjzj +

N ′′∑
l=1

(−1)χlĜl(z)Ĝl(z),

where N ′′ ≥ 1 is some integer, Ĝl(z) is a homogeneous polynomial in z of
degree deg Ĝl ≥ 2 and χl ∈ {0, 1} for 1 ≤ l ≤ N ′′. As a consequence, we have
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the polarization

hΩ(z, ξ) = 1−
N∑
j=1

zjξj +

N ′′∑
l=1

(−1)χlĜl(z)Ĝl(ξ).

Proof Since Ω b CN is a bounded complete circular domain, we can write

hΩ(z, ξ) = 1 +
∑

1≤|I|=|J|≤NΩ bIJz
Iξ
J

for some positive integer NΩ and some

bIJ ∈ C. Note that the Harish-Chandra coordinates (z1, . . . , zN ) can be re-
garded as complex geodesic coordinates of Ω at 0 [Mok89, p. 88]. Hence, up
to rescaling of the coordinate system (z1, . . . , zN ) we may suppose that the
Harish-Chandra realization Ω b CN is chosen so that

−mΩ
∂2

∂zi∂zj
log hΩ(z, z)

∣∣∣
z=0

=
∂2

∂zi∂zj
logKΩ(z, z)

∣∣∣
z=0

= mΩδij

and thus bij = −δij . Note that hΩ(z, ξ) = hΩ(ξ, z), so it follows from the
identity

2Re(bIJz
IzJ) = bIJz

IzJ + bIJz
JzI =

∣∣bIJzI + zJ
∣∣2 − ∣∣bIJzI ∣∣2 − ∣∣zJ ∣∣2

for multi-indices I, J (|I| = |J | ≥ 2) that

hΩ(z, z) = 1−
N∑
j=1

zjzj +

N ′′∑
l=1

(−1)χlĜl(z)Ĝl(z),

where N ′′ ≥ 1 is an integer, Ĝl(z) is a homogeneous polynomial in z of degree
≥ 2 and χl ∈ {0, 1}, 1 ≤ l ≤ N ′′. Here the existence of the homogeneous
polynomials Ĝl(z) in z of degree ≥ 2 is due to the fact that BN and Ω could not
be holomorphically isometric to each other. Obviously, we have analogously
the formula for the polarization hΩ(z, ξ) of hΩ(z, z) as stated, yielding the
lemma. ut

If we restrict ωXc |CN toΩ, then from the previous observations,− log hΩ(z,−z)
and − log(1 +

∑N ′

l=1 |Gl(z)|2) differ by the real part of some holomorphic func-
tion on Ω. It follows from partial differentiation with respect to z1, . . . , zN
and hΩ(z,0) = 1 = 1 +

∑N ′

l=1Gl(z)Gl(0) that 1 +
∑N ′

l=1 |Gl(z)|2 = hΩ(z,−z)
on Ω and thus on the whole CN . Then, we have the polarized equation

1 +
∑N ′

l=1Gl(z)Gl(w) = hΩ(z,−w) so that

ωgΩ = −
√
−1∂∂ log

1 +

N ′∑
l=1

Gl(z)Gl(−z)

 .

Remark 1 Recall that hΩ(z, ξ) = N(z, ξ) is indeed the generic norm and
Loos [Lo77] wrote down the formula of N(z, ξ) explicitly for each irreducible
bounded symmetric domain Ω of rank r by using Jordan triple systems.
Then, one can deduce from sections 4 and 7 in [Lo77] that Gl(z) can be
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chosen to be homogeneous polynomials of z and of degree deg(Gl) such that
2 ≤ deg(Gl) ≤ r for N + 1 ≤ l ≤ N ′ and Gj(z) = zj for 1 ≤ j ≤ N by using
Jordan triple systems, i.e.,

hΩ(z, ξ) = 1 +

N ′∑
l=1

(−1)deg(Gl)Gl(z)Gl(ξ).

Nevertheless, it is not necessary to use the above explicit form and properties
of generic norms in the current article.

The following proposition shows that any mapping in HIr(Bn, Ω) is totally
geodesic whenever r = rank(Ω).

Proposition 1 Let F : (Bn, rgBn) → (Ω, gΩ) be a holomorphic isometric
embedding, where Ω b CN is an irreducible bounded symmetric domain of
rank r and n ≥ 1 is an integer. Then, F is totally geodesic.

Proof Write S := F (Bn). Then, for any y ∈ S and α ∈ T 1,0
y (S) with ‖α‖2gΩ =

1, we have− 2
r = Rαααα(S, gΩ |S) ≤ Rαααα(Ω, gΩ) ≤ − 2

r so thatRαααα(S, gΩ |S)
= Rαααα(Ω, gΩ) = − 2

r . Denoting by σ the (1, 0)-part of the second fundamen-
tal form of S in (Ω, gΩ), it follows from the Gauss equation that σ(α, α) = 0
for any α ∈ T 1,0

y (S) and y ∈ S. Then, for any α, β ∈ T 1,0
y (S) and y ∈ S,

we have 0 = σ(α + β, α + β) = 2σ(α, β) so that σ ≡ 0. Hence, F is totally
geodesic. ut

2.2 System of functional equations induced from holomorphic isometries
between bounded symmetric domains

Let D b Cn, Ω b CN be irreducible bounded symmetric domains in their
Harish-Chandra realizations such that rank(Ω) ≥ 2. Recall that for a bounded
domain U we denote by ds2U the Bergman metric on U . Let f : (D,λds2D; 0)→
(Ω, ds2Ω ; 0) be a germ of holomorphic isometry. We can write the Bergman
kernels as KΩ(z, ξ) = C−mΩΩ hΩ(z, ξ)−mΩ , KD(w, ζ) = C−mDD hD(w, ζ)−mD of
Ω,D respectively such that hΩ(z, ξ) (resp. hD(w, ζ)) is a polynomial in (z, ξ)
(resp. (w, ζ)) satisfying hΩ(0,0) = 1 (resp. hD(0,0) = 1), where mΩ ,mD are
some positive integers depending on Ω,D respectively. From Proposition 1.1.2.
in [Mok12], we consider the system of functional equations KΩ(z, f(ζ)) =
A · KD(w, ζ)λ for ζ ∈ Bn(0, ε) b D, where A := KΩ(0,0)KD(0,0)−λ and
ε > 0 is some real number. Then, Mok [Mok12] defined

V 0
ζ :=

{
(w, z) ∈ D ×Ω : KΩ(z, f(ζ)) = A ·KD(w, ζ)λ

}
(1)

and V 0 :=
⋂
ζ∈Bn(0,ε) V

0
ζ . (Here, V 0

ζ (resp. V 0) is a notation different from that

being used in [Mok12].) Note that λ is a positive rational number (cf. [Mok12,
proof of Theorem 1.3.1, p. 1634]). Write λ′ := λmD

mΩ
, which is a positive integer

(cf. [Mok12, p. 1635]). For each irreducible component Γ of V 0
ζ , by taking
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fractional powers of both sides of the defining equation of V 0
ζ in Eq. (1), one

gets

hΩ(z, f(ζ)) = cΓ · hD(w, ζ)λ
′
,

where cΓ is some non-zero complex number depending on Γ . For each ζ ∈
Bn(0, ε), we only consider the variety Vζ , which is the union of all irreducible
components of V 0

ζ containing the point (0,0) ∈ D × Ω. Since hΩ(0,0) = 1
and hD(0,0) = 1, we see that (0,0) ∈ Γ , i.e., Γ ⊂ Vζ , if and only if cΓ = 1.
In other words, we have

Vζ =
{

(w, z) ∈ D ×Ω : hΩ(z, f(ζ)) = hD(w, ζ)λ
′
}
, (2)

which is the union of all irreducible components of V 0
ζ containing the point

(0,0) ∈ D×Ω. Moreover, we define V :=
⋂
ζ∈Bn(0,ε) Vζ . In order to study all

irreducible components of V 0 containing (0,0), it suffices to consider another
system of functional equations hΩ(z, f(ζ)) = hD(w, ζ)λ

′
for ζ ∈ Bn(0, ε) b D.

Letting Fζ(w, z) := hΩ(z, f(ζ))−hD(w, ζ)λ
′
, it is obvious that Fζ(0,0) = 0

for any ζ ∈ Bn(0, ε) and we have (w, z) ∈ V if and only if Fζ(w, z) = 0 for all

ζ ∈ Bn(0, ε). For each fixed (w, z), the function Fζ(w, z) is holomorphic in ζ.
Thus, after shrinking Bn(0, ε) if necessary, we can write the Taylor expansion
of Fζ(w, z) as a holomorphic function of ζ around 0 ∈ Bn(0, ε). Hence, (w, z) ∈
V if and only if ∂|I|

∂ζ
I Fζ(w, z)

∣∣
ζ=0

= 0 for any multi-index I satisfying |I| ≥ 1.

In particular, we have

V =

{
(w, z) ∈ D ×Ω :

∂|I|

∂ζ
I
Fζ(w, z)

∣∣∣∣
ζ=0

= 0 ∀ I, |I| ≥ 1

}
(3)

by Eq. (2). From [Mok12], the system of functional equations is said to be suffi-
ciently non-degenerate if any irreducible component of V containing Graph(f)
is of dimension n = dim Graph(f). Write the positive rational number λ as p

q

where p and q are relatively prime positive integers. Let W ] ⊂ Cn × CN be
the affine-algebraic subvariety given by

W ] :=
{

(w, z) ∈ Cn × CN : KΩ(z, f(ζ))q = Aq ·KD(w, ζ)p
}
. (4)

(W ] is defined as in the proof of Theorem 1.3.1. in [Mok12], except that the
constant A appearing in the definition of W ] there should have been Aq.) Note
that for each ζ ∈ Bn(0, ε), Fζ(w, z) is defined for any (w, z) ∈ Cn×CN . Then,
the union of all irreducible components of W ] containing (0,0) lies inside the
variety W ′ defined by

W ′ :=

{
(w, z) ∈ Cn × CN :

∂|I|

∂ζ
I
Fζ(w, z)

∣∣∣∣
ζ=0

= 0 ∀ I, |I| ≥ 1

}
. (5)
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2.3 Properties of the common zero set of a family of extremal functions

Let D b Cn and Ω b CN be bounded symmetric domains in their Harish-
Chandra realizations such that Ω is irreducible and of rank ≥ 2. Recall
that for a bounded domain U we denote by ds2U the Bergman metric on U .
Let f : (D,λds2D) → (Ω, ds2Ω) be a holomorphic isometric embedding. As-
sume without loss of generality that f(0) = 0. Suppose that the system of
functional equations is not sufficiently non-degenerate. Then, from the proof
of Proposition 1.1.2. in [Mok12], there is a complex-analytic one-parameter
family {ft}t∈∆ such that f0 = f and KΩ(ft(z), f(w)) = A · KD(z, w)λ,
where A := KΩ(0,0)KD(0,0)−λ. Furthermore, under the assumption that
∂k

∂tk
ft(z)

∣∣
t=0
≡ 0 for k < l, Mok [Mok12] defined η(f(z)) := ∂l

∂tl
ft(z)

∣∣
t=0
6≡ 0.

Denote by H2(Ω) the space of all square-integrable holomorphic functions on
Ω. Then, for each z0 ∈ Dε := Bn(0, ε) b D such that η(f(z0)) 6= 0, Mok
[Mok12, Lemma 1.1.2.] showed that an extremal function on Ω is given by

hη(f(z0))(ζ) =
∂η(f(z0))KΩ(f(z0), ζ)− (∂η(f(z0))h0)h0(ζ)

∂η(f(z0))hη(f(z0))
, (6)

where h0 ∈ H2(Ω) is chosen so that |h(f(z0))| attains its maximum value
at h = h0 among all h ∈ H2(Ω) of unit L2-norm (see [Mok89, p. 55]).
Here ∂η(f(z0))h0 means ∂η(f(z0))h0(f(z0)), etc. For the construction of such
extremal functions, we refer the reader to [Mok12, pp. 1626-1627]. Recall that

hΩ(z, ζ) = 1 +
∑N ′

l=1Gl(z)Gl(−ζ). Then, we also have hΩ(z, ζ) = hΩ(ζ, z) =

1 +
∑N ′

l=1Gl(ζ)Gl(−z). Define Hl(z) = Gl(−z), we have

KΩ(z, ζ) = C−mΩΩ

1 +

N ′∑
µ=1

Hµ(z)Gµ(ζ)

−mΩ .
Lemma 2 In the above setting, we have Zero(hη(f(z0))) = Zero(h′η(f(z0))|Ω),

where h′η(f(z0)) is some holomorphic function on CN which is a C-linear com-
bination of G1, . . . , GN ′ . In particular, for the family of holomorphic func-
tions hα, α ∈ A, on Ω constructed in [Mok12, Proposition 1.1.2.], we have
Zero(hα) = Zero(h′α|Ω), where h′α is a holomorphic function on CN which is
a C-linear combination of G1, . . . , GN ′ .

Proof We follow the notation in the proof of Proposition 1.1.2. in [Mok12].
Note that z0 ∈ D is chosen so that η(f(z0)) 6= 0. Recall that we may write

KΩ(z, ζ) = C−mΩΩ hΩ(z, ζ)−mΩ and hΩ(z, ζ) = 1 +
∑N ′

l=1Hl(z)Gl(ζ) because
Ω is irreducible. We compute

∂

∂zj
KΩ(z, ζ)

∣∣∣∣
z=f(z0)

= −mΩ
KΩ(ζ, f(z0))

hΩ(ζ, f(z0))

N ′∑
µ=1

∂Hµ

∂zj
(f(z0))Gµ(ζ). (7)
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Denote by (∂jHµ)(f(z0)) =
∂Hµ
∂zj

(f(z0)). We write ft = (f1t , . . . , f
N
t ). From

[Mok12], we have h0(z) = KΩ(z,f(z0))√
KΩ(f(z0),f(z0))

. Hence, by Eq. (7)

∂η(f(z0))h0(f(z0))h0(ζ)

=−mΩ

N∑
j=1

∂lf jt
∂tl

(z0)

∣∣∣∣
t=0

∑N ′

µ=1 (∂jHµ)(f(z0))Gµ(f(z0))

hΩ(f(z0), f(z0))
KΩ(ζ, f(z0)).

(8)

Therefore, we have

∂η(f(z0))KΩ(f(z0), ζ)− (∂η(f(z0))h0)h0(ζ)

=−mΩKΩ(ζ, f(z0))

·
N∑
j=1

∂lf jt
∂tl

(z0)

∣∣∣∣
t=0

(∑N ′

µ=1 (∂jHµ)(f(z0))Gµ(ζ)

hΩ(ζ, f(z0))
−
∑N ′

µ=1 (∂jHµ)(f(z0))Gµ(f(z0))

hΩ(f(z0), f(z0))

)

=−mΩ
KΩ(ζ, f(z0))

hΩ(ζ, f(z0))hΩ(f(z0), f(z0))

·
N∑
j=1

∂lf jt
∂tl

(z0)

∣∣∣∣
t=0

(
N ′∑
µ=1

(
A′µ,j(f(z0))−B′j(f(z0))Hµ(f(z0))

)
Gµ(ζ)−B′j(f(z0))

)
,

(9)

where A′µ,j(f(z0)) := hΩ(f(z0), f(z0))(∂jHµ)(f(z0)) and B′j(f(z0)) :=
∑N ′

µ=1

(∂jHµ)(f(z0))Gµ(f(z0)). From [Mok12], dh0(η(f(z0)) = 0. On the other hand,

we compute dh0(η(f(z0))) =
∂η(f(z0))KΩ(z,f(z0))

∣∣
z=f(z0)√

KΩ(f(z0),f(z0))
so that

N∑
j=1

∂lf jt
∂tl

(z0)

∣∣∣∣
t=0

B′j(f(z0)) = − hΩ(f(z0), f(z0))

mΩKΩ(f(z0), f(z0))
∂η(f(z0))KΩ(z, f(z0))

∣∣∣
z=f(z0)

= 0.

(10)

Hence,

∂η(f(z0))hη(f(z0)) · hη(f(z0))(ζ)

=−mΩ
KΩ(ζ, f(z0))

hΩ(ζ, f(z0))hΩ(f(z0), f(z0))
·
N ′∑
µ=1

N∑
j=1

∂lf jt
∂tl

(z0)

∣∣∣∣
t=0

A′µ,j(f(z0))Gµ(ζ).

(11)
Let w ∈ D be sufficiently close to z0 so that f(w) is defined. From [Mok12],
we have hη(f(z0))(f(w)) = 0, hence by Eq. (11) we deduce

N ′∑
µ=1

N∑
j=1

∂lf jt
∂tl

(z0)
∣∣
t=0

A′µ,j(f(z0))Gµ(f(w)) = 0. (12)
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From properties of Bergman kernels on bounded symmetric domains, note
that for an arbitrary but fixed point ξ0 on Ω, the holomorphic function
sξ0(ζ) := KΩ(ζ, ξ0) on Ω has no zeros. This is the case since Ω is a com-
plete circular domain, hence KΩ(ζ,0) is a constant function, and since Aut(Ω)
acts transitively on Ω. Thus, beyond Eq. (12) it follows in fact from Eq. (11)
that the zero set of hη(f(z0)) agrees with that of the holomorphic function
h′η(f(z0))|Ω , where

h′η(f(z0))(ζ) :=

N ′∑
µ=1

 N∑
j=1

∂lf jt
∂tl

(z0)

∣∣∣∣
t=0

A′µ,j(f(z0))

Gµ(ζ)

= hΩ(f(z0), f(z0)) · ∂η(f(z0))hΩ(z, ζ)
∣∣∣
z=f(z0)

,

(13)

i.e., Zero(hη(f(z0))) = Zero(h′η(f(z0))|Ω). Moreover h′η(f(z0)) is a C-linear com-
bination of the holomorphic functions G1, . . . , GN ′ . For the family hα, α ∈ A,
constructed in [Mok12, Proposition 1.1.2.], each hα, α ∈ A, is of the form
hη(f(z0)) for some z0 ∈ D satisfying η(f(z0)) 6= 0, so the result follows from
the above computations. ut

Proposition 2 If dim(w,f(w))(V ∩ ({w}×Ω)) ≥ 1 for a general point w ∈ D,
then there is a non-trivial family of holomorphic functions hα, α ∈ A, on
Ω such that f(D) ⊂ E :=

⋂
α∈A Zero(hα) and ι(E) = P ∩ ι(Ω) for some

projective linear subspace P in P
(
Γ (Xc,O(1))∗

) ∼= PN ′ . Viewing h′α as a holo-
morphic function on CN for each α ∈ A, H :=

⋂
α∈A Zero(h′α) ⊂ CN is a

complex-analytic subvariety satisfying H ∩Ω = E and ι(H) = P ∩ ι(CN ).

Proof From the proof of Proposition 1.1.2. in [Mok12], we have obtained a non-
trivial family of holomorphic functions hα, α ∈ A, onΩ such that f(D) ⊂ E :=⋂
α∈A Zero(hα). By Lemma 2, we have Zero(hα) = Zero(h′α|Ω), where h′α|Ω is

a holomorphic function on Ω which is a C-linear combination of G1, . . . , GN ′ .
Actually, we have defined the holomorphic functions h′α on CN because G1,
. . ., GN ′ are defined on CN . Recall from Section 2.1 that the restriction of
the minimal embedding ι : Xc ↪→ P

(
Γ (Xc,O(1))∗

) ∼= PN ′ to the dense open
subset CN ⊂ Xc may be written as ι(z) = [1, G1(z), . . . , GN ′(z)] in terms of
the Harish-Chandra coordinates z = (z1, . . . , zN ) ∈ CN . We write h′α(z) =∑N ′

j=1 aα,jGj(z) for α ∈ A and some aα,j ∈ C. Let

P =

[ξ0, ξ1, . . . , ξN ′ ] ∈ PN
′

:

N ′∑
j=1

aα,jξj = 0, α ∈ A


be a projective linear subspace in PN ′ . Then, it is clear that H ∩Ω = E and

P ∩ ι(CN ) =

[1, G1(z), . . . , GN ′(z)] ∈ PN
′

:

N ′∑
j=1

aα,jGj(z) = 0, z ∈ CN


= ι(H).
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Similarly, we have P ∩ ι(Ω) = ι(E). ut

2.4 Holomorphic isometries in HI1(Bn, Ω) arising from linear sections of the
minimal embedding of the compact dual of Ω

Let Ω b CN be an irreducible bounded symmetric domain of rank ≥ 2 in its
Harish-Chandra realization. For n ≥ 1, the corresponding Kähler form of the
Kähler metric gBn on Bn is given by

ωgBn =
1

n+ 1
ωds2Bn = −

√
−1∂∂ log

1−
n∑
j=1

|wj |2
 .

Recall that for a bounded domain U we denote by ds2U the Bergman metric
on U . One may regard the following lemma as an analogue of Proposition
3.2 in [Ng11] or an assertion made in the proof of Theorem 1.3.1 in [Mok12,
pp. 1634-1635].

Lemma 3 Let Ω′ = Ω1 × · · · × Ωm b CN1 × · · · × CNm = CN be a bounded
symmetric domain such that for 1 ≤ l ≤ m, mΩl = m′ for some positive integer
m′ independent of l, where m ≥ 1 is an integer and Ωj b CNj is an irreducible
bounded symmetric domain in its Harish-Chandra realization for 1 ≤ j ≤ m.
Let f : (Bn, λds2Bn) → (Ω′, ds2Ω′) be a holomorphic isometric embedding for

some real constant λ > 0, where n ≥ 1 is an integer. Then, λ = km′

n+1 for

some positive integer k satisfying 1 ≤ k ≤ 2
C·m′ , where C is a positive real

number such that −C is the maximum of all holomorphic sectional curvatures
of (Ω′, ds2Ω′). In particular, if Ω′ is irreducible, then we have 1 ≤ k ≤ rank(Ω′).

Proof Without loss of generality suppose that f(0) = 0. We write f = (f1,
. . .,fm) such that fj : Bn → Ωj is a holomorphic map, 1 ≤ j ≤ m. Then, we
have the polarized functional equation

m∏
j=1

hΩj (fj(w), fj(ζ)) =

1−
n∑
j=1

wjζj


λ(n+1)

m′

. (14)

Note that from [Mok12] and [Mok16], at a general point b = (b1, . . . , bn) ∈ ∂Bn,
there exists an open neighborhood Ub of b in Cn such that f |Ub∩Bn extends to

a holomorphic embedding f ] = (f ]1, . . . , f
]
m) : Ub → CN = CN1 × · · · × CNm

with f ](Ub ∩ ∂Bn) ⊂ ∂Ω′. By composing with an automorphism of Bn and
restricting to the unit disk {(ζ, 0, . . . , 0) ∈ Bn : ζ ∈ ∆} in Bn, we assume
without loss of generality that b = (ζ0, 0, . . . , 0) with |ζ0|2 = 1. Now, we have

m∏
j=1

hΩj (f
]
j (ζ, 0, . . . , 0), f ]j (ζ0, 0, . . . , 0)) =

(
1− ζζ0

)λ(n+1)

m′ (15)
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for ζ ∈ Ub ∩ {(ζ, 0, . . . , 0) ∈ Cn : ζ ∈ ∆} by Eq. (14) and continuity. Actually,
both sides of Eq. (15) are holomorphic in ζ on some open neighborhood of ζ0
in C. As ζ → ζ0, the holomorphic function ϕ(ζ) :=

∏m
j=1 hΩj (f

]
j (ζ, 0, . . . , 0),

f ]j (ζ0, 0, . . . , 0)) of ζ on the left-hand side of Eq. (15) vanishes to a certain order

k, where k is a positive integer. This shows that λ(n+1)
m′ is a positive integer

and we have λ = km′

n+1 . By Ahlfors-Schwarz lemma (cf. [CCL79]), we have

f∗ds2Ω′ ≤
2

n+1

C · ds
2
Bn . Therefore, we have km′

n+1 · ds
2
Bn = f∗ds2Ω′ ≤ 2

(n+1)C · ds
2
Bn ,

i.e., k ≤ 2
C·m′ . If Ω′ is irreducible, then we have m′ = mΩ′ = p(Ω′) + 2 and

C = 2
m′rank(Ω′) so that k ≤ rank(Ω′). The result follows. ut

Lemma 4 Let Ω b CN be an irreducible bounded symmetric domain of rank
≥ 2 in its Harish-Chandra realization. If f : (Bn, λds2Bn ; 0) → (Ω, ds2Ω ; 0) is
a germ of holomorphic isometry for some real constant λ > 0, then we have∑N
j=1

∂fj

∂wµ
(0)f j(ζ) = λ(n+1)

mΩ
ζµ for 1 ≤ µ ≤ n. Moreover,

V ′1 :=

(ζ, ξ) ∈ Cn × CN :

N∑
j=1

∂f j

∂wµ
(0)ξj =

λ(n+ 1)

mΩ
ζµ, 1 ≤ µ ≤ n


is a complex N -dimensional vector subspace of Cn+N such that Graph(f) ⊂
V ⊆ V ′1 . In particular, we can write V = V ′1 ∩ V ′2 , where

V ′2 :=

{
(w, z) ∈ Bn ×Ω :

∂|I|

∂ζ
I
Fζ(w, z)

∣∣∣∣
ζ=0

= 0 ∀ I, |I| ≥ 2

}
.

Proof We have the polarized functional equation

hΩ(f(w), f(ζ)) =

1−
n∑
j=1

wjζj


λ(n+1)
mΩ

(16)

Moreover, Lemma 1 asserts that hΩ(z, ξ) = 1 −
∑N
j=1 zjξj +

∑N ′′

l=1 (−1)χl

Ĝl(z) Ĝl(ξ), where Ĝl(z) is a homogeneous polynomial in z1, . . . , zN of degree
≥ 2 for 1 ≤ l ≤ N ′′. Therefore, differentiating both sides of Eq. (16) with

respect to wµ and evaluating at w = 0 gives
∑N
j=1

∂fj

∂wµ
(0)f j(ζ) = λ′ζµ for

1 ≤ µ ≤ n, where λ′ := λ(n+1)
mΩ

. Letting V ′1 be as defined in the statement of
the lemma, it is clear that Graph(f) ⊂ V ′1 . Moreover, the Jacobian matrix of
V ′1 at each point in V ′1 is of full rank n, so V ′1 ⊂ Cn+N is actually a complex N -
dimensional vector subspace. The rest follows from the previous observations.

ut

The following characterizes the image of any holomorphic isometric embedding
f : (Bn, gBn)→ (Ω, gΩ), where n ≥ 1. In short, the embedded image of f(Bn)
in P

(
Γ (Xc,O(1))∗

)
via the embedding ι is an irreducible component of the

intersection of ι(Ω) with the linear section P ∩Xc for some projective linear
subspace P ⊆ P

(
Γ (Xc,O(1))∗

)
.
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Theorem 1 Let Ω b CN ⊂ Xc be the standard embeddings of an irreducible
bounded symmetric domain Ω of rank ≥ 2 in its Harish-Chandra realization
Ω b CN as a bounded domain and its Borel embedding Ω ⊂ Xc as an open
subset of its dual Hermitian symmetric space Xc. Let n be a positive integer,
and f : (Bn, gBn) → (Ω, gΩ) be a holomorphic isometric embedding. Denote
by ι : Xc → P

(
Γ (Xc,O(1))∗

) ∼= PN ′ the minimal embedding of Xc defined
by the positive generator O(1) of Pic(Xc) ∼= Z. Then, f(Bn) is an irreducible
component of some complex-analytic subvariety V ⊆ Ω satisfying ι(V ) = P ∩
ι(Ω), where P is some projective linear subspace of P

(
Γ (Xc,O(1))∗

) ∼= PN ′ .

Proof The hypothesis on the mapping f is equivalently that f : (Bn, λds2Bn)→
(Ω, ds2Ω) is a holomorphic isometry for λ = mΩ

n+1 . We can suppose that f(0) = 0
after composing with some Ψ ∈ Aut(Ω). In the notation of Lemma 4 we define

V ′′1 := V ′1∩(Bn×Ω) =

{
(ζ, z) ∈ Bn ×Ω :

N∑
l=1

∂f l

∂wj
(0)zl − ζj = 0, 1 ≤ j ≤ n

}
,

which is a smooth affine linear section of Bn ×Ω in Cn+N ∼= Cn × CN . From
Lemma 4, one can compute V ′2 = Bn × V ′′, where

V ′′ :=

{
z ∈ Ω :

∂I

∂ζ
I
hΩ(z, f(ζ))

∣∣∣
ζ=0

= 0 ∀ I, |I| ≥ 2

}
.

Therefore, V = V ′′1 ∩ (Bn × V ′′).
If the system of functional equations is sufficiently non-degenerate, then

any irreducible component S of V = V ′′1 ∩ (Bn × V ′′) containing Graph(f) is
of dimension n = dim Graph(f) [Mok12, p. 1622]. Let S′′ be an irreducible
component of V ′′ containing f(Bn) and S0 ⊂ V ′′1 ∩ (Bn×S′′) be an irreducible
component of V ′′1 ∩(Bn×S′′) containing Graph(f). Then, we have n = dimS ≥
dimS0 ≥ N + (n + dimS′′) − (n + N) = dimS′′ so that dimS′′ = n because
f(Bn) ⊂ S′′. If the system of functional equations is not sufficiently non-
degenerate, then we may take E =

⋂
α∈A Zero(hα) for some family {hα}α∈A

of extremal functions on Ω so that any irreducible component of V ∩(Bn×E) =
V ′′1 ∩(Bn×(V ′′∩E)) containing Graph(f) is of dimension n = dim Graph(f) (by
Proposition 1.1.2. and Theorem 1.1.1. in [Mok12]). By the same arguments as
above, the irreducible component S′ of V ′′∩E containing f(Bn) is of dimension
n.

Since by construction both V ′′ and E are complex-analytic subvarieties in
CN , V ′′ ∩ E ⊂ CN is also a complex-analytic subvariety. Moreover, from the

expression of hΩ(z, f(ζ)) = 1 +
∑N ′

l=1Gl(z)Gl(−f(ζ)) and Proposition 2, it
is clear that V ′′ (resp.E) can be viewed as the intersection of ι(Ω) with the
linear section Xc ∩ P1 (resp. Xc ∩ P2) for some projective linear subspace P1

(resp.P2) of P
(
Γ (Xc,O(1))∗

) ∼= PN ′ . Hence, f(Bn) lies inside an irreducible
component S of V ∩Ω, where dimS = n, V = V ′′ (resp. V = V ′′∩E) when the
functional equation is sufficiently non-degenerate (resp. not sufficiently non-
degenerate) such that ι(V ) = P ∩ ι(Ω) for some projective linear subspace
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P ⊆ P
(
Γ (Xc,O(1))∗

) ∼= PN ′ . Since f(Bn) and S are both irreducible complex-
analytic subvarieties of Ω having the same dimension n and f(Bn) ⊂ S, we
conclude that f(Bn) = S and the result follows. ut

3 Holomorphic isometries of Bm into type-IV domains

In the previous section, we have shown that the image of a holomorphic isomet-
ric embedding in HI1(Bm, Ω) is an irreducible component of the intersection
of Ω with a linear section of the minimal embedding of the compact dual Xc

of Ω (cf. Theorem 1). For the particular case where Ω = DIV
n b Cn (n ≥ 3) is

an irreducible bounded symmetric domain of type IV , we completely charac-
terize linear sections of Qn ⊂ Pn+1 intersecting with DIV

n b Cn ⊂ Qn which
correspond to holomorphic isometries F ∈ HI1(Bm, DIV

n ) for some m ≥ 1.
As a consequence, we have a complete classification of images of maps in
HIλ′(Bm, DIV

n ) for integers n ≥ 3 and m ≥ 1 and for any λ′ > 0. Among
these, we will provide explicit examples of nonstandard holomorphic isomet-
ric embeddings (Bn−1, gBn−1) → (DIV

n , gDIVn ) which are incongruent to those
holomorphic isometric embeddings constructed in [Mok16].

3.1 Preliminaries

Recall that for a bounded domain U we denote by ds2U the Bergman metric on
U . Let m,n be integers satisfying m ≥ 1 and n ≥ 3. The irreducible bounded
symmetric domain in Cn of type IV can be written as

DIV
n =

(z1, . . . , zn) ∈ Cn :

n∑
j=1

|zj |2 < 2,

n∑
j=1

|zj |2 < 1 +

∣∣∣∣∣∣12
n∑
j=1

z2j

∣∣∣∣∣∣
2


and the Kähler form corresponding to the Bergman metric ds2DIVn
on DIV

n is

given by ωds2
DIVn

= −n
√
−1∂∂ log

(
1−

∑n
j=1 |zj |2 +

∣∣∣ 12 ∑n
j=1 z

2
j

∣∣∣2). Moreover,

the corresponding Kähler form of the Kähler metric gDIVn on DIV
n is given by

ωgDIVn
= 1

nωds2
DIVn

. Let F : (Bm, λ′gBm) → (DIV
n , gDIVn ) be a holomorphic

isometric embedding. In this section, we suppose that all component functions
of F are non-constant; otherwise, we could reduce the study to holomorphic
isometries F ′ ∈ HIλ′(Bm, DIV

n′ ) for some n′ ≤ n − 1. From Lemma 3, if F :
(Bm, λds2Bm) → (DIV

n , ds2DIVn
) is a holomorphic isometric embedding, where

λ > 0 is a positive real number, then λ′ := λ(m + 1)/n is a positive integer
and 1 ≤ λ′ ≤ 2. In particular, F ∈ HIλ′(Bm, DIV

n ). On the other hand, the
following shows that HI2(Bm, DIV

n ) is empty for m ≥ 2 and n ≥ 3.

Proposition 3 Let F : (Bm, λ′gBm)→ (DIV
n , gDIVn ) be a holomorphic isomet-

ric embedding, where m ≥ 2 and n ≥ 3. Then, λ′ = 1.
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Proof Write S := F (Bm). Note that Cy(Qn) ∼= Qn−2 is a hyperquadric in
P(Ty(DIV

n )) ∼= Pn−1 for any y ∈ DIV
n , where Cx(Qn) is the VMRT of Qn at

x ∈ Qn (see Section 2.1). For m ≥ 2, P(Ty(S)) is a projective linear subspace
in P(Ty(DIV

n )) ∼= Pn−1 of complex dimension m−1 ≥ 1. Therefore, P(Ty(S))∩
Cy(Qn) 6= ∅ for any y ∈ S. Let [α] ∈ P(Ty(S)) ∩ Cy(Qn) with ‖α‖2gDIVn

= 1.

Then, it follows from the Gauss equation that − 2
λ′ = Rαααα(S, gDIVn |S) ≤

Rαααα(DIV
n , gDIVn ) = −2 so that λ′ ≤ 1 and thus λ′ = 1. ut

The following corollary is a direct consequence of Proposition 3 and Proposi-
tion 1.

Corollary 1 Let F : (Bm, 2gBm) → (DIV
n , gDIVn ) be a holomorphic isometric

embedding. Then, m = 1 and F is totally geodesic.

Thus, among HIλ(Bm, DIV
n ), where m ≥ 1 and n ≥ 3, it remains to consider

HI1(Bm, DIV
n ) with 1 ≤ m ≤ n − 1 and n ≥ 3. Note that if (Bm, gBm) →

(DIV
n , gDIVn ) is a totally geodesic holomorphic isometric embedding, then its

image is clearly the intersection of DIV
n with some projective linear subspace

Pm ∼= P ⊂ Pn+1 which lies inside Qn entirely. The latter is the case since to-
tally geodesic embeddings (Bm, gBm)→ (DIV

n , gDIVn ) extend to totally geodesic
embeddings (Pm, gPm)→ (Qn, gQn).

3.2 Characterization of images of holomorphic isometries of complex unit
balls into type-IV domains

3.2.1 Basic settings

For 1 ≤ m ≤ n − 1 and n ≥ 3, let A′′ ∈ M(n −m,n;C) be a matrix of rank
n−m. If 1 ≤ m ≤ n− 2, we define

VA′′ :=

(z1, . . . , zn) ∈ Cn : A′′

z1...
zn

 =

(
1
2

∑n
j=1 z

2
j

0

) .

If m = n − 1, then A′′ = v =
(
v1, · · · , vn

)
∈ M(1, n;C) and we let Vv ⊆

Cn be the affine-algebraic subvariety defined by
∑n
j=1 vjzj −

1
2

∑n
j=1 z

2
j = 0.

Moreover, we define ΣA′′ := VA′′ ∩DIV
n .

We write Qn =
{

[z1, . . . , zn+2] ∈ Pn+1 :
∑n
j=1 z

2
j − 2zn+1zn+2 = 0

}
. Let

ι : DIV
n ⊂ Cn → Qn ⊂ Pn+1 be the Borel embedding defined by ι(z) =[

z1, . . . , zn, 1,
1
2

∑n
j=1 z

2
j

]
, where n ≥ 3. Then, we have ι(ΣA′′) = (PA′′ ∩

Qn)∩ ι(DIV
n ), where PA′′ ⊆ Pn+1 is the projective linear subspace defined by

Ã′′
(
z1 · · · zn+2

)T
= 0 and Ã′′ is given by

[
A′′

[
0 −1
0 0

]]
(resp.

[
A′′ 0 −1

]
) if

1 ≤ m ≤ n−2 (resp.m = n−1). By computing the (complex) Jacobian matrix
of the projective subvariety PA′′ ∩Qn ⊂ Pn+1 at o = [0, . . . , 0, 1, 0], PA′′ ∩Qn
is smooth at o. From linear algebra, we have the following lemma.



Holomorphic isometries of Bm into bounded symmetric domains 17

Lemma 5 Let n′,m′ be integers such that 1 ≤ m′ < n′ and A′′ ∈M(m′, n′;C)

be a matrix such that A′′A′′
T

= Im′ . Then, there exists a matrix U′ ∈M(n′−

m′, n′;C) such that

[
U′

A′′

]
∈ U(n′), where U(n′) is the group of n′×n′ unitary

matrices.

Proposition 4 Under the above assumptions, for any matrix A′ ∈ M(n −
m,n;C) satisfying A′A′

T
= In−m, the irreducible component of ΣA′ con-

taining 0 is smooth and actually ΣA′ ⊂ DIV
n is a smooth complex-analytic

subvariety of dimension m.

Proof Let A′ ∈ M(n − m,n;C) be a matrix such that A′A′
T

= In−m. We

write A′ =

 v1

...
vn−m

, where vj ∈M(1, n;C) is a row vector for 1 ≤ j ≤ n−m.

Then, vjvi
T = δij for 1 ≤ i, j ≤ n−m. It suffices to show that the (complex)

Jacobian matrix of ΣA′ is of full rank n−m at any point z0 ∈ ΣA′ . Assume
the contrary that the Jacobian matrix of ΣA′ at some point (z01 , . . . , z

0
n) ∈

ΣA′ ⊂ DIV
n is not of full rank n −m. Note that the Jacobian matrix of ΣA′

at (z01 , . . . , z
0
n) equals A′ −

[
z01 · · · z0n
0 · · · 0

]
, which is of rank at least n −m − 1.

Then, A′ −
[
z01 · · · z0n
0 · · · 0

]
is of rank n − m − 1 < n − m by the assumption.

If n − m = 1, then we have A′ =
(
z01 · · · z0n

)
so that

∑n
j=1(z0j )2 = 0. In

particular, 1 −
∑n
j=1 |z0j |2 +

∣∣∣ 12 ∑n
j=1(z0j )2

∣∣∣2 = 0 and
∑n
j=1 |z0j |2 = 1, which

contradicts with the fact that (z01 , . . . , z
0
n) ∈ ΣA′ ⊂ DIV

n . Supposing n−m ≥ 2,
we have v1 −

∑n−m
j=2 cjvj =

(
z01 , · · · , z0n

)
for some cj ∈ C, 2 ≤ j ≤ n − m.

Since (z01 , . . . , z
0
n) ∈ ΣA′ , we have

n∑
j=1

(z0j )2 = v1

z
0
1
...
z0n

− n−m∑
j=2

cjvj

z
0
1
...
z0n

 =
1

2

n∑
j=1

(z0j )2

so that
∑n
j=1(z0j )2 = 0. Moreover, we have

n∑
j=1

|z0j |2 =

v1 −
n−m∑
j=2

cjvj

v1
T −

n−m∑
j=2

cjvj
T

 = 1 +

n−1∑
j=2

|cj |2.

But then 1−
∑n
j=1 |z0j |2+

∣∣∣∑n
j=1(z0j )2

∣∣∣2 = −
∑n−1
j=2 |cj |2 ≤ 0, a plain contradic-

tion. Thus, ΣA′ is smooth and of dimension m. Let V ⊆ ΣA′ be an irreducible
component containing 0. Then, V ⊂ ΣA′ is the connected component of ΣA′

containing 0 and V is smooth. ut



18 Shan Tai Chan, Ngaiming Mok

3.2.2 Basic results

In what follows we are going to show that the functional equation for a holo-
morphic isometry F : (Bm, gBm) → (DIV

n , gDIVn ) provides sufficient defining
equations for an affine-algebraic subvariety V in Cn which extends F (Bm).

Proposition 5 Let F : (Bm, gBm)→ (DIV
n , gDIVn ) be a holomorphic isometric

embedding, where n ≥ 3, m ≥ 1. Then, Ψ(F (Bm)) is the irreducible com-
ponent of the complex-analytic subvariety ΣA′ containing 0 and ι(ΣA′) =

PA′ ∩ ι(DIV
n ) for some matrix A′ ∈M(n−m,n;C) satisfying A′A′

T
= In−m

and some Ψ ∈ Aut(DIV
n ) satisfying Ψ(F (0)) = 0.

Proof Since Bn and DIV
n are not biholomorphic to each other, we have m ≤

n− 1. Let Ψ ∈ Aut(DIV
n ) be such that Ψ(F (0)) = 0. Write F̃ := Ψ ◦F . Then,

we have the functional equation 1 −
∑n
j=1 |F̃ j(w)|2 +

∣∣∣ 12 ∑n
j=1(F̃ j(w))2

∣∣∣2 =

1 −
∑m
l=1 |wl|2. By a well-known result of Calabi [Ca53, Theorem 2 (Local

Rigidity)], there exists U ∈ U(n) such that

U

F̃
1(w)
...

F̃n(w)

 =


(
w1, · · · , wm, 12

∑n
j=1(F̃ j(w))2,0

)T
if 1 ≤ m ≤ n− 2

(
w1, · · · , wn−1, 12

∑n
j=1(F̃ j(w))2

)T
if m = n− 1

(17)
for any w = (w1, . . . , wm) ∈ Bm. Writing U =

(
uij
)
1≤i,j≤n, we have wl =∑n

j=1 uljF̃
j(w) for 1 ≤ l ≤ m. We write U =

[
U′

A′

]
, where U′ ∈ M(m,n;C)

and A′ ∈ M(n − m,n;C) are matrices. Then, it follows from Eq. (17) that

S := F̃ (Bm) ⊆ ΣA′ . It is clear that ι(ΣA′) = PA′ ∩ ι(DIV
n ) ⊂ PA′ ∩Qn. Since

ΣA′ is smooth by Proposition 4, letting S′ be the irreducible component of ΣA′

containing S, we have dimS′ = m and S′ is a connected complex submanifold
of DIV

n . Since S ⊆ S′ are irreducible complex-analytic subvarieties of DIV
n and

dimS′ = m = dimS, we have S′ = S = F̃ (Bm). ut

Proposition 6 Let n,m be integers satisfying 1 ≤ m ≤ n− 1 and n ≥ 3. Let

A′ ∈ M(n −m,n;C) be a matrix satisfying A′A′
T

= In−m. Then, the irre-

ducible component W̃ of ΣA′ containing 0 is the image of some holomorphic
isometric embedding F : (Bm, gBm)→ (DIV

n , gDIVn ).

Proof Let W̃ be the irreducible component of ΣA′ containing 0 for some ma-

trix A′ ∈ M(n − m,n;C) satisfying A′A′
T

= In−m. Then, there exists a

matrix U′ ∈ M(m,n;C) such that

[
U′

A′

]
∈ U(n) by Lemma 5. From Lemma

4, W̃ is a connected complex m-dimensional submanifold of DIV
n and 0 ∈ W̃ .

Writing
(
G̃1(z), · · · , G̃m(z)

)T
= U′

(
z1, · · · , zn

)T
, we have

∑m
l=1 |G̃l(z)|2 +
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j=1 z

2
j

∣∣∣2 =
∑n
j=1 |zj |2 for (z1, . . . , zn) ∈ W̃ . This implies that for (z1, . . . , zn)

∈ W̃ , we have

1−
n∑
j=1

|zj |2 +

∣∣∣∣∣∣12
n∑
j=1

z2j

∣∣∣∣∣∣
2

= 1−
m∑
l=1

|G̃l(z)|2. (18)

Then, it follows from Eq. (18) that − log(1−
∑m
l=1 |G̃l(z)|2) is a local Kähler

potential of (W̃ , gDIVn |W̃ ) for z ∈ W̃ ⊂ DIV
n , which is the restriction of

the Kähler potential of (DIV
n , gDIVn ) to a neighborhood of 0 in W̃ . Hence,

(W̃ , gDIVn |W̃ ) is locally holomorphically isometric to (Bm, gBm). By Theorem

2.1.2. in [Mok12], W̃ ⊂ DIV
n is the image of some holomorphic isometric em-

bedding F : (Bm, gBm)→ (DIV
n , gDIVn ). ut

Remark 2 The map (G̃1, . . . , G̃m) gives a holomorphic isometry from W̃ onto
Bm. Inverting this map, we can get an explicit formula for the holomorphic
isometry F : (Bm, gBm) → (DIV

n , gDIVn ), but we are not concerned with such
an explicit formula in this article.

Note that the following proposition characterizes those holomorphic isometries
F ∈ HI1(Bn−1, DIV

n ) (n ≥ 3) which are congruent to nonstandard holomor-
phic isometries constructed in [Mok16].

Proposition 7 Let n ≥ 3 be an integer and W̃ be the irreducible component
of ΣA′ containing 0, where A′ =

(
c1, · · · , cn

)
∈ M(1, n;C) is a row vector

such that A′A′
T

= 1. Then, W̃ = Vq for some q ∈ E1 = Reg(∂DIV
n ) if and

only if A′ · (A′)T = 0, where Vq is defined in [Mok16].

Proof For q = (q1, . . . , qn) ∈ E1 = Reg(∂DIV
n ), Mok [Mok16] defined the

subvariety Vq = Vq ∩DIV
n ⊂ DIV

n , where

Vq :=
⋃
{` : ` is a minimal rational curve on Qn through q}

(cf. [Mok16, p. 4518]). Suppose that q ∈ E1 is chosen so that 0 ∈ Vq. Then, we
have Vq = V ′q ∩DIV

n , where V ′q := Vq ∩Cn =
{

(z1, . . . , zn) ∈ Cn :
∑n
j=1 qjzj −

1
2

∑n
j=1 z

2
j = 0

}
. If A′ · (A′)T = 0, then 1−

∑n
j=1 |cj |2 +

∣∣∣ 12 ∑n
j=1 c

2
j

∣∣∣2 = 0 and∑n
j=1 |cj |2 = 1 so that c := (c1, . . . , cn) ∈ E1. Thus, we have W̃ = ΣA′ = Vc.

Conversely, if W̃ = Vq for some q ∈ E1 = Reg(∂DIV
n ), then we have W̃ =

Vq = ΣA′ so that A′ =
(
q1 · · · qn

)
satisfies A′ · (A′)T = 0. ut

Remark 3 Let A′ ∈ M(1, n;C) and f ∈ HI1(Bn−1, DIV
n ) (n ≥ 3) be such

that A′A′
T

= 1, A′ · (A′)T 6= 0 and f(Bn−1) is the irreducible component
of ΣA′ = VA′ ∩ DIV

n containing 0. Then, VA′ is a smooth affine-algebraic
subvariety of Cn so that f(Bn−1) can in particular be extended as a complex
submanifold of some neighborhood of DIV

n in Cn.
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3.2.3 Slicing of complex unit balls

By Theorem 2 in [Mok16], if F : (Bm, gBm) → (DIV
n , gDIVn ) is a holomorphic

isometric embedding, then m ≤ n−1. We show that any holomorphic isometric
embedding F : (Bm, gBm) → (DIV

n , gDIVn ) with 1 ≤ m ≤ n − 2 and n ≥ 3 is

obtained from some holomorphic isometric embedding f : (Bn−1, gBn−1) →
(DIV

n , gDIVn ) by slicing Bn−1 by an affine linear subspace.

Theorem 2 Let F : (Bm, gBm) → (DIV
n , gDIVn ) be a holomorphic isometric

embedding, where 1 ≤ m ≤ n − 2 and n ≥ 3. Then, F = f̃ ◦ ρ for some
holomorphic isometries f̃ : (Bn−1, gBn−1)→ (DIV

n , gDIVn ) and ρ : (Bm, gBm)→
(Bn−1, gBn−1).

Proof Let Ψ ∈ Aut(DIV
n ) be such that (Ψ ◦ F )(0) = 0. Write F̃ := Ψ ◦ F .

Then, F̃ (Bm) is an irreducible component of ΣA′ for some matrix A′ ∈M(n−
m,n;C) satisfying A′A′

T
= In−m by Proposition 5.

We write A′ =

[
v

A′1

]
, where v ∈ M(1, n;C) is a row vector and A′1 ∈

M(n − m − 1, n;C) is a matrix. Then, vvT = 1 so that the irreducible
component of Σv containing 0 is the image of some holomorphic isomet-
ric embedding f : (Bn−1, gBn−1) → (DIV

n , gDIVn ) by Proposition 6. We can

suppose that f(0) = 0 after composing with some element in Aut(Bn−1).

Since ΣA′ ⊆ Σv and F̃ (Bm) ⊂ ΣA′ is the irreducible component contain-

ing 0, F̃ (Bm) lies in the irreducible component of Σv containing 0 so that

S := F̃ (Bm) ⊆ f(Bn−1) =: S′. Note that both
(
S, gDIVn |S

) ∼= (Bm, gBm) and(
S′, gDIVn |S′

) ∼= (Bn−1, gBn−1) are of constant holomorphic sectional curvature

−2. Therefore,
(
S, gDIVn |S

)
⊂
(
S′, gDIVn |S′

)
is totally geodesic so that F̃ = f ◦ρ

for some (totally geodesic) holomorphic isometric embedding ρ : (Bm, gBm)→
(Bn−1, gBn−1). The result follows. ut

Recall that for a bounded domain U we denote by ds2U the Bergman metric
on U . Combining the previous results, we state the theorem as follows:

Theorem 3 Let F : (Bm, λds2Bm)→ (DIV
n , ds2DIVn

) be a holomorphic isometric

embedding, where n ≥ 3 and m ≥ 1 are integers, and λ > 0 be s real constant.
Then, either λ = n

m+1 or λ = 2n
m+1 and we have the following:

1. If λ = n
m+1 , then 1 ≤ m ≤ n − 1 and F = f̃ ◦ ρ for some holomorphic

isometry f̃ : (Bn−1, gBn−1) → (DIV
n , gDIVn ) and some (totally geodesic)

holomorphic isometry ρ : (Bm, gBm)→ (Bn−1, gBn−1).
2. If λ = n

m+1 and m = n − 1, then F is congruent to a nonstandard holo-

morphic isometry F̂ : (Bn−1, gBn−1) → (DIV
n , gDIVn ) such that F̂ (Bn−1)

is the irreducible component of Σc containing 0 for some row vector c ∈
M(1, n;C) satisfying ccT = 1. In addition, F is congruent to the nonstan-
dard holomorphic isometric embedding constructed in Mok [Mok16] if and
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only if there is such a holomorphic isometry F̂ congruent to F such that
ccT = 0.

3. If λ = 2n
m+1 , then m = 1 and F is totally geodesic.

Proof According to Lemma 3, λ′ := λ(m+1)
n is a positive integer such that

λ′ = 1 or λ′ = 2. In particular, we have either λ = n
m+1 or λ = 2n

m+1 . If
λ = n

m+1 , i.e., λ′ = 1, then 1 ≤ m ≤ n − 1 by [Mok16, Theorem 2]. Thus, if
λ′ = 1, then part 1 follows from Theorem 2. If m = n− 1, then part 2 follows
from Proposition 5 and Proposition 7. Moreover, F and F̂ are nonstandard
because of the identity m = n−1 = p(DIV

n )+1 and the arguments in [Mok16,
p. 4519]. If λ = 2n

m+1 , i.e., λ′ = 2, then m = 1 and F is totally geodesic by
Corollary 1. ut

Remark 4

1. Recall from Proposition 6 that the irreducible component of Σc contain-
ing 0 in part 2 of Theorem 3, for any c ∈ M(1, n;C) satisfying ccT =
1 is indeed the image of a holomorphic isometry from (Bn−1, gBn−1) to
(DIV

n , gDIVn ), where n ≥ 3.

2. For any f ∈ HI1(Bm, DIV
n ) (n ≥ 3), f is totally geodesic if and only if f is

congruent to some f̂ ∈ HI1(Bm, DIV
n ) such that f̂(Bm) is the irreducible

component of ΣA′′ containing 0 for some matrix A′′ ∈ M(n − m,n;C)

satisfying A′′A′′
T

= In−m and the condition that A′′ · v = 0 implies
vTv = 0 for any column vector v ∈M(n, 1;C) ∼= Cn.

3. For each row vector c ∈M(1, n;C) satisfying ccT = 1, let F̂c ∈ HI1(Bn−1,
DIV
n ) be such that F̂c(Bn−1) is the irreducible component of Σc containing

0. For any row vector c ∈M(1, n;C) satisfying ccT = 1 and ccT = 0, there
is a sequence {cj}+∞j=1 of row vectors in M(1, n;C) satisfying cjcj

T = 1

and cjcj
T 6= 0 such that limj→+∞ cj = c and the family {F̂cj}+∞j=1 of

holomorphic isometric embeddings in HI1(Bn−1, DIV
n ) converges to F̂c

∈ HI1(Bn−1, DIV
n ) which is congruent to the nonstandard holomorphic

isometric embedding constructed in Mok [Mok16].

3.3 Explicit examples and their applications

Recall that any holomorphic isometry f ∈ HI1(Bm, DIV
n ) arises from a linear

section of the hyperquadric Qn ⊂ Pn+1. Moreover, a linear section of Qn in
Pn+1 can be a complex projective subspace lying entirely in Qn, a smooth
quadric or a singular quadric in Qn ⊂ Pn+1. On top of the images of non-
standard holomorphic isometries F ∈ HI1(Bn−1, DIV

n ) constructed in Mok
[Mok16] which extend as singular quadrics in Qn ⊂ Pn+1, by Theorem 3 and by
slicing we also have holomorphic isometries in HI1(Bm, DIV

n ) which arise from
smooth linear sections Λ of Qn ⊂ Pn+1. In what follows, we write down explicit
examples of images of such isometries in HI1(Bm, DIV

n ) which are not congru-
ent to singular slices of the nonstandard holomorphic isometries constructed
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by Mok [Mok16]. Let Qm ⊂ Qn be a smooth hyperquadric passing through
o = [0, . . . , 0, 1, 0] ∈ Pn+1 such that Qm ∩ Cn is a linear subspace, where Cn
is identified with its image in Qn via the map ξ : DIV

n b Cn ↪→ Qn ⊂ Pn+1

mentioned in Section 2.1. Our examples are of the form γ(Qm)∩DIV
n for cer-

tain automorphisms γ of Qn fixing o. The explicit parametrizations of γ(Qm)
are taken from [Zh15].

Example 1 Let n ≥ 3 and 1 ≤ m ≤ n − 1 be integers. For am+1, . . . , an ∈
C∗ = C r {0}, let M(am+1, . . . , an) ⊂ Qn ∼= GC/P be a non-flat standard
model of Qm passing through o = [0, . . . , 0, 1, 0], i.e., the image of the quadric
Qm := {[z1, . . . , zn, zn+1, zn+2] ∈ Qn : zm+1 = · · · = zn = 0} ⊆ Qn under
a non-trivial element in M− ⊂ Aut(Qn) on Qm [Zh15]. Here M− is the an-
alytic subgroup of GC with Lie algebra m− being the (−

√
−1)-eigenspace of

the complex structure J at o on mC, where gC = kC ⊕ mC is the Lie algebra
of GC (cf. [Mok89]). Then, it follows from direct computation in [Zh15] that
D(am+1, . . . , an) := M(am+1, . . . , an) ∩ DIV

n =
{

(z1, . . . , zn) ∈ DIV
n : zl =

al√
2

∑n
j=1 z

2
j , m + 1 ≤ l ≤ n

}
for some aj ∈ C∗, m + 1 ≤ l ≤ n. Moreover,

D(am+1, . . . , an) is smooth at 0, thus we can consider the germ of open subset
S = S(am+1, . . . , an) of D(am+1, . . . , an) at 0, which is the germ of complex
submanifold in DIV

n at 0. By computing the holomorphic sectional curvature of
(S, gDIVn |S) at 0 and requiring that (S, gDIVn |S) is of constant holomorphic sec-

tional curvature −2, it is necessary that
∑n
l=m+1 |al|2 = 1

2 . Now, we consider

all complex submanifolds S(am+1, . . . , an) ⊂ DIV
n with am+1, . . . , an ∈ C∗ sat-

isfying
∑n
l=m+1 |al|2 = 1

2 . Therefore, we assume that am+1, . . . , an ∈ C∗ satisfy∑n
l=m+1 |al|2 = 1

2 . Then, we can provide explicit examples in HI1(Bm, DIV
n )

as follows such that the image of any such isometry is precisely the irreducible
component of D(am+1, . . . , an) containing 0.

(a) We always consider (z1, . . . , zn) ∈ D(am+1, . . . , an). If
∑n
l=m+1 a

2
l 6= 0,

then

√
2al′ −

√√√√2a2l′ − 4a2l′

(
n∑

l=m+1

a2l

)
m∑
j=1

z2j = 2

(
n∑

l=m+1

a2l

)
zl′

for m+ 1 ≤ l′ ≤ n. Thus, we have defined

zl′ = υl′(z1, . . . , zm)

=
1

2
∑n
l=m+1 a

2
l

√2al′ −

√√√√2a2l′ − 4a2l′

(
n∑

l=m+1

a2l

)
m∑
j=1

z2j


for m+ 1 ≤ l′ ≤ n (cf. [Zh15]). Then, we have

1−
n∑
j=1

|zj |2 +

∣∣∣∣∣∣12
n∑
j=1

z2j

∣∣∣∣∣∣
2

=1−
m∑
j=1

|zj |2 +

(
1

4
− 1

2

n∑
l=m+1

|al|2
)∣∣∣∣∣∣

n∑
j=1

z2j

∣∣∣∣∣∣
2

=1−
m∑
j=1

|zj |2.
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Define F = (F 1, . . . , Fn) : Bm → DIV
n by

F j(w) =

m∑
l=1

ujlwl, 1 ≤ j ≤ m,

F l
′
(w) =

√
2al′ + (−1)χl′

√
2a2l′ − 4a2l′

(∑n
l=m+1 a

2
l

)∑m
j=1(F j(w))2

2
∑n
l=m+1 a

2
l

for m + 1 ≤ l′ ≤ n, where U =
(
uij
)
1≤i,j≤m ∈ U(m), χl′ = 0 (resp. 1)

if
√

2a2l′ = −
√

2al′ (resp.
√

2a2l′ =
√

2al′) for m + 1 ≤ l′ ≤ n. For each

l′, m + 1 ≤ l′ ≤ n, we specify the branch of F l
′

as follows: For each l′,
m + 1 ≤ l′ ≤ n, consider the term 2a2l′ − 4a2l′

∑n
l=m+1 a

2
l

∑m
j=1(F j(w))2

for w ∈ Bm. We have∣∣∣∣∣∣4a2l′
n∑

l=m+1

a2l

m∑
j=1

(F j(w))2

∣∣∣∣∣∣ ≤ 4|al′ |2
n∑

l=m+1

|al|2
m∑
j=1

|F j(w)|2

= 2|al′ |2
m∑
j=1

|wj |2 < 2|al′ |2.

Then, for w ∈ Bm, we have

2a2l′ − 4a2l′

(
n∑

l=m+1

a2l

)
m∑
j=1

(F j(w))2 ∈ {ζ ∈ C : |ζ − 2a2l′ | < 2|al′ |2} 63 0.

Therefore, we have really used a single branch for each component function
F l
′

of F (m + 1 ≤ l′ ≤ n) by choosing a branch cut of the square root
function, which is either {z = x +

√
−1y ∈ C : y = 0, x ≥ 0} or {z =

x+
√
−1y ∈ C : y = 0, x ≤ 0}. Then, we have

1−
n∑
j=1

|F j(w)|2 +

∣∣∣∣∣∣12
n∑
j=1

(F j(w))2

∣∣∣∣∣∣
2

= 1−
m∑
j=1

|F j(w)|2 = 1−
m∑
j=1

|wj |2

so that F = (F 1, . . . , Fn) : (Bm, gBm) → (DIV
n , gDIVn ) is a holomorphic

isometric embedding.
(b) If

∑n
l=m+1 a

2
l = 0 and m < n− 1, then for (z1, . . . , zn) ∈ D(am+1, . . . , an),

we have al′√
2

∑n
j=1 z

2
j = zl′ = al′√

2

∑m
j=1 z

2
j and we define zl′ = υl′(z1, . . . , zm)

:= al′√
2

∑m
j=1 z

2
j for m+ 1 ≤ l′ ≤ n. Then, we have

n∑
l′=m+1

|υl′(z1, . . . , zm)|2 =

n∑
l′=m+1

|al′ |2

2

∣∣∣∣∣∣
m∑
j=1

z2j

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣12
m∑
j=1

z2j

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣12
n∑
j=1

z2j

∣∣∣∣∣∣
2

.
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Thus, for (z1, . . . , zn) ∈ D(am+1, . . . , an), we have

1−
n∑
j=1

|zj |2 +

∣∣∣∣∣∣12
n∑
j=1

z2j

∣∣∣∣∣∣
2

= 1−
m∑
j=1

|zj |2.

Define F = (F 1, . . . , Fn) : Bm → DIV
n by

F j(w) =

m∑
l=1

ujlwl, 1 ≤ j ≤ m,

F l(w) =
al√

2

m∑
j=1

(F j(w))2, m+ 1 ≤ l ≤ n,

for (w1, . . . , wm) ∈ Bm, where U =
(
uij
)
1≤i,j≤m ∈ U(m). Thus, we

have 1 −
∑n
j=1 |F j(w)|2 +

∣∣∣ 12 ∑n
j=1(F j(w))2

∣∣∣2 = 1 −
∑m
j=1 |F j(w)|2 =

1 −
∑m
j=1 |wj |2 so that F = (F 1, . . . , Fn) : (Bm, gBm) → (DIV

n , gDIVn ) is
a holomorphic isometric embedding.

Remark 5

1. Example 1 gives the first examples of holomorphic isometric embeddings
of Bn−1 into DIV

n which are incongruent to those constructed in [Mok16]
that we discovered without using the general theory based on functional
equations as given in Theorem 1. In fact, if there is any example f :
(Bn−1, gBn−1) → (DIV

n , gDIVn ) incongruent to those in [Mok16], the im-

age S = f(Bn) ⊂ DIV
n must inherit a sub-VMRT structure modeled on

(Qn−1, Qn) in the sense of Mok-Zhang [MZ15]. In other words, the re-
striction of the holomorphic conformal structure on Qn to S must be
non-degenerate. For any x ∈ S and any [α] ∈ P(Tx(S)) ∩ Cx(Qn), from
Rαααα(S, gDIVn |S) = Rαααα(DIV

n , gDIVn ) = −2 and the Gauss equation it
follows that σ(α, α) = 0 for the second fundamental form of (S, gDIVn |S) ↪→
(DIV

n , gDIVn ). Thus, for the unique minimal disk ∆α ⊂ DIV
n such that

x ∈ ∆α and Tx(∆α) = Cα, ∆α must be tangent to S to the order ≥ 2
at x, from which it follows that all such minimal disks lie on S, i.e., S
is rationally saturated. By Zhang [Zh15], S must be an open subset of a
smooth hyperplane section Qn−1 of Qn.

2. Note that examples in HI1(Bm, DIV
n ) obtained in part (a) of Example 1

cannot extend to any open neighborhood of Bm while examples in HI1(Bm,
DIV
n ) (1 ≤ m ≤ n − 2 and n ≥ 3) obtained in part (b) of Example 1 are

holomorphically extendible to Cm.
3. Note that part (b) of Example 1 actually yields nonstandard holomorphic

isometries F : (∆, n2 ds
2
∆) → (DIV

n , ds2DIVn
) (n ≥ 3) other than the square-

root embedding composed with a totally geodesic holomorphic isometric
embedding ∆2 → DIV

n because F can be extended holomorphically to
an open neighborhood of ∆ while the square-root embedding cannot be
extended to any open neighborhood of ∆. In particular, this also provides
an answer to Problem 5.2.5. in [Mok11].
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