Characterization of

Holomorphic Geodesic Cycles

on Quotients of

Bounded Symmetric Domains

Ngaiming MOK

The University of Hong Kong

Arakelov Inequality
(1) Global Form

$$
\begin{aligned}
\mathcal{H}_{n} & =\left\{\tau \in M_{n}(\mathbb{C}): \tau=\tau^{t}, \operatorname{Im} \tau\right\} \\
& =\text { Siegel upper half-plane }
\end{aligned}
$$

$\Gamma \subset A u t\left(\mathcal{H}_{n}\right) \cong S p(n ; \mathbb{R})$ torsion-free discrete subgroup
$X=\mathcal{H}_{n} / \Gamma, \mathcal{C} \subset X$ algebraic curve
$\left.T_{X}\right|_{C} \cong S^{2} V, V=$ universal rank-1 bundle over $C, g=$ genus (C). Then

$$
\begin{aligned}
\operatorname{deg}(V) & \geq-n(g-1) \\
\operatorname{deg}(V) & =-n(g-1)
\end{aligned}
$$

$\Leftrightarrow C$ is a modular curve of rank n.
(2) Local Form
$h=$ normalized Kähler-Einstein metric on X
$\omega=$ Kähler form.

Then,

$$
\begin{aligned}
& c_{1}\left(T_{C}, h\right) \leq-\frac{2}{n} \omega \\
& c_{1}\left(T_{C}, h\right)=-\frac{2}{n} \omega \\
& \Leftrightarrow C \subset X \text { is totally geodesic }
\end{aligned}
$$

Pf Gauss Equation $\alpha \in T_{x}(C)$,

$$
R_{\alpha \bar{\alpha} \alpha \bar{\alpha}}(C, h)=R_{\alpha \bar{\alpha} \alpha \bar{\alpha}}(X, h)-\|\sigma(\alpha, \alpha)\|^{2} .
$$

Bounded Symmetric Domains

Classical cases

$$
\begin{gathered}
D_{p, q}^{I}=\left\{Z \in M(p, q, \mathbb{C}): I-\bar{Z}^{t} Z>0\right\}, \quad p, q \geq 1 \\
D_{n}^{I I}=\left\{Z \in D_{n, n}^{I}: Z^{t}=-Z\right\}, \quad n \geq 2 \\
D_{n}^{I I I}=\left\{Z \in D_{n, n}^{I}: Z^{t}=-Z\right\}, \quad n \geq 3 \\
D_{n}^{I V}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\|z\|^{2}<2\right. \\
\left.\quad\|z\|^{2}<1+\left|\frac{1}{2} \sum_{i=1}^{n} z_{i}^{2}\right|^{2}\right\}, \quad n \geq 3
\end{gathered}
$$

Exceptional Domains

$D^{V}, \operatorname{dim} 16$, type E_{6}
$D^{V I}, \operatorname{dim} 27$, type E_{7}

Example of local Arakelov Inequality in 2 dimensions

Theorem (Eyssidieux-Mok 1995)

$U \subset B^{2} \times B^{2}$ domain, $S \subset U$ complex surface,
$g=$ normalized canonical Kähler metric on $B^{2} \times B^{2},\left(K_{i}, h_{i}\right), i=1,2$, canonical bundles of the i-th factor. Then, over S we have

$$
c_{2}\left(S,\left.g\right|_{S}\right) \geq \frac{1}{6}\left(c_{1}^{2}\left(K_{1}, h_{1}\right)+c_{1}^{2}\left(K_{2}, h_{2}\right)\right.
$$

Equality \Leftrightarrow
$S \subset U$ totally geodesic, modelled on

$$
\left(B^{2} \times B^{2}, \delta\left(B^{2}\right)\right)
$$

Global Form
$X:=B^{2} \times B^{2} / \Gamma, S \subset X$ complex surface

$$
c_{2}(S) \geq \frac{1}{6}\left(c_{1}^{2}\left(K_{1}\right)+c_{1}^{2}\left(K_{2}\right)\right)
$$

can be proven using Hodge Theory.

- We can check that for S modelled on $\left(B^{2} \times\right.$ $B^{2}, \delta\left(B^{2}\right)$), equality holds.
- The equality \Rightarrow geodesic is proven using the local form.

Proposition.

Let $\Omega \subset \subset \mathbf{C}^{N}$ be a bounded symmetric domain. Fix $x_{0} \in \Omega$ and let $B(r) \subset \Omega$ denote the geodesic ball (with respect to the Bergman metric) of radius r and centered at x_{0}. For $\delta>0$ sufficiently small $\left(\delta<\delta_{0}\right)$ there exists $\varepsilon>0$ such that the following holds:

For any ε-pinched connected complex submanifold $V \subset B\left(x_{0} ; 1\right), x_{0} \in$ V, there exists a unique equivalence class of totally-geodesic complex submanifold on Ω, to be represented by $j: \Omega^{\prime} \hookrightarrow \Omega$, and a totally-geodesic complex submanifold $\Xi \subset B(1)$ modelled on $\left(\Omega, \Omega^{\prime} ; j\right)$ such that the Hausdorff distance between $\Xi \cap B\left(\frac{1}{2}\right)$ and $V \cap B\left(\frac{1}{2}\right)$ is less than δ.

Gap rigidity in the complex topology
$C \subset \mathcal{H}_{g} / \Gamma$ compact complex curve.
Normalize the K.E. metric so that

$$
\triangle \stackrel{\text { diag }}{\hookrightarrow} \triangle^{g} \hookrightarrow D_{g}^{I I I} \cong \mathcal{H}_{g}
$$

is of Gaussian curvature -1

Theorem (Eyssidieux-Mok 1995)
$-\left(1+\frac{1}{4 g}\right)<$ Gauss curvature of $C(\leq-1)$
$\Rightarrow C$ is totally-geodesic and of the diagonal type

Pf C is the base space of a VHS, $V=$ restriction of universal bundle
C not totally-geodesic $\Rightarrow \chi(V)<0$.

Representing first cohomology classes by harmonic forms, a stable vanishing theorem gives $\chi(V)=0$ under the given pinching condition.

Motivation and scheme of proof on gap rigidity
(1) To give a differential-geometric proof that the Mordell-Weil group of the universal Abelian variety over a Shimura variety is finite.
(2) To show that for a subvariety of the Siegel modular variety locally approximable by a totally-geodesic complex submanifold, that the Mordell-Weil group remains finite, with a proof that shows that there are no nontrivial "multi-valued" section. This amounts to a vanishing theorem on some harmonic forms arising from weight1 Hodge structures.
(3) Applying Riemann-Roch, one proves a nonvanishing theorem for such harmonic forms to get a contradiction.

Theorem (Shioda 1972)

$\Gamma \subset \mathbb{P} S L(2, \mathbb{Z})$ of finite index, Γ torsion free, $X_{\Gamma}=\mathcal{H} / \Gamma$
$\pi: \mathcal{A}_{\Gamma} \mapsto X_{\Gamma}$ universal family,
$\bar{\pi}: \overline{\mathcal{A}}_{\Gamma} \mapsto \bar{X}_{\Gamma}$ projective compatification.

Then, $\operatorname{rank}_{\mathbb{Z}}\left(A_{\Gamma}\left(\mathbb{C}\left(\bar{X}_{\Gamma}\right)\right)=0\right.$ for the MordellWeil group $A_{\Gamma}\left(\mathbb{C}\left(\bar{X}_{\Gamma}\right)\right)$.

Theorem (Mok-To 1993)

The same remains true for any Kuga family of polarized Abelian varieties without locally constant parts.

Differential-geometric proof of Shioda's result

A holomorphic section of $\pi: \mathcal{A}_{\Gamma} \rightarrow X_{\Gamma}$ lifts to a holomorphic function $f: \mathcal{H} \mapsto \mathbb{C}$ satisfying the functional equation

$$
f(\gamma z)=\frac{f(z)}{c_{\gamma} z+d_{\gamma}}+A_{\gamma}\left(\frac{a_{\gamma} z+b_{\gamma}}{c_{\gamma} z+d_{\gamma}}\right)+B_{\gamma}
$$

where $\gamma(z)=\frac{a_{\gamma} z+b_{\gamma}}{c_{\gamma} z+d_{\gamma}}, \gamma \in \Gamma$.

$$
\begin{aligned}
\frac{f^{\prime}(\gamma z)}{\left(c_{\gamma} \tau+d_{\gamma}\right)^{2}}=- & \frac{c_{\gamma}}{\left(c_{\gamma} z+d\right)^{2}} f(\gamma z) \\
& +\frac{f^{\prime}(z)}{\left(c_{\gamma} z+d_{\gamma}\right)}+\frac{A_{\gamma}}{\left(c_{\gamma} z+d_{\gamma}\right)^{2}} \\
f^{\prime}(\gamma z)=- & c_{\gamma} f(z)+\left(c_{\gamma} z+d_{\gamma}\right) f^{\prime}(z)+A_{\gamma}
\end{aligned}
$$

$$
\frac{f^{\prime \prime}(\gamma z)}{\left(c_{\gamma} z+d_{\gamma}\right)^{2}}=-c_{\gamma} f^{\prime}(z)+c_{\gamma} f^{\prime}(z)
$$

$$
\begin{gathered}
+\left(c_{\gamma} z+d_{\gamma}\right) / f^{\prime \prime}(z) \\
f^{\prime \prime}(\gamma z)=\left(c_{\gamma} z+d\right)^{3} f^{\prime \prime}(z)
\end{gathered}
$$

$f^{\prime \prime}:=\alpha$ is an Eichler automorphic form.
(1) The Eichler automorphic form α is an element of $\Gamma\left(X_{\Gamma}, K_{X_{\Gamma}}^{3 / 2}\right)$. Such automorphic forms can exist, and the question is whether they can arise from a section σ of $\bar{\pi}: \overline{\mathcal{A}}_{\Gamma} \rightarrow \bar{X}_{\Gamma}$.
(2) There is a smooth section $\eta=\eta_{\sigma}$ which measures how far σ is from being horizontal. $\eta: T_{X_{\Gamma}} \mapsto T_{X_{\Gamma}}^{1 / 2}$. (The universal line bundle is a square root of the tangent bundle). Thus, $\eta \in \mathcal{C}^{\infty}\left(X_{\Gamma}, K_{X_{\Gamma}}^{1 / 2}\right)$.
(3) $\nabla \eta=c \alpha$ for some $c \neq 0$. (easy to check from the definition of α and η).

$$
\begin{gathered}
\bar{\partial} \alpha=0 \Rightarrow \bar{\partial} \nabla \eta=0 \\
\Rightarrow \bar{\partial}^{*}{ }^{*} \eta=0 \Rightarrow \bar{\partial}^{*} \bar{\partial} \eta=-\eta
\end{gathered}
$$

Integrating by parts

$$
\begin{aligned}
\int_{X_{\Gamma}}\left\langle\bar{\partial}^{*} \bar{\partial} \eta, \eta\right\rangle & =-\int_{X_{\Gamma}}\langle\eta, \eta\rangle, \quad \text { i.e. }, \\
\int_{X_{\Gamma}}\|\bar{\partial} \eta\|^{2} & =-\int_{X_{\Gamma}}\|\eta\|^{2}
\end{aligned}
$$

$$
\Rightarrow \eta \equiv 0
$$

Definition (Gap Phenomenon).

Let $\Omega \subset \subset \mathbf{C}^{N}$ be a bounded symmetric domain and $j: \Omega^{\prime} \hookrightarrow \Omega$ be a totally-geodesic complex submanifold. We say that the gap phenomenon holds for $\left(\Omega, \Omega^{\prime} ; j\right)$ if and only if there exists $\varepsilon<\varepsilon\left(\delta_{0}\right)$ (δ_{0} as in Proposition) for which the following holds:

For any torsion-free discrete group $\Gamma \subset \operatorname{Aut}(\Omega)$ of automorphisms and any ε-pinched immersed compact complex submanifold $S \hookrightarrow \Omega / \Gamma$ modelled on $\left(\Omega, \Omega^{\prime} ; j\right), S$ is necessarily totally geodesic.

Gap rigidity in the Zariski topology

We say that $\left(\Omega, \Omega^{\prime} ; j\right) ; \operatorname{dim} \Omega=n, \operatorname{dim} \Omega^{\prime}=$ n^{\prime}, exhibits gap rigidity in the Zariski topology if and only if there exists a G-invariant complex analytic subvariety $\mathcal{Z}_{\Omega} \subset \mathbb{G}_{\Omega}=$ Grassmann bundle of n^{\prime}-planes giving $\mathcal{Z}_{X} \subset \mathbb{G}_{X}:=$ $\mathbb{G}_{\Omega} / \Gamma$ for any $X=\Omega / \Gamma$, such that the following holds
(a) $\left[T_{0}\left(\Omega^{\prime}\right)\right] \notin \mathcal{Z}_{\Omega, 0}$.
(b) For any compact complex n^{\prime}-dimensional submanifold $S \subset X=\Omega / \Gamma$ such that $\left[T_{x}(S)\right] \notin \mathcal{Z}_{X, x}$ for all $x \in S, S$ must be totally geodesic.

A simple example of gap rigidity in the Zariski topology with Ω reducible

$$
\begin{aligned}
\Omega & =D \times \cdots \times D \\
\Omega^{\prime} & =\operatorname{diagonal}(\Omega) .
\end{aligned}
$$

Then, $\left(\Omega, \Omega^{\prime} ; j\right)$ exhibits gap rigidity in the Zariski sense.

Proof:

$\Gamma \subset \operatorname{Aut}_{0}(\Omega)$. Call an n^{\prime}-plane generic if and only if its projection to each individual factor Ω is injective. If $S \subset X=\Omega / \Gamma$ is such that $T_{x}(S)$ is generic for every $x \in S, \operatorname{dim} S=n^{\prime}$, then we obtain by projection Kähler-Einstein metrics from each individual factor. Proposition follows from uniqueness of Kähler-Einstein metrics.

Euler characterisitcs and Gauss-Manin complexes (Eyssidieux 1997)
(X, \mathbf{V}) polarized variation of Hodge structures with immersive period map. Eyssidieux proved Lefschetz-Gromov vanishing theorem for L^{2} cohomology with coefficients in \mathbf{V} on the universal cover \tilde{X} in degrees $\neq \operatorname{dim}(X)$.

He deduced Chern number inequalities (Arakelov inequalities)

Case of equality leads to characterization of certain totally geodesic compact complex submanifolds of Ω / Γ, giving examples of gap rigidity in the Zariski topology.

Remarks.

The Chern class inequalities are in general not local.

Theorem (Eyssidieux-Mok)

There exists sequences of

- compact Riemann surfaces S_{k}, T_{k}; of genus ≥ 2,
- branched double covers $f_{k}: S_{k} \rightarrow T_{k}$ such that, writing $d s_{C}^{2}$ for the Poincare metric of Gaussian curvature -2 on a compact Riemann surface C, and defining

$$
\mu_{k}:=\sup \left\{\frac{f_{k}^{*} d s_{T_{k}}^{2}(x)}{d s_{S_{k}}^{2}(x)}: x \in S_{k}\right\}
$$

we have

$$
\lim _{k \rightarrow \infty} \mu_{k}=0 .
$$

Corollary.

The Gap Phenomenon fails for $\left(\Delta^{2}, \Delta \times\{0\}\right)$.

Heuristics

For $f: S \rightarrow T$, Riemann-Hurwicz Formula gives

$$
2 g(S)-2=r(2 g(T)-2)+e,
$$

where
$r=$ sheeting number ,
$e=$ cardinality of ramification divisor.

For a compact Riemann surface C

$$
\int_{C}-2 d s_{C}^{2}=4 \pi(1-g(C))
$$

by Guass-Bonnet, i.e.,

$$
\begin{gathered}
\frac{1}{\pi} \int_{C} d s_{C}^{2}=2 g(C)-2 \\
\frac{1}{\pi} \int_{S} f^{*} d s_{T}^{2}=\frac{r}{\pi} \int_{T} d s_{T}^{2}=r(2 g(T)-2) \\
\frac{1}{\pi} \int_{S} d s_{S}^{2}=2 g(S)-2
\end{gathered}
$$

On the average

$$
\frac{f^{*} d s_{T}^{2}}{d s_{S}^{2}}=r\left(\frac{2 g(T)-2}{2 g(S)-2}\right)=1-\frac{e}{2 g(S)-2}
$$

which becomes small when $\frac{e}{2 g(S)-2}$ is close to 1.

In the construction, we will have a fixed T, $r=2$, so that

$$
1-\frac{e_{k}}{2 g\left(S_{k}\right)-2}=\frac{2(g(T)-1)}{g\left(S_{k}\right)-1} \rightarrow 0
$$

whenever $g\left(S_{k}\right) \rightarrow \infty$, i.e. whenever $e_{k} \rightarrow \infty$. The crux is to find $f_{k}: S_{k} \rightarrow T$ such that f_{k} is "almost" uniformly area-decreasing.

We will do this by choosing $f_{k}: S_{k} \rightarrow T$ so that the branching loci of f_{k} are "almost" uniformly distributed on T.

Construction of double covers:
$L \subset \mathbb{C}$ lattice
$E=\mathbb{C} / L$ elliptic curve
$\tau \in E$ nonzero 2-torsion point
$h: T \rightarrow E$ double cover branched over $\{0, \tau\}$
Write $q_{1}=h^{-1}(0), q_{2}=h^{-1}(\tau)$
Let $m \equiv 1(\bmod 2), m=2 k-1$,
$\Phi_{m}: E \rightarrow E$ defined by $\Phi_{m}(x)=m x$,
$D_{k}:=\Phi_{m}^{-1}(\{0, \tau\}),\left|D_{k}\right|=2 m^{2}, D_{1}=\{0, \tau\}$
$m \tau=2 k \tau-\tau \equiv-\tau=\tau$, so that $D_{k} \supset D_{1}$.
$f_{k}: S_{k} \rightarrow T$ double cover branched over $h^{-1}\left(D_{k}-D_{1}\right)$. Write

$$
\mu_{k}=\sup \left\{\frac{f_{k}^{*} d s_{T}^{2}(x)}{d s_{S_{k}}^{2}(x)}: x \in S_{k}\right\}
$$

Claim:

$$
\lim _{k \rightarrow \infty} \mu_{k}=0
$$

Proof: $h: T \rightarrow E, f_{k}: S_{k} \rightarrow T$ double covers. $d s_{T}^{2}, d s_{S_{k}}^{2}$ invariant under involutions. $h_{*} d s_{T}^{2}$ Hermitian metric on $T_{E} \otimes\left[D_{1}\right]^{-\frac{1}{2}} ;$
$\left(h \circ f_{k}\right)_{*} d s_{S_{k}}^{2}$ Hermitian metric on $T_{E} \otimes\left[D_{m}\right]^{-\frac{1}{2}}$. From uniqueness of Hermitian metrics of curvature -2 with prescribed orders of poles,

$$
\left(h \circ f_{k}\right)_{*} d s_{S_{k}}^{2}=\Phi_{m}^{*}\left(h_{*} d s_{T}^{2}\right)
$$

Near 0,

$$
\Phi_{m}\left(\frac{|d z|^{2}}{|z|}\right)=\frac{m^{2}|d z|^{2}}{|m z|}=m \frac{|d z|^{2}}{|z|},
$$

similarly at τ.
Outside small disks $h_{*} d s_{T}^{2} \geq \varepsilon($ metric on $E)$,

$$
\Phi_{m}^{*}\left(h_{*} d s_{T}^{2}\right) \geq m^{2} \varepsilon(\text { metric on } E) .
$$

From which $\mu_{k} \leq \frac{C}{k} \rightarrow 0$ as $k \rightarrow \infty$.

Definition (Characteristic Codimension)

Ω irreducible bounded symmetric domain
$\mathcal{S}_{o} \subset \mathbb{P} T_{o}(\Omega)$
$\mathcal{S}_{o}:=\{[\eta]: \eta$ is of $\operatorname{rank}<\operatorname{rank}(\Omega)$
$q(\Omega):=\operatorname{codim}\left(\mathcal{S}_{o}\right.$ in $\left.\mathbb{P} T_{o}(\Omega)\right)$

Complete list of Ω with $q(\Omega)=1$:
(1) Ω of Type $\mathbf{I}_{m, n}$ with $m=n>1$;
(2) Ω of Type $\mathbf{I I}_{n}$ with n even, $n \geq 4$;
(3) Ω of Type $\mathbf{I I I}_{n}, n \geq 3$;
(4) Ω of Type $\mathbf{I V}, n \geq 3$;
(5) Ω of Type VI (the 27-dimensional exceptional domain pertaining to E_{7}).

Theorem (Mok, Comp. Math. 2002)
Ω irreducible bounded symmetric domain
$\Gamma \subset \operatorname{Aut}(\Omega)$ torsion-free discrete subgroup, $X:=\Omega / \Gamma$
$C \subset X$ compact holomorphic curve

$$
\begin{aligned}
\text { Suppose } & q(\Omega)=1 \text { and, } \forall x \in C, \\
& T_{x}(C)=\mathbb{C} \eta, \quad[\eta] \notin \mathcal{S}_{x}
\end{aligned}
$$

Then,

$$
C \subset X \text { is totally-geodesic } .
$$

Remark:

(1) If $\eta \neq 0$ and $[\eta] \notin S_{x}$, we call η a generic vector.
(2) Ω irr. BSD, $D \subset \Omega, \operatorname{dim} D=1$. Then, gap rigidity in the Zariski topology holds in the Zariski topology if and only if $q(\Omega)=1$ and D is the diagonal of a maximal polydisk.

Proof: $q(\Omega)=1 \Rightarrow \exists$ locally homogeneous divisor $\mathcal{S} \subset \mathbb{P} T_{X}$ corresponding to non-generic tangent vectors.
$\mathcal{S}=\{s=0\}, s \in \Gamma(X,[\mathcal{S}]) ; \pi: \mathbb{P} T_{X} \rightarrow X$.
$L \rightarrow \mathbb{P} T_{X}$ tautological line bundle, $L<0$;
$\Omega \subset M$ Borel embedding, $M=$ compact dual.
For $\pi: \mathbb{P} T_{M} \rightarrow M, \operatorname{Pic}\left(\mathbb{P} T_{M}\right) \cong \mathbb{Z}^{2}$.
$E=$ negative loc. homog. line bundle on X dual to $\mathcal{O}(1)$ on $M ; r=\operatorname{rank}(\Omega)$. Then,

$$
[\mathcal{S}] \cong L^{-r} \otimes \pi^{*} E^{2}
$$

$C \subset X$ compact holomorphic curve,
$\hat{C}=$ tautological lifting. Then, observe
(1) If $C \subset X$ is totally-geodesic of diagonal type, then $\left[T_{x}(C)\right] \notin \mathcal{S}_{x}$ for any $x \in C$, and $[\mathcal{S}] \cdot \hat{C}=0$.
(2) If $\left[T_{x}(C)\right] \notin \mathcal{S}_{x}$ for a generic $x \in C$. Then,

$$
[\mathcal{S}] \cdot \hat{C} \geq 0 .
$$

The intersection number can be computed from the Poincaré-Lelong equation

$$
\begin{gathered}
\sqrt{-1} \partial \bar{\partial} \log \|s\|^{2} \\
=r c_{1}\left(L, \hat{g}_{0}\right)-2 \pi^{*} c_{1}\left(E, h_{0}\right)+[\mathcal{S}] \\
{[\mathcal{S}] \cdot \hat{C}=r \int_{\hat{C}} c_{1}\left(L, \hat{g}_{0}\right)-2 \int_{C} c_{1}\left(E, h_{0}\right)} \\
=r \int_{C} \operatorname{Ric}\left(C,\left.g_{0}\right|_{C}\right)-2 \int_{C} c_{1}\left(E, h_{0}\right) .
\end{gathered}
$$

The case where $C \subset X$ is totally-geodesic of diagonal type occurs where

$$
\text { Gauss curvature }=\frac{-2}{r} .
$$

In general, by the Gauss equation we have

$$
\text { Gauss curvature } \leq \frac{-2}{r}
$$

Equality holds if and only if
(a) C is tangent to a local totally-geodesic curve of diagonal type;
(b) the second fundamental form vanishes.

Hence, $[S] \cdot \hat{C}=0 \Rightarrow C$ totally-geodesic of diagonal type.

Remarks.

The divisor $[\mathcal{S}] \subset \mathbb{P} T_{X}$ is in general not numerically effective. Let $C \subset X$ be a totallygeodesic curve descending from a minimal disk (i.e., C is dual to a minimal rational curve). Then,

$$
[\mathcal{S}] \cdot \hat{C}>0
$$

On the other hand, let $C^{\#}$ be a holomorphic lifting of C such that for $[\beta] \in C^{\#}$ lying over x with $T_{x}(C)=\mathbb{C} \alpha$, we have $R_{\alpha \bar{\alpha} \beta \bar{\beta}}=0$. Then, $\left.L\right|_{C \#} \cong \mathcal{O}$, and

$$
[\mathcal{S}] \cdot C^{\#}<0
$$

Examples of higher-dimensional gap phenomena in the Zariski topology
(1) 1-hyperigid homogeneous period domains $\Omega^{\prime} \hookrightarrow \Omega$ in the sense of Eyssidieux arising from Hodge theory, (Eyssidieux 1999), e.g.

$$
\begin{array}{ll}
B^{n} \subset D_{k, k n}^{I}, & n \geq 2 \\
D_{n}^{I I} \subset D_{n, n}^{I}, & n \geq 4 \\
D_{n}^{I I I} \subset D_{n, n}^{I}, & n \geq 4, \quad \equiv 0,1 \bmod 4
\end{array}
$$

(2) Domains dual to hyperquadrics $D_{N}^{I V}$ (Mok 2002)

$$
D_{m}^{I V} \subset D_{n}^{I V}
$$

using holomorphic G-structures and KählerEinstein metrics.

Bounded Symmetric Domains
\mathfrak{g} semisimple Lie algebra of the noncompact type
$\theta=$ Cartan involution
$\mathfrak{k}=$ associated maximal compact subalgebra
$\Omega=G / K$ Hermitian symmetric space of the noncompact type. $\Omega \subset \subset \mathbb{C}^{N}$, by Harish-Chandra Embedding
$\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ Cartan decomposition
$H_{0} \in \mathfrak{z}:=$ Centre (\mathfrak{k}) such that $a d\left(H_{0}\right)^{2}=\theta$ $a d\left(H_{0}\right)$ defines an integrable almost complex structure on Ω
$\mathfrak{p}^{\mathbb{C}}=\mathfrak{p}^{+} \oplus \mathfrak{p}^{-}$decomposition into $\pm i$ eigenspaces of $a d\left(H_{o}\right)$
$\mathfrak{p}^{+}=T^{1,0}(\Omega), \mathfrak{p}^{-}=T_{0}^{0,1}(\Omega) ; 0=e K$
$\left(\mathfrak{g}, H_{0}\right):=$ semisimple Lie algebra of the Hermitian and noncompact type

Embedding of Bounded Symmetric Domains
$\left(\mathfrak{g}^{\prime}, H_{0}^{\prime}\right),\left(\mathfrak{g}, H_{0}\right)$ semisimple Lie algebras of the Hermitian and noncompact type.
$\rho: \mathfrak{g}^{\prime} \rightarrow \mathfrak{g}$ Lie algebra homomorphisms

- We say that $\rho:\left(\mathfrak{g}^{\prime}, H_{0}^{\prime}\right) \rightarrow\left(\mathfrak{g}, H_{0}\right)$ is an $\left(H_{1}\right)$-homomorphism if and only if

$$
a d\left(H_{0}\right) \circ \rho=\rho \circ a d\left(H_{0}^{\prime}\right) .
$$

- We say that $\rho:\left(\mathfrak{g}^{\prime}, H_{0}^{\prime}\right) \rightarrow\left(\mathfrak{g}, H_{0}\right)$ is an $\left(H_{2}\right)$-homomorphism if and only if

$$
\rho\left(H_{0}^{\prime}\right)=H_{0} .
$$

FACT: $\quad\left(H_{2}\right) \Rightarrow\left(H_{1}\right)$.
Satake (1965) classified (H_{2})-embeddings into classical domains. Ihara (1967) obtained the full classification of $\left(\mathrm{H}_{2}\right)$-embeddings.
$\Omega=G / K$. A G-invariant Kähler metric g_{0} can be determined on Ω by the Killing form. When Ω is irreducible, g_{0} is Kähler-Einstein, and the Einstein constant is fixed.
Ω irreducible, $\operatorname{dim} \Omega=n,\left\{e_{i}\right\}$ orthonormal basis of $\mathfrak{p}^{+}=T_{0}(\Omega) . \sum\left(\mathfrak{p}^{+}\right)=\sqrt{-1} \sum_{i=1}^{n}\left[e_{i}, \bar{e}_{i}\right]$. $\sum\left(\mathfrak{p}^{+}\right)=\sqrt{-1} c_{\Omega} H_{0}$ for some $c_{\Omega} \in \mathbb{R}$.
$\left(H_{3}\right)$-Embeddings
$\rho:\left(\mathfrak{g}^{\prime}, H_{0}^{\prime}\right) \rightarrow\left(\mathfrak{g}, H_{0}\right)$ an $\left(H_{1}\right)$-embedding corresponding to $j: \Omega^{\prime} \rightarrow \Omega$.
$\Omega^{\prime}=\Omega_{1}^{\prime} \times \cdots \times \Omega_{a}^{\prime} ; \Omega_{k}^{\prime}$ irreducible.
$\left.g_{0}^{\Omega}\right|_{\Omega_{k}^{\prime}}=d_{\Omega_{k}^{\prime}, \Omega} \cdot g_{0}^{\Omega^{\prime}}$

- We say that ρ is an $\left(H_{3}\right)$-embedding if and only if

$$
\rho\left(\sum_{k=1}^{a} c_{\Omega_{k}^{\prime}} d_{\Omega_{k}^{\prime}, \Omega} H_{0 k}^{\prime}\right) \in \mathbb{R} H_{0} .
$$

Lemma.

$\left(H_{3}\right)$-embeddings are $\left(H_{2}\right)$. An $\left(H_{2}\right)$-embedding is $\left(H_{3}\right)$ if and only if $\left.g_{0}^{\Omega}\right|_{\Omega^{\prime}}$ is Einstein.

Numerical criterion for $\left(H_{3}\right)$-embeddings
$j: \Omega^{\prime} \rightarrow \Omega$ totally geodesic, Ω irreducible;
$\operatorname{dim} \Omega^{\prime}=n^{\prime}, \operatorname{dim} \Omega=n ;$
$K_{\Omega^{\prime}}=$ scalar curvature of Ω^{\prime}, etc.
Then, j is an (H_{3})-embedding if and only if

$$
K_{\Omega^{\prime}}=\left(\frac{n^{\prime}}{n}\right)^{2} K_{\Omega}
$$

In this case $\left.g_{0}^{\Omega}\right|_{\Omega^{\prime}}$ is necessarily Kähler-Einstein.

Maximal $\left(H_{2}\right)$-subdomains of a classical domain			
Ω	D	maximal	Additional conditions
$D_{p, q}^{I}$	$D_{r, s}^{I} \times D_{p-r, q-s}^{I}$	*	$\begin{gathered} \frac{r}{s}=\frac{p}{q} \\ \left(H_{3}\right) \text { iff } p=r \end{gathered}$
	$D_{n}^{I I}$	*	$p=q=n$
	$D_{n}^{I I I}$	*	$p=q=n$
	B^{m}	$m \neq 2 r+1$	$p=\binom{m}{r-1}, q=\binom{m}{r}, r \in \mathbb{N}$
	$D_{2 l}^{I V}$	$l \equiv 0[2]$	$p=q=2^{l}, l \geq 3$
	$D_{2 l-1}^{I V}$		$p=q=2^{l-1}, l \geq 3$
$D_{n}^{I I}$	$D_{r, r}^{I}$	*	$n=2 r$
	$D_{r}^{I I} \times D_{n-r}^{I I}$	*	$\begin{gathered} n>r \\ \left(H_{3}\right) \text { iff } n=2 r \end{gathered}$
	B^{m}	*	$n=\binom{m+1}{\frac{m+1}{2}}, m \equiv 3[4]$
	$D_{2 l}^{I V}$	*	$n=2^{l}, l \geq 3, l \equiv 3[4]$
	$D_{2 l-1}^{I V}$	*	$n=2^{l-1}, l \geq 3, l \equiv 0,3[4]$

$\begin{aligned} & \text { N } \\ & \\| \\ & \approx \end{aligned}$			$\stackrel{\rightrightarrows}{\underset{7}{\rightrightarrows}}$		$\stackrel{\sim}{\wedge}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\wedge}$
*	*	*	*	*		*	*
0	$\begin{aligned} & E i \\ & E \\ & \times \\ & E \\ & E \\ & 0 \end{aligned}$	詮	$\underset{\alpha}{2 \pi}$	$\underset{\sim}{2}$	-	$\underset{i}{2 \stackrel{7}{0}}$	$2 \stackrel{1}{10}$
$\stackrel{A}{A}$					$\underset{\sim}{\mathrm{A}}$		$\xrightarrow{2 \stackrel{7}{9}}$

$\begin{aligned} & \text { an } \\ & \text { I } \\ & \text { d } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{1}{s} \end{aligned}$	$\begin{aligned} & \text { an } \\ & \stackrel{\pi}{\pi} \\ & \stackrel{1}{0} \\ & 0 \end{aligned}$						$\begin{gathered} \text { n } \\ \underset{\sim}{\infty} \\ u \\ Z_{\infty}^{\prime} \\ \underset{\sim}{u} \\ u \\ u \\ u \end{gathered}$		
ت	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{U} \\ & 0 \end{aligned}$	\overparen{E}	*			*	*	*	
	\%	A	ลัi	$\begin{aligned} & \triangleleft \\ & \times \\ & \times \end{aligned}$	$\begin{aligned} & \text { â } \\ & \times \\ & \times \\ & 0 \end{aligned}$	ล̊	aid	F	\times \times ko \square
		C	$\stackrel{\square}{\square}$		合				

If $\rho:\left(\mathfrak{g}^{\prime}, H_{0}^{\prime}\right) \rightarrow\left(\mathfrak{g}, H_{0}\right)$ is an $\left(H_{3}\right)$-embedding, we also call $j: \Omega \rightarrow \Omega^{\prime}$ an (H_{3})-embedding, or a totally-geodesic holomorphic embedding of the diagonal type.

Theorem.

Let Ω be an irreducible bounded symmetric domain. Let $j: \Omega^{\prime} \rightarrow \Omega$ be a totally-geodesic holomorphic embedding of the diagonal type, $\operatorname{dim} \Omega^{\prime}=n^{\prime}, \operatorname{dim} \Omega=n$. Then, there exists a nonempty K-invariant hypersurface $\mathcal{H}_{0} \subset$ $G r\left(n^{\prime}, \mathbb{C}^{n}\right)$ such that
(1) $\left[T_{0}\left(\Omega^{\prime}\right)\right] \notin \mathcal{H}_{0}$.
(2) Writing $\mathcal{H} \rightarrow X=\Omega / \Gamma$ for the corresponding locally homogeneous holomorphic subbundle of $\pi: \mathbb{P} T_{X} \rightarrow X$. Then, for any n^{\prime}-dimensional compact complex manifold $S \subset X$ such that for $x \in S$, $\left[T_{x}(S)\right] \notin \mathcal{H}_{x}$, the compact complex manifold $S \subset X$ is totally-geodesic.

Proof: For any $E \in G r\left(n^{\prime}, T_{0}(\Omega)\right)=\mathbb{G}$ choose a unitary basis $\left\{e_{i}\right\}$ and set

$$
\begin{gathered}
\mu(E)=\kappa\left(-\sum_{i}\left[e_{i}, \bar{e}_{i}\right]\right), \quad \text { where } \\
\kappa: \mathfrak{k} \rightarrow \mathfrak{l}^{*}
\end{gathered}
$$

is induced by the Killing form of \mathfrak{g}. The moment map of the adjoint action of $U(n)$ on $M_{n}(C)$ is given by $A \mapsto\left[A, A^{*}\right]$.

Hence, μ is the moment map for the Hamiltonian action of K on the Kähler manifold \mathbb{G}. The Hamiltonian action extends to a linearizable action of $K^{\mathbb{C}}$ on \mathbb{G}.
GIT-semistables point of \mathbb{G} are points whose $K^{\mathbb{C}}$-orbits meet $\mu^{-1}(0)$. In particular $\mu^{-1}(0)$ are GIT-semistable, hence semistable

There exists a K-invariant hypersurface $\mathcal{H}_{0} \subset \operatorname{Gr}\left(n^{\prime}, T_{0}(\Omega)\right)$ such that $\left[T_{0}\left(\Omega^{\prime}\right)\right] \notin \mathcal{H}_{0}$.

$\Omega \subset M$ Borel embedding

$\mathbb{G}_{M}=$ Grassmann bundle of n^{\prime}-planes on M, $\pi: \mathbb{G}_{M} \rightarrow M$
$\mathcal{Z}_{M} \subset \mathbb{G}_{M} G^{\mathbb{C}}$-invariant hypersurface, $s \in \Gamma\left(\mathbb{G}_{M}, L_{M}^{-m} \otimes \pi^{*} \mathcal{O}(\ell)\right)$ is a $G^{\mathbb{C}}$-invariant nonzero section, where
$L_{M}=$ tautological line bundle on \mathbb{G}_{M}.

On $\Omega \subset M, s$ is G-invariant
Write $L=$ tautological line bundle on \mathbb{G}_{Ω},
$\hat{g}=$ canonical metric on L
(E, h) negative homogeneous holomorphic line bundle on Ω dual to $\mathcal{O}(1), c_{1}(E, h)=-\omega$. Then,

$$
\begin{gathered}
\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log \|s\|^{2} \\
=m c_{1}(L, \hat{g})-\ell c_{1}\left(\pi^{*} E, \pi^{*} h\right)+\left[\mathcal{Z}_{\Omega}\right] .
\end{gathered}
$$

By Borel (1963), there exists $\Gamma^{\prime} \subset \operatorname{Aut}\left(\Omega^{\prime}\right)$ such that $S_{0}=\Omega^{\prime} / \Gamma^{\prime}$ is compact. Since $\left[T_{x}\left(S_{0}\right)\right]$ $\notin \mathcal{Z}_{X, x}$ for any $x \in S_{0}$, integrating over the lifting \hat{S}_{0} of S_{0} to $\left.\mathbb{G}_{X}\right|_{S_{0}}$, we have

$$
\begin{aligned}
0 & =\int_{\hat{S}_{0}}\left(m c_{1}(L, \hat{g})-\ell c_{1}\left(\pi^{*} E, \pi^{*} h\right)\right) \wedge\left(\pi^{*} \omega\right)^{n^{\prime}-1} \\
& =\int_{S_{0}}\left(m c_{1}\left(K_{S_{0}}^{-1}, \operatorname{det}\left(\left.g\right|_{S_{0}}\right)\right)-\ell c_{1}(E, h)\right) \wedge \omega^{n^{\prime}-1} \\
& =\int_{S_{0}}\left(m \operatorname{Ric}\left(\left.g\right|_{S_{0}}\right)-\ell c_{1}(E, h)\right) \wedge \omega^{n^{\prime}-1} \\
& =\int_{S_{0}}\left(\frac{m}{n^{\prime}} K\left(\left.g\right|_{S_{0}}\right)+\ell\right) \omega^{n^{\prime}-1}
\end{aligned}
$$

where K denotes scalar curvature. By local homogeneity the integrand $\equiv 0$. Thus,
(1) $\quad \frac{m}{n^{\prime}} K\left(\left.g_{0}\right|_{\Omega^{\prime}}\right)+\ell \equiv 0$.

Suppose now $S \subset X=\Omega / \Gamma$ as in the hypothesis. We have $\hat{S} \cap \mathcal{Z}_{X}=\phi$, so that
(2) $\int_{S}\left(\frac{m}{n^{\prime}} K\left(\left.g\right|_{S}\right)+\ell\right) \omega^{n^{\prime}-1}=0$.

Define $\Sigma: \operatorname{Gr}\left(n^{\prime}, T_{0}(\Omega)\right) \rightarrow \mathfrak{k}$ by

$$
\Sigma(E)=\sqrt{-1} \sum_{i=1}^{n^{\prime}}\left[e_{i}, \bar{e}_{i}\right]
$$

where $\left(e_{i}\right)$ is any orthnoromal basis. $\|\Sigma(E)\|$ is a minimum if $\Sigma(E) \in \mathfrak{z}$, thus whenever $E=$ $T_{0}\left(\Omega^{\prime}\right)$, where $\Omega^{\prime} \hookrightarrow \Omega$ is $\left(H_{3}\right)$. Now

$$
K\left(\left.g_{0}\right|_{\Omega^{\prime}}\right)=-C\left\|\Sigma\left(T_{0}\left(\Omega^{\prime}\right)\right)\right\|^{2}
$$

for a universal constant C. For every $x \in S$
$K\left(\left.g\right|_{S}\right)_{x}=-C\left\|\Sigma\left(T_{x} S\right)\right\|^{2}-\left\|\sigma_{x}\right\|^{2} \leq K\left(\left.g_{0}\right|_{\Omega^{\prime}}\right)$
where σ is the second fundamental form. Comparing with (1) and (2) we get

$$
K\left(\left.g\right|_{S}\right)_{x}=K\left(\left.g_{0}\right|_{\Omega^{\prime}}\right), \quad \sigma_{x} \equiv 0
$$

In particular, $S \subset X$ is totally geodesic.

Rank-1 Domains

Question 1.

Let $k<n$ be positive integers and embed the complex unit k-ball B^{k} into the complex unit n-ball B^{n} in the standard way as a totally geodesic complex submanifold. Does gap rigidity hold for $\left(B^{n}, B^{k}\right)$ in the complex topology?

Possible scheme for each pair (k, n)
(1) Is a k-dimensional compact complex submanifold of small second fundamental form $S \subset B^{n} / \Gamma$ necessarily uniformized by B^{k} ?
(2) Is a holomorphic immersion $B^{k} / \Gamma^{\prime} \hookrightarrow B^{n} / \Gamma$ necessarily totally-geodesic?

The answer to (2) is positive for $n<2 k$, by Cao-Mok (1990).

Question 2.
Let $n>1$. Consider the set \mathcal{X}_{n} of all compact complex manifolds uniformized by the complex unit ball B^{n}. Let $\operatorname{Map}\left(\mathcal{X}_{n}\right)$ denote the set of all nonconstant holomorphic mappings f : $X \rightarrow X^{\prime}$ with $X, X^{\prime} \in \mathcal{X}_{n}$, and $\operatorname{Map}_{\text {fin }}\left(\mathcal{X}_{n}\right) \subset$ $\operatorname{Map}\left(\mathcal{X}_{n}\right)$ the subset of all generically finite holomorphic maps. For each $f \in \operatorname{Map}\left(\mathcal{X}_{n}\right)$, $f: X \rightarrow X^{\prime}$, denote by $\mu(f) \in(0,1]$ the real number defined by

$$
\mu(f)=\sup \{\|d f(x)\|: x \in X\}
$$

Does there exists a universal constant $c_{n}>0$ depending only on n such that $\mu(f)>c_{n}$ for any $f \in \operatorname{Map}_{\text {fin }}\left(\mathcal{X}_{n}\right)$ or more generally for $f \in$ $\operatorname{Map}\left(\mathcal{X}_{n}\right) ?$

Remark.

By the Ahlfors-Schwarz Lemma, $\mu(f) \leq 1$.

References:

[EM] Eyssidieux, P. and Mok, N.: Characterization of certain holomorphic geodesic cycles on Hermitian locally symmetric manifolds of the noncompact type, Ann. Math. Studies 138, Princeton 1995, pp.85-118.
[E1] Eyssidieux, P.: La caractéristique d'Euler du complexe de Gauss-Manin, J. Reine Angew. Math. 490 (1997), 155-212
[E2] Eyssidieux, P.: Kähler hyperbolicity and variations of Hodge structures, in New Trends in Algebraic Geometry, Cambridge 1999, pp.71-92.
[M] Mok, N.: Characterization of certain holomorphic geodesic cycles on quotients of bounded symmetric domains in terms of tangent subsapces, Comp. Math. 132 (2002), 289-309.

Eyssidieux, P. and Mok, N.:

On the validity or failure of gap rigidity for certain pairs of bounded symmetric domains, to appear in Asian J. Math., Special Issue in memory of Professor Armand Borel.

