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Arakelov Inequality

(1) Global Form

H,={r€ M,(C):7=7", Im 7}
= Siegel upper half-plane

' C Aut(H,) = Sp(n;R) torsion-free discrete
subgroup

X =H,/T', C C X algebraic curve

Tx|c = S?V, V = universal rank-1 bundle

over C, g = genus (C'). Then

deg(V) > —n(g — 1)
deg(V) = —n(g — 1)

& (Jis a modular curve of rank n .




(2) Local Form
h = normalized Kahler-Einstein metric on X

w = Kahler form.

Then,

2

ci1(Te,h) < ——w
n
(To.h) = —

c = ——w
1\L n

& (' C X is totally geodesic

Pt Gauss Equation
a€ T, (C),

Raaaa(C, h) — Raaaa(X, h) o ||0-(057 Oé)H2 y



Bounded Symmetric Domains
Classical cases

I , >t
D,,=1Z2e€M(p,q,C):I-Z Z >0}, pqg=>1

D'={ZeD),,:z2"'=-2Z}, n>2

D' ={ZeD,, :Z2"=-Z}, n>3

zxvzﬁﬁwnﬁwe@“wﬂ2<z;

1 mn
HAP<1+W7;§:ﬁ

=1

2
}, n>3J3.

Exceptional Domains
DV, dim 16, type Fg

DV dim 27, type E;



Example of local Arakelov Inequality in 2 di-

mensions

Theorem (Eyssidieux-Mok 1995)
U C B? x B? domain, S C U complex surface,

g = normalized canonical Kahler metric on
B? x B?, (K;, h;), i = 1,2, canonical bundles

of the ¢-th factor. Then, over S we have

1
CQ(‘S? g’S) > ?(C%(Kla hl) + C%(K% h2)
Equality <
S C U totally geodesic, modelled on

(B? x B2,§(B?))




Global Form

X := B? x B?/T", S C X complex surface

2(8) = ——((Ky) + A (o)

can be proven using Hodge Theory.

e We can check that for S modelled on (B?x
B2,6(B?)), equality holds.

e The equality = geodesic is proven using

the local form.



Proposition.

Let Q cC CV be a bounded symmetric do-
main. Fix zg € Q and let B(r) C  denote
the geodesic ball (with respect to the Bergman
metric) of radius r and centered at xy. For
6 > 0 sufficiently small (6§ < dp) there exists
e > 0 such that the following holds:

For any e-pinched connected com-
plex submanifold V' C B(zg; 1), zg €
V', there exists a unique equivalence
class of totally-geodesic complex sub-
manifold on {2, to be represented by
j Q' — Q, and a totally-geodesic
complex submanifold Z C B(1) mod-
elled on (€2, Q'; 7) such that the Haus-
dorff distance between =N B(3) and
V N B(3) is less than 4.



Gap rigidity in the complex topology
C' C H,y/T compact complex curve.

Normalize the K.E. metric so that

diag
JANES Ag%DéugHQ

is of Gaussian curvature —1

Theorem (Eyssidieux-Mok 1995)

1
— (1 + 4—) < Gauss curvature of C(< —1)
g

= (' is totally-geodesic and

of the diagonal type

Pt (' is the base space of a VHS, V' = restric-

tion of universal bundle

C' not totally-geodesic = x (V') < 0.

Representing first cohomology classes by har-
monic forms, a stable vanishing theorem gives
X(V) = 0 under the given pinching condition.
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Motivation and scheme of proof on gap rigidity

(1) To give a differential-geometric proof that
the Mordell-Weil group of the universal
Abelian variety over a Shimura variety is
finite.

(2) To show that for a subvariety of the Siegel
modular variety locally approrimable by
a totally-geodesic complex submanifold,
that the Mordell-Weil group remains fi-
nite, with a proof that shows that there
are no nontrivial “multi-valued” section.
This amounts to a vanishing theorem on
some harmonic forms arising from weight-

1 Hodge structures.

(3) Applying Riemann-Roch, one proves a non-
vanishing theorem for such harmonic forms

to get a contradiction.



Theorem (Shioda 1972)
' C PSL(2,7Z) of finite index, I' torsion free,
Xr =H/T

7w . Ar — Xt universal family,

7+ Ar — X1 projective compatification.

Then, rankz(Ar(C(Xt)) = 0 for the Mordell-
Weil group Ar(C(Xr)).

Theorem (Mok-To 1993)
The same remains true for any Kuga family
of polarized Abelian varieties without locally

constant parts.



Differential-gceometric proof of Shioda’s result

A holomorphic section of 7 : Ar — Xt lifts to
a holomorphic function f : H — C satisfying

the functional equation

f(’}/z) _ f(Z) _I_A’y(a’YZ_Fb’Y) _|_ny ’

Cyz + dy Cyz + doy
where v(z) = Z’zjizz, vyel
fi(vz C
. D

(cyT+dy)?  (cyz+d)?

f'(2) 4 Ay .
(cyz +dy)  (cyz+d,y)? |
f'(vz) = —cy f(2) + (cyz +d,) f(2) + Ay

f(vz)
(cyz+d-y)?

= —cy f(2) + ¢y f'(2)

+(eyz +dy)/7(2) 5
f"(v2) = (eyz2 + d)° " (2) -

f" := « is an Eichler automorphic form.
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(1) The Eichler automorphic form « is an ele-
ment of I'( X, K'Y/ 3/ 2) Such automorphic forms
can exist, and the question is whether they can
arise from a section o of @ : Ar — Xr.

(2) There is a smooth section n = 7, which
measures how far o is from being horizontal.

1/2

n: Tx. — T4/ . (The universal line bundle

1S a square root of the tangent bundle). Thus,
n < COO(XF, K1/2).
(3) Vi = ca for some ¢ # 0. (easy to check

from the definition of o and 7).

Oa=0= 0Vn =
:>55*77:O:>5*577:—77

Integrating by parts

/ @*577,77} — —/ (n,n) , ie.,
XI‘ XI‘
!/H%WZ—/\WF
XI‘ XI‘

=1 =0.
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Definition (Gap Phenomenon).

Let Q cC CV be a bounded symmetric do-
main and j : Q' — Q be a totally-geodesic
complex submanifold. We say that the gap
phenomenon holds for (€2,€2; j) if and only if
there exists € < €(dg) (dp as in Proposition)
for which the following holds:

For any torsion-free discrete group
[' C Aut(Q2) of automorphisms and
any e-pinched immersed compact com-
plex submanifold S — €/T" modelled
on (£2,€;4), S is necessarily totally

geodesic.
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Gap rigidity in the Zariski topology

We say that (£2,Q;7); dimQ = n, dimQ’ =
n’, exhibits gap rigidity in the Zariski topology
if and only if there exists a G-invariant com-
plex analytic subvariety Zq C Gq = Grass-
mann bundle of n/-planes giving Zx C Gx :=
Gq /T for any X = Q/T", such that the follow-
ing holds

(a) [To(€¥)] & Za0-

(b) For any compact complex n'-dimensional
submanifold S € X = Q/I' such that

T.(S)] ¢ Zx . for all x € S, S must be
totally geodesic.

13



A simple example of gap rigidity in the Zarisk:
topology with €2 reducible

Q=D x---xD
Q) = diagonal () .

Then, (€2,€;j) exhibits gap rigidity in the

Z.ariski sense.

Prootf:

[' C Autg(2). Call an n’-plane generic if and
only if its projection to each individual factor
() is injective. If S € X = Q/I" is such that
T.(S) is generic for every z € S, dim .S = n/,
then we obtain by projection Kahler-Einstein
metrics from each individual factor. Proposi-
tion follows from uniqueness of Kahler-Einstein

metrics.
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Euler characterisitcs and Gauss-Manin com-
plezes (Eyssidieux 1997)

(X, V) polarized variation of Hodge structures
with immersive period map. Eyssidieux proved
Lefschetz-Gromov vanishing theorem for L*-
cohomology with coefficients in V on the uni-

versal cover X in degrees # dim(X).

He deduced Chern number inequalities (Arakelov

inequalities)

Case of equality leads to characterization of
certain totally geodesic compact complex sub-
manifolds of Q/T", giving examples of gap rigid-
ity in the Zariski topology.

REMARKS.
The Chern class inequalities are in general not

local.
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Theorem (Eyssidieux-Mok)

There exists sequences of
e compact Riemann surfaces Si, T}; of genus
> 2,
e branched double covers f; : S, — 1} such
that, writing dsZ, for the Poincaré metric
of Gaussian curvature —2 on a compact

Riemann surface C, and defining

fidst, (x)
Uy = Sup{ i (z) T € Sk} :

we have

lim ,uk:().

k— o0

Corollary.

The Gap Phenomenon fails for
(A%, A x {0})
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Heuristics

For f : § — T, Riemann-Hurwicz Formula

glves
29(S) — 2 = r(29(T) —2) + ¢,
where

r = sheeting number |,

e = cardinality of ramification divisor .

For a compact Riemann surface C
/ _9ds? = 4n(1 — g(C))
C
by Guass-Bonnet, i.e.,
1 2
— | dsi =2¢9(C) — 2
T Jc
1 * 7.2 r 2
— [ prast = = | dst = r(29(T) - 2)
T Js T Jr

L/ds?g:Zg(S)—Q.
T Js

17



On the average

frdsy  29(T)—2y\ e
ds% 7°(2g(5) - 2> 29(S) — 2

which becomes small when 531 5)—2 is close to
1.

In the construction, we will have a fixed T,
r = 2, so that

Ck 2(g(T)

— —1) . 0
29(Sk) —2  g(Sk) —1

1 —

whenever g(Sx) — 00, i.e. whenever e — 00.
The crux is to find f; : S — 1" such that f;

is “almost” uniformly area-decreasing.

We will do this by choosing fi : S — T so
that the branching loci of f; are “almost” uni-

tormly distributed on 7'

18



Construction of double covers:

L C C lattice

E = C/L elliptic curve

T € E nonzero 2-torsion point

h : T — E double cover branched over {0, 7}
Write ¢1 = h=1(0), g2 = h~(7)

Let m=1 (mod 2), m =2k — 1,

®,, : F — E defined by ®,,(x) = mx,

Dy, .= ®_1({0,7}), |Dg| = 2m?, D; = {0, 7}
mt = 2kt — 7= —7 = 7, so that D D D;.

fr + S — T double cover branched over
h_l(Dk — Dl) Write

frdst ()
ds%k ()

Mkzsup{ :CEESk}.

Claim:

lim pup =0.

k— o0
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Proof: h: T — FE, fi. : Si. — 1" double covers.
ds7, dsg invariant under involutions.

h.ds2. Hermitian metric on Tg ® [Dq]”2;

(ho fi)«dsg, Hermitian metric on Te®[Dy,] 2.

From uniqueness of Hermitian metrics of cur-

N

vature —2 with prescribed orders of poles,
(ho fi)eds?, = @, (huds?)

Near 0,

— m

mz| LI

& (\dz\z) B m?|dz|? B dz|?

2

similarly at 7.
Outside small disks h,ds7 > ¢ (metric on E),

®* (hyds>) > m?e(metric on E) .

From which pug < % — 0 as k — o0.
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Definition (Characteristic Codimension)
() irreducible bounded symmetric domain

S, C PT,(Q)

S, :={|n| : n is of rank < rank ({2)

q(2) := codim(S, in PT,(12))

Complete list of 2 with q(Q2) = 1:

1) © of Type I, , with m =n > 1;

2) ) of Type 1I,, with n even, n > 4;

4

(1)

(2)

(3) Q of Type II1,,, n > 3;
(4) Q of Type IV,,, n > 3;
()

5) Q of Type VI (the 27-dimensional excep-

tional domain pertaining to Fr).

21



Theorem (Mok, Comp. Math. 2002)
() irreducible bounded symmetric domain

' C Aut(Q2) torsion-free discrete subgroup,
X =Q/T

C C X compact holomorphic curve

Suppose ¢(2) =1 and, V z € C,

T.(C)=Cn, [n ¢S
Then,

C' C X is totally-geodesic .

REMARK:

(1) If n # 0 and |n] ¢ S, we call n a generic
vector.

(2) Q irr. BSD, D C Q, dim D = 1. Then,
gap rigidity in the Zariski topology holds
in the Zariski topology if and only if
q(2) =1 and D is the diagonal of a max-
imal polydisk.
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Proof: ¢(2) = 1 = 4 locally homogeneous
divisor & C PTx corresponding to non-generic
tangent vectors.

S={s=0},sel'(X,[S]); m:PTx — X.

L — PTx tautological line bundle, L < 0;

() C M Borel embedding, M = compact dual.
For 7 : PTy — M, Pic(PTyy) & Z2.

E = negative loc. homog. line bundle on X
dual to O(1) on M; r = rank(£2). Then,

S| =L@ E” .

C' C X compact holomorphic curve,

C = tautological lifting. Then, observe

(1) If C C X is totally-geodesic of diagonal
type, then |T,(C)] ¢ S, for any = € C,
and [S]-C = 0.

(2) If [T,(C)] ¢ S, for a generic z € C. Then,

[S]-C>0.

23



The intersection number can be computed from

the Poincaré-Lelong equation

v —100log ||s||?
=rci(L, go) — 2n"c1(E, ho) + [S]

[5]‘OZT[01(L7§0)—2/Cl(Eaho)

C C
:’r/ Ric(C’,go|C)—2/ ¢ (E. ho)
C C

The case where C' C X is totally-geodesic of

diagonal type occurs where

—2
(zauss curvature = — .
70

In general, by the Gauss equation we have

Gauss curvature < — .
r

Equality holds if and only if

(a) C is tangent to a local totally-geodesic
curve of diagonal type;

(b) the second fundamental form vanishes.

Hence, [S] - C = 0 = C totally-geodesic of
diagonal type.
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Remarks.

The divisor |S] C PTx is in general not nu-
merically effective. Let C' C X be a totally-
geodesic curve descending from a minimal disk

(i.e., C' is dual to a minimal rational curve).
Then,
S]-C>0.

On the other hand, let C** be a holomorphic
lifting of C' such that for [8] € C* lying over x
with T3 (C') = Ca, we have R ;7 = 0. Then,
L|ic# = O, and

S]-C#* <0 .

25



Examples of higher-dimensional gap phenom-

ena in the Zariski topology

(1) 1-hyperigid homogeneous period domains
2 — Q in the sense of Eyssidieux aris-

ing from Hodge theory, (Eyssidieux 1999),
e.g.

B”CD,é,,m, n > 2

DéICD£7n, n >4
D,{LHCDq{L,n, n>4, =0,1mod4.

(2) Domains dual to hyperquadrics D4 (Mok

2002)
D!V c DIV

using holomorphic G-structures and Kahler-

Einstein metrics.
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Bounded Symmetric Domains

g semisimple Lie algebra of the noncompact
type
0 = Cartan involution

t = associated maximal compact subalgebra

() = G/K Hermitian symmetric space of the
noncompact type.  CC C¥, by Harish-Chandra
Embedding

g =t ®p Cartan decomposition

Hy € 3 := Centre (£) such that ad(Hy)* = 0
ad(Hgy) defines an integrable almost complex

structure on §2

PC = p?t @ p~ decomposition into i-
eigenspaces of ad(H,)
pt=T0(Q), p” =15 (2); 0= eK

(g, Hp) := semisimple Lie algebra of the Her-

mitian and noncompact type

27



Embedding of Bounded Symmetric Domains

(¢', HY), (g, Hy) semisimple Lie algebras of the

Hermitian and noncompact type.
p: g — g Lie algebra homomorphisms

e We say that p : (¢', H)) — (g,Hy) is an
(H1)-homomorphism if and only if

ad(Hy) o p = po ad(Hp) .

e We say that p : (¢', H)) — (g, Hp) is an
(H3)-homomorphism if and only if

p(Hy) = Hy .

FACT: (H2> — (Hl)

Satake (1965) classified (Hs)-embeddings into
classical domains. Thara (1967) obtained the
full classification of (Hs)-embeddings.

28



() = G/K. A G-invariant Kéahler metric gg
can be determined on 2 by the Killing form.
When (2 is irreducible, gy is Kahler-Einstein,

and the Einstein constant is fixed.

() irreducible, dim 2 = n, {e;} orthonormal

basis of p* = Tp(Q). S(p+) = v=1 > [es, &.
1=1
Y (pT) = V/—1eqHy for some ¢ € R.

(Hs3)-Embeddings

p - (glvH(/)) — (gaHO) all (Hl)'embedding
corresponding to j : €2 — Q.

Q= Q) x - xQ; Q) irreducible.

/

Q __ Q
90 lqr = dQ;,Q 90

e We say that pis an (Hs)-embedding if and
only if

a

p(z CQ;dQ;,QH(/)k) c RHy .
k=1

29



Lemma.

(H3)-embeddings are (H3). An (Hs)-embedding

is (H3) if and only if gf}|.,, is Einstein.

Q/
Numerical criterion for (Hs)-embeddings

7 : Q) — Q totally geodesic, €2 irreducible;
dim Q' =n', dim Q = n;
Kq = scalar curvature of €', etc.

Then, j is an (Hj3)-embedding if and only if

n/

2
Koy = (—) Ko .
mn

In this case g’ o 18 necessarily Kahler-Einstein.
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Fle‘o=1'¢e<1y_c=u X
Fle=1'¢e<i1c=u *
Fle = w(5E) = u ‘
47 =u FIT (8H)
A< U * rnd * d
4G = U X 11
<1y c=b=d
ce<1g=b=d 2lo =1
N34 (w) =P () =d | 1+ #w
u=>b=d *
u=>b=d *
4=d 331 (°H)
w _ w . s—b‘u—d ?wQ
SUOT]TPUOD TRUOTATIPPY TewTXeu 8

UTRWOP TeOISSBTD ® JO

sutewopqns—(¢fy) TRWIXE]
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¢<1 “ta Flita
¢ <] Flsa

¢ < 3% Aa
Fle'1=1'¢<19y-gc=b=d FlRa
Fli=1¢<i1gc=b=d Aa
plT = w(HE) = v wd

47 =u FIT (5H)
LU 11 X d
A6 = U “a i
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VX UT D VOV V X A1d

17d D¢V OV * 11a
“Yd D idD VOV * “ta
T D g X D g * g

V X
PR D ol % Db * ta | aa
sutewopqns-(2fy) o sutey) | (§f) a )

sutewop Teuuoradeoxe JoO

surewopqns—(%f7) ©TqIONPOIIT PUR TRWIXEJ

33



Ifp: (g, H)) — (g, Hp) is an (Hs)-embedding,
we also call j : Q — Q" an (Hj3)-embedding, or
a totally-geodesic holomorphic embedding of
the diagonal type.

Theorem.

Let €2 be an irreducible bounded symmetric
domain. Let 7 : Q" — € be a totally-geodesic
holomorphic embedding of the diagonal type,
dim Q) = n’, dimQ = n. Then, there exists

a nonempty K-invariant hypersurface Hy C
Gr(n',C™) such that

(1) [To(¥)] ¢ Ho.
(2) Writing H — X = Q/I'" for the corre-

sponding locally homogeneous holomor-
phic subbundle of m : PI'x — X. Then,
for any n'-dimensional compact complex
manifold S C X such that for x € S,
T,.(S)] ¢ H,, the compact complex man-
ifold S C X is totally-geodesic.
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Proof: For any F € Gr(n’,Ty(€2)) = G choose

a unitary basis {e;} and set

u(F) = /-s;( — Z[ei,éiD ,  where

kKt — [

is induced by the Killing form of g. The mo-

ment map of the adjoint action of U(n) on

M, (C) is given by A — A, A*].

Hence, p is the moment map for the Hamil-
tonian action of K on the Kahler manifold G.
The Hamiltonian action extends to a lineariz-
able action of K¢ on G.

GIT-semistables point of G are points whose
K®-orbits meet ~1(0). In particular p~1(0)

are GIT-semistable, hence semistable

There exists a K-invariant hypersurface

H() C Gr(n’,TO(Q)) such that [TO(Q/)] §é Ho.
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() C M Borel embedding

G = Grassmann bundle of n’-planes on M,
m: Gy - M

Zu C Gy GC-invariant hypersurface,
s € T'(Gy, Ly" @ 7 0O(()) is a Gt-invariant
nonzero section, where

L s = tautological line bundle on Gyy.

On Q C M, s is G-invariant
Write L = tautological line bundle on Gq,

g = canonical metric on L

(F, h) negative homogeneous holomorphic line

bundle on  dual to O(1), c1(E,h) = —w.
Then,

J—1 _
~——901og]||s|)?
27
=mcy1(L,§) — lei(mE, 7m"h) + [Zq] .
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By Borel (1963), there exists IV C Aut(Q)
such that Sog = Q' /T" is compact. Since [T, (Sp)]
¢ Zx., for any x € Sy, integrating over the
lifting So of Sy to GX}SO, we have

0= / (mei(L, §) — Lo (7" E, 7% h)) A (7T>"u))’”’/_1

A

S

:/S(mq(Kgol’det(mSo)) — by (B, h)) N

0

:/5 (mRic(gls,) — le1(E, h)) Aw? !

:/s ( Z K(g\so)w)w”/‘l,

where K denotes scalar curvature. By local

homogeneity the integrand = 0. Thus,

™m
(1) " K(golor) +£=0.
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Suppose now S C X = Q/I" as in the hypoth-
esis. We have SN Zx = @, so that

2 [ (Kl +£)e" " =0,

Define 3 : Gr(n/, Tp(Q2)) — € by

Y(F) = \/—712[%@] ,

where (e;) is any orthnoromal basis. ||X(FE)]|

is a minimum if ¥(FE) € 3, thus whenever F =
To(Y), where Q' — Qis (H3). Now

K (goler) = —C|Z(To(2)]”

for a universal constant C. For every x € S

o)

where o is the second fundamental form. Com-

K(gls)s = —C|[E(Te5)[1* —[low]I* < K (go

paring with (1) and (2) we get

K(g|5)$ — K(QO

Q/)7 O-xEO-

In particular, S C X is totally geodesic. (]
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Rank-1 Domains
QUESTION 1.

Let k < n be positive integers and embed the
complex unit k-ball B* into the complex unit
n-ball B™ in the standard way as a totally geo-
desic complex submanifold. Does gap rigidity
hold for (B™, B¥) in the complex topology?

Possible scheme for each pair (k,n)

(1) Is a k-dimensional compact complex sub-
manifold of small second fundamental form

S C B" /T necessarily uniformized by B*?

(2) Is a holomorphic immersion B* /T” « B™/T

necessarily totally-geodesic?

The answer to (2) is positive for n < 2k, by
Cao-Mok (1990).
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QUESTION 2.

Let n > 1. Consider the set X, of all compact
complex manifolds uniformized by the com-
plex unit ball B™. Let Map(&,) denote the set
of all nonconstant holomorphic mappings f :
X — X' with X, X’ € &, and Mapg,(X,) C
Map(X,,) the subset of all generically finite
holomorphic maps. For each f € Map(&,),
f: X — X', denote by u(f) € (0,1] the real
number defined by

u(f) = sup{|ldf(z)|| : = € X} .

Does there exists a universal constant ¢,, > 0
depending only on n such that u(f) > ¢, for

any f € Mapg,(AX,) or more generally for f €
Map(X;,)?

REMARK.
By the Ahlfors-Schwarz Lemma, u(f) < 1.
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