From Rational Curves to

Complex Structures

on Fano Manifolds

Ngaiming MOK

The University of Hong Kong

X Fano Miyaoka-Mori, i.e. $K_X^{-1} > 0$

By Miyaoka-Mori,

X is unituled, i.e.

"filled up by rational curves"

By Kollar-Miyaoka-Mori

X is rationally connected

Differential-geometric criterion:

X Fano $\Leftrightarrow \exists g$ Kähler, Ric (X,g) > 0

Holomorphic Vector Bundles on \mathbb{P}^1

Riemann Sphere $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$ = $(\mathbb{P}^1 - \{0\}) \cup (\mathbb{P}^1 - \{\infty\}) = \mathbb{C}_1 \cup \mathbb{C}_2$

 $\pi:V\to\mathbb{P}^1$ hol. vector bundle of rank r means

$$\pi^{-1}(\mathbb{C}_1) = \mathbb{C}_1 \times \mathbb{C}^r$$
$$\pi^{-1}(\mathbb{C}_2) = \mathbb{C}_2 \times \mathbb{C}^r.$$

Over $\mathbb{C}_1 \cap \mathbb{C}_2 = \mathbb{C}^*$, we introduce an equivalence relation

$$(z,u)_1 \sim (z,v)_2 \Leftrightarrow u = f(z)v$$
, where

 $f: \mathbb{C}^* \xrightarrow{\text{hol}} \{\text{invertible } n\text{-by-}n \text{ matrices}\}$

 $\mathcal{O}=$ trivial bundle , $f\equiv 1$ $T_{\mathbb{P}^1}=$ tangent bundle .

Hol. section of $T_{\mathbb{P}^1} = \text{hol.}$ vector field. On $\mathbb{P}^1 - \{\infty\}$, write $w = \frac{1}{z}$

$$\frac{\partial}{\partial z}$$
 vector field on \mathbb{C}

$$\frac{\partial}{\partial z} = \frac{\partial w}{\partial z} \frac{\partial}{\partial w} = -\frac{1}{z^2} \frac{\partial}{\partial w} = -w^2 \frac{\partial}{\partial w}$$

Thus, $\frac{\partial}{\partial z}$ defines a hol. vector field with a double zero at ∞ .

$$-z^{2} \frac{\partial}{\partial z} \sim \frac{\partial}{\partial w} ; \quad u = -z^{2} v$$
$$f(z) = -z^{2} .$$

We write $T_{\mathbb{P}^1} \cong \mathcal{O}(2)$

Line bundle: rank = 1

Any hol. line bundle on $\mathbb{P}^1 \cong \mathcal{O}(a)$ for some a, defined by $f(z) = z^a$ on \mathbb{C}^* .

Grothendieck Splitting Theorem (1956)

 $V \mapsto \mathbb{P}^1$ holomorphic vector bundle. Then

$$V \cong \mathcal{O}(a_1) \oplus \cdots \oplus \mathcal{O}(a_r)$$
,

where $a_1 \leq \cdots \leq a_r$ are unique.

Formulation in terms of matrices

Let $f: \mathbb{C} - \{0\} \mapsto GL(n, \mathbb{C})$ be holomorphic. Then there exist

$$g_1: \mathbb{C} \to GL(n, \mathbb{C}), \quad g_2: \mathbb{P}^1 - \{0\} \to GL(n, \mathbb{C})$$

such that

$$g_1 f g_2^{-1}(z) = \begin{bmatrix} z^{a_1} & & & \\ & \ddots & & \\ & & z^{a_r} \end{bmatrix}$$

Hilbert (1905), Plemelj (1908), Birkhoff (1913), Hasse (1895)

Deformation of Rational Curves

X complex mfld, $f: \mathbb{P}^1 \to X$, $f(\mathbb{P}^1) = C$ $\{C_t\}$ hol. family of \mathbb{P}^1 , defined by $f_t: \mathbb{P}^1 \to X$, $f_0 = f$, $C_0 = C$. Write $F(z,t) = f_t(z)$

$$\frac{\partial F}{\partial t}|_{t=0} = s \in \Gamma(\mathbb{P}^1, f^*T_X) .$$

Any section $s \in \Gamma(\mathbb{P}^1, f^*T_X)$ is a candidate for infinitesimal deformation.

Use power series to construct

$$F(z,t) = f_t(z)$$

Obstruction to construction given by $H^1(\mathbb{P}^1, f^*T_X)$

$$H^{1}(\mathbb{P}^{1}, f^{*}T_{X}) = \sum_{i=1}^{r} H^{1}(\mathbb{P}^{1}, \mathcal{O}(a_{i}))$$
$$H^{1}(\mathbb{P}^{1}, \mathcal{O}(a)) = 0 \quad \forall a \geq -1.$$

Example of hol. vector bundles on \mathbb{P}^1

(A)
$$\mathbb{P}^1 \subset \mathbb{P}^2$$
; $V = T_{\mathbb{P}^2}|_{\mathbb{P}^1}$
 $V/T_{\mathbb{P}^1} = N_{\mathbb{P}^1|\mathbb{P}^2}$, $N = \text{normal bundle}$.

 \exists hol. vector fields of \mathbb{P}^2 , along \mathbb{P}^1 , corresponding to inf. deformation of lines in \mathbb{P}^2 . Using s, we have, s(P) = 0

$$V \cong T_{\mathbb{P}^1} \oplus N_{\mathbb{P}^1|\mathbb{P}^2}$$

 $\cong \mathcal{O}(2) \oplus \mathcal{O}(1)$.

In general,

$$T_{\mathbb{P}^n}|_{\mathbb{P}^1} \cong \mathcal{O}(2) \oplus [\mathcal{O}(1)]^{n-1}$$
.

(B)
$$\mathbb{P}^1 \subset \mathbb{P}^1 \times \mathbb{P}^1$$
, $z \to (z,0)$

$$T_{\mathbb{P}^1 \times \mathbb{P}^1}|_{\mathbb{P}^1} \cong \mathcal{O}(2) \oplus \mathcal{O}$$
.

(C) $Q^n \subset \mathbb{P}^{n+1}$ hyperquadric, defined by $z_0^2 + \cdots + z_{n+1}^2 = 0$

$$T_{Q^n}|_{\mathbb{P}^1} \cong \mathcal{O}(2) \oplus [\mathcal{O}(1)]^{n-2} \oplus \mathcal{O}$$
.

Trivial factor: $Q^2 \subset Q^n$; $Q^2 \cong \mathbb{P}^1 \times \mathbb{P}^1$.

s = nowhere zero section

X Fano, L > 0, $\delta_L = \deg$. <u>minimal rational curve</u> C attains

$$\min\{\delta_L(C): T_X|_C \ge 0\} .$$

Deformation Theory of Rational Curves \Longrightarrow For a very general point $P \in X$,

$$T_X|_C \ge 0 \quad \forall C \text{ rat. }, \quad P \in C .$$

Consequence

 $\mathcal{K}=$ choice of irr. comp. of mrc For P generic, $[C]\in\mathcal{K}$ generic $f:\mathbb{P}^1\to X$, $C=f(\mathbb{P}^1)$. Then,

$$f^*T_X \cong \mathcal{O}(2) \oplus [\mathcal{O}(1)]^p \oplus \mathcal{O}^q$$
.

Mori's "Breaking-up Lemma"

Family of curves fixing 2 points P, Q EX must break up. Otherwise To . To = - To . To

Varieties of Minimal Rational Tangents

X uniruled,

 $\mathcal{K} = \text{component of Chow space of minimal rational curves}$

 $\mu: \mathcal{U} \to X; \ \rho: \mathcal{U} \to \mathcal{K}$ universal family

 $x \in X$ generic; \mathcal{U}_x smooth

The tangent map $\tau: \mathcal{U}_x \to \mathbb{P}T_x(X)$ is given by

$$\tau([C]) = [T_x(C)] ;$$

for C smooth at $x \in X$.

 τ is rational, generically finite,

a priori undefined for C singular at x.

We call the strict transform

$$\tau(\mathcal{U}_x) = \mathcal{C}_x \subset \mathbb{P}T_x(X)$$

variety of minimal rational tangents.

For C standard, $T_x(C) = \mathbb{C}\alpha$

$$T|_C \cong \mathcal{O}(2) \oplus \mathcal{O}(1)^p \oplus \mathcal{O}^q$$

 $P_{\alpha} := [\mathcal{O}(2) \oplus \mathcal{O}(1)^p]_x$, positive part.

Then,

$$T_{\alpha}(\tilde{C}_{x}) = P_{\alpha} ;$$

$$T_{[\alpha]}(C_{x}) = P_{\alpha} \mod \mathbb{C}\alpha .$$

In other words,

$$\dim(\mathcal{C}_x) = p ,$$

and C_x is infinitesimally determined by splitting types.

Minimal Rational Curves

Variety of Minimal Rational Tangents (VMRT)

Characterization of \mathbb{P}^n (Cho-Miyaoka-Shepherd-Barron 2002)

X irr. normal variety, $\dim(X) = n$.

Suppose there exists a minimal component \mathcal{K} on X such that

$$\mathcal{C}(\mathcal{K}) = \mathbb{P}T_X$$
.

Then, there exists

$$\nu: \mathbb{P}^n \to X$$

étale over $X - \operatorname{Sing}(X)$ such that

members of $\mathcal{K} = \text{images of lines in } \mathbb{P}^n$.

In particular

$$X \text{ smooth} \Rightarrow X \cong \mathbb{P}^n$$
.

Theorem (Kebekus 2002, JAG).

The tangent map

$$au_x:\mathcal{U}_x o \mathbb{P}T_x(X)$$

is a morphism at a generic point $x \in X$.

Theorem (Hwang-Mok 2004, AJM).

The tangent map

$$\tau_x:\mathcal{U}_x\to\mathcal{C}_x\subset\mathbb{P}T_x(X)$$

is a birational morphism at a generic point $x \in X$.

Examples of VMRTs

Fermat hypersurface $1 \le d \le n-1$

$$X = \{Z_0^d + Z_1^d + \dots + Z_n^d = 0\}$$

$$x = [z_0, z_1, \dots, z_n] \in X.$$

FIND all (w_0, w_r, \ldots, w_n) such that $\forall t \in \mathbb{C}$.

$$[z_0 + tw_0, z_1 + tw_1, \dots, z_n + tw_n] \in X$$

$$(z_0 + tw_0)^d + \dots + (z_n + tw_n)^d = 0$$

$$0 = (z_0^d + \dots + z_n^d)$$

$$+t(z_0^{d-1}w_0 + \dots + z_n^{d-1}w_n) \cdot d$$

$$+t^2(z_0^{d-2}w_0^2 + \dots + z_n^{d-2}w_n^2) \cdot \frac{d(d-1)}{2}$$

$$+\dots + t^d(w_0^d + \dots + w_n^d).$$

When (z_0, z_1, \ldots, z_n) is fixed, we get d + 1 equations, and

 C_x = complete intersection of d-1 hypersurfaces of degree $2, 3, \ldots, d$ in $\mathbb{P}T_x(X) \cong \mathbb{P}^{n-1}$ If $d \leq n-1$, $\dim(C_x) = (n+1) - (d+1) - 1 = n-d-1 > 0$.

Examples of VMRT

In these examples,

 $\{\mathrm{mrc}\} = \{\mathrm{lines\ in}\ \mathbb{P}^n\ \mathrm{contained\ in}\ X\}\ .$

Type	G	K	G/K = S	\mathcal{C}_o	Embedding
I	SU(p+q)	$S(U(p) \times U(q))$	G(p,q)	$\mathbb{P}^{p-1}\times\mathbb{P}^{q-1}$	Segre
II	SO(2n)	U(n)	$G^{II}(n,n)$	G(2, n-2)	Plücker
III	Sp(n)	U(n)	$G^{III}(n,n)$	\mathbb{P}^{n-1}	Veronese
IV	SO(n+2)	$SO(n) \times SO(2)$	Q^n	Q^{n-2}	by $\mathcal{O}(1)$
V	E_6	$\left \text{Spin}(10) \times U(1) \right $	$igg \mathbb{P}^2(\mathbb{O}) \otimes_{\mathbb{R}} \mathbb{C}$	$G^{II}(5,5)$	by $\mathcal{O}(1)$
VI	E_7	$E_6 \times U(1)$	exceptional	$\mathbb{P}^2(\mathbb{O})\otimes_{\mathbb{R}}\mathbb{C}$	Severi

Scope

Algebraic Geometry { Mori theory Hilbert schemes projective geometry

 $\text{Differential Geometry} \left\{ \begin{array}{l} \text{distributions} \\ \text{G-structures} \end{array} \right.$

Several { Hartogs phenomenon Complex Variables { analytic continuation

Lie Theory $\begin{cases} \text{Hermitian symmetric spaces} \\ \text{rational homog. spaces } G/P \end{cases}$

Examples of G-structures

Riemannian Geometry

A Riemannian metric $\sum g_{ij}dx^i \otimes dx^j$ gives a reduction of the structure group from $GL(n,\mathbb{R})$ to $O(n,\mathbb{R})$; $G=O(n,\mathbb{R})$.

Holomorphic Metrics

X complex manifold,

$$\sum g_{ij}dz^i\otimes dz^j$$

hol. symmetric 2-tensor,

$$\det(g_{ij}) \neq 0$$
;

g a holomorphic metric;

Hol. G-structure with $G = O(n; \mathbb{C})$.

Theorem (Hwang-Mok, Crelle 1997)

V model vector space $\cong \mathbb{C}^n$,

G reductive complex Lie group,

 $G \subsetneq GL(V)$ irreducible faithful representation,

M Fano manifold with holomorphic G-structure.

Then, the G-structure is flat

$$M\cong S$$
,

where S = irr. HSS, compact type of rank ≥ 2 .

Lazarsfeld's Problem

Theorem (Hwang-Mok, Invent. 1999).

Y = G/P rational homogeneous

P maximal parabolic, i.e. $b_2(Y) = 1$

X projective manifold

 $f: Y \rightarrow X$ finite holomorphic map

Then,

EITHER

- (a) $X \cong \mathbb{P}^n$; OR(b) $f: Y \xrightarrow{\cong} X$ is a biholomorphism.

Lazarsfeld's Problem

Principle of Proof:

$$f: Y \to X \; ; \quad Y = G/P \; , \quad b_2(Y) = 1 \; .$$

Suppose $X \not\cong \mathbb{P}^n$; f not a biholomorphism. To derive a contradiction let

$$\varphi: U \xrightarrow{\cong} V \; ; \; U, V \subset Y$$

$$such \; that \quad f \circ \varphi \equiv f.$$

 $\mathcal{C} \subset \mathbb{P}T(X)$ varieties of mrt

$$\mathcal{D} := f^*\mathcal{C} \subset \mathbb{P}T(Y)$$

$$\varphi_*\mathcal{D}|_U = \mathcal{D}|_V$$
 tautologically.

Prove that $\varphi = \Phi|_U$ for some $\Phi \in Aut(Y)$ to derive a contradiction!

Stratification with respect to a morphism

M, Z quasi-projective varieties

 $h: M \to Z$ morphism

An h-stratification of M is a decomposition $M = M_1 \cup \cdots \cup M_k$ such that

- (i) Each M_i is smooth and its image $h(M_i)$ is also smooth.
- (ii) For any tangent vector v to $h(M_i)$, there exists a local holomorphic arc in M_i whose image under h is tangent to v.
- (iii) When a connected Lie group acts on M and Z, and h is equivariant under these actions, each M_i is invariant under the group action.

Proposition.

h-strafications exist.

Varieties of distinguished tangents

 $\mathcal{N}=\text{irr. comp. of Chow space of curves on }X$ passing through $x\in X$

 $\mathcal{N}'\subset\mathcal{N}$ subset smooth of curves smooth at x $\mathcal{N}'=N^1\cup\cdots\cup N^\ell \text{ decomposition in terms of geometric genus}$

 $\tau: N^j \to \mathbb{P}T_x(X)$ tangent map

$$N^j = M_1^j \cup \cdots \cup M_k^j \tau$$
-stratification

Definition.

An irreducible subvariety $\mathcal{D} \subset \mathbb{P}T_x(X)$ is called a variety of distinguished tangents (VMRT) if $\mathcal{D} = \overline{\tau(M_i^j)}$ for some choice of \mathcal{N} , N^j and M_i^j .

Varieties of distinguished tangents

Properties

- (i) Given an irreducible smooth projective variety X and $x \in X$, there are only countably many varieties of distinguished tangent in $\mathbb{P}T_x(X)$.
- (ii) Let $\mathcal{D} \subset \mathbb{P}T_x(X)$ be a variety of distinguished tangents associated to some choice of \mathcal{N} , N^j and M_i^j . Then for any tangent vector v to \mathcal{D} , we can find a family of curves $\{l_t, t \in \Delta\}$ belonging to \mathcal{N} smooth at x so that the derivative of the tangent directions $\mathbb{P}T_y(l_t) \in \mathbb{P}T_x(X)$ at t = 0 is v.
- (iii) Suppose a connected Lie group P acts on X fixing x. Then any variety of distinguished tangents in $\mathbb{P}T_x(X)$ is invariant under the isotropy action of P on $\mathbb{P}T_x(X)$.

Theorem. (Hwang-Mok 2004)

G simple Lie group over \mathbb{C} , \mathfrak{g} = Lie algebra

 $P \subset G$ maximal parabolic subgroup

 $S = \text{rational homogeneous of type } (G; \alpha)$

 $\pi: \mathcal{X} \to \triangle = \{t \in \mathbb{C}: |t| < 1\}$ regular family such that

- (i) $X_t := \pi^{-1}(t) \cong S$ for $t \neq 0$ and
- (ii) $X_0 := \pi^{-1}(0)$ is Kähler.

Then,

$$X_0 \cong S$$
.

Deformation rigidity in the Kähler case

Scheme

- (1) S Hermitian symmetric [Hwang-Mok, Invent. Math 1998]
- (2) S of type (G, α) , α a long simple root [Hwang, Crelle 1997] for the contact case [Hwang-Mok, Ann. ENS 2002] in general
- (3) S of type (F_4, α_1) [Hwang-Mok, Springer-Verlag 2004]
- (4) S of type (C_n, α_k) , 1 < k < n; or (F_4, α_2) [Hwang-Mok, Invent. Math 2005]

Deformation rigidity in the Kähler case

Methods

- (1) Distribution spanned by VMRT Integrability
- (2) Differential systems generated by distributions spanned by VMRT
- (3) Methods of (2)
- (4) Holomorphic vector fields on uniruled projective manifolds.
 - Uses also conditions on integrability of (1).

Distributions Spanned by MRT

X uniruled,

 \mathcal{K} : component of Chow space of minimal rational curves

 \mathcal{C}_x : variety of mrt;

$$\mathcal{C}_x \subset \mathbb{P}T_x(X); \ \tilde{\mathcal{C}}_x \subset T_x(X);$$

$$W_x = \operatorname{Span}(\tilde{\mathcal{C}}_x) \subset T_x(X).$$

Assume $W \neq T(X)$.

Q. Is W integrable?

$$Pic(X) = 1 \Rightarrow W \ not \ integrable$$

 $Pic(X) = 1 \Rightarrow \overline{W \ not \ integrable}$ $Projective\text{-}geometric \ properties \ of \ C_x$ $\Rightarrow W \ integrable$

For C on X_0 , $W = T(X_0)$, i.e. C_x lin. nondeg.

<u>Integrability of Distributions</u>

Proposition.

 $\Omega \subset \mathbb{C}^n$, $W \subset T_{\Omega}$ hol. distribution. Then, W is integrable iff

- (*) Given $x \in \Omega$, \exists hol. vector fields α_j , β_j def. on a nbd of x s.t.
- (i) $[\alpha_j, \beta_j](x) \in W_x$.
- (ii) Span $\{\alpha_j \wedge \beta_j\} = \Lambda^2 W_x$.

Verification of Integrability

 $C \subset X_0$ be a smooth standard mrc.

$$T_{X_0}|_C \cong \mathcal{O}(2) \oplus [\mathcal{O}(1)]^p \oplus \mathcal{O}^q$$
.

For $x \in C$; $T_x(C) \cong \mathbb{C}\alpha_x$. Define

$$P_{\alpha_x} = (\mathcal{O}(2) \oplus [\mathcal{O}(1)]^p)_x$$
.

Proposition

 $C \subset X_0$ standard mrc; $x \in C$. $\xi_x \in P_{\alpha_x}$ s.t. (α_x, ξ_x) linearly independent. Then, there exists a loc. smooth complex-analytic surface Σ at x such that

- (i) $T_x(\Sigma) = \mathbb{C}\alpha_x + \mathbb{C}\xi_x$;
- (ii) at every $y \in \Sigma$ near x;

$$T_y(\Sigma) \subset W_y$$
.

$$T_{x}(\Sigma) = \mathbb{C}\alpha + \mathbb{C}\xi$$

Proposition.

 $C_x \subset \mathbb{P}W_x \text{ VMRT at generic } x$

 $\mathcal{T}_x \subset \mathbb{P}(\wedge^2 W_x)$ variety of tangents.

Then,

$$\mathcal{T}_x \subset \mathbb{P}(\wedge^2 W_x)$$
 lin. nondeg.

 $\Rightarrow W$ integrable.

Proposition. $\mathcal{T}_x \subset \mathbb{P}(\wedge^2 W_x)$ is linearly

non-degenerate if

 $\dim \mathcal{C}_x \geq \operatorname{codim} \mathcal{C}_x \text{ in } \mathbb{P}W_x$,

 $C_x \subset \mathbb{P}W_x$ is smooth.

 E_7

$$E_8$$

Highest weight varieties

Differential system

$$0 \neq D_1 \subsetneq D_2 \subsetneq \cdots \subsetneq D_m \subset T_U$$

filtration of X by hol. distributions.

Weak derived system (X, D)

$$D^1 = D$$
, meromorphic distribution
$$D^k = D^{k-1} + [D, D^{k-1}].$$

• On a Fano manifold X, $b_2(X) = 1$, $D^m = T_X$ for some m.

Symbol algebra of a weak derived system:

$$\mathfrak{s}(X,D) := D^1 \oplus D^2/D^1 \oplus \cdots \oplus D^m/D^{m-1}$$

• On a rational homogeneous space S = G/P, $b_2(S) = 1$, with $D = \min$ nontrivial G-inv. hol. distribution,

$$\mathfrak{n}^+ := \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_m \cong \mathfrak{s}(S, D).$$

Serre relations

 $\mathfrak g$ simplie Lie algebra over $\mathbb C$

 $\Sigma = \{\alpha_1, \ldots, \alpha_\ell\}$ system of simple roots

n(i,j) = entries of Cartan matrix

Then, \mathfrak{g} is the universal Lie algebra generated by $\{x_i, y_i, h_i : 1 \leq i \leq \ell\}$ subject to the identities

- $\bullet \ [h_i, h_j] = 0$
- $[x_i, y_i] = h_i, [x_i, y_j] = 0 \text{ if } i \neq j$
- $[h_i, x_j] = n(i, j)x_j, [h_i, y_j] = -n(i, j)y_j$
- $ad(x_i)^{-n(i,j)+1}(x_j) = 0 \text{ if } i \neq j$
- $ad(y_i)^{-n(i,j)+1}(y_j) = 0 \text{ if } i \neq j$

Objective

For the regular family $\pi: \mathfrak{X} \to \triangle$ consider $D \subset T_{X_0}$ spanned by VMRTs. Show that $\mathfrak{s}(X_0, D) \cong \mathfrak{n}^+ = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_m$ for the model S = G/P.

Serre relations for \mathfrak{n}^+

Write $\mathfrak{n}^+ \subset \mathfrak{g}$ subalgebra generated by $\{x_1, x_2, \ldots, x_\ell\}$. Then, \mathfrak{n}^+ is the universal Lie algebra generated by $\{x_1, \ldots, x_\ell\}$ subject to

$$ad(x_i)^{-n(i,j)+1}(x_j) = 0.$$

Note that

• When α_i is a long simple root,

$$n(i,j) = \frac{2(\alpha_i, \alpha_j)}{\|\alpha_i\|^2} = 0 \text{ or } -1.$$

For us the crucial relations are

$$[x_i, [x_i, x_j]] = 0 \text{ if } n(i, j) \neq 0.$$

Proof of $\sigma(X_0, D) \cong \mathfrak{n}^+$

 α_i long simple root, S = G/P of type (G, α_i)

 $\pi: \mathfrak{X} \to \triangle$ regular family, $X_t \cong S$ for $t \neq 0$

 $\sigma: \triangle \to \mathfrak{X}$ "generic" hol. cross-section

 $\mathcal{U}_{\sigma(t)} \to \triangle$ regular family $\Rightarrow \mathcal{U}_{\sigma(0)} \cong \mathcal{U}_o$ of the model $S, \tau_o : \mathcal{U}_o \cong \mathcal{C}_o$

 $D_{\sigma(0)}$ spanned by $\mathcal{C}_{\sigma(0)}$, image under the tangent map

$$\tau_{\sigma(0)}: \mathcal{U}_{\sigma(0)} \to \mathbb{P}T_{\sigma(0)}(X_0).$$

To prove:

$$\tau_{\sigma(0)} : \mathcal{U}_{\sigma(0)} \cong \mathcal{C}_{\sigma(0)} \subsetneq \mathbb{P}T_{\sigma(0)}(X_0).$$

$$\mathcal{C}_{\sigma(0)} \cong \mathcal{C}_{\sigma(t)} \cong \mathcal{C}_o \text{ as proj. subvarieties}$$

Weak derived system (X, D)

$$0 \neq D^1 \subset D^2 \subset \cdots \subset D^r = T_{X_0}$$

 $\mathfrak{s}(X_0, D)$ is a quotient of the universal Lie algebra generated by \mathfrak{g}_1 subject to relations defined by pencils of mrc.

On the model, x_i represents a tangent vector

- $x_j, j \neq i$, represents an element of \mathfrak{g}_0
- $[x_i, [x_i, x_j]] = 0 \mod \mathfrak{g}_1$ results from argument using pencils of mrc
- $ad(x_j)^{-n(i,j)+1}(x_i) = 0$ is a property in \mathfrak{g}_1

Conclusion:

 $\mathfrak{s}(X_0, D)$ is a quotient of the universal Lie algebra **U** gen. by $\{x_1, \ldots, x_\ell\}$ subject to

$$ad(x_j)^{-n(i,j)+1}(x_i) = 0.$$

By Serre relations,

$$\mathbf{U} \cong \mathfrak{n}^+$$
, $\mathfrak{s}(X_0, D) \cong \mathfrak{n}^+/J$.

If $J \neq 0$, the weak derived system (X, D) would terminate at D^m , dim $D^m < n$, giving an *integrable* distribution $W = D^m$ containing VMRTs, which contradicts with $b_2(X_0) = 1$.

Conjecture 1

$$X$$
 Fano, $b_2(X) = 1$

 $x \in X$ generic point

$$Z \in \Gamma(X, T_X)$$
.

Then,

$$\operatorname{ord}_x(Z) \ge 3 \Rightarrow Z \equiv 0$$
.

Conjecture 2

$$X \text{ Fano, } b_2(X) = 1, \dim_{\mathbb{C}} X = n$$

$$\Rightarrow \dim_{\mathbb{C}}(\operatorname{Aut}(X)) \leq n^2 + 2n;$$

$$= n^2 + 2n \Leftrightarrow X \cong \mathbb{P}^n.$$

Theorem (Hwang 1999)

$$X$$
 Fano, $b_2(X) = 1$, dim $X = n$

 $x \in X$ generic point, Then,

$$Z \in \Gamma(X, T_X)$$
, $\operatorname{ord}_x(Z) > n \Rightarrow Z \equiv 0$.

Corollary

$$\dim(\operatorname{Aut}(X)) = \dim\Gamma(X, T_X) \le n \binom{2n}{n}$$
.

Remark:

(1) For $\Sigma_k = \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(k))$, the k-th Hirzebruch surface,

$$\dim(\operatorname{Aut}(\Sigma_k)) > \dim\Gamma(\mathbb{P}^1,\mathcal{O}(k)) = k+1.$$

Bounds fail in general for projective uniruled projective manifolds.

(2) If $\exists \mathcal{K}$ on X such that $\dim \mathcal{C}_x = 0$, Hwang shows that there are no hol. v.f. vanishing at a generic point $x \in X$. In that case, $\dim(\operatorname{Aut}(X)) \leq n$.

(3)
$$\dim\{Z \in \Gamma(X, T_X) : \operatorname{ord}_x(Z) \le 2\}$$
$$\le \frac{n(n+1)(n+2)}{2} \cong \frac{n^3}{2}.$$

Theorem 1 (Hwang-Mok)

X projective uniruled manifold

 $\mathcal{K} = \text{minimal rational component}$ $x \in X \text{ generic point}$

$$\mathcal{C}_x \subset \mathbb{P}T_x(X)$$
, VMRT at x , dim $\mathcal{C}_x = p > 0$

Assume $C_x \subset \mathbb{P}T_x(X)$ nonsingular, irreducible, linearly non-degenerate.

Then,

$$Z \in \Gamma(X, T_X)$$
, $\operatorname{ord}_x(Z) \ge 3 \Rightarrow Z \equiv 0$.

Theorem 2

Assume
$$C_x \subset \mathbb{P}T_x(X)$$
, dim $X = n$

$$nonsingular, irreducible,$$

$$linearly non-degenerate,$$

$$linearly normal.$$

Then,

$$\dim(\operatorname{Aut}(X)) \le n^2 + 2n$$
$$= n^2 + 2n \Leftrightarrow X \cong \mathbb{P}^n$$

Corollary

$$X$$
 Fano, $b_2(X) = 1$, dim $X = n$

 $\mathcal{O}(1)$ positive generator of $\operatorname{Pic}(X) \cong \mathbb{Z}$.

Assume $\mathcal{O}(1)$ very ample.

$$c_1(X) > \frac{n+1}{2}$$
, $x \in X$ generic. Then,

$$0 \neq Z \in \Gamma(X, T_X) \Rightarrow \operatorname{ord}_x(Z) \leq 3$$
;

$$c_1(X) > \frac{2(n+2)}{3}$$
, $X \ncong \mathbb{P}^n$

$$\Rightarrow \dim(\operatorname{Aut}(X)) < n^2 + 2n$$
.

Ideas of Proof

(1) A holomorphic vector field Z vanishing at $x \in X$ to the order ≥ 2 gives by power series expansion

$$Z = \sum_{i,j,k} A_{ij}^k z^i z^j \frac{\partial}{\partial z_k} + \text{ higher order terms}$$

 $A \in S^2T_x^* \otimes T_x$ with the property that

 (\dagger) for any $\alpha \in \tilde{\mathcal{C}}_x$, for

$$A_{\alpha} := \sum A_{\alpha j}^{k} dz^{j} \otimes \frac{\partial}{\partial z_{k}} \in \operatorname{End}(T_{x}) ,$$

 $A_{\alpha}|_{\tilde{\mathcal{C}}_x}$ is tangent to $\tilde{\mathcal{C}}_x$.

Here we identify vector fields on T_x with endomorphisms.

(2) Taking $\alpha, \beta \in \tilde{\mathcal{C}}_x$; $\alpha, \beta \neq 0$

$$A_{\alpha\beta} = A_{\alpha}(\beta) = A_{\beta}(\alpha)$$

is tangent to $\tilde{\mathcal{C}}_x$ both at α and β , i.e.

$$A_{\alpha\beta} \in P_{\alpha} \cap P_{\beta}$$
.

(3) The symmetry property on A forces (by letting $\beta \to \alpha$) that $A_{\alpha\alpha} \in \text{Ker}(\sigma_{\alpha})$ for the second fundamental form σ_{α} on $\tilde{\mathcal{C}}_x - \{0\}$. If $\mathcal{C}_x \subsetneq \mathbb{P}T_x$ is smooth and non-linear, $\text{Ker}(\sigma_{\alpha}) = \mathbb{C}\alpha$ (Zak's Thm.), and

$$\overline{A} \in \Gamma(\mathcal{C}_x; \operatorname{Hom}(L^2, L)) = \Gamma(\mathcal{C}_x, L^*)$$

for the tautological line bundle L.

(4) We can get bounds for the dimension of Z with $\operatorname{ord}_x(Z) \geq 2$ if we know that

$$(*) \overline{A} = 0 \Rightarrow A = 0.$$

Moreover, the latter is enough to prove the nonexistence of nontrivial Z with $\operatorname{ord}_x(Z) \geq 3$. If $\operatorname{ord}_x(Z) \geq 3$ start with

$$A \in S^3 T_x^* \otimes T_x$$
 such that $A_{\alpha\beta\gamma} \in P_\alpha \cap P_\beta \cap P_\gamma$ for $\alpha, \beta, \gamma \in \tilde{\mathcal{C}}_x - \{0\}$.

Then, we get

$$A_{\alpha\alpha\gamma} \in P_{\alpha} \cap P_{\gamma}$$
 for any $\alpha, \gamma \in \tilde{\mathcal{C}}_x - \{0\}$
 $\Rightarrow A_{\alpha\alpha\gamma} = 0$
 $\Rightarrow A \equiv 0 \text{ if } (*) \text{ holds.}$

Proof of (*)

We prove $\overline{A} = 0 \Rightarrow A = 0$ by induction. The hypothesis $\overline{A} = 0$ implies

- (a) C_x is uniruled by lines;
- (b) for any $\alpha \in \tilde{\mathcal{C}}_x$, $\alpha \neq 0$, A_{α} induces a hol. vector field \mathcal{Z} on \mathcal{C}_x such that $\mathcal{Z}([\alpha]) = 0$, $\operatorname{ord}_{[\alpha]}(\mathcal{Z}) \geq 2$;
- (c) for $\mathcal{K}' = \text{space of lines on } \mathcal{C}_x$, $(\mathcal{C}_x, \mathcal{K}')$ is similar to (X, \mathcal{K}) , viz. for the generic VMRT $\mathcal{C}'_{[\alpha]}$,

 $C'_{[\alpha]} \subsetneq \mathbb{P}T_{[\alpha]}(C_x)$ nonsingular, connected and linearly non-degenerate;

(d) for $A \in S^2T^*_{[\alpha]} \otimes T_{[\alpha]}$ induced by \mathcal{Z} (as A is induced by Z), $\overline{A} = 0$.

Comments on the proof:

• We actually prove that C_x is rationally 2-connected by lines. The starting point is:

$$\overline{A} = 0 \Rightarrow A_{\alpha}^2 \equiv 0$$
 as endomorphisms .

Then, for $[\alpha]$, $[\beta] \in \mathcal{C}_x$ generic, both points are joined on \mathcal{C}_x by lines to $[\gamma]$, $\gamma = A_{\alpha\beta}$.

• The delicate part is the proof of linear nondegeneracy of the iterated VMRTs $\mathcal{C}'_{[\alpha]} \subsetneq$ $\mathbb{P}T_{[\alpha]}(\mathcal{C}_x)$. The proof makes use of the theory on distributions spanned by VMRTs which we developed in connection with deformation rigidity.

Prolongation of infinitesimal automorphisms of projective varieties

V complex vector space, $\dim V = n$

 $\mathfrak{g} \subset End(V)$ Lie subalgebra

$$\mathfrak{g}^{(k)} \subset S^{k+1}V^* \otimes V, \ \sigma \in \mathfrak{g}^{(k)} \Leftrightarrow$$

$$\forall v_1, \dots, v_k \in V$$
, writing
$$\sigma_{v_1, \dots, v_k}(v) = \sigma(v; v_1, \dots, v_k)$$
, we have $\sigma_{v_1, \dots, v_k} \in \mathfrak{g}$.

$$\mathfrak{g}^{(k)} = k$$
-th prolongation of \mathfrak{g} ; $\mathfrak{g}^{(0)} = \mathfrak{g}$.

$$\mathfrak{g}^{(k)} = 0 \Rightarrow \mathfrak{g}^{(k+1)} = 0.$$

$$\mathfrak{h} \subset \mathfrak{g} \Rightarrow \mathfrak{h}^{(k)} \subset \mathfrak{g}^{(k)}.$$

$$[\mathfrak{g}^{(k)};\mathfrak{g}^{(\ell)}]\subset \mathfrak{g}^{(k+\ell)}.$$

 $Y \subset \mathbb{P}V$ projective subvariety, dimY = p

 $\tilde{Y} \subset V$ affine cone of Y. Define

$$aut(Y) = \{ A \in End(V) : exp(tA)(\tilde{Y}) \subset \tilde{Y}, t \in \mathbb{C} \}.$$

X complex manifold, dim X = n

 $\mathcal{C} \subset \mathbb{P}T(X)$ projective and flat over X

 $\mathcal{C}_x \subset \mathbb{P}T_x(X)$ irreducible, reduced

 $\mathfrak{f}:=\operatorname{germs}$ of $\mathcal{C}\text{-preserving holomorphic vector}$ fields at x

For $\ell \geq -1$, let

$$\mathfrak{f}^{\ell} = \{ Z \in \mathfrak{f} : ord_x(Z) \ge \ell + 1 \}$$
.

Proposition. For $k \geq 0$, identify $\mathfrak{f}^k/\mathfrak{f}^{k+1} \subset S^{k+1}T_x^*(X) \otimes T_x(X)$ by taking leading terms of Taylor expansions of the vector fields at x. Then

$$\mathfrak{f}^k/\mathfrak{f}^{k+1} \subset aut(\mathcal{C}_x)^{(k)}$$
,

the k-th prolongation of the Lie algebra of infinitesimal automorphisms of the projective variety C_x .

Proof. Z hol. vector field at x, defined on $U \subset X$, $ord_x Z \geq k+1$

$$j_x^{j+1}(Z) \in S^{k+1}T_x^*(X) \otimes T_x(X)$$

Z can be lifted canonically to Z' on $\mathbb{P}T(U)$: $Z = \inf$ generator of $\{f_t\}$, germs of biholomorphism at x

 $f_t: U \to X \text{ gives } F_t: T(U) \to T(X),$ where $F_t(x,\eta) = (f_t(x), df_t(x)(\eta)).$

$$\eta \in T_x(X), \ ord_{\eta}(Z') \ge k,$$

$$j_{\eta}^k \in S^k T_{\eta}^*(T(X)) \otimes T_{\eta}(T(X))$$
.

For
$$k = 0, j_{\eta}^{0} \in T_{\eta}(T(X)).$$

For
$$k \ge 1$$
, $Z'|_{T_x(X)} \equiv 0$,

$$j_{\eta}^k \in S^k N_{\eta}^* \otimes T_{\eta}(T(X))$$
,

where N = normal bundle of $T_x(X)$ in T(X), $N \cong \pi^*T(X)$. Since $ord_x(Z) \geq k+1$, $\pi_*(j_\eta^k(v_1,\ldots,v_k)) = 0$ for $v_1,\ldots,v_k \in T_x(X)$. Hence,

$$j_{\eta}^{k}(Z') \in S^{k}N_{\eta}^{*} \otimes T_{\eta}(T_{x}(X)) \cong S^{k}T_{x}^{*}(X) \otimes T_{x}(X)$$
.

Straightforward calculations give

$$j_n^k(Z')(v_1,\ldots,v_k) = j_x^{k+1}(Z)(v,v_1,\ldots,v_k)$$

where we write η and v for the same thing, η when it is consider a point on the fiber $T_x(X)$, v when it is considered a tangent vector at x.

Lie algebras of infinitesimal linear automorphisms

Theorem. Let $Y \subset \mathbb{P}V$ be an irreducible, smooth, non-degenerate subvariety. Then $aut(Y)^{(2)} = 0$, unless $Y = \mathbb{P}V$.

Geometric proofs of results on the prolongation of Lie algebras

Proposition 1. Let $\mathfrak{g} \subset \mathfrak{gl}(n)$ be a Lie subalgebra which acts irreducibly on \mathbb{C}^n . Then $\mathfrak{g}^{(2)} = 0$ unless \mathfrak{g} acts transitivley on \mathbb{P}_{n-1} , i.e., unless $\mathfrak{g} = \mathfrak{gl}(n)$, $\mathfrak{sl}(n)$, $\mathfrak{csp}(m)$ or $\mathfrak{sp}(m)$, where in the last two cases n = 2m.

Proposition 2. Let $\mathfrak{g} \subset \mathfrak{gl}(n)$ be a Lie subalgebra which acts irreducibly on \mathbb{C}^n . Suppose $\mathfrak{g}^{(2)} = 0$. Then $\mathfrak{g}^{(1)} = 0$ unless the image of \mathfrak{g} in $\mathfrak{sl}(n)$ is isomorphic to the semi-simple part of the isotropy representation of an irreducible Hermitian symmetric space of compact type of rank > 2.

Leading Terms of Hol. Vector Fields

 $0 \in \Omega \subset \mathbb{C}^n$; $Z = \text{hol. vector field on } \Omega$

$$\operatorname{ord}_0(Z) = p \ge 0$$

$$Z = \sum_{i_1 \cdots i_p} A^k_{i_1 \cdots i_p} z^{i_1} z^{i_2} \cdots z^{i_p} \frac{\partial}{\partial z_k} + O(|z|^{p+1})$$

Principal term $\rho(Z)$ at o:

$$\rho(Z) = A \in S^p T_o^* \otimes T_o .$$

Lemma. $Z, W = germs \ of \ hol. \ vector \ fields$ at o, $ord_o(Z) = p$, $ord_o(Z) = q$. Then $ord_o[Z, W]$ $\geq p + q - 1$. Suppose $ord_o[Z, W] = p + q - 1$, $p+q\geq 1$. Then,

$$\rho([Z, W]) = \text{bilinear expression in } \rho(Z), \, \rho(W).$$
For $p = 1$, so that $\rho(Z) \in \text{End}(T_o)$,

For
$$p = 1$$
, so that $\rho(Z) \in \text{End}(T_o)$,

$$\rho([Z, W]) = \rho(Z)(\rho(W)) .$$

Symbolic Lie algebra of leading terms

Hermitian symmetric case

$$\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$$

$$= \mathfrak{m}^- \oplus \mathfrak{k}^{\mathbb{C}} \oplus \mathfrak{m}^+ .$$

$$[\mathfrak{m}^-, \mathfrak{m}^-] = [\mathfrak{m}^+, \mathfrak{m}^+] = 0$$

$$\mathfrak{m}^- = \{ Z \in \Gamma(S, T_S) : \operatorname{ord}_o Z \ge 2 \} .$$

All Lie brackets determined by principal terms:

$$[k, m^+], [k, m^-], [k, k'], [m^-, m^+]$$
.

Deformation Rigidity

Given
$$\pi: \mathfrak{X} \to \Delta$$

$$\mathfrak{g}^t = \mathfrak{aut}(X_t) \text{ for } t \neq 0$$

$$\mathfrak{g}^0 = \text{Limiting Lie algebra .}$$

More precisely,

 $\mathcal{T} = \text{relative tangent bundle}$ $\pi_* \mathcal{T} = \mathcal{O}(V), V \text{ hol. vector bundle on } \Delta$ $\mathfrak{g}^t := V_t, \text{ Lie alg. structure induced from } \mathcal{T}.$

Assume stability of $C_{\sigma(t)}$ as $t \mapsto 0$. Define

$$J_t^{(k)} = \{ Z \in \mathfrak{g}^t : \operatorname{ord}_{\sigma(t)}(Z) \ge k \}$$
$$I_t = \{ Z \in \mathfrak{g}^t : Z(\sigma(t)) = 0 , A_Z \in \mathbb{C} \cdot id \} .$$

For $t \neq 0$, any $Z \in E_t$, $A_Z \not\equiv 0$ determines a \mathbb{C}^* -action. Since $\mathcal{C}_{\sigma(0)} \subset \mathbb{P}T_{\sigma(0)}(X_0)$ is conjugate to $\mathcal{C}_o \subset \mathbb{P}T_o(S)$

$$\dim E_0^{(2)} \le n$$
, $E_0^{(k)} = 0$ for $k \ge 3$
 $\dim I_0 \ge n + 1$ (upper semicontinuity)
 $\dim I_0 \le n + 1$ (VMRT).

Therefore, dim $I_0 = n + 1$ and \exists a hol. vector bundle I of rank n + 1, $\mathcal{I} = \mathcal{O}(I)$.

 $\exists Z \in I_0 \text{ such that } A_Z \not\equiv 0, \text{ and we have a hol.}$ family of \mathbb{C}^* -actions T_t .

 $T_t = \{e^{\lambda E_t}\}, \text{ period } 2\pi i.$

$$\mathfrak{g}_{i}^{t} \stackrel{\text{def}}{=} \{Z \in \mathfrak{g}^{t} : [E_{t}, Z] = iZ\}$$

$$\mathfrak{g}^{t} = \mathfrak{g}_{-1}^{t} \oplus \mathfrak{g}_{0}^{t} \oplus \mathfrak{g}_{1}^{t}.$$

For $t \neq 0$,

$$\mathfrak{g}_0^t \cong \{ A \in \operatorname{End}_{\sigma(t)}(T_{\sigma(t)}) : A|_{\tilde{\mathcal{C}}_{\sigma(t)}}$$
is tangent to $\tilde{\mathcal{C}}_{\sigma(t)} \}$.

Dimension count forces the same for t = 0. $[\mathfrak{g}_1^0, \mathfrak{g}_1^0] = [\mathfrak{g}_{-1}^0, \mathfrak{g}_{-1}^0] = 0$. Lie algebra structure on \mathfrak{g}^0 completely determined by leading terms. Hence $X_0 = G/P \cong S$.

Grassmannian of isotropic k planes in a symplectic 2n-dimensional vector space W, 1 < k < n.

For S of type (C_n, α_k) , $2 \le k \le n$, we call S a symplectic Grassmannian := $S_{k,n}$.

 $k=n\Rightarrow S=$ Lagrangian Grassmannian, Hermitian symmetric.

Minimal rational curves on $S_{k,n}$

 $W \cong \mathbb{C}^{2n}$; (W; A) symplectic vector space $V^{(k)} \subset W$ isotropic k-plane, $L \subset S_{k,n}$ line: $E^{(k-1)} \subset V^{(k)} \subset F^{(k+1)}$

Two isomorphism classes of lines:

- (a) $F^{(k+1)} \subset W$ isotropic; i.e. $A|_{F \times F} \equiv 0$.
- (b) $F^{(k+1)} \subset W$ not isotropic.

Highest weight lines: Case (a)

$$V_t \subset F, A|_{V_t \times V_t} \equiv 0$$

$$\dot{V}_t|_{t=0}$$
 gives $\eta \in \text{Hom}(V, W/V)$.

From $A(v_t, v_t') = 0$ $v_t, v_t' \in V_t$ we have

$$A(v, \dot{v}') = 0 \Rightarrow \eta \in \text{Hom}(V, V^{\perp}/V)$$
.

$$V \subset V^{\perp}$$
, dim $V^{\perp} = 2n - k$.

Minimal Invariant Distribution

$$S_{k,n} \subset Gr(k,\mathbb{C}^{2n}),$$

$$T_{Gr} \cong \operatorname{Hom}(V \otimes Q) = V^* \otimes Q$$

$$\operatorname{Hom}(V, V^{\perp}/V) \subset T_{S_{k,n}}$$

$$D_{[V]} := \operatorname{Hom}(V, V^{\perp}/V) \subsetneq T_{S_{k,n}}$$

D = minimal invariant distribution

Geometric features of $S = S_{k,n}$:

- $C_0 \subset \mathbb{P}T_0(S)$ not homogeneous, $C_0 = \text{VMRT}$
- $C_0 \subset \mathbb{P}T_0(S)$ linearly non-degenerate
- minimal invariant distribution D spanned by highest weight lines (not by C_0)
- complex structure of S determined not just by VMRTs, but also by the Frobenius form $\varphi: \wedge^2 D \to T/D$
- φ cannot by recovered from minimal rational curves and their VMRTs

Gradation on the maximal parabolic

$$\mathfrak{p} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \subset \mathfrak{g} = \Gamma(S, T_S)$$

 $\mathfrak{g}_0 = \mathfrak{z} \oplus \mathfrak{l} = \text{centre} \oplus \text{Levi factor}$

Represent \mathfrak{g} by global vector fields Z.

$$Z \in \mathfrak{p} \Leftrightarrow Z(o) = 0, \ o \in S \text{ base point},$$

 $Z = \sum A_i^j z^i \frac{\partial}{\partial z_i} + \cdots$

•
$$Z \in \mathfrak{g}_{-2} \Leftrightarrow A \equiv 0$$

•
$$Z \in \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \Leftrightarrow A|_{D_0} \equiv 0$$

- $Z \in \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{z}$ if and only if $[A]|_{\mathbb{P}D_0} \equiv 0$, $A: D_0 \to D_0$ given by $A(\eta) = \lambda \eta$.
- Any $Z \in \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{z}$, $Z \notin \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$, generates a \mathbb{C}^* -action.

Recovery of \mathbb{C}^* -action on the central fiber

 $\pi: \mathfrak{X} \to \triangle$ regular family, $X_t \cong S_{k,n}$ for $t \neq 0$.

To recover \mathbb{C}^* -action on X_0 , needs to prove that $Z_t \rightsquigarrow Z_0$ does not degenerate.

Take $\sigma: \triangle \to \mathfrak{X}$ a "generic" cross-section

$$H_t := \{ Z \in \Gamma(X_t, T_{X_t}) : \text{ord}_{\sigma(t)} Z \ge 2 \}$$
.

Trouble: dim H_t may jump at t = 0.

Key point:

- Methods in Theorem 1 on hol. vector fields force that $\operatorname{ord}_{\sigma(0)} Z_0 \leq 2$ for any $Z_0 \in \Gamma(X_0, T_{X_0}), Z_0 \not\equiv 0.$
- They give actually $\dim H_0 = \dim \mathfrak{g}_{-2}$.

Define now

$$F_t = \{ Z \in \Gamma(X_t, T_{X_t}) : A(Z)|_{D_0} \equiv 0 \}$$

$$E_t = \{ Z \in \Gamma(X_t, T_{X_t}) : [A]|_{\mathbb{P}D_0} \equiv 0 \}$$

This gives a geometric filtration of parabolic subalgebras stable under passage to limits as $t\mapsto 0$

$$H_t \subset F_t \subset E_t$$
 such that, $\forall t \in \triangle$,

- $\dim H_t = \dim \mathfrak{g}_{-2};$
- $\dim F_t = \dim \mathfrak{g}_{-2} + \dim \mathfrak{g}_{-1};$
- $\dim E_t = \dim \mathfrak{g}_{-2} + \dim \mathfrak{g}_{-1} + 1$

Some element Z_0 of $E_0 - F_0$ gives $[Z_0]|_{D_0} \equiv id$.

With some work Z_0 integrates to a \mathbb{C}^* -action on X_0 to define $X_0 \cong S_{k,n}$.

Ideas of proof of deformation rigidity after extending \mathbb{C}^* -actions

The simplest case: $X_t \cong S_{2,3}$ for $t \neq 0$

 $S_{2,3} = \{\text{isotropic 2-planes in 6-dim symplectic vector space}\}, dim S_{2,3} = 7,$

 $D_0 \cong U_0 \otimes Q_0$, $T_0/D_0 \cong S^2U_0$; where $U_0 \cong \mathbb{C}^2$ as an $GL(2,\mathbb{C})$ -rep. space; $Q_0 \cong \mathbb{C}^2$ as an $Sp(1) \cong SL(2)$ rep. space.

$$rank(D) = 4$$
, $rank(T/D) = 3$.

Frobenius forms

$$\varphi(u \otimes q, u' \otimes q') = \nu(q, q')u \circ u'$$

 $\nu = \text{symplectic form on } Q_0 \cong \mathbb{C}^2.$

Degeneration of Frobenius forms φ_t

 \leftrightarrow Degeneration of symplectic forms ν_t .

For $S = S_{2,3}$ only possibility of degeneration is caused by the total degeneration of ν_t to $\nu_0 \equiv 0$.

Extension of \mathbb{C}^* -action T_t on X_t ; $E_t = \text{normalized infinitesimal generator},$ $\sigma(t) \in X_t \text{ isolated zero of } E_t; E_t \to E_0. \text{ Recall}$

$$\mathfrak{g}^t := \mathfrak{aut}(X_t) \text{ for } t \neq 0$$

 \mathfrak{g}^0 = Lie algebra of limiting hol. vector fields

$$\mathfrak{g}^t = \mathfrak{g}_{-2}^t \oplus \mathfrak{g}_{-1}^t \oplus \mathfrak{g}_0^t \oplus \mathfrak{g}_1^t \oplus \mathfrak{g}_2^t$$

$$\mathfrak{h}^t := \mathfrak{g}_{-2}^t \oplus \mathfrak{g}_0^t \oplus \mathfrak{g}_2^t$$

$$\mathfrak{h}^t \mapsto \mathfrak{h}^0 \cong \mathfrak{sp}(2, \mathbb{C}) \text{ no degeneration }.$$

Only degeneration

$$[\cdot,\cdot]:\mathfrak{g}_1^0\times\mathfrak{g}_1^0\to\mathfrak{g}_2^0$$
 trivial.

Orbit of $\sigma(0) = x_0 \in X_0$ under $H^0 := Exp(\mathfrak{h}^0)$ gives $N_0 \cong$ the Lagrangian Grassmannian of rank $2 \cong Q^3$. Choose $N_t \mapsto N_0, N_t \cong Q^3$.

Total degeneration of ν_t (and hence φ_t) gives the structure of the total space of a rank 4 holomorphic vector bundle $V_0 \to N_0$ on $X_0 -$ B, codim $B \ge 2$.

- $V_0 \cong U_0 \otimes Q_0$, U_0 rank-2, Q_0 rank-2
- $V_0 \cong \text{normal bundle } \mathcal{N}_0 \text{ of } N_0 \text{ in } X_0$
- $\bullet \mathcal{N}_t \mapsto \mathcal{N}_0. \ \mathcal{N}_t \cong U_t \otimes Q_t;$

$$Exp(\mathfrak{g}_0^t) \approx GL(2) \times Sp(1).$$

- GL(2) acts on $U_{x_t} \cong \mathbb{C}^2$;
- Sp(1) acts on $Q_{x_t} \cong (\mathbb{C}^2, \nu_t)$.
- $U_t \mapsto U_0$ no degeneration; $Q_t \mapsto Q_0$ trivial.

Fibers of $V_0 \mapsto X_0$ gives $V_y \cong \mathbb{C}^4$.

 $\overline{V}_y \subset X_0$ smooth, by showing that \overline{V}_y is a component of the fixed point set of some \mathbb{C}^* -action.

Using rational curves and Grassmann structures, we show $\overline{V}_y \cong G(2,2) \cong Q^3$. We have

- $\mu: Y \to N_0$ a G(2,2)-bundle; $f: Y \to X_0$ modification;
- $\overline{V}_y = V_y \coprod \text{hypersurface } I_y;$
- I contains isolated singular point ∞_y ;
- infinity section $\Gamma_{\infty} = {\{\infty_y : y \in N_0\}}.$

By studying rational curves on an X_0 , we show that $f(\Gamma_{\infty}) = \omega$.

GL(2) fixes ω . Sp(2) fixes ω .

Each factor of $GL(2) \times Sp(2)$ acts nontrivially on $T_{\omega}(X_0) \cong \mathbb{C}^7$.

Lowest irreducible representation of $GL(2) \times Sp(2)$ where each factor acts nontrivially is of dimension 8 > 7! CONTRADICTION!

General case

- 1. The same argument works for $S_{2,\ell}$ to contradict total degeneration. It also works for $S_{k,\ell}$ by a slicing argument, using \mathbb{C}^* -action.
- 2. In the case of <u>partial degeneration</u> we recover the structure of the total space $V_0 \rightarrow S_{k,m}$ for some $m, k < m < \ell$; use a slicing argument by \mathbb{C}^* -action to reduce to the case of k = 2.
- 3. To get $V_0 \mapsto S_{k,m}$ in (2) we consider the symbolic Lie algebra of leading terms of hol. vector fields in \mathfrak{g}_i^0 , i = -2, -1, 0, 1, 2. There is $\mathfrak{h}^0 \subset \mathfrak{g}^0$ s.t. $\mathfrak{h}^0 = \mathfrak{h}_{-2}^0 \oplus \mathfrak{h}_{-1}^0 \oplus \mathfrak{h}_0^0 \oplus \mathfrak{h}_1^0 \oplus \mathfrak{h}_2^0$ is isomorphic as a graded Lie algebra to $\mathfrak{sp}(m)$. Here $\mathfrak{h}_1^0 = U_{x_0} \otimes Q'_{x_0}$, where

 $Q'_{x_0} \subset Q'_{x_0}$ such that $\nu_0|_{Q'_{x_0}}$ is non-deg., $Q'_{x_0} \oplus \operatorname{Ker} \nu_0 = Q_{x_0}$.

Uniqueness of tautological foliation:

 $\rho: \mathcal{U} \to \mathcal{K}, \ \mu: \mathcal{U} \to X$ universal family

 $\pi: \mathcal{C} \to X$ family of VMRTs

 $\mathcal{F} = 1 - \text{dim. multi-foliation on } \mathcal{C}$ defined by tautological liftings \hat{C} of C, $\mathcal{F} := tautological$ foliation

For C standard $T_X|_C \cong \mathcal{O}(2) \oplus \mathcal{O}(1)^p \oplus \mathcal{O}^q$. Write $T_xC = \mathbb{C}\alpha$, $P_\alpha = (\mathcal{O}(2) \oplus \mathcal{O}(1)^p)_x$.

$$\mathcal{P}_{[\alpha]} = \{ \eta \in T_{[\alpha]}(\mathcal{C}) : d\pi(\eta) \in P_{\alpha} \}.$$

As $T_{[\alpha]}(\mathcal{C}_x) \cong P_{\alpha}/\mathbb{C}\alpha$, \mathcal{P} is defined by \mathcal{C} .

W = distribution on K defined by

$$\mathcal{W}_{[C]} = \Gamma(C, \mathcal{O}(1)^p) \subset \Gamma(C, N_{C|X}) \cong T_{[C]}(\mathcal{K}).$$

We have

$$\mathcal{P} = \rho^{-1} \mathcal{W} , \quad \mathcal{F} = \rho^{-1}(0) \Rightarrow [\mathcal{F}, \mathcal{P}] \subset \mathcal{P} .$$

Proposition

Assume Gauss map on a generic VMRT \mathcal{C}_x to be injective at a generic $[\alpha] \in \mathcal{C}_x$. Then, $[v, \mathcal{P}] \subset \mathcal{P} \Rightarrow v \in \mathcal{F}, i.e.,$ $Cauchy\ Char.\ (\mathcal{P}) = \mathcal{F}.$

Corollary

Assume $U \subset X$, $U' \subset X'$, $f: U \xrightarrow{\cong} U'$, $[df]^*\mathcal{C}' = \mathcal{C}|_U$. Then,

f maps open pieces of mrc on X to open pieces of mrc on X.

Proof. Write $f^*\mathcal{C}'$ for $[df]^*\mathcal{C}'$, etc. Then, $f^*\mathcal{C}' = \mathcal{C}|_U$ implies $f^*\mathcal{P}' = \mathcal{P}|_U$. Thus,

$$[f^*\mathcal{F}', \mathcal{P}] = [f^*\mathcal{F}', f^*\mathcal{P}']$$
$$= f^*[\mathcal{F}', \mathcal{P}'] \subset f^*\mathcal{P}' = \mathcal{P}.$$

Proposition implies $f^*\mathcal{F}' = \mathcal{F}$. \square

Theorem (Hwang-Mok, JMPA 2001)

X projective uniruled, $b_2(X) = 1$,

 \mathcal{K} minimal rational component on X.

Assume

(†) C_x irreducible for x generic, Gauss map on C_x generically finite.

Then,

 (X, \mathcal{K}) has the Cartan-Fubini Extension Property

Examples:

- (1) $X = G/P \neq \mathbb{P}^N$, G simple, P maximal parabolic.
- (2) $X \subset \mathbb{P}^N$ smooth complete intersection, Fano with $\dim(X) \geq 3$, $c_1(X) \geq 3$.

Ideas of proof of CF:

(1) $f:(X,\mathcal{K})\to (X',\mathcal{K}')$ gen. finite surj. map, $f^*\mathcal{C}'=\mathcal{C}$ (i.e., VMRT — preserving.)

Uniqueness of tautological foliation $\Rightarrow f$ preserves tautological foliation

(2) Analytic continuation along mrc, obtained by passing to moduli spaces of mrc:

 $f: X \to X'$ induces $f^{\#}: \mathcal{V} \to \overline{\mathcal{K}'}$ on some open subset $\mathcal{V} \subset \mathcal{K}$.

Now, interpret a point $x \in X$ as the intersection of C, $[C] \in \mathcal{K}_x$, to do analytic continuation.

(3) (X, \mathcal{K}) is rationally connected, Analytic cont. along chains of mrc defines a multi-valued map $F: X \to X'$. (4) $b_2(X) = 1 \Rightarrow \text{any mrc } C \text{ intersects any hypersurface } H \subset X.$

Analytic cont. along C forces univalence of F, viz., F is a birational map preserving VMRTs

- (5) birational + VMRT-preserving⇒ biholomorphic
- (a) VMRT-preserving $\Rightarrow R(F) = \emptyset$, R: ramification divisor
- (b) Embed X to \mathbb{P}^N by $K_X^{-\ell}$, X being Fano, etc. $R(F) = \emptyset$ gives hol. extension of F^*s for sections s of $K_X^{-\ell}$,

 $F: X \to X'$ is the restriction of some projective linear isomorphism of \mathbb{P}^N .

Local rigidity of holomorphic maps

 $\pi:\mathfrak{X}\to\triangle$ regular family

$$X_t$$
 Fano, $\operatorname{Pic}(X_t) \cong \mathbb{Z}$

 X_0 carries a rational curve C, with trivial normal bundle

X' projective manifold

 $f_t: X' \to X_t$ holomorphic family of generically finite surjective holomorphic maps. Then,

There exist $\varphi_t : X_0 \xrightarrow{\cong} X_t$ such that $f_t \equiv \varphi_t \circ f_0$

Application of Cartan-Fubini

Theorem (Hwang-Mok, JMPA 2001)

X Fano manifold; $b_2(X) = 1$

 \mathcal{K} : minimal rational component

 \mathcal{C}_x : VMRT of $(X, \mathcal{K}), x \in X$ generic

Y projective manifold

 $f_t: Y \to X$ one-parameter family of surjective finite holomorphic maps.

Assume dim $C_x := p > 0$, and $C_x \subset \mathbb{P}T_x(X)$ satisfies the Gauss map condition (†). Then,

$$\exists \Phi_t \in \operatorname{Aut}(X) \text{ such that}$$
 $f_t \equiv \phi_t \circ f_0; \ \Phi_0 = id.$

Theorem (Hwang-Mok 2004, AJM). Local rigidity for $f_t: Y \to X_t$ remains valid under the assumption that X_0 carries a minimal component \mathcal{K}_0 whose general VMRT is nonlinear.

New solution of Lazarsfeld Problem

Y = G/P G simple, P maximal parabolic

Take
$$X_t = X, f: Y \to X$$
.

Assume generic $C_x \subset \mathbb{P}T_x(X)$ non-linear.

Local rigidity \Rightarrow Any holomorphic vector field \mathcal{Z} on Y descends to a holomorphic vector field \mathcal{W} on X such that $f:Y\to X$ is equivariant w.r.t. 1-parameter groups generated by \mathcal{Z} and \mathcal{W} .

R := ramification divisor of f

$$B := f(R)$$

Then, W is tangent to B.

Hence, \mathcal{Z} is tangent to R,

contradicting homogeneity of Y = G/P!

Bounding degrees of holomorphic maps

X' projective manifold

 $\mathcal{F}_0 = \{X \text{ Fano: } \operatorname{Pic}(X) \cong \mathbb{Z}; \exists \text{ rat. curve} \}$ $C \subset X$ with trivial normal bundle} Then,

There exists a constant C(X') such that

$$\forall f: X' \to X, \ X \in \mathcal{F}_0$$

 $\forall f: X' \to X, \ X \in \mathcal{F}_0$ generically finite, surjective hol. map

$$\deg(f) \le C(X').$$

Finiteness Theorem

Given X', there exists at most finitely many pairs (X, f) of such maps $f: X' \to X$.

Finiteness Theorem in 3 dimensions

Y Fano manifold, $Pic(Y) \cong \mathbb{Z}$, dim Y = 3.

Then, there are at most finitely many projective manifolds X for which there exists a surjective holomorphic map

$$f:Y\to X$$
.

Proof.

From sol'n to Lazarsfeld's Problem,

$$Y \cong \mathbb{P}^3 \Rightarrow X \cong \mathbb{P}^3;$$

 $Y \cong Q^3 \Rightarrow X \cong Q^3 \text{ or } \mathbb{P}^3.$

Otherwise, Y carries a rational curve with trivial normal bundle, from Iskovskih's classification. Then,

$$X \cong \mathbb{P}^3$$
, Q^3 or

a *finite* no. of possibilities in \mathcal{F}_0 .

Webs on a Fano manifold

 $\mathcal{F}_0 = \{X \text{ Fano: } Pic(X) \cong \mathbb{Z}; \exists \text{ a rat. curve}$ $C \subset X \text{ with } trivial \text{ normal bundle} \}$

$$X \in \mathcal{F}_0, C \subset X, N_{C|X} \cong \mathcal{O}^{n-1}$$

 $\mathcal{K} = \text{minimal rational component}, [C] \in \mathcal{K}.$

 $\mu: \mathcal{U} \to X, \, \rho: \mathcal{U} \to \mathcal{K}$ universal family

 $X \in \mathcal{F}_0 \Leftrightarrow \text{For } \pi : \mathcal{C} \to X \text{ of VMRTs, dim } \mathcal{C}_x = 0 \text{ for } x \text{ generic.}$

 $\mathcal{R} \subset \mathcal{U}$ ramification divisor, $M = \mu(\mathcal{R}) \subset X$ branching divisor

 $M := discriminantal \ divisor \ of \ \mathcal{K}.$

 $L \subset X$ smallest hypersurface such that $\pi: \mathcal{C} \to X$ is unramified over X - L - Z for some $Z \subset X$ of codim. $\geq 2, M \subset L$.

 $L := extended \ discriminantal \ divisor \ of \ \mathcal{K}$

Principal properties on webs

- $igllet f: X' \to X$ gen. finite surj. hol. map, $\mathcal K$ web of rational curves on X
 - $\Rightarrow f^{-1}\mathcal{K}$ finite union of webs of rational curves on X'.
- $\oint f^{-1}\mathcal{K} := \mathcal{K}' = \mathcal{K}_1 \cup \cdots \cup \mathcal{K}_m$ $L' := L_{\mathcal{K}_1} \cup \cdots \cup L_{\mathcal{K}_m}, \text{ etc.}$ Then,

$$f^{-1}(L) \subset L'$$
.

X projective manifold \mathcal{K} web of rat. curves on X

L extended discriminantal divisor of (X, \mathcal{K}) , $L_1 \subset L$ component;

 $y \in L_1$ generic, U small nbd. of y;

 $\mathcal{G} \subset \mathcal{C}|_U$ union of components \mathcal{G}_i such that $\mathcal{G}_i \cap \mathbb{P}T_y(L_1) \neq \emptyset$

Assume

(†) $\mathcal{G} \neq \emptyset$ and $\pi|_{\mathcal{G}}$ gen. m-to-1, m > 1.

$$V = v_1 \frac{\partial}{\partial z_1} + \dots + v_n \frac{\partial}{\partial z_n}$$

hol. vector field defining the multi-foliation on U given by min. rat. curves. Here, v_i can either be considered

- (a) as multi-valued hol. functions on U; or
- (b) as hol. functions on the normalization \mathcal{G} of \mathcal{G} .

The discriminantal order

$$Q = (q^{ij})$$
, $n \times n$ skew-sym. matrix

$$\Gamma_Q(x) := \prod_{1 < \alpha \neq \beta < m} \left(\sum_{i,j=1}^n q^{ij} v_i(x^{\alpha}) v_j(x^{\beta}) \right)$$

 $\gamma_Q > 0 = \text{vanishing order of } \Gamma_Q \text{ along } L_1$

 $\delta_y := \min_{Q} \gamma_Q \ the \ discriminantal \ order$.

Proposition

 $f: X' \to X, R = \text{ramif. divisor},$

 $M \subset X$ discriminantal divisor,

 $M_1 \subset M$ component

 $L_1' \subset f^{-1}(M_1) \subset L'$ component s.t. $L_1' \subset R$.

Local sheeting no. of f at a gen. point of $L'_1 := r > 1$. Then,

$$r \leq m\delta_{L'_1}$$
.

Solution to the Frankel Conjecture:

Theorem (Siu-Yau 1980).

(X,g) compact Kähler, Bisect (X,g) > 0 $\Rightarrow X \cong \mathbb{P}^n$.

Solution to the Generalized Frankel Conjecture:

Theorem (Mok 1988).

(X,g) compact Kähler, Bisect $(X,g) \ge 0$ $\Rightarrow \tilde{X} \cong \mathbb{C}^m \times Hermitian \ symmetric \ space \ of$ compact type.

For X Fano, we have

 $X \cong Hermitian \ symmetric \ space \ of \ com-$ pact type.

Solution to the Harshorne Conjecture:

Theorem (Mori 1979).

 $X \text{ projective manifold, } T_X \text{ ample}$ $\Rightarrow X \cong \mathbb{P}^n.$

How about a "Generalized Hartshorne Conjecture"?

Conjecture (Campana-Peternell 1991).

X Fano manifold, T_X numerically effective $\Rightarrow X \cong rational\ homogeneous\ space$

Solved for dim ≤ 3 independently by Campana-Peternell and Fangyuan Zheng:

Case of 3 dimensions:

$$X \cong \mathbb{P}^3$$
, Q^3 , $\mathbb{P}^1 \times \mathbb{P}^2$, $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ or $\mathbb{P}(T_{\mathbb{P}^2})$

Theorem (Mok 2002, Trans. AMS).

X projective manifold

$$b_2(X) = b_4(X) = 1,$$

 $T_X \geq 0$ (numerically effective).

Suppose dim $C_x = 1$ for x generic.

Then,

$$X \cong \mathbb{P}^2$$
, Q^3 or $K(G_2)$,

where $K(G_2) = 5$ -dimensional Fano contact homogeneous manifold associated to the exceptional Lie group G_2 .

Theorem (Hwang 2004).

The condition $b_4 = 1$ can be dropped.

Campana-Peternell 1993

Their conjecture is valid in dimension 4 except for the possible exception of a Fano manifold X of Picard number 1 with nef tangent bundle such that $c_1(X) = 1$ (i.e. positive generator of $Pic(X) \cong \mathbb{Z}$).

Elimination of the exceptional case $c_1 = 1$

- p = 0 implies the existence of a 1-dim (hence integrable) distribution spanned by VMRTs, contradicting $b_2 = 1$
- p = 1 ruled out by Mok + Hwang's improvement
- p=2 would contradict Miyaoka's characterization of the hyperquadric
- p=3 ruled out by the characterization of projective spaces of Cho-Miyaoka-Shepherd-Barron, Kebekus

Theorem (Hwang-Mok 2004). Let S = G/P be a rational homogeneous manifold of Picard number 1 corresponding to a long simple root α . (We say that S is of type (\mathfrak{g}, α)), $S \ncong \mathbb{P}^n$.

Let X be a Fano manifold of Picard number 1 admitting a component K of minimal rational tangents. Write

$$C_0(S) \subset \mathbb{P}T_o(S)$$
, $o \in S$ reference point;
 $C_x(\mathcal{K}) \subset \mathbb{P}T_x(X)$, $x \in X$ general point

for varieties of minimal tangents. Then,

$$\begin{array}{c|c}
\mathcal{C}_x(\mathcal{K}) \subset \mathbb{P}T_o(X) & congruent \ to \\
\mathcal{C}_0(S) \subset \mathbb{P}T_o(S) \\
\Rightarrow & X \cong S
\end{array}$$

Ideas of proof

- parallel transport along tautological liftings \hat{C} of minimal rational tangents
- behavior of second fundamental forms σ of $\mathcal{C}_x \subset \mathbb{P}T_x(X)$ invariant under parallel transport, hence kernels, images, etc. are invariant.
- $C_o \subset \mathbb{P}T_o(S)$ are quadratic or cubic Hermitian symmetric subspaces. If irreducible and of rank > 1 the G-structure on C_o is determined by second and third fundamental forms σ and κ , which determine $C_{[\alpha]}(C_o)$.
- In the reducible case transversal foliations are preserved by parallel transport.
- The special case of the second Veronese embedding of a projective space can be recovered from the surjectivity of the second fundamental form σ .

Theorem (Hwang-Mok 2004, JAG).

 $X \text{ Fano manifold}, \operatorname{Pic}(X) \cong \mathbb{Z}.$

M an irreducible component of the space of minimal rational curves.

 $M^x \subset M$ subset of members of M passing through a general point $x \in X$.

If M^x is irreducible, and $\dim(M^x) \geq 2$.

Then, $Aut_0(X) = Aut_0(M)$.

Remarks. Theorem fails when $\dim(M^x) = 0, 1$.

Examples:

(a) $\dim(M^x) = 0$. Take $X = \operatorname{codim} - 3$ general linear section of G(2,3), $M \cong \mathbb{P}^2$

$$\operatorname{Aut}_0(X) \cong \mathbb{P}SL(2,\mathbb{C});$$

$$\operatorname{Aut}_0(M) \cong \mathbb{P}SL(3,\mathbb{C}).$$

(b)
$$\dim(M^x) = 1$$
. Take $X = Q_3$, $M \cong \mathbb{P}^3$
 $\operatorname{Aut}_0(X) \cong \mathbb{P}SO(5, \mathbb{C});$
 $\operatorname{Aut}_0(X) \cong \mathbb{P}SL(4, \mathbb{C}).$

Applications

- Deformation rigidity of complex structure under Kähler deformation
- Characterization of Fano manifolds with geometric structures, HM 1997, Hong 2001, HM 2004
- Holomorphic maps onto Fano manifolds
 - Lazarsfeld-type problems
 HM 1999, 2001, Lau 2003, 2004
 - Severi-type finiteness theorems,
 HM 2003
 - Local rigidity, HM 2001, 2003
- Stability of tangent bundles, Hwang 1998, HM 1999
- Chow spaces of rational curves, HM 2004
- Moduli spaces of Hecke curves
 Hwang 2001, Hwang-Ramanan 2003,
 Sun 2004
- Nefness of tangent bundles, Mok 2002

Open Problems

(1) Irreducibility of VMRTs

Conjecture: X uniruled, projective

 \mathcal{K} minimal rational component, $p(X,\mathcal{K}) > 0$.

Then, C_x is *irreducible* for generic in X.

Special case:

If C_x is a union of projective linear subspaces and $p(X, \mathcal{K}) > 0$, then C_x is irreducible.

Consequence of special case

 $f: X' \to X$ a generically finite map onto a Fano manifold X of Picard number $1, X \not\cong \mathbb{P}^n$. Then f is locally rigid when X' is fixed and X is allowed to vary.

(2) Contact Fano manifolds

Conjecture:

 $X \text{ Fano, } \operatorname{Pic}(X) \cong \mathbb{Z},$

equipped with a contact structure

 \Rightarrow X rational homogeneous.

(3) Finite holomorphic maps

X, Y n-dim. Fano manifolds of Picard number $1, X, Y \not\cong \mathbb{P}^n$. Then

 $deg(f) \leq function of Chern numbers of X, Y$.

Consequence

$$X \not\cong \mathbb{P}^n$$
, $\operatorname{Pic}(X) \cong \mathbb{Z}$
 $\Rightarrow \operatorname{End}(X) = \operatorname{Aut}(X)$

(4) Vector Fields

Conjecture:

X Fano, $Pic(X) \cong \mathbb{Z}$. Then,

- (a) At a general point \mathbb{R} holomorphic vector fields vanishing to the order ≥ 3 .
- (b) dim $(Aut(X)) < n^2 + 2n$ unless $X \cong \mathbb{P}^n$.