Characterization of

Holomorphic Geodesic Cycles

on Quotients of

Bounded Symmetric Domains

Ngaiming MOK The University of Hong Kong

HKU, January 2005

Arakelov Inequality

(1) Global Form

$$\mathcal{H}_n = \{ \tau \in M_n(\mathbb{C}) : \tau = \tau^t , Im \tau \}$$

= Siegel upper half-plane

 $\Gamma \subset Aut(\mathcal{H}_n) \cong Sp(n; \mathbb{R})$ torsion-free discrete subgroup

 $X = \mathcal{H}_n / \Gamma, \ \mathcal{C} \subset X$ algebraic curve

 $T_X|_C \cong S^2 V, V =$ universal rank-1 bundle over C, g = genus (C). Then

$$\begin{split} \deg(V) &\geq -n(g-1)\\ \deg(V) &= -n(g-1)\\ \Leftrightarrow C \text{ is a modular curve of rank } n \ . \end{split}$$

(2) Local Form

- h =normalized Kähler-Einstein metric on X
- $\omega = K$ ähler form.

Then,

$$c_1(T_C, h) \leq -\frac{2}{n}\omega$$
$$c_1(T_C, h) = -\frac{2}{n}\omega$$
$$\Leftrightarrow C \subset X \text{ is totally geodesic}$$

 $\underline{\mathrm{Pf}} \quad \text{Gauss Equation}$ $\alpha \in T_x(C),$

 $R_{\alpha \overline{\alpha} \alpha \overline{\alpha}}(C,h) = R_{\alpha \overline{\alpha} \alpha \overline{\alpha}}(X,h) - \|\sigma(\alpha,\alpha)\|^2 .$

Bounded Symmetric Domains

Classical cases

$$\begin{split} D_{p,q}^{I} &= \{ Z \in M(p,q,\mathbb{C}) : I - \overline{Z}^{t} Z > 0 \} \,, \quad p,q \geq 1 \\ D_{n}^{II} &= \{ Z \in D_{n,n}^{I} : Z^{t} = -Z \} \,, \quad n \geq 2 \\ D_{n}^{III} &= \{ Z \in D_{n,n}^{I} : Z^{t} = -Z \} \,, \quad n \geq 3 \end{split}$$

$$D_n^{IV} = \left\{ (z_1, \dots, z_n) \in \mathbb{C}^n : ||z||^2 < 2 ; \\ ||z||^2 < 1 + \left| \frac{1}{2} \sum_{i=1}^n z_i^2 \right|^2 \right\}, \quad n \ge 3.$$

Exceptional Domains

 D^V , dim 16, type E_6 D^{VI} , dim 27, type E_7 Example of local Arakelov Inequality in 2 dimensions

Theorem (Eyssidieux-Mok 1995) $U \subset B^2 \times B^2$ domain, $S \subset U$ complex surface,

g = normalized canonical Kähler metric on $B^2 \times B^2$, (K_i, h_i) , i = 1, 2, canonical bundles of the *i*-th factor. Then, over S we have

$$c_2(S, g|_S) \ge \frac{1}{6} (c_1^2(K_1, h_1) + c_1^2(K_2, h_2))$$

Equality \Leftrightarrow
 $S \subset U$ totally geodesic, modelled on
 $(B^2 \times B^2, \delta(B^2))$

Global Form

 $X := B^2 \times B^2 / \Gamma, \ S \subset X \ \text{complex surface}$

$$c_2(S) \ge \frac{1}{6} (c_1^2(K_1) + c_1^2(K_2))$$

can be proven using Hodge Theory.

- We can check that for S modelled on $(B^2 \times B^2, \delta(B^2))$, <u>equality</u> holds.
- The equality \Rightarrow geodesic is proven using the local form.

Proposition.

Let $\Omega \subset \subset \mathbb{C}^N$ be a bounded symmetric domain. Fix $x_0 \in \Omega$ and let $B(r) \subset \Omega$ denote the geodesic ball (with respect to the Bergman metric) of radius r and centered at x_0 . For $\delta > 0$ sufficiently small ($\delta < \delta_0$) there exists $\varepsilon > 0$ such that the following holds:

For any ε -pinched connected complex submanifold $V \subset B(x_0; 1), x_0 \in$ V, there exists a *unique* equivalence class of totally-geodesic complex submanifold on Ω , to be represented by $j : \Omega' \hookrightarrow \Omega$, and a totally-geodesic complex submanifold $\Xi \subset B(1)$ modelled on $(\Omega, \Omega'; j)$ such that the Hausdorff distance between $\Xi \cap B(\frac{1}{2})$ and $V \cap B(\frac{1}{2})$ is less than δ . Gap rigidity in the complex topology $C \subset \mathcal{H}_g/\Gamma$ compact complex curve. Normalize the K.E. metric so that

$$\triangle \stackrel{\mathrm{diag}}{\hookrightarrow} \triangle^g \hookrightarrow D_g^{III} \cong \mathcal{H}_g$$

is of Gaussian curvature -1

Theorem (Eyssidieux-Mok 1995)

$$-\left(1+\frac{1}{4g}\right) < \text{Gauss curvature of } C(\leq -1)$$

 $\Rightarrow C$ is totally-geodesic and
of the diagonal type

 \underline{Pf} C is the base space of a VHS, V = restric-tion of universal bundle

C not totally-geodesic $\Rightarrow \chi(V) < 0.$

Representing first cohomology classes by harmonic forms, a *stable* vanishing theorem gives $\chi(V) = 0$ under the given pinching condition.

Motivation and scheme of proof on gap rigidity

- (1) To give a differential-geometric proof that the *Mordell-Weil group* of the universal Abelian variety over a Shimura variety is finite.
- (2) To show that for a subvariety of the Siegel modular variety *locally approximable* by a totally-geodesic complex submanifold, that the Mordell-Weil group remains finite, with a proof that shows that there are no nontrivial "multi-valued" section. This amounts to a *vanishing theorem* on some harmonic forms arising from weight-1 Hodge structures.
- (3) Applying Riemann-Roch, one proves a nonvanishing theorem for such harmonic forms to get a contradiction.

Theorem (Shioda 1972) $\Gamma \subset \mathbb{P}SL(2,\mathbb{Z})$ of finite index, Γ torsion free, $X_{\Gamma} = \mathcal{H}/\Gamma$

 $\pi: \mathcal{A}_{\Gamma} \mapsto X_{\Gamma}$ universal family,

 $\overline{\pi}: \overline{\mathcal{A}}_{\Gamma} \mapsto \overline{X}_{\Gamma}$ projective compatification.

Then, $\operatorname{rank}_{\mathbb{Z}}(A_{\Gamma}(\mathbb{C}(\overline{X}_{\Gamma})) = 0$ for the Mordell-Weil group $A_{\Gamma}(\mathbb{C}(\overline{X}_{\Gamma})).$

Theorem (Mok-To 1993)

The same remains true for any Kuga family of polarized Abelian varieties without locally constant parts.

Differential-geometric proof of Shioda's result

A holomorphic section of $\pi : \mathcal{A}_{\Gamma} \to X_{\Gamma}$ lifts to a holomorphic function $f : \mathcal{H} \mapsto \mathbb{C}$ satisfying the functional equation

$$f(\gamma z) = \frac{f(z)}{c_{\gamma} z + d_{\gamma}} + A_{\gamma} \left(\frac{a_{\gamma} z + b_{\gamma}}{c_{\gamma} z + d_{\gamma}}\right) + B_{\gamma} ,$$

where $\gamma(z) = \frac{a_{\gamma}z + b_{\gamma}}{c_{\gamma}z + d_{\gamma}}, \ \gamma \in \Gamma$.

$$\frac{f'(\gamma z)}{(c_{\gamma}\tau + d_{\gamma})^2} = -\frac{c_{\gamma}}{(c_{\gamma}z + d)^2} f(\gamma z) + \frac{f'(z)}{(c_{\gamma}z + d_{\gamma})} + \frac{A_{\gamma}}{(c_{\gamma}z + d_{\gamma})^2} ; f'(\gamma z) = -c_{\gamma}f(z) + (c_{\gamma}z + d_{\gamma})f'(z) + A_{\gamma} ; \frac{f''(\gamma z)}{(c_{\gamma}z + d_{\gamma})^2} = -c_{\gamma}f'(z) + c_{\gamma}f'(z) + (c_{\gamma}z + d_{\gamma})/f''(z) ;$$

$$f''(\gamma z) = (c_{\gamma} z + d)^3 f''(z) .$$

 $f'' := \alpha$ is an Eichler automorphic form.

(1) The Eichler automorphic form α is an element of $\Gamma(X_{\Gamma}, K_{X_{\Gamma}}^{3/2})$. Such automorphic forms can exist, and the question is whether they can arise from a section σ of $\overline{\pi} : \overline{\mathcal{A}}_{\Gamma} \to \overline{X}_{\Gamma}$. (2) There is a smooth section $\eta = \eta_{\sigma}$ which measures how far σ is from being *horizontal*. $\eta : T_{X_{\Gamma}} \mapsto T_{X_{\Gamma}}^{1/2}$. (The universal line bundle is a square root of the tangent bundle). Thus, $\eta \in \mathcal{C}^{\infty}(X_{\Gamma}, K_{X_{\Gamma}}^{1/2})$. (3) $\nabla \eta = c\alpha$ for some $c \neq 0$. (easy to check from the definition of α and η).

$$\overline{\partial}\alpha = 0 \Rightarrow \overline{\partial}\nabla\eta = 0$$
$$\Rightarrow \overline{\partial}\overline{\partial}^*\eta = 0 \Rightarrow \overline{\partial}^*\overline{\partial}\eta = -\eta$$

Integrating by parts

$$\begin{split} \int_{X_{\Gamma}} \langle \overline{\partial}^* \overline{\partial} \eta, \eta \rangle &= - \int_{X_{\Gamma}} \langle \eta, \eta \rangle , \quad \text{i.e.} ,\\ \int_{X_{\Gamma}} \| \overline{\partial} \eta \|^2 &= - \int_{X_{\Gamma}} \| \eta \|^2 \end{split}$$

 $\Rightarrow \eta \equiv 0.$

Definition (Gap Phenomenon).

Let $\Omega \subset \subset \mathbb{C}^N$ be a bounded symmetric domain and $j : \Omega' \hookrightarrow \Omega$ be a totally-geodesic complex submanifold. We say that the gap phenomenon holds for $(\Omega, \Omega'; j)$ if and only if there exists $\varepsilon < \varepsilon(\delta_0)$ (δ_0 as in Proposition) for which the following holds:

For any torsion-free discrete group $\Gamma \subset \operatorname{Aut}(\Omega)$ of automorphisms and any ε -pinched immersed compact complex submanifold $S \hookrightarrow \Omega/\Gamma$ modelled on $(\Omega, \Omega'; j)$, S is necessarily totally geodesic. Gap rigidity in the Zariski topology

We say that $(\Omega, \Omega'; j)$; dim $\Omega = n$, dim $\Omega' = n'$, exhibits gap rigidity in the Zariski topology if and only if there exists a *G*-invariant complex analytic subvariety $\mathcal{Z}_{\Omega} \subset \mathbb{G}_{\Omega} = \text{Grass-}$ mann bundle of n'-planes giving $\mathcal{Z}_X \subset \mathbb{G}_X := \mathbb{G}_{\Omega}/\Gamma$ for any $X = \Omega/\Gamma$, such that the following holds

- (a) $[T_0(\Omega')] \notin \mathcal{Z}_{\Omega,0}.$
- (b) For any compact complex n'-dimensional submanifold $S \subset X = \Omega/\Gamma$ such that $[T_x(S)] \notin \mathcal{Z}_{X,x}$ for all $x \in S$, S must be totally geodesic.

A simple example of gap rigidity in the Zariski topology with Ω reducible

 $\Omega = D \times \dots \times D$ $\Omega' = \text{diagonal}(\Omega) .$

Then, $(\Omega, \Omega'; j)$ exhibits gap rigidity in the Zariski sense.

Proof:

 $\Gamma \subset \operatorname{Aut}_0(\Omega)$. Call an n'-plane generic if and only if its projection to each individual factor Ω is injective. If $S \subset X = \Omega/\Gamma$ is such that $T_x(S)$ is generic for every $x \in S$, dim S = n', then we obtain by projection Kähler-Einstein metrics from each individual factor. Proposition follows from uniqueness of Kähler-Einstein metrics. Euler characterisitcs and Gauss-Manin complexes (Eyssidieux 1997)

 (X, \mathbf{V}) polarized variation of Hodge structures with immersive period map. Eyssidieux proved Lefschetz-Gromov vanishing theorem for L^2 cohomology with coefficients in \mathbf{V} on the universal cover \tilde{X} in degrees $\neq \dim(X)$.

He deduced Chern number inequalities (Arakelov inequalities)

Case of equality leads to characterization of certain totally geodesic compact complex submanifolds of Ω/Γ , giving examples of gap rigidity in the Zariski topology.

Remarks.

The Chern class inequalities are in general <u>not</u> local.

Theorem (Eyssidieux-Mok)

There exists sequences of

- compact Riemann surfaces S_k, T_k ; of genus ≥ 2 ,
- branched double covers $f_k : S_k \to T_k$ such that, writing ds_C^2 for the Poincaré metric of Gaussian curvature -2 on a compact Riemann surface C, and defining

$$\mu_k := \sup \left\{ \frac{f_k^* ds_{T_k}^2(x)}{ds_{S_k}^2(x)} : x \in S_k \right\} \,,$$

we have

$$\lim_{k \to \infty} \mu_k = 0$$

Corollary.

The Gap Phenomenon fails for $(\Delta^2, \Delta \times \{0\}).$

Heuristics

For $f : S \to T$, Riemann-Hurwicz Formula gives

$$2g(S) - 2 = r(2g(T) - 2) + e ,$$

where

r = sheeting number , e = cardinality of ramification divisor .

For a compact Riemann surface ${\cal C}$

$$\int_{C} -2ds_{C}^{2} = 4\pi(1 - g(C))$$

by Guass-Bonnet, i.e.,

$$\begin{split} \frac{1}{\pi} \int_C ds_C^2 &= 2g(C) - 2 \\ \frac{1}{\pi} \int_S f^* ds_T^2 &= \frac{r}{\pi} \int_T ds_T^2 = r(2g(T) - 2) \\ \frac{1}{\pi} \int_S ds_S^2 &= 2g(S) - 2 \ . \end{split}$$

On the average

$$\frac{f^* ds_T^2}{ds_S^2} = r \left(\frac{2g(T) - 2}{2g(S) - 2}\right) = 1 - \frac{e}{2g(S) - 2}$$

which becomes small when $\frac{e}{2g(S)-2}$ is close to 1.

In the construction, we will have a fixed T, r = 2, so that

$$1 - \frac{e_k}{2g(S_k) - 2} = \frac{2(g(T) - 1)}{g(S_k) - 1} \to 0$$

whenever $g(S_k) \to \infty$, i.e. whenever $e_k \to \infty$. The crux is to find $f_k : S_k \to T$ such that f_k is "almost" uniformly area-decreasing.

We will do this by choosing $f_k : S_k \to T$ so that the branching loci of f_k are "almost" uniformly distributed on T.

Construction of double covers:

$$L \subset \mathbb{C}$$
 lattice

 $E = \mathbb{C}/L$ elliptic curve

$$\tau \in E$$
 nonzero 2-torsion point

 $h: T \to E$ double cover branched over $\{0, \tau\}$ Write $q_1 = h^{-1}(0), q_2 = h^{-1}(\tau)$ Let $m \equiv 1 \pmod{2}, m = 2k - 1,$ $\Phi_m: E \to E$ defined by $\Phi_m(x) = mx,$ $D_k := \Phi_m^{-1}(\{0, \tau\}), |D_k| = 2m^2, D_1 = \{0, \tau\}$ $m\tau = 2k\tau - \tau \equiv -\tau = \tau, \text{ so that } D_k \supset D_1.$ $f_k: S_k \to T$ double cover branched over $h^{-1}(D_k - D_1).$ Write

$$\mu_k = \sup\left\{\frac{f_k^* ds_T^2(x)}{ds_{S_k}^2(x)} : x \in S_k\right\} \,.$$

Claim:

$$\lim_{k \to \infty} \mu_k = 0 \; .$$

Proof: $h: T \to E, f_k: S_k \to T$ double covers. $ds_T^2, ds_{S_k}^2$ invariant under involutions. $h_* ds_T^2$ Hermitian metric on $T_E \otimes [D_1]^{-\frac{1}{2}}$; $(h \circ f_k)_* ds_{S_k}^2$ Hermitian metric on $T_E \otimes [D_m]^{-\frac{1}{2}}$. From uniqueness of Hermitian metrics of curvature -2 with prescribed orders of poles,

$$(h \circ f_k)_* ds_{S_k}^2 = \Phi_m^*(h_* ds_T^2)$$
.

Near 0,

$$\Phi_m\left(\frac{|dz|^2}{|z|}\right) = \frac{m^2|dz|^2}{|mz|} = m\frac{|dz|^2}{|z|} ,$$

similarly at τ .

Outside small disks $h_* ds_T^2 \ge \varepsilon$ (metric on E),

$$\Phi_m^*(h_*ds_T^2) \ge m^2 \varepsilon(\text{metric on } E)$$

From which $\mu_k \leq \frac{C}{k} \to 0$ as $k \to \infty$.

Definition (Characteristic Codimension)

 Ω irreducible bounded symmetric domain $\mathcal{S}_o \subset \mathbb{P}T_o(\Omega)$

 $S_o := \{ [\eta] : \eta \text{ is of rank} < \text{rank} (\Omega) \}$

 $q(\Omega) := \operatorname{codim}(\mathcal{S}_o \text{ in } \mathbb{P}T_o(\Omega))$

<u>Complete list of Ω with $q(\Omega) = 1$:</u>

- (1) Ω of Type $\mathbf{I}_{m,n}$ with m = n > 1;
- (2) Ω of Type \mathbf{II}_n with n even, $n \ge 4$;
- (3) Ω of Type \mathbf{III}_n , $n \geq 3$;
- (4) Ω of Type $\mathbf{IV}_n, n \geq 3$;
- (5) Ω of Type **VI** (the 27-dimensional exceptional domain pertaining to E_7).

Theorem (Mok, Comp. Math. 2002)

 Ω irreducible bounded symmetric domain

 $\Gamma \subset Aut(\Omega)$ torsion-free discrete subgroup, $X := \Omega/\Gamma$

 $C \subset X$ compact holomorphic curve

Suppose $q(\Omega) = 1$ and, $\forall x \in C$, $T_x(C) = \mathbb{C}\eta$, $[\eta] \notin S_x$ Then, $C \subset X$ is totally-geodesic.

REMARK:

- (1) If $\eta \neq 0$ and $[\eta] \notin S_x$, we call η a generic vector.
- (2) Ω irr. BSD, $D \subset \Omega$, dim D = 1. Then, gap rigidity in the Zariski topology holds in the Zariski topology *if and only if* $q(\Omega) = 1$ and D is the diagonal of a maximal polydisk.

Proof: $q(\Omega) = 1 \Rightarrow \exists$ locally homogeneous divisor $S \subset \mathbb{P}T_X$ corresponding to non-generic tangent vectors.

 $S = \{s = 0\}, s \in \Gamma(X, [S]); \pi : \mathbb{P}T_X \to X.$ $L \to \mathbb{P}T_X$ tautological line bundle, L < 0; $\Omega \subset M$ Borel embedding, M = compact dual.For $\pi : \mathbb{P}T_M \to M$, $\operatorname{Pic}(\mathbb{P}T_M) \cong \mathbb{Z}^2.$ E = negative loc. homog. line bundle on Xdual to $\mathcal{O}(1)$ on $M; r = \operatorname{rank}(\Omega).$ Then,

$$[\mathcal{S}] \cong L^{-r} \otimes \pi^* E^2$$

- $C \subset X$ compact holomorphic curve, \hat{C} = tautological lifting. Then, observe (1) If $C \subset X$ is totally-geodesic of diagonal type, then $[T_x(C)] \notin S_x$ for any $x \in C$, and $[S] \cdot \hat{C} = 0$.
 - (2) If $[T_x(C)] \notin S_x$ for a generic $x \in C$. Then,

$$[\mathcal{S}] \cdot \hat{C} \ge 0$$
.

The intersection number can be computed from the Poincaré-Lelong equation

$$\sqrt{-1}\partial\overline{\partial}\log ||s||^2$$

= $rc_1(L,\hat{g}_0) - 2\pi^*c_1(E,h_0) + [S]$
[S] $\cdot \hat{C} = r \int_{\hat{C}} c_1(L,\hat{g}_0) - 2 \int_C c_1(E,h_0)$
= $r \int_C \operatorname{Ric}(C,g_0|_C) - 2 \int_C c_1(E,h_0)$.

The case where $C \subset X$ is totally-geodesic of diagonal type occurs where

Gauss curvature
$$=\frac{-2}{r}$$

In general, by the Gauss equation we have

Gauss curvature
$$\leq \frac{-2}{r}$$

Equality holds if and only if

(a) C is tangent to a local totally-geodesic curve of diagonal type;

(b) the second fundamental form vanishes. Hence, $[S] \cdot \hat{C} = 0 \Rightarrow C$ totally-geodesic of diagonal type.

Remarks.

The divisor $[S] \subset \mathbb{P}T_X$ is in general not numerically effective. Let $C \subset X$ be a totally-geodesic curve descending from a minimal disk (i.e., C is dual to a minimal rational curve). Then,

$$[\mathcal{S}] \cdot \hat{C} > 0 \ .$$

On the other hand, let $C^{\#}$ be a holomorphic lifting of C such that for $[\beta] \in C^{\#}$ lying over xwith $T_x(C) = \mathbb{C}\alpha$, we have $R_{\alpha\overline{\alpha}\beta\overline{\beta}} = 0$. Then, $L|_{C^{\#}} \cong \mathcal{O}$, and

$$[\mathcal{S}] \cdot C^{\#} < 0 .$$

Examples of higher-dimensional gap phenomena in the Zariski topology

(1) 1-hyperigid homogeneous period domains
Ω' → Ω in the sense of Eyssidieux arising from Hodge theory, (Eyssidieux 1999),
e.g.

$$\begin{split} B^n &\subset D^I_{k,kn} , \quad n \geq 2 \\ D^{II}_n &\subset D^I_{n,n} , \quad n \geq 4 \\ D^{III}_n &\subset D^I_{n,n} , \quad n \geq 4 , \quad \equiv 0,1 \bmod 4 . \end{split}$$

(2) Domains dual to hyperquadrics D_N^{IV} (Mok 2002)

$$D_m^{IV} \subset D_n^{IV}$$

using holomorphic G-structures and Kähler-Einstein metrics.

Bounded Symmetric Domains

 ${\mathfrak g}$ semisimple Lie algebra of the noncompact type

 $\theta = Cartan$ involution

 \mathfrak{k} = associated maximal compact subalgebra

 $\Omega = G/K$ Hermitian symmetric space of the noncompact type. $\Omega \subset \subset \mathbb{C}^N$, by Harish-Chandra Embedding

 $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$ Cartan decomposition

 $H_0 \in \mathfrak{z} := \text{Centre } (\mathfrak{k}) \text{ such that } ad(H_0)^2 = \theta$ $ad(H_0)$ defines an integrable almost complex structure on Ω

 $\mathfrak{p}^{\mathbb{C}} = \mathfrak{p}^{+} \oplus \mathfrak{p}^{-} \text{ decomposition into } \pm i-$ eigenspaces of $ad(H_o)$ $\mathfrak{p}^{+} = T^{1,0}(\Omega), \ \mathfrak{p}^{-} = T_0^{0,1}(\Omega); \ 0 = eK$

 $(\mathfrak{g}, H_0) :=$ semisimple Lie algebra of the Hermitian and noncompact type Embedding of Bounded Symmetric Domains

 $(\mathfrak{g}', H_0'), (\mathfrak{g}, H_0)$ semisimple Lie algebras of the Hermitian and noncompact type.

 $\rho: \mathfrak{g}' \to \mathfrak{g}$ Lie algebra homomorphisms

• We say that $\rho : (\mathfrak{g}', H_0') \to (\mathfrak{g}, H_0)$ is an (H_1) -homomorphism if and only if

$$ad(H_0) \circ \rho = \rho \circ ad(H'_0)$$
.

• We say that $\rho : (\mathfrak{g}', H_0') \to (\mathfrak{g}, H_0)$ is an (H_2) -homomorphism if and only if

$$\rho(H_0') = H_0 \; .$$

FACT: $(H_2) \Rightarrow (H_1).$

Satake (1965) classified (H_2) -embeddings into classical domains. Ihara (1967) obtained the full classification of (H_2) -embeddings. $\Omega = G/K$. A *G*-invariant Kähler metric g_0 can be determined on Ω by the Killing form. When Ω is irreducible, g_0 is Kähler-Einstein, and the Einstein constant is fixed.

 $\Omega \text{ irreducible, } \dim \Omega = n, \ \{e_i\} \text{ orthonormal} \\ \text{basis of } \mathfrak{p}^+ = T_0(\Omega). \ \sum(\mathfrak{p}^+) = \sqrt{-1} \sum_{i=1}^n [e_i, \overline{e}_i]. \\ \sum(\mathfrak{p}^+) = \sqrt{-1} c_\Omega H_0 \text{ for some } c_\Omega \in \mathbb{R}. \end{cases}$

(H_3) -Embeddings

 $\rho: (\mathfrak{g}', H_0') \to (\mathfrak{g}, H_0) \text{ an } (H_1)\text{-embedding}$ corresponding to $j: \Omega' \to \Omega$.

$$\Omega' = \Omega'_1 \times \cdots \times \Omega'_a; \, \Omega'_k \text{ irreducible.}$$

$$g_0^\Omega\big|_{\Omega'_k} = d_{\Omega'_k,\Omega} \cdot g_0^{\Omega'}$$

 We say that ρ is an (H₃)-embedding if and only if

$$\rho\Big(\sum_{k=1}^{a} c_{\Omega'_{k}} d_{\Omega'_{k},\Omega} H'_{0k}\Big) \in \mathbb{R}H_{0}$$

Lemma.

 (H_3) -embeddings are (H_2) . An (H_2) -embedding is (H_3) if and only if $g_0^{\Omega}|_{\Omega'}$ is Einstein.

Numerical criterion for (H_3) -embeddings

 $j: \Omega' \to \Omega$ totally geodesic, Ω irreducible; $\dim \Omega' = n', \dim \Omega = n;$ $K_{\Omega'} = \text{scalar curvature of } \Omega', \text{ etc.}$ Then, j is an (H_3) -embedding if and only if

$$K_{\Omega'} = \left(\frac{n'}{n}\right)^2 K_{\Omega}$$

In this case $g_0^{\Omega}|_{\Omega'}$ is necessarily Kähler-Einstein.

	Maxin	Maximal (H_2) -subdomains	domains
	of :	a classical domain	domain
υ	D	maximal	Additional conditions
$D^I_{p,q}$	$D_{r,s}^I \times D_{p-r,q-s}^I$	*	$\frac{r}{s} = \frac{p}{q}$
			(H_3) iff $p=r$
	D_n^{II}	*	u = b = d
	D_n^{III}	*	u = b = d
	B^m	$m \neq 2r + 1$	$p = \binom{m}{r-1}, q = \binom{m}{r}, r \in \mathbb{N}$
	D_{2l}^{IV}	$l \equiv 0[2]$	$p=q=2^l, l\geq 3$
	D^{IV}_{2l-1}		$p = q = 2^{l-1}, l \ge 3$
D_n^{II}	$D^I_{r,r}$	*	n = 2r
	$D_r^{II} imes D_{n-r}^{II}$	*	n > r
			(H_3) iff $n=2r$
	B^m	*	$n=inom{m+1}{rac{m+1}{2}},m\equiv 3[4]$
	D^{IV}_{2l}	*	$n=2^l, l\geq 3, l\equiv 3[4]$
	$D_{2l-1}^{IV} \\$	*	$n = 2^{l-1}, l \ge 3, l \equiv 0, 3[4]$

n = 2r	n > r	(H_3) iff $n=2r$	$n=inom{m+1}{rac{m+1}{2}},m\equiv 1[4]$	$p=q=2^l, l\geq 3, l\equiv 1[4]$	$p=q=2^{l-1}, l\geq 3, l\equiv 1, 2[4]$	$l \geq 3$	$l \geq 3$	$l \geq 3$
*	*		*	*	*		*	*
$D^I_{r,r}$	$D_r^{III} \times D_{n-r}^{III}$		B^m	D_{2l}^{IV}	D^{IV}_{2l-1}	$D^I_{2,2}$	D^{IV}_{2l-1}	D^{IV}_{2l-2}
D_n^{III}						D_{2l}^{IV}		D^{IV}_{2l-1}

Σ	Maximal and	irred	and irreducible (H_2) -subdomains
	of	except	of exceptionnal domains
\mho	D	(H_3)	Chains of (H_2) -subdomains
D^V	$D^I_{2,4}$	*	$B^2 \subset B^2 \times B^2 \subset D^I_{2,4}$
	$B^5 imes \Delta$		
D^{VI}	$B^5 imes B^2$		
	$D^I_{2,6}$	*	$B^3\subset B^3\times B^3\subset D^I_{2,6}$
	$D^I_{3,3}$	*	$\Delta\subset\Delta^3\subset D_3^{III}\subset D_{3,3}^I$
	D_6^{II}	*	$\Delta\subset\Delta^3\subset D_6^{II}$
	$D_{10}^{IV} imes \Delta$		$\Delta\subset\Delta^3\subset D_{10}^{IV} imes\Delta$

If $\rho : (\mathfrak{g}', H'_0) \to (\mathfrak{g}, H_0)$ is an (H_3) -embedding, we also call $j : \Omega \to \Omega'$ an (H_3) -embedding, or a totally-geodesic holomorphic embedding of the diagonal type.

Theorem.

Let Ω be an irreducible bounded symmetric domain. Let $j: \Omega' \to \Omega$ be a totally-geodesic holomorphic embedding of the diagonal type, $\dim \Omega' = n', \dim \Omega = n$. Then, there exists a nonempty K-invariant hypersurface $\mathcal{H}_0 \subset$ $Gr(n', \mathbb{C}^n)$ such that

- (1) $[T_0(\Omega')] \notin \mathcal{H}_0.$
- (2) Writing $\mathcal{H} \to X = \Omega/\Gamma$ for the corresponding locally homogeneous holomorphic subbundle of $\pi : \mathbb{P}T_X \to X$. Then, for any n'-dimensional compact complex manifold $S \subset X$ such that for $x \in S$, $[T_x(S)] \notin \mathcal{H}_x$, the compact complex manifold $S \subset X$ is totally-geodesic.

Proof: For any $E \in Gr(n', T_0(\Omega)) = \mathbb{G}$ choose a unitary basis $\{e_i\}$ and set

$$\mu(E) = \kappa \Big(-\sum_{i} [e_i, \overline{e}_i] \Big) , \quad \text{where}$$
$$\kappa : \mathfrak{k} \to \mathfrak{l}^*$$

is induced by the Killing form of \mathfrak{g} . The moment map of the adjoint action of U(n) on $M_n(C)$ is given by $A \mapsto [A, A^*]$.

Hence, μ is the moment map for the Hamiltonian action of K on the Kähler manifold \mathbb{G} . The Hamiltonian action extends to a linearizable action of $K^{\mathbb{C}}$ on \mathbb{G} .

GIT-semistables point of \mathbb{G} are points whose $K^{\mathbb{C}}$ -orbits meet $\mu^{-1}(0)$. In particular $\mu^{-1}(0)$ are GIT-semistable, hence semistable

There exists a K-invariant hypersurface $\mathcal{H}_0 \subset \operatorname{Gr}(n', T_0(\Omega))$ such that $[T_0(\Omega')] \notin \mathcal{H}_0$. $\Omega \subset M$ Borel embedding

 $\mathbb{G}_M = \text{Grassmann}$ bundle of n'-planes on M, $\pi: \mathbb{G}_M \to M$

 $\mathcal{Z}_M \subset \mathbb{G}_M \ G^{\mathbb{C}}$ -invariant hypersurface, $s \in \Gamma(\mathbb{G}_M, L_M^{-m} \otimes \pi^* \mathcal{O}(\ell))$ is a $G^{\mathbb{C}}$ -invariant nonzero section, where

 L_M = tautological line bundle on \mathbb{G}_M .

On $\Omega \subset M$, s is G-invariant Write L = tautological line bundle on \mathbb{G}_{Ω} , \hat{g} = canonical metric on L

(E, h) negative homogeneous holomorphic line bundle on Ω dual to $\mathcal{O}(1), c_1(E, h) = -\omega$. Then,

$$\frac{\sqrt{-1}}{2\pi} \partial \overline{\partial} \log \|s\|^2$$

= $mc_1(L, \hat{g}) - \ell c_1(\pi^* E, \pi^* h) + [\mathcal{Z}_{\Omega}]$.

By Borel (1963), there exists $\Gamma' \subset \operatorname{Aut}(\Omega')$ such that $S_0 = \Omega'/\Gamma'$ is compact. Since $[T_x(S_0)] \notin \mathbb{Z}_{X,x}$ for any $x \in S_0$, integrating over the lifting \hat{S}_0 of S_0 to $\mathbb{G}_X|_{S_0}$, we have

$$0 = \int_{\hat{S}_0} \left(mc_1(L, \hat{g}) - \ell c_1(\pi^* E, \pi^* h) \right) \wedge (\pi^* \omega)^{n'-1}$$

=
$$\int_{S_0} \left(mc_1(K_{S_0}^{-1}, \det(g|_{S_0})) - \ell c_1(E, h) \right) \wedge \omega^{n'-1}$$

=
$$\int_{S_0} \left(mRic(g|_{S_0}) - \ell c_1(E, h) \right) \wedge \omega^{n'-1}$$

=
$$\int_{S_0} \left(\frac{m}{n'} K(g|_{S_0}) + \ell \right) \omega^{n'-1} ,$$

where K denotes scalar curvature. By local homogeneity the integrand $\equiv 0$. Thus,

(1)
$$\frac{m}{n'}K(g_0|_{\Omega'}) + \ell \equiv 0 .$$

Suppose now $S \subset X = \Omega/\Gamma$ as in the hypothesis. We have $\hat{S} \cap \mathcal{Z}_X = \phi$, so that

(2)
$$\int_{S} \left(\frac{m}{n'} K(g|_S) + \ell \right) \omega^{n'-1} = 0 .$$

Define $\Sigma : \operatorname{Gr}(n', T_0(\Omega)) \to \mathfrak{k}$ by

$$\Sigma(E) = \sqrt{-1} \sum_{i=1}^{n'} [e_i, \overline{e}_i] ,$$

where (e_i) is any orthnoromal basis. $\|\Sigma(E)\|$ is a minimum if $\Sigma(E) \in \mathfrak{z}$, thus whenever $E = T_0(\Omega')$, where $\Omega' \hookrightarrow \Omega$ is (H_3) . Now

$$K(g_0|_{\Omega'}) = -C \|\Sigma(T_0(\Omega'))\|^2$$

for a universal constant C. For every $x \in S$ $K(g|_S)_x = -C \|\Sigma(T_x S)\|^2 - \|\sigma_x\|^2 \leq K(g_0|_{\Omega'})$ where σ is the second fundamental form. Comparing with (1) and (2) we get

$$K(g|_S)_x = K(g_0|_{\Omega'}), \quad \sigma_x \equiv 0.$$

In particular, $S \subset X$ is totally geodesic.

QUESTION 1.

Let k < n be positive integers and embed the complex unit k-ball B^k into the complex unit *n*-ball B^n in the standard way as a totally geodesic complex submanifold. Does gap rigidity hold for (B^n, B^k) in the complex topology?

Possible scheme for each pair (k, n)

- (1) Is a k-dimensional compact complex submanifold of small second fundamental form $S \subset B^n / \Gamma$ necessarily uniformized by B^k ?
- (2) Is a holomorphic immersion $B^k/\Gamma' \hookrightarrow B^n/\Gamma$ necessarily totally-geodesic?

The answer to (2) is positive for n < 2k, by Cao-Mok (1990).

QUESTION 2.

Let n > 1. Consider the set \mathcal{X}_n of all compact complex manifolds uniformized by the complex unit ball B^n . Let $\operatorname{Map}(\mathcal{X}_n)$ denote the set of all nonconstant holomorphic mappings f : $X \to X'$ with $X, X' \in \mathcal{X}_n$, and $\operatorname{Map}_{\operatorname{fin}}(\mathcal{X}_n) \subset$ $\operatorname{Map}(\mathcal{X}_n)$ the subset of all generically finite holomorphic maps. For each $f \in \operatorname{Map}(\mathcal{X}_n)$, $f : X \to X'$, denote by $\mu(f) \in (0, 1]$ the real number defined by

$$\mu(f) = \sup\{\|df(x)\| : x \in X\}.$$

Does there exists a universal constant $c_n > 0$ depending only on n such that $\mu(f) > c_n$ for any $f \in \operatorname{Map}_{\operatorname{fin}}(\mathcal{X}_n)$ or more generally for $f \in$ $\operatorname{Map}(\mathcal{X}_n)$?

REMARK. By the Ahlfors-Schwarz Lemma, $\mu(f) \leq 1$.

References:

- [EM] Eyssidieux, P. and Mok, N.: Characterization of certain holomorphic geodesic cycles on Hermitian locally symmetric manifolds of the noncompact type, Ann. Math. Studies 138, Princeton 1995, pp.85-118.
 - [E1] Eyssidieux, P.: La caractéristique d'Euler du complexe de Gauss-Manin, J. Reine Angew. Math. 490 (1997), 155-212
 - [E2] Eyssidieux, P.: Kähler hyperbolicity and variations of Hodge structures, in New Trends in Algebraic Geometry, Cambridge 1999, pp.71-92.
 - [M] Mok, N.: Characterization of certain holomorphic geodesic cycles on quotients of bounded symmetric domains in terms of tangent subsapces, *Comp. Math.* 132 (2002), 289-309.

Eyssidieux, P. and Mok, N.:

On the validity or failure of gap rigidity for certain pairs of bounded symmetric domains, to appear in *Asian J. Math.*, Special Issue in memory of Professor Armand Borel.