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Arakelov Inequality

(1) Global Form

Hn = {τ ∈ Mn(C) : τ = τ t , Im τ}
= Siegel upper half-plane

Γ ⊂ Aut(Hn) ∼= Sp(n;R) torsion-free discrete
subgroup

X = Hn/Γ, C ⊂ X algebraic curve

TX |C ∼= S2V , V = universal rank-1 bundle
over C, g = genus (C). Then

deg(V ) ≥ −n(g − 1)

deg(V ) = −n(g − 1)

⇔ C is a modular curve of rank n .
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(2) Local Form

h = normalized Kähler-Einstein metric on X

ω = Kähler form.

Then,

c1(TC , h) ≤ − 2
n

ω

c1(TC , h) = − 2
n

ω

⇔ C ⊂ X is totally geodesic

Pf Gauss Equation
α ∈ Tx(C),

Rαααα(C, h) = Rαααα(X, h)− ‖σ(α, α)‖2 .
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Bounded Symmetric Domains

Classical cases

DI
p,q = {Z ∈ M(p, q,C) : I−Z

t
Z > 0} , p, q ≥ 1

DII
n = {Z ∈ DI

n,n : Zt = −Z} , n ≥ 2

DIII
n = {Z ∈ DI

n,n : Zt = −Z} , n ≥ 3

DIV
n =

{
(z1, . . . , zn) ∈ Cn : ‖z‖2 < 2 ;

‖z‖2 < 1 +
∣∣∣ 1

2

n∑

i=1

z2
i

∣∣∣
2}

, n ≥ 3 .

Exceptional Domains

DV , dim 16, type E6

DV I , dim 27, type E7
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Example of local Arakelov Inequality in 2 di-
mensions

Theorem (Eyssidieux-Mok 1995)

U ⊂ B2×B2 domain, S ⊂ U complex surface,

g = normalized canonical Kähler metric on
B2 × B2, (Ki, hi), i = 1, 2, canonical bundles
of the i-th factor. Then, over S we have

c2(S, g|S) ≥ 1
6

(c2
1(K1, h1) + c2

1(K2, h2)

Equality ⇔
S ⊂ U totally geodesic, modelled on

(B2 ×B2, δ(B2))
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Global Form

X := B2 ×B2/Γ, S ⊂ X complex surface

c2(S) ≥ 1
6

(c2
1(K1) + c2

1(K2))

can be proven using Hodge Theory.

• We can check that for S modelled on (B2×
B2, δ(B2)), equality holds.

• The equality ⇒ geodesic is proven using
the local form.
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Proposition.

Let Ω ⊂⊂ CN be a bounded symmetric do-
main. Fix x0 ∈ Ω and let B(r) ⊂ Ω denote
the geodesic ball (with respect to the Bergman
metric) of radius r and centered at x0. For
δ > 0 sufficiently small (δ < δ0) there exists
ε > 0 such that the following holds:

For any ε-pinched connected com-
plex submanifold V ⊂ B(x0; 1), x0 ∈
V , there exists a unique equivalence
class of totally-geodesic complex sub-
manifold on Ω, to be represented by
j : Ω′ ↪→ Ω, and a totally-geodesic
complex submanifold Ξ ⊂ B(1) mod-
elled on (Ω, Ω′; j) such that the Haus-
dorff distance between Ξ ∩B( 1

2 ) and
V ∩B( 1

2 ) is less than δ.
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Gap rigidity in the complex topology
C ⊂ Hg/Γ compact complex curve.
Normalize the K.E. metric so that

4 diag
↪→ 4g ↪→ DIII

g
∼= Hg

is of Gaussian curvature −1

Theorem (Eyssidieux-Mok 1995)

−
(
1 +

1
4g

)
< Gauss curvature of C(≤ −1)

⇒ C is totally-geodesic and

of the diagonal type

Pf C is the base space of a VHS, V = restric-
tion of universal bundle
C not totally-geodesic ⇒ χ(V ) < 0.

Representing first cohomology classes by har-
monic forms, a stable vanishing theorem gives
χ(V ) = 0 under the given pinching condition.
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Motivation and scheme of proof on gap rigidity

(1) To give a differential-geometric proof that
the Mordell-Weil group of the universal
Abelian variety over a Shimura variety is
finite.

(2) To show that for a subvariety of the Siegel
modular variety locally approximable by
a totally-geodesic complex submanifold,
that the Mordell-Weil group remains fi-
nite, with a proof that shows that there
are no nontrivial “multi-valued” section.
This amounts to a vanishing theorem on
some harmonic forms arising from weight-
1 Hodge structures.

(3) Applying Riemann-Roch, one proves a non-
vanishing theorem for such harmonic forms
to get a contradiction.
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Theorem (Shioda 1972)

Γ ⊂ PSL(2,Z) of finite index, Γ torsion free,
XΓ = H/Γ

π : AΓ 7→ XΓ universal family,

π : AΓ 7→ XΓ projective compatification.

Then, rankZ(AΓ(C(XΓ)) = 0 for the Mordell-
Weil group AΓ(C(XΓ)).

Theorem (Mok-To 1993)

The same remains true for any Kuga family
of polarized Abelian varieties without locally
constant parts.
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Differential-geometric proof of Shioda’s result

A holomorphic section of π : AΓ → XΓ lifts to
a holomorphic function f : H 7→ C satisfying
the functional equation

f(γz) =
f(z)

cγz + dγ
+ Aγ

(aγz + bγ

cγz + dγ

)
+ Bγ ,

where γ(z) = aγz+bγ

cγz+dγ
, γ ∈ Γ.

f ′(γz)
(cγτ + dγ)2

= − cγ

(cγz + d)2
f(γz)

+
f ′(z)

(cγz + dγ)
+

Aγ

(cγz + dγ)2
;

f ′(γz) = −cγf(z) + (cγz + dγ)f ′(z) + Aγ ;

f ′′(γz)
(cγz + dγ)2

= −cγf ′(z) + cγf ′(z)

+ (cγz + dγ)/f ′′(z) ;

f ′′(γz) = (cγz + d)3f ′′(z) .

f ′′ := α is an Eichler automorphic form.
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(1) The Eichler automorphic form α is an ele-
ment of Γ(XΓ,K

3/2
XΓ

). Such automorphic forms
can exist, and the question is whether they can
arise from a section σ of π : AΓ → XΓ.
(2) There is a smooth section η = ησ which
measures how far σ is from being horizontal .
η : TXΓ 7→ T

1/2
XΓ

. (The universal line bundle
is a square root of the tangent bundle). Thus,
η ∈ C∞(XΓ,K

1/2
XΓ

).
(3) ∇η = cα for some c 6= 0. (easy to check
from the definition of α and η).

∂α = 0 ⇒ ∂∇η = 0

⇒ ∂ ∂
∗
η = 0 ⇒ ∂

∗
∂η = −η

Integrating by parts
∫

XΓ

〈∂∗∂η, η〉 = −
∫

XΓ

〈η, η〉 , i.e. ,

∫

XΓ

‖∂η‖2 = −
∫

XΓ

‖η‖2

⇒ η ≡ 0.
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Definition (Gap Phenomenon).

Let Ω ⊂⊂ CN be a bounded symmetric do-
main and j : Ω′ ↪→ Ω be a totally-geodesic
complex submanifold. We say that the gap
phenomenon holds for (Ω, Ω′; j) if and only if
there exists ε < ε(δ0) (δ0 as in Proposition)
for which the following holds:

For any torsion-free discrete group
Γ ⊂ Aut(Ω) of automorphisms and
any ε-pinched immersed compact com-
plex submanifold S ↪→ Ω/Γ modelled
on (Ω, Ω′; j), S is necessarily totally
geodesic.
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Gap rigidity in the Zariski topology

We say that (Ω, Ω′; j); dim Ω = n, dim Ω′ =
n′, exhibits gap rigidity in the Zariski topology
if and only if there exists a G-invariant com-
plex analytic subvariety ZΩ ⊂ GΩ = Grass-
mann bundle of n′-planes giving ZX ⊂ GX :=
GΩ/Γ for any X = Ω/Γ, such that the follow-
ing holds

(a) [T0(Ω′)] /∈ ZΩ,0.

(b) For any compact complex n′-dimensional
submanifold S ⊂ X = Ω/Γ such that
[Tx(S)] /∈ ZX,x for all x ∈ S, S must be
totally geodesic.
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A simple example of gap rigidity in the Zariski
topology with Ω reducible

Ω = D × · · · ×D

Ω′ = diagonal(Ω) .

Then, (Ω, Ω′; j) exhibits gap rigidity in the
Zariski sense.

Proof:

Γ ⊂ Aut0(Ω). Call an n′-plane generic if and
only if its projection to each individual factor
Ω is injective. If S ⊂ X = Ω/Γ is such that
Tx(S) is generic for every x ∈ S, dim S = n′,
then we obtain by projection Kähler-Einstein
metrics from each individual factor. Proposi-
tion follows from uniqueness of Kähler-Einstein
metrics.
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Euler characterisitcs and Gauss-Manin com-
plexes (Eyssidieux 1997)

(X,V) polarized variation of Hodge structures
with immersive period map. Eyssidieux proved
Lefschetz-Gromov vanishing theorem for L2-
cohomology with coefficients in V on the uni-
versal cover X̃ in degrees 6= dim(X).

He deduced Chern number inequalities (Arakelov
inequalities)

Case of equality leads to characterization of
certain totally geodesic compact complex sub-
manifolds of Ω/Γ, giving examples of gap rigid-
ity in the Zariski topology.

Remarks.

The Chern class inequalities are in general not
local.
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Theorem (Eyssidieux-Mok)

There exists sequences of
• compact Riemann surfaces Sk, Tk; of genus
≥ 2,

• branched double covers fk : Sk → Tk such
that, writing ds2

C for the Poincaré metric
of Gaussian curvature −2 on a compact
Riemann surface C, and defining

µk := sup
{f∗k ds2

Tk
(x)

ds2
Sk

(x)
: x ∈ Sk

}
,

we have
lim

k→∞
µk = 0 .

Corollary.

The Gap Phenomenon fails for
(∆2, ∆× {0}).
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Heuristics

For f : S → T , Riemann-Hurwicz Formula
gives

2g(S)− 2 = r(2g(T )− 2) + e ,

where

r = sheeting number ,

e = cardinality of ramification divisor .

For a compact Riemann surface C
∫

C

−2ds2
C = 4π(1− g(C))

by Guass-Bonnet, i.e.,

1
π

∫

C

ds2
C = 2g(C)− 2

1
π

∫

S

f∗ds2
T =

r

π

∫

T

ds2
T = r(2g(T )− 2)

1
π

∫

S

ds2
S = 2g(S)− 2 .
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On the average

f∗ds2
T

ds2
S

= r
(2g(T )− 2

2g(S)− 2

)
= 1− e

2g(S)− 2

which becomes small when e
2g(S)−2 is close to

1.

In the construction, we will have a fixed T ,
r = 2, so that

1− ek

2g(Sk)− 2
=

2(g(T )− 1)
g(Sk)− 1

→ 0

whenever g(Sk) →∞, i.e. whenever ek →∞.
The crux is to find fk : Sk → T such that fk

is “almost” uniformly area-decreasing.

We will do this by choosing fk : Sk → T so
that the branching loci of fk are “almost” uni-
formly distributed on T .
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Construction of double covers:

L ⊂ C lattice

E = C/L elliptic curve

τ ∈ E nonzero 2-torsion point

h : T → E double cover branched over {0, τ}
Write q1 = h−1(0), q2 = h−1(τ)

Let m ≡ 1 (mod 2), m = 2k − 1,

Φm : E → E defined by Φm(x) = mx,

Dk := Φ−1
m ({0, τ}), |Dk| = 2m2, D1 = {0, τ}

mτ = 2kτ − τ ≡ −τ = τ , so that Dk ⊃ D1.

fk : Sk → T double cover branched over
h−1(Dk −D1). Write

µk = sup
{f∗k ds2

T (x)
ds2

Sk
(x)

: x ∈ Sk

}
.

Claim:

lim
k→∞

µk = 0 .
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Proof: h : T → E, fk : Sk → T double covers.
ds2

T , ds2
Sk

invariant under involutions.
h∗ds2

T Hermitian metric on TE ⊗ [D1]−
1
2 ;

(h◦fk)∗ds2
Sk

Hermitian metric on TE⊗[Dm]−
1
2 .

From uniqueness of Hermitian metrics of cur-
vature −2 with prescribed orders of poles,

(h ◦ fk)∗ds2
Sk

= Φ∗m(h∗ds2
T ) .

Near 0,

Φm

( |dz|2
|z|

)
=

m2|dz|2
|mz| = m

|dz|2
|z| ,

similarly at τ .
Outside small disks h∗ds2

T ≥ ε (metric on E),

Φ∗m(h∗ds2
T ) ≥ m2ε(metric on E) .

From which µk ≤ C
k → 0 as k →∞.
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Definition (Characteristic Codimension)

Ω irreducible bounded symmetric domain

So ⊂ PTo(Ω)

So := {[η] : η is of rank < rank (Ω)

q(Ω) := codim(So in PTo(Ω))

Complete list of Ω with q(Ω) = 1:

(1) Ω of Type Im,n with m = n > 1;

(2) Ω of Type IIn with n even, n ≥ 4;

(3) Ω of Type IIIn, n ≥ 3;

(4) Ω of Type IVn, n ≥ 3;

(5) Ω of Type VI (the 27-dimensional excep-
tional domain pertaining to E7).
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Theorem (Mok, Comp. Math. 2002)

Ω irreducible bounded symmetric domain

Γ ⊂ Aut(Ω) torsion-free discrete subgroup,
X := Ω/Γ

C ⊂ X compact holomorphic curve

Suppose q(Ω) = 1 and, ∀ x ∈ C,

Tx(C) = Cη , [η] /∈ Sx

Then,

C ⊂ X is totally-geodesic .

Remark:

(1) If η 6= 0 and [η] /∈ Sx, we call η a generic
vector.

(2) Ω irr. BSD, D ⊂ Ω, dim D = 1. Then,
gap rigidity in the Zariski topology holds
in the Zariski topology if and only if
q(Ω) = 1 and D is the diagonal of a max-
imal polydisk.
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Proof: q(Ω) = 1 ⇒ ∃ locally homogeneous
divisor S ⊂ PTX corresponding to non-generic
tangent vectors.
S = {s = 0}, s ∈ Γ(X, [S]); π : PTX → X.
L → PTX tautological line bundle, L < 0;
Ω ⊂ M Borel embedding, M = compact dual.
For π : PTM → M , Pic(PTM ) ∼= Z2.
E = negative loc. homog. line bundle on X

dual to O(1) on M ; r = rank(Ω). Then,

[S] ∼= L−r ⊗ π∗E2 .

C ⊂ X compact holomorphic curve,
Ĉ = tautological lifting. Then, observe
(1) If C ⊂ X is totally-geodesic of diagonal

type, then [Tx(C)] /∈ Sx for any x ∈ C,
and [S] · Ĉ = 0.

(2) If [Tx(C)] /∈ Sx for a generic x ∈ C. Then,

[S] · Ĉ ≥ 0 .
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The intersection number can be computed from
the Poincaré-Lelong equation

√−1∂∂ log ‖s‖2

= rc1(L, ĝ0)− 2π∗c1(E, h0) + [S]

[S] · Ĉ = r

∫

Ĉ

c1(L, ĝ0)− 2
∫

C

c1(E, h0)

= r

∫

C

Ric(C, g0|C)− 2
∫

C

c1(E, h0) .

The case where C ⊂ X is totally-geodesic of
diagonal type occurs where

Gauss curvature =
−2
r

.

In general, by the Gauss equation we have

Gauss curvature ≤ −2
r

.

Equality holds if and only if
(a) C is tangent to a local totally-geodesic

curve of diagonal type;
(b) the second fundamental form vanishes.
Hence, [S] · Ĉ = 0 ⇒ C totally-geodesic of
diagonal type.
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Remarks.

The divisor [S] ⊂ PTX is in general not nu-
merically effective. Let C ⊂ X be a totally-
geodesic curve descending from a minimal disk
(i.e., C is dual to a minimal rational curve).
Then,

[S] · Ĉ > 0 .

On the other hand, let C# be a holomorphic
lifting of C such that for [β] ∈ C# lying over x

with Tx(C) = Cα, we have Rααββ = 0. Then,
L|C# ∼= O, and

[S] · C# < 0 .
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Examples of higher-dimensional gap phenom-
ena in the Zariski topology

(1) 1-hyperigid homogeneous period domains
Ω′ ↪→ Ω in the sense of Eyssidieux aris-
ing from Hodge theory, (Eyssidieux 1999),
e.g.

Bn ⊂ DI
k,kn , n ≥ 2

DII
n ⊂ DI

n,n , n ≥ 4

DIII
n ⊂ DI

n,n , n ≥ 4 , ≡ 0, 1 mod 4 .

(2) Domains dual to hyperquadrics DIV
N (Mok

2002)
DIV

m ⊂ DIV
n

using holomorphic G-structures and Kähler-
Einstein metrics.
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Bounded Symmetric Domains

g semisimple Lie algebra of the noncompact
type

θ = Cartan involution

k = associated maximal compact subalgebra

Ω = G/K Hermitian symmetric space of the
noncompact type. Ω ⊂⊂ CN , by Harish-Chandra
Embedding

g = k⊕ p Cartan decomposition

H0 ∈ z := Centre (k) such that ad(H0)2 = θ

ad(H0) defines an integrable almost complex
structure on Ω

pC = p+ ⊕ p− decomposition into ±i-
eigenspaces of ad(Ho)
p+ = T 1,0(Ω), p− = T 0,1

0 (Ω); 0 = eK

(g,H0) := semisimple Lie algebra of the Her-
mitian and noncompact type
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Embedding of Bounded Symmetric Domains

(g′, H ′
0), (g, H0) semisimple Lie algebras of the

Hermitian and noncompact type.

ρ : g′ → g Lie algebra homomorphisms

• We say that ρ : (g′,H ′
0) → (g,H0) is an

(H1)-homomorphism if and only if

ad(H0) ◦ ρ = ρ ◦ ad(H ′
0) .

• We say that ρ : (g′,H ′
0) → (g,H0) is an

(H2)-homomorphism if and only if

ρ(H ′
0) = H0 .

Fact: (H2) ⇒ (H1).

Satake (1965) classified (H2)-embeddings into
classical domains. Ihara (1967) obtained the
full classification of (H2)-embeddings.
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Ω = G/K. A G-invariant Kähler metric g0

can be determined on Ω by the Killing form.
When Ω is irreducible, g0 is Kähler-Einstein,
and the Einstein constant is fixed.

Ω irreducible, dim Ω = n, {ei} orthonormal

basis of p+ = T0(Ω).
∑

(p+) =
√−1

n∑
i=1

[ei, ei].
∑

(p+) =
√−1cΩH0 for some cΩ ∈ R.

(H3)-Embeddings

ρ : (g′, H ′
0) → (g, H0) an (H1)-embedding

corresponding to j : Ω′ → Ω.

Ω′ = Ω′1 × · · · × Ω′a; Ω′k irreducible.

gΩ
0

∣∣
Ω′

k

= dΩ′
k
,Ω · gΩ′

0

• We say that ρ is an (H3)-embedding if and
only if

ρ
( a∑

k=1

cΩ′
k
dΩ′

k
,ΩH ′

0k

)
∈ RH0 .
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Lemma.

(H3)-embeddings are (H2). An (H2)-embedding
is (H3) if and only if gΩ

0

∣∣
Ω′ is Einstein.

Numerical criterion for (H3)-embeddings

j : Ω′ → Ω totally geodesic, Ω irreducible;
dimΩ′ = n′, dimΩ = n;
KΩ′ = scalar curvature of Ω′, etc.
Then, j is an (H3)-embedding if and only if

KΩ′ =
(n′

n

)2

KΩ .

In this case gΩ
0

∣∣
Ω′ is necessarily Kähler-Einstein.

30



31



32



33



If ρ : (g′,H ′
0) → (g,H0) is an (H3)-embedding,

we also call j : Ω → Ω′ an (H3)-embedding, or
a totally-geodesic holomorphic embedding of
the diagonal type.

Theorem.

Let Ω be an irreducible bounded symmetric
domain. Let j : Ω′ → Ω be a totally-geodesic
holomorphic embedding of the diagonal type,
dimΩ′ = n′, dim Ω = n. Then, there exists
a nonempty K-invariant hypersurface H0 ⊂
Gr(n′,Cn) such that

(1) [T0(Ω′)] /∈ H0.

(2) Writing H → X = Ω/Γ for the corre-
sponding locally homogeneous holomor-
phic subbundle of π : PTX → X. Then,
for any n′-dimensional compact complex
manifold S ⊂ X such that for x ∈ S,
[Tx(S)] /∈ Hx, the compact complex man-
ifold S ⊂ X is totally-geodesic.
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Proof: For any E ∈ Gr(n′, T0(Ω)) = G choose
a unitary basis {ei} and set

µ(E) = κ
(
−

∑

i

[ei, ei]
)

, where

κ : k → l∗

is induced by the Killing form of g. The mo-
ment map of the adjoint action of U(n) on
Mn(C) is given by A 7→ [A,A∗].

Hence, µ is the moment map for the Hamil-
tonian action of K on the Kähler manifold G.
The Hamiltonian action extends to a lineariz-
able action of KC on G.
GIT-semistables point of G are points whose
KC-orbits meet µ−1(0). In particular µ−1(0)
are GIT-semistable, hence semistable

There exists a K-invariant hypersurface

H0 ⊂ Gr
(
n′, T0(Ω)

)
such that [T0(Ω′)] /∈ H0.
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Ω ⊂ M Borel embedding

GM = Grassmann bundle of n′-planes on M ,
π : GM → M

ZM ⊂ GM GC-invariant hypersurface,
s ∈ Γ(GM , L−m

M ⊗ π∗O(`)) is a GC-invariant
nonzero section, where

LM = tautological line bundle on GM .

On Ω ⊂ M , s is G-invariant
Write L = tautological line bundle on GΩ,
ĝ = canonical metric on L

(E, h) negative homogeneous holomorphic line
bundle on Ω dual to O(1), c1(E, h) = −ω.
Then,

√−1
2π

∂∂ log ‖s‖2

= mc1(L, ĝ)− `c1(π∗E, π∗h) + [ZΩ] .
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By Borel (1963), there exists Γ′ ⊂ Aut(Ω′)
such that S0 = Ω′/Γ′ is compact. Since [Tx(S0)]
/∈ ZX,x for any x ∈ S0, integrating over the
lifting Ŝ0 of S0 to GX

∣∣
S0

, we have

0 =
∫

Ŝ0

(
mc1(L, ĝ)− `c1(π∗E, π∗h)

) ∧ (π∗ω)n′−1

=
∫

S0

(
mc1(K−1

S0
,det(g|S0))− `c1(E, h)

) ∧ ωn′−1

=
∫

S0

(
mRic(g|S0)− `c1(E, h)

) ∧ ωn′−1

=
∫

S0

( m

n′
K(g|S0) + `

)
ωn′−1 ,

where K denotes scalar curvature. By local
homogeneity the integrand ≡ 0. Thus,

(1)
m

n′
K(g0|Ω′) + ` ≡ 0 .
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Suppose now S ⊂ X = Ω/Γ as in the hypoth-
esis. We have Ŝ ∩ ZX = φ, so that

(2)
∫

S

( m

n′
K(g|S) + `

)
ωn′−1 = 0 .

Define Σ : Gr
(
n′, T0(Ω)

) → k by

Σ(E) =
√−1

n′∑

i=1

[ei, ei] ,

where (ei) is any orthnoromal basis. ‖Σ(E)‖
is a minimum if Σ(E) ∈ z, thus whenever E =
T0(Ω′), where Ω′ ↪→ Ω is (H3). Now

K
(
g0|Ω′

)
= −C‖Σ(T0(Ω′))‖2

for a universal constant C. For every x ∈ S

K(g|S)x = −C‖Σ(TxS)‖2−‖σx‖2 ≤ K
(
g0

∣∣
Ω′

)

where σ is the second fundamental form. Com-
paring with (1) and (2) we get

K(g|S)x = K
(
g0

∣∣
Ω′

)
, σx ≡ 0 .

In particular, S ⊂ X is totally geodesic.
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Rank-1 Domains

Question 1.

Let k < n be positive integers and embed the
complex unit k-ball Bk into the complex unit
n-ball Bn in the standard way as a totally geo-
desic complex submanifold. Does gap rigidity
hold for (Bn, Bk) in the complex topology?

Possible scheme for each pair (k, n)

(1) Is a k-dimensional compact complex sub-
manifold of small second fundamental form
S ⊂ Bn/Γ necessarily uniformized by Bk?

(2) Is a holomorphic immersion Bk/Γ′ ↪→ Bn/Γ
necessarily totally-geodesic?

The answer to (2) is positive for n < 2k, by
Cao-Mok (1990).
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Question 2.

Let n > 1. Consider the set Xn of all compact
complex manifolds uniformized by the com-
plex unit ball Bn. Let Map(Xn) denote the set
of all nonconstant holomorphic mappings f :
X → X ′ with X,X ′ ∈ Xn, and Mapfin(Xn) ⊂
Map(Xn) the subset of all generically finite
holomorphic maps. For each f ∈ Map(Xn),
f : X → X ′, denote by µ(f) ∈ (0, 1] the real
number defined by

µ(f) = sup
{‖df(x)‖ : x ∈ X

}
.

Does there exists a universal constant cn > 0
depending only on n such that µ(f) > cn for
any f ∈ Mapfin(Xn) or more generally for f ∈
Map(Xn)?

Remark.

By the Ahlfors-Schwarz Lemma, µ(f) ≤ 1.
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