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X Fano Miyaoka-Mori, i.e. K)_(l > ()

By Miyaoka-Mori,
X is uniruled, i.e.

“filled up by rational curves”

By Kollar-Miyaoka-Mori

X 1is rationally connected

Differential-geometric criterion:

X Fano < 4 g Kahler, Ric (X, g) >0



Holomorphic Vector Bundles on P!
Riemann Sphere P! = C U {oc}
— (Pl — {O}) U (Pl — {OO}) = Cl U CQ

7V — P! hol. vector bundle of rank r means

7T_1<(C1) = (Cl x C"
7'('_1(@2) = (CQ x C" .

Over C; N Cy = C*, we introduce an equiva-
lence relation
(z,u)1 ~ (2,v)2 & u= f(2)v, where

foCr 2 {invertible n-by-n matrices}

O = trivial bundle , f =1
Ip1 = tangent bundle .



Hol. section of Tp1 = hol. vector field. On

1
Pl — {oo}, write w = ~
2

2 vector field on C
0z
0o Ow 0 1 0 5 O
_— = = - — = —Y)T —
0z 0z Ow 22 Ow Ow
9, .
Thus, pp defines a hol. vector field with a
z
double zero at oo.
9, 0
—_ 2— ~nN — == — 2
z % "~ U z4
F(2) = =23

We write Tp1 = O(2)

Line bundle : rank = 1

Any hol. line bundle on P! = O(a) for some
a, defined by f(z) = z® on C*.



Grothendieck Splitting Theorem (1956)

V — P! holomorphic vector bundle. Then
V=0(a)® - ®O(a,) ,
where a1 < --- < a, are unique.

Formulation in terms of matrices

Let f: C— {0} — GL(n,C) be holomorphic.

Then there exist
g1 :C—GL(n,C), go:P'—{0} = GL(n,C)

such that

g1f93 ' (2) =

Hilbert (1905), Plemelj (1908), Birkhoff (1913),
Hasse (1895)



Deformation of Rational Curves
X complex mfld, f: P! — X, f(P}) =C
{C;} hol. family of P!, defined by
fi: Pl =X, fo=f, Cy=0C.
Write F'(z,t) = fi(2)

OF
_‘t O—SEF(Pl fT)

Any section s € I'(PY, f*T'x) is a candidate for

infinitesimal deformation.

Use power series to construct
F(z,t) = fi(2)

Obstruction to construction given by
Hl (Pl, f*TX)

HY(PY, f*Tx) ZHl (P, 0

H' (P, O(a)) :o Va > —1.



Example of hol. vector bundles on P!
(A) ]P)l C ]Pﬁ; V = Tp2|[p>1
V/Ip1 = Np1p2, N = normal bundle.

J hol. vector fields of P?, along P!, correspond-

ing to inf. deformation of lines in P?. Using s,
we have, s(P) =0

VZ2Tp & NpllPZ
= 02)e0(1) .

In general,

Tpr | = O(2) @ [O(1)]" .




B)PLcPLxP, 22— (20)
Teiypi|lpr 2012) 0O .

(C) Q™ c P™*! hyperquadric, defined by 23 +

Tonlp 2 O02)B [0 20O .

Trivial factor: Q% C Q"; Q? = P! x P!,

PP

S = nowhere zero section




X Fano, L >0, o5 =deg.

minimal rational curve C' attains

min{d; (C) : Tx|c > 0} .

Deformation Theory of Rational Curves

—> For a very general point P € X,

Tx|lc >0 VCrat., PeC.

Consequence

JC = choice of irr. comp. of mrc
For P generic, [C]| € K generic
f:Pt— X, C=f(P). Then,

f*Tx =20(2)® |[O1)]P & O7.



E"""'-[}/ af curves ]axl:sj d 'Foi—n'f.‘s P, QeX
must break uf. Otherwse I -T_ =-T' .T:
0o o |19



Varieties of Minimal Rational Tangents

X uniruled,

JC = component of Chow space of minimal ra-
tional curves

:U— X; p:U — K universal family

x € X generic; U, smooth

The tangent map 7 : U, — PT,(X) is given by

for C' smooth at x € X.

T is rational, generically finite,

a priori undefined for C singular at .
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We call the strict transform
T(U;) =C, C PT,(X)

variety of minimal rational tangents.

For C standard, T,.(C') = C«

Tle=02)e0(1)P ¢ O1
P, :=1[0(2) & O(1)?], , positive part .

Then,

~

Toz(Ca:) — Poz 3
114)(Cr) = P, mod Cao .

In other words,
dim(C;) =p,

and C, is infinitesimally determined by split-
ting types.

12



Mi n%ma‘. Rationd  Curves

Var'-e "™ '
j Of Mm\ma‘,’ka{'mt T::‘j’vt (VMR T)

T,

T
VMRT at zeX
(7=




Characterization of [P" (Cho-Miyaoka-
Shepherd-Barron 2002)

X irr. normal variety, dim(X) = n.

Suppose there exists a minimal component C
on X such that

C(K)=PTx .
Then, there exists
v:P"— X
étale over X — Sing(X) such that
members of K = images of lines in P".

In particular

X smooth = X = P" .
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Theorem (Kebekus 2002, JAG).

The tangent map
T+ Uy — PT,(X)

1S a morphism at a generic point x € X.

Theorem (Hwang-Mok 2004, AJM).

The tangent map
Ty Uy — Cp CPT(X)

s a birational morphism at a generic point x €

X.

15



Examples of VMRTs
Fermat hypersurface 1 < d <n —1

X={Z{+272%+ .-+ 272°=0}

T = 20,21y ,2n] € X.
FIND all (wq,w,,...,w,) such that V ¢t € C.

(20 + twg, 21 + twy, ..., 2z, +tw,] € X
(20 + two)? + -+ (2 + twy,)? =0
0= (25 +-+2)
+t(28 twg + -+ 24 wy,) - d

d(d —1)

(g WG+ 2y W)

n

_|_..._|_td(wg_|_..._|_wg).

When (zg,21,...,2,) is fixed, we get d + 1
equations, and

C, = complete intersection of d — 1 hypersur-
faces of degree 2,3,...,d in PT,(X) = P!
fd<n-1,dim(C;)=(n+1)—(d+1)—1=
n—d—12>0.

16



Examples of VMRT

X (generic) VMRT C,

P Ipm—l

Qn Qn—Q

cubic codim 2 Cc P!

in Pt — quadric N cubic, deg. 6
X3 cp? 6 points
X3 CP? deg. 6 curve of genus 4
X2 Pt K*® — surfaces

X7 cP*t | complete intersection C P
d<mn of degrees 1,2,... ,d

In these examples,

{mrc} = {lines in P" contained in X} .
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Type| G K G/K = S C, Embedding
I |SU@p+q) | SUp) xU(g) | Glp,q [P xPIt|  Segre
I1 SO(2n) U(n) G (n,n) | G(2,n—2) | Plicker
111 Sp(n) U(n) GHi(n,n) pr—1 Veronese
IV |SO(m+2)| som) xso@)| or Qn—2 by O(1)
Vv Fs Spin(10) x U(1) | P2(0) e C| G (5,5) by O(1)
VI E; Es x U(1) exceptional | P?(Q) @g C |  Severi
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Scope

Mori theory
Algebraic Geometry< Hilbert schemes

projective geometry

, , distributions
Differential Geometry
(G-structures

Several { Hartogs phenomenon

Complex Variables | analytic continuation

. Hermitian symmetric spaces
Lie Theory .
rational homog. spaces G/P

19



Examples of G-structures

Riemannian Geometry

A Riemannian metric Xg;,;dz* @ dx’ gives a re-

duction of the structure group from GL(n,R)
to O(n,R); G = O(n,R).

Holomorphic Metrics

X complex manifold,

Z gz-jdzi X de

hol. symmetric 2-tensor,

det(gi;) # 0 ;

g a holomorphic metric;
Hol. G-structure with G = O(n; C).

20



Theorem (Hwang-Mok, Crelle 1997)

V model vector space = C",

G reductive complex Lie group,

G & GL(V) irreducible faithful representa-

tion,

M Fano manifold with holomorphic GG-structure.

Then, the G-structure is flat
M=S,

where S = irr. HSS, compact type of rank
> 2.

21



Lazarsteld’s Problem

Theorem (Hwang-Mok, Invent. 1999).
Y = G/ P rational homogeneous

P maximal parabolic, i.e. by(Y) =1

X projective manifold

f:Y — X finite holomorphic map

Then,

EITHER
(a) X =P" ; OR
(b) f:Y =, X is a biholomorphism.

22
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Lazarsteld’s Problem

Principle of Proof:
f:Y—-X; Y=G/P, b(Y)=1.

Suppose X 22 P"; f not a biholomorphism. To

derive a contradiction let

o:U—V ,UVCY
such that fop = f.

C C PT(X) varieties of mrt

D:= f*C CPT(Y)
0« D]y = Dly tautologically.

Prove that ¢ = ®|y for some ® € Aut(Y) to

derive a contradiction!

24



Stratification with respect to a morphism

M, Z quasi-projective varieties
h : M — Z morphism

An h-stratification of M is a decomposition

M = M; U---U M, such that

(i) Each M, is smooth and its image h(M;) is
also smooth.

(ii) For any tangent vector v to h(M;), there
exists a local holomorphic arc in M, whose
image under A is tangent to v.

(ili) When a connected Lie group acts on M
and Z, and h is equivariant under these ac-
tions, each M, is invariant under the group

action.

Proposition.

h-strafications exist.

25



Varieties of distinguished tangents

N =irr. comp. of Chow space of curves on X

passing through z € X
N’ c N subset smooth of curves smooth at x

N = N'U-.-UN* decomposition in terms of

geometric genus
7 : N7 — PT,(X) tangent map

NI =M U---U M,Z T-stratification

Definition.

An irreducible subvariety D C PT,(X) is called
a variety of distinguished tangents (VMRT) if
D = 7(M?) for some choice of N, N7 and
M.

1

26



Varieties of distinguished tangents

Properties

(i)

(iii)

Given an irreducible smooth projective va-
riety X and = € X, there are only count-

ably many varieties of distinguished tan-
gent in PT,(X).

Let D C PT,.(X) be a variety of distin-
guished tangents associated to some choice
of N, N7 and M/. Then for any tangent
vector v to D, we can find a family of curves
{l;,t € A} belonging to N smooth at x

so that the derivative of the tangent direc-
tions PT,(l;) € PT,(X) at t =0 is v.

Suppose a connected Lie group P acts on
X fixing x. Then any variety of distin-
guished tangents in PT,. (X)) is invariant un-
der the isotropy action of P on PT,(X).

27



Theorem. (Hwang-Mok 2004)

G simple Lie group over C, g = Lie algebra
P C G maximal parabolic subgroup

S = rational homogeneous of type (G; «)

T: X —-A={teC: |t <1} regular family
such that

(i) X; :=7"1(t)= S for t #0 and

(i) Xg:= 7 1(0) is Kahler.

Then,

28






Deformation rigidity in the Kahler case
Scheme

(1) S Hermitian symmetric
[Hwang-Mok, Invent. Math 1998]

(2) S of type (G, ), o a long simple root
[Hwang, Crelle 1997] for the contact case
[Hwang-Mok, Ann. ENS 2002| in general

(3) S of type (Fy, )
[Hwang-Mok, Springer-Verlag 2004]

(4) S of type (Ch,ar), 1 <k <n;or (Fy,as)
[Hwang-Mok, Invent. Math 2005]

30



Deformation rigidity in the Kahler case

Methods

(1) Distribution spanned by VMRT
Integrability

(2) Differential systems generated by distribu-
tions spanned by VMRT

(3) Methods of (2)

(4) Holomorphic vector fields on uniruled pro-
jective manifolds.

Uses also conditions on integrability of (1).

31



Distributions Spanned by MRT

X uniruled,

JC: component of Chow space of minimal ra-
tional curves

C,: variety of mrt;

Co C PTo(X); Co C To(X);

~

W, = Span(C,) C T,(X).

Assume W # T'(X).

Q. Is W integrable?

Pic(X) =1 = W not integrable
Projective-geometric properties of C,

= W integrable

For C on Xo, W =T(Xy), i.e. C, lin. nondeg.

32



Integrability of Distributions

Proposition.
QcCcC, W CTq hol. distribution. Then, W
is integrable iff

(*) Given x € 2, 3 hol. vector fields a;, 3,
def. on a nbd of x s.t.

(i) |aj, Bi](x) € W,.
(11) Span{()éj N 63} — A2W:c

33



Verification of Integrability
C' C Xy be a smooth standard mrec.

Tx,lc 2 02)®|0O1)]F O

For x € C; T, (C') = Cay. Define

Proposition
C C Xy standard mrc; z € C. & € P,,
s.t. (@, &) linearly independent. Then, there

exists a loc. smooth complex-analytic surface
Y. at x such that
(i) Tx(z) = Cay, + C&y;

(ii) at every y € X near z;

T,(%X) C W, .

34



~ .é' y,

X

T,(5)=CurC}



Proposition.
C. C PW, VMRT at generic x
7. C P(A*W,) variety of tangents.
Then,
7. C P(A*W,) lin. nondeg.

= W integrable.

Proposition. 7, C P(A*W,,) is linearly
non-degenerate if
dimC, > codim C, in PW,, ,
C, C PW.. is smooth .

36




I G(3,3)
O O O O
P,xP,xP, P,xG(2,3) G'(5,5)
E,
1 G(3,4)
O Q) Q) Q) Q)

Es P,xG"(55) P,xG(23) P,xP,xP, P,xG(24) G'(6,6)

Eq

TG(S’S)
Q) Q) Q) Q) Q) Q) Q)
E, PxEs  PxG'(55) PxG(55) PxPxP, PxG(25) G"(7,7)
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Highest weight varieties

0 0 )
PixQ 2(0-i)-1
C , |
0 0 0
Py % p2(€-i)-1
|
DI | <
P.ixQ 2(0-i)-2
F,

0 0 0 0
G'(4,4) P.xP, P.x[P,]* G"(3,3)
G,

——— 10§

P, [P.T°

38



Differential system

0£D1G DG G Dy C Ty

filtration of X by hol. distributions.

Weak derived system (X, D)

D! = D | meromorphic distribution

Dk _ Dk—l + [D,Dk_l].

e On a Fano manifold X, b2(X) =1, D™ =

Ty for some m.

Symbol algebra of a weak derived system:

s(X,D):=D*®D*/D*@®-.-¢ D™/D™!

e On arational homogeneous space S = G/ P,
b2(S) = 1, with D = min. nontrivial G-inv.

hol. distribution,

nTi=g1 @ D g 2s(5, D).

39



Serre relations

g simplie Lie algebra over C
¥ ={ai,...,qs} system of simple roots
n(i, j) = entries of Cartan matrix

Then, g is the universal Lie algebra generated
by {xi,y;, h; : 1 <1 < £} subject to the iden-

tities

o hi,hj]=0

® :hz',ilfj] = ’ﬂ(i?j)fl?ja [hiayj] — —n(z’,j)yj
° ad(xi)_n(i’j)+1(xj) =0if?1#y

o ad(y;,) "D (y;) =0if i # j

40



Objective
For the regular family 7 : X — /A consider
D C Tx, spanned by VMRTs. Show that
5(Xo, D) =nt =g, ®--- P gy, for the model
S=G/P.

Serre relations for n'

Write nt C g subalgebra generated by
{x1,22,... ,2¢}. Then, n™ is the universal Lie

algebra generated by {x1,...,x,} subject to
ad(x;) " (25) = 0.

Note that

e When ¢; is a long simple root,

2(ai, 0y) —=Qor —1.

For us the crucial relations are

41



Proof of o( Xy, D) =2 n™

a; long simple root, S = G/P of type (G, «;)
m: X — A regular family, X; = S for t #0
o: /A — X “generic’ hol. cross-section

Uy )y — A regular family
= Z/{O'(O) = U, of the model S, 7, : U, = C,

D, 0y spanned by C, (o), image under the tan-

gent map
7'0(0) . Z/[O'(O) — PTG(O) (X())

To prove:

To(0) : Uz ) = Co(0) & PT50)(Xo).

Co0) = Cor) = C, as proj. subvarieties

42



Weak derived system (X, D)
0#£#D'cD*C---C D" =Tk,

s(Xo, D) is a quotient of the universal Lie al-
gebra generated by g; subject to relations de-

fined by pencils of mrc.
On the model, x; represents a tangent vector
e z,, j # t, represents an element of g

o |x;, |z, x;]] =0 mod g; results from argu-

ment using pencils of mrc

o ad(x;) ™8T (z,)=01is a property in g;
J

43



Conclusion:

s(Xp, D) is a quotient of the universal Lie al-

gebra U gen. by {z1,...,xz,} subject to
ad(z;) BT (z) = 0.
By Serre relations,
Ux~nt, sXg,D)=n"/J

If J # 0, the weak derived system (X, D)
would terminate at D™, dim D™ < n, giving

an integrable distribution W = D™ containing
VMRTSs, which contradicts with by(Xp) = 1.
[]

44



Conjecture 1

X Fano, bo(X) =1
x € X generic point
Z el'(X,Tx).

Then,

ord,(Z)>3=272=0.

Conjecture 2
X Fano, b(X) =1, dimc X =n
= dimc(Aut(X)) < n? + 2n;

—n?4+2n< X 2P,

45



Theorem (Hwang 1999)
X Fano, b(X)=1,dim X =n

x € X generic point, Then,

Zel'(X,Tx), ord,(Z) >n=2=0.

Corollary

n

dim(Aut(X)) = dimT(X, Tx) < n (2”> |

46



Remark:

(1) For ¥, = P(O8O(k)), the k-th Hirzebruch

surface,
dim(Aut(X;)) > dimT'(PH, O(k)) = k + 1.

Bounds fail in general for projective uniruled

projective manifolds.

(2) If 3K on X such that dimC, = 0, Hwang

shows that there are no hol. v.f. vanishing at a
generic point € X. In that case, dim(Aut(X)) <

1.

(3)
dim{Z e I'(X,Tx) : ord,(Z) < 2}

- nn+1)(n+2) _n’
< > 5 -
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Theorem 1 (Hwang-Mok)
X projective uniruled manifold

JC = minimal rational component

x € X generic point
C. CPT,(X), VMRT at x, dimC, =p > 0

Assume C, C PT,(X)
nonsingular, irreducible,

linearly non-degenerate.

Then,

Zel'(X,Tx), ord,(Z) >3=272=0.




Theorem 2

Assume C, C PT,(X), dim X =n
nonsingular, irreducible,
linearly non-degenerate,

linearly normal.

Then,

dim(Aut(X)) < n® +2n
=n?+2n< X 2 P°

49



Corollary

X Fano, bo(X) =1,dim X =n

10

O(1) positive generator of Pic(X) = Z.

Assume O(1) very ample.

n+1
2

c1(X) > , x € X generic. Then,

0£4Zecl'(X,Tx) = ord,(2) <3;

2(n + 2)
3

c1(X) > X 2P

= dim(Aut(X)) < n* + 2n .
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Ideas of Proof

(1) A holomorphic vector field Z vanishing at
x € X to the order > 2 gives by power series

expansion

Z = ;{ A I 2 8—% + higher order terms

A€ SQT;Ck ® T, with the property that

(1) for any a € C,, for

:ZAk dz) ®8% c End(T,) ,
k

Aa|éw is tangent to C,.

Here we identify vector fields on 7, with en-

domorphisms.
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(2) Taking «, 8 € Coi v, B+ 0
Aop = Aa(f) = Ap(a)
is tangent to C, both at « and 3, i.e.
Aog € PoNPs .

(3) The symmetry property on A forces (by
letting 6 — «) that A,. € Ker(o,) for the
second fundamental form o, on C, — {0}. If
C: & PT is smooth and non-linear, Ker(o,) =
Ca (Zak’s Thm.), and

A cT(Cp;Hom(L?, L)) =T(Cy, L)

for the tautological line bundle L.
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(4) We can get bounds for the dimension of Z
with ord,(Z) > 2 if we know that

() A=0=A=0.

Moreover, the latter is enough to prove the

nonexistence of nontrivial Z with
ord,(Z) > 3. If ord,(Z) > 3 start with

A€ S*T*®T, such that
Aopy € Po N PgN P, for a, 3,7 € C, — {0}.

Then, we get

Apory € Py NP, for any o,y € C, — {0}
= Aqay =0
= A =0 if (%) holds.
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Proof of ()

We prove A =0 = A = 0 by induction. The

hypothesis A = 0 implies
(a) C, is uniruled by lines;

(b) for any o € Cp, a # 0, A, induces a hol.
vector field Z on C, such that Z([a]) = 0,
Ol”d[a] (Z) Z 2;

(c¢) for K’ = space of lines on C,, (C,,K’) is
similar to (X, ), viz. for the generic VMRT

[a]’
Ciog & PT1oy(C) monsingular,

connected and linearly non-degenerate;

(d) for A € SZT[Z] ® 1oy induced by Z (as A

is induced by Z), A = 0.
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Comments on the proof:
e We actually prove that C, is rationally 2-

connected by lines. The starting point is:

A=0= AZ =0 as endomorphisms .

Then, for |a], |§] € C, generic, both points
are joined on C, by lines to |v]|, v = Aag.

e The delicate part is the proof of linear non-
degeneracy of the iterated VMRTSs Cf o] -
PTi,)(Cz). The proof makes use of the the-
ory on distributions spanned by VMRT's
which we developed in connection with de-

formation rigidity.
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Prolongation of infinitesimal auto-

morphisms of projective varieties

V' complex vector space, dimV =n
g C End(V) Lie subalgebra

g c SHHV* eV, o c g o

Vou,...,vp €V, writing

Ovy... v, (V) =0(Vy01,... ,0k) ,

we have 0y, ., €9 .

g®) = k-th prolongation of g; g(®) = g.

hcg=H" cgh

(k). o(0) (k+0)
g9 C g
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Y C PV projective subvariety, dimY = p

Y C V affine cone of Y. Define

aut(Y)={A € End(V):exp(tA)(Y) C Y,t € C}.
X complex manifold, dim X =n

C C PT(X) projective and flat over X

C. C PT,(X) irreducible, reduced

f := germs of C-preserving holomorphic vector
fields at x

For ¢ > —1, let

ff={Zecf:ordy(Z)>0+1} .
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Proposition. For k > 0, identify {* /{1 C
SEHT*(X) @ T,(X) by taking leading terms

of Taylor expansions of the vector fields at x.
Then

fF L aut(C,) P

the k-th prolongation of the Lie algebra of in-

finitestmal automorphisms of the projective va-
riety C,.

Proof. Z hol. vector field at x, defined on U C
X,ord,Z > k—+1

2t (Z) € S"TH(X) @ To(X)
Z can be lifted canonically to Z' on PT(U):

Z = inf. generator of {f;}, germs of biholo-
morphism at x

fe U — X gives F; : T(U) — T(X),
where Fi(z,n) = (fe(z), dfe(x)(n)).
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neTl,(X),ord,(Z) >k,
jr e SPT(T(X)) ® T,(T(X)) .
For k =0, j9 € T,(T(X)).
For k> 1, Z'|1 (x) = 0,
jr € SPN; @ T,(T(X)) ,

where N = normal bundle of T,,(X) in T(X),
N =2 7*T(X). Since ord,(Z) > k + 1,
T (G (1, ... o)) = 0 for vy, ... v € Tp(X).

Hence,
Ji(Z') € SPN;RT, (T (X)) = SPTH(X) T, (X) .
Straightforward calculations give

jS(Z’)(vl, ) = 3N D (0, o)

where we write 7 and v for the same thing, n
when it is consider a point on the fiber T, (X),

v when it is considered a tangent vector at x.
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Lie algebras of infinitesimal linear auto-

morphisms

Theorem. LetY C PV be an irreducible, smooth,

non-degenerate subvariety. Then aut(Y)?) =
0, unless Y = PV.

Geometric proofs of results on the prolonga-

tion of Lie algebras

Proposition 1. Let g C gl(n) be a Lie sub-
algebra which acts irreducibly on C™. Then
g® = 0 unless g acts transitivley on P,_1,
i.e., unless g = gl(n), sl(n), csp(m) or sp(m),

where in the last two cases n = 2m.

Proposition 2. Let g C gl(n) be a Lie sub-
algebra which acts irreducibly on C". Suppose
g? =0. Then gV = 0 unless the image of g
in sl(n) is isomorphic to the semi-simple part
of the isotropy representation of an irreducible
Hermatian symmetric space of compact type of

rank > 2.
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Leading Terms of Hol. Vector Fields
0e Q) CC™ Z = hol. vector field on {2

Ol“dQ(Z) =P >0

Z =3 Ak 2zt L4 O(|z|PH)

i1 1 Oz
Principal term p(Z) at o:
p(Z)=AeSPT; T, .

Lemma. Z, W = germs of hol. vector fields
ato, ord,(Z) = p, ord,(Z) = q. Then ord,|Z, W]
>p+q— 1. Suppose ord,[Z,W]|=p+q—1,
p+q>1. Then,

p(|Z, W) = bilinear expression in p(Z), p(W).
For p =1, so that p(Z) € End(T,),
P12, W]) = p(Z)(p(W)) .
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Symbolic Lie algebra of leading terms

Hermitian symmetric case

g=9-1Dgo D o1
—m  ptpmT.

m-,m ] =[m",m"] =0

m- ={Z eIl'(5,Ts):ord,Z > 2} .
All Lie brackets determined by principal terms:
k,m™], [k,m™], [k, K], [m™,m™] .

Deformation Rigidity
Givenm: X — A

g" = aut(X;) for ¢t # 0
g’ = Limiting Lie algebra, .
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More precisely,
7T = relative tangent bundle
T = O(V), V hol. vector bundle on A

gt := Vi, Lie alg. structure induced from

7.

Assume stability of C, ;) as ¢ — 0. Define

T =17 e gt:ordyw)(2) > k)
L ={Zecg:Z(o(t)=0, Az € C-id} .

For t # 0, any Z € E;, Az # 0 determines a
C*-action. Since C, (o) C PT,0)(Xo) is conju-
gate to C, C PT,(5)

dimE(gQ) <n, Eék) — 0 for k > 3
dim Iy > n+ 1 (upper semicontinuity)
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Therefore, dim I = n + 1 and d a hol. vector
bundle I of rank n+ 1, Z = O(I).

17 € Iy such that Az # 0, and we have a hol.
family of C*-actions 1;.

Ty = {e*t}, period 27i.

ot E{Zeg B, 2 =iz}

g =g 199,99 .

For t # 0,

gf) - {A - Enda(t)( o (t) ) A‘Ca(t)

is tangent to Ca(t)} .

Dimension count forces the same for ¢t = 0.
99,99 = [g2,,¢°,] = 0. Lie algebra structure
on g' completely determined by leading terms.
Hence Xo =G/P = S.
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Grassmannian of isotropic k£ planes in a sym-
plectic 2n-dimensional vector space W, 1 <

k < n.

For S of type (Cy,ar), 2 <k <n,wecall Sa

symplectic Grassmannian := Sk .

k = n = S = Lagrangian Grassmannian, Her-

mitian symmetric.

Minimal rational curves on S,

W = C?"; (W; A) symplectic vector space
V(&) ¢ W isotropic k-plane,
L C Sy, line: E¢—D c vk ¢ plk+l)

Two isomorphism classes of lines:
(a) F+D C W isotropic; i.e. Alpxr = 0.

(b) F*+1) c W not isotropic.
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Highest weight lines: Case (a)

Vi CF, Aly,xv, =0

Vili—o gives n € Hom(V,W/V).

From A(vg,v;) = 0 v, v; € V; we have
A(v,9") =0=n € Hom(V,V+/V) .

Vcvt dimV*: =2n—k.

Minimal Invariant Distribution

Sk.n C Gr(k,C?™),

Ter 2 Hom(VeQ)=V"®Q
Hom(V,V+/V) C Ts, .,

Dy := Hom(V,V+/V) & Ts,

D = minimal invariant distribution
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Geometric features of S = Si

e Cy C PTyH(S) not homogeneous,
Co = VMRT

o Cy C PTyH(S) linearly non-degenerate

e minimal invariant distribution D

spanned by highest weight lines (not by Cp)

e complex structure of S determined not just
by VMRT's, but also by the Frobenius form
©:N*D —T/D

e  cannot by recovered from minimal ratio-
nal curves and their VMRT's

67



Gradation on the maximal parabolic

p=g_2oPg_1Pgo Cg=I(5Ts)

go = 3 @® [ = centre & Levi factor

Represent g by global vector fields Z.

Z €ep< Z(o) =0, 0€ S base point,
e /g o A=0
e /cg odg 1< Alp, =0

o / g—2 @g_l @3 if and only if [AHPDO = O,
A: Dy — Dgy given by A(n) = .

e Any Z € g o®g_1D3, £ §§ g o2Dg_1,

generates a C*-action.
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Recovery of C*-action on the central fiber

7 : X — A regular family, X; = S, for t # 0.

To recover C*-action on X;, needs to prove

that Z; ~~ Zy does not degenerate.

Take o : A — X a “generic” cross-section
Hy = {Z e (X}, Tx,) : ordy) Z > 2} .

Trouble: dim H; may jump at ¢t = 0.

Key point:
e Methods in Theorem 1 on hol. vector fields

force that ord,)Zp < 2 for any
2o € F(Xo,TXO), 20 §é 0.
e They give actually dim Hy = dim g_».
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Define now
Ft = {Z c F(Xt,TXt) : A(Z)lDo = O}
By ={Z e '(X,Tx,) : [A]lpp, = 0}

This gives a geometric filtration of parabolic
subalgebras stable under passage to limits as
t—0

H; C F; C F; suchthat, Vt e A,

o dim H; =dimg_o;
e dimF; =dimg_o +dimg_q;
o dimFE; =dimg_o+dimg_1+1

Some element Zy of Fy— Fy gives [Zp]|p, = id.

With some work Z;, integrates to a C*-action
on Xy to define X¢ = Sk .
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Ideas of proof of deformation rigidity af-

ter extending C*-actions

The simplest case: Xy = So3 for t #0

Sa.3 = {isotropic 2-planes in 6-dim symplectic

vector space}, dimSs 3 =7,

Dy =2 Uy®Qq, To/ Dy = S2Uy; where Uy = C?
as an GL(2,C)-rep. space; Qg = C? as an
Sp(1) =2 SL(2) rep. space.

rank(D) =4, rank(T/D) = 3.
Frobenius forms

plu®qu ®@q) =v(g,q)uo
v = symplectic form on Qg =2 C2.
Degeneration of Frobenius forms ¢y

< Degeneration of symplectic forms v;.
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For S = S5 3 only possibility of degeneration
is caused by the total degeneration of v; to

VOEO.

Extension of C*-action T} on Xy;

FE; = normalized infinitesimal generator,
o(t) € X; isolated zero of Ey; Ey — FEjy. Recall

g' = aut(X;) for t £ 0
g’ = Lie algebra of limiting hol. vector fields
g =g, @9 Dgo® gl D s

h' :=g', B gl D g’

bt — b” = sp(2,C) no degeneration .
Only degeneration
] 9(1) X 9(1) —> gg trivial .

Orbit of 0(0) = z¢g € X under H° := Fxp(h)
gives Ny = the Lagrangian Grassmannian of
rank 2 22 Q3. Choose N; — Ny, N; =2 Q7.
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Total degeneration of v; (and hence ;) gives
the structure of the total space of a rank 4
holomorphic vector bundle Vy — Ny on Xy —
B, codim B > 2.

o Vo =Uy® Qo, Uy rank-2, )y rank-2

e 1V = normal bundle Ny of Ny in X

o Ny — No. Ny =2 U, ® Qy;

Fap(gh) ~ GL(2) x Sp(1).
e GL(2) acts on U, = C?;
e Sp(1) acts on Q,, = (C?,14).

e U; — Uy no degeneration; ); — (g trivial.

Fibers of Vj — Xg gives V,, = C*.

V, C X smooth, by showing that V, is a
component of the fixed point set of some C*-

action.
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Using rational curves and Grassmann struc-
tures, we show V,, & G(2,2) = Q3. We have
e i1:Y — NyaG(2,2)-bundle; f:Y — X
modification;
e V, =1V, II hypersurface I,;
e ] contains isolated singular point ocoy;

e infinity section I'oo = {00, : y € No}.

By studying rational curves on an X, we show
that f(I's) = w.

GL(2) fixes w. Sp(2) fixes w.

Each factor of GL(2) x Sp(2) acts nontrivially
on T, (Xg) = C".

Lowest irreducible representation of GL(2) X

Sp(2) where each factor acts nontrivially is of
dimension 8 > 7! CONTRADICTION!
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General case

1. The same argument works for Sa, to con-

tradict total degeneration. It also works

for Sk ¢ by a slicing argument, using C*-

action.

2. In the case of partial degeneration we re-

cover the structure of the total space Vj —
Sk.m for some m,k < m < {; use a slic-
ing argument by C*-action to reduce to the

case of k = 2.

3. To get Vo — Sk in (2) we consider the
symbolic Lie algebra of leading terms of
hol. vector fields in g7, 1 = —2,—1,0, 1, 2.
There is b C g s.t. B = h%, @, @
ho @ by @ b is isomorphic as a graded Lie
algebra to sp(m). Here §) = U,, ® Q) ,

where

., C @7, such that
V()‘Q/xo is non-deg., Q. @ Kervy = Qy,.

75



Uniqueness of tautological foliation:

p:U— K, u:U — X universal family
m: C — X family of VMRT's

F =1 — dim. multi-foliation on C
defined by tautological liftings C of C,

F = tautological foliation

For C standard Tx|c = O(2) & O(1)P & O1.
Write T,C = Ca, P, = (O(2) & O(1)P),.

Piag = {n € Ti(C) : dm(n) € Pa}.
As Ti1(C;) = P, /Ca, P is defined by C.
W = distribution on K defined by
Wiy = T'(C,0(1)?) c I'(C, Ngx) = Tie(K).
We have

P=p W, F=p (0)=[F,PICP.
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Proposition

Assume Gauss map on a generic VMRT C,
to be injective at a generic |a] € C,. Then,
v, Pl CP=wveF,ie.,

Cauchy Char. (P) = F.

Corollary
Assume U C X, U’ C X/, f:UiU’,
[df]*C" = C|y. Then,

f maps open pieces of mrc on X to

open pieces of mrc on X.

Proof. Write f*C’ for [df]*C’, etc. Then, f*C" =
C|y implies f*P’ = P|y. Thus,

[f*f/,P] — [f*f/,f*P/]
_ f*[F/,P/] C f*P/ — P.

Proposition implies f*F = F. O
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Theorem (Hwang-Mok, JMPA 2001)

X projective uniruled, bo(X) =1,
JC minimal rational component on X.

Assume
(t) C, irreducible for x generic,

Gauss map on C, generically finite.

Then,

(X, ) has the Cartan-Fubini

Extension Property

Examples:
(1) X = G/P # PV, G simple, P maximal

parabolic.

(2) X c P¥ smooth complete intersection, Fano
with dim(X) > 3, ¢1(X) > 3.
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Ideas of proof of CF"
(1) f: (X,K) — (X',K') gen. finite surj.
map, f*C' =C (i.e., VMRT — preserving.)

Uniqueness of tautological foliation

= | preserves tautological foliation

(2) Analytic continuation along mrc, obtained

by passing to moduli spaces of mrc:

f: X — X' induces f# :V — K’ on some

open subset V C K.

Now, interpret a point x € X as the intersec-
tion of C', [C] € K., to do analytic continua-

tion.

(3) (X,K) is rationally  connected,
Analytic cont. along chains of mrc defines a

multi-valued map F : X — X'.
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(4) bo(X) = 1 = any mrc C intersects any
hypersurface H C X.
Analytic cont. along C forces univalence of F’,

viz., ' 1s a birational map preserving VMRT's

(5) birational + VMRT-preserving
= biholomorphic

(a) VMRT-preserving
= R(F) =10, R:ramification divisor

(b) Embed X to PV by K3 *, X being Fano,
etc. R(F) = () gives hol. extension of F*s
for sections s of K)_(E,
F: X — X' is the restriction of some pro-

jective linear isomorphism of PV .
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Local rigidity of holomorphic maps

m: X — A regular family
Xt Fano, PlC(Xt) =7

X carries a rational curve C, with trivial nor-

mal bundle
X' projective manifold

fi + X' — X; holomorphic family of generi-

cally finite surjective holomorphic maps. Then,

There exist ¢ : Xg =, Xy
such that f; = ¢ o fo
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Application of Cartan-Fubini

Theorem (Hwang-Mok, JMPA 2001)
X Fano manifold; by(X) =1

JC: minimal rational component

C.: VMRT of (X,K), x € X generic
Y projective manifold

ft + Y — X one-parameter family

of surjective finite holomorphic maps.

Assume dimC, :=p > 0, and
C. C PT,(X) satisfies the

Gauss map condition (7). Then,

4P, € Aut(X) such that
ft = ¢r o fo; Po = 1id.
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Theorem (Hwang-Mok 2004, AJM). Local
rigidity for f; Y — X; remains valid un-
der the assumption that Xy carries a minimal
component Ko whose general VMRT is non-

linear.

New solution of Lazarsfeld Problem

Y = G/P G simple, P maximal parabolic
Take X; =X, f:Y —- X.
Assume generic C, C PT,(X) non-linear.

Local rigidity = Any holomorphic vector field
Z on Y descends to a holomorphic vector field
W on X such that f : Y — X is equivariant
w.r.t. l-parameter groups generated by Z and
wW.

R := ramification divisor of f

B = f(R)
Then, WV is tangent to B.
Hence, Z is tangent to R,
contradicting homogeneity of Y = G/ P!
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Bounding degrees of holomorphic maps

X' projective manifold

Fo = {X Fano: Pic(X) = Z; J rat. curve
C' C X with trivial normal bundle}

Then,

There exists a constant C'(X') such that
Vi X' = X, X € F
generically finite, surjective hol. map

deg(f) < C(X").

Finiteness Theorem

Given X', there exists at most finitely many
pairs (X, f) of such maps f: X' — X.
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Finiteness Theorem in 3 dimensions

Y Fano manifold, Pic(Y) 2 Z, dimY = 3.

Then, there are at most finitely many projec-
tive manifolds X for which there exists a sur-

jective holomorphic map
f:Yy—X.

Proof.
From sol’n to Lazarstfeld’s Problem,

Y 2P = X =P
Y 2@’ = X =Q° or P°.

Otherwise, Y carries a rational curve with triv-
ial normal bundle, from Iskovskih’s classifica-
tion. Then,

X =P Q° or

a finite no. of possibilities in Fy.
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Webs on a Fano manifold

Fo = {X Fano: Pic(X) = Z;3 a rat. curve
C' C X with trivial normal bundle}

X e Fy,CCX, Nox 20!
JC = minimal rational component, [C] € K.
:U— X, p:U — K universal family

XeFosForm:C— Xof VMRT's, dimC,, =

0 for x generic.

R C U ramification divisor,
M = p(R) C X branching divisor

M = discriminantal divisor of K.
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L C X smallest hypersurface such that
7w :C — X is unramified over X — L — Z

for some Z C X of codim. > 2, M C L.
L := extended discriminantal divisor of IC

Principal properties on webs

¢ /: X' — X gen. finite surj. hol. map, K
web of rational curves on X

= f —1K finite union of webs of rational curves
on X'.

¢ L =K=KiU---UK,,
L = L, U---ULk _, etc.
Then,
f/Y(L)ycrL.
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X projective manifold

JC web of rat. curves on X

L extended discriminantal divisor of (X, ),
L1 C L component;
y € L1 generic, U small nbd. of y;

G C C|y union of components G; such that
Gi NPTy (L1) # )

Assume

(1) G # 0 and 7|g gen. m-to-1, m > 1.

S A )
621 8Zn
hol. vector field defining the multi-foliation
on U given by min. rat. curves. Here, v; can
either be considered
(a) as multi-valued hol. functions on U; or

(b) as hol. functions on the normalization G

of §.
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The discriminantal order

Q = (¢") , n x n skew-sym. matrix

o= [1 (3 dua)oye?)

1<a#B<m  i,j=1
Yo > 0 = vanishing order of I' along L4

0y 1= mén vq the discriminantal order .

Proposition
f: X — X, R = ramif. divisor,

M C X discriminantal divisor,

My, C M component
L) c f~Y(M;) C L' component s.t. L} C R.
Local sheeting no. of f at a gen. point of

1 :=r > 1. Then,

rﬁméL/l :
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Solution to the Frankel Conjecture:

Theorem (Siu-Yau 1980).
(X,g) compact Kdihler, Bisect (X, g) > 0
= X = P".

Solution to the Generalized Frankel Conjecture:

Theorem (Mok 1988).
(X,g) compact Kdihler, Bisect (X,g) > 0
= X =~ C™x Hermitian symmetric space of

compact type.

For X Fano, we have

X = Hermitian symmetric space of com-

pact type.
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Solution to the Harshorne Conjecture:

Theorem (Mori 1979).
X projective manifold, T'x ample
= X = P,

How about a “Generalized Hartshorne Conjec-

ture”?

Conjecture (Campana-Peternell 1991).
X Fano manifold, T'x numerically effective

= X = rational homogeneous space

Solved for dim < 3 independently by Campana-
Peternell and Fangyuan Zheng:

Case of 3 dimensions:

X =P, Q°, P xP?, P! xP' xP' or P(Tpe)
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Theorem (Mok 2002, Trans. AMS).
X projective manifold

ba(X) = ba(X) =1,

Tx > 0 (numerically effective).

Suppose dimC, = 1 for x generic.

Then,
X2P* Q° or K(G,),

where K(G3) = 5-dimenstonal Fano contact
homogeneous manifold associated to the excep-

tional Lie group Gs.

Theorem (Hwang 2004).

The condition by = 1 can be dropped.
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Campana-Peternell 1993

Their conjecture is valid in dimension 4 except
for the possible exception of a Fano manifold
X of Picard number 1 with nef tangent bundle

such that ¢;(X) =1 (i.e. positive generator of
Pic(X) &£ 7).

Elimination of the exceptional case ¢; = 1

p = 0 implies the existence of a 1-dim (hence
integrable) distribution spanned by
VMRTSs, contradicting by = 1

p = 1 ruled out by Mok + Hwang’s improve-

ment

p = 2 would contradict Miyaoka’s characteri-

zation of the hyperquadric

p =3 ruled out by the characterization of
projective spaces of Cho-Miyaoka-Shepherd-

Barron, Kebekus
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Theorem (Hwang-Mok 2004). Let S = G/P
be a rational homogeneous manifold of Picard

number 1 corresponding to a long stmple root
a. (We say that S is of type (g,)), S 2 P".

Let X be a Fano manifold of Picard number 1

admitting a component IC of minimal rational
tangents. Write

Co(S) CPT,(S), o€S reference point ;
C.(K) CPT.(X), xz€X general point

for varieties of minimal tangents. Then,

C.(K) C PT,(X) congruent to
CO(S) C ]P)TO(S)
= X

12

S
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Ideas of proot
e parallel transport along tautological lift-

ings C' of minimal rational tangents

e behavior of second fundamental forms o
of C, C PT,(X) invariant under paral-
lel transport, hence kernels, images, etc.

are invariant.

o C, C PT,(S) are quadratic or cubic Her-
mitian symmetric subspaces. If irreducible
and of rank > 1 the G-structure on C, is
determined by second and third funda-

mental forms ¢ and x, which determine

Cia (Co).

e In the reducible case transversal folia-

tions are preserved by parallel transport.

e The special case of the second Veronese
embedding of a projective space can be
recovered from the surjectivity of the

second fundamental form o.
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Theorem (Hwang-Mok 2004, JAG).

X Fano manifold, Pic(X) = Z.

M an irreducible component of the space of
manimal rational curves.

M?* C M subset of members of M passing
through a general point x € X.

If M* is irreducible, and dim(M*) > 2.

Then, Auty(X) = Auty(M).

Remarks. Theorem fails when dim(M?) =

0, 1.

Examples:
(a) dim(M?*) = 0. Take X = codim —
general linear section of G(2,3), M
IP)Z

10 o

Autg(X) 2 PSL(2,C);
Autg(M) = PSL(3,C).

(b) dim(M?®) = 1. Take X = Q3, M =~ P3
Auto(X) 2 PSO(5,C);
Autg(X) = PSL(4,C).
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Applications

Deformation rigidity of complex struc-
ture under Kahler deformation

Characterization of Fano maniftolds with

geometric structures,
HM 1997, Hong 2001, HM 2004

Holomorphic maps onto Fano manifolds

— Lazarsteld-type problems
HM 1999, 2001, Lau 2003, 2004

— Severi-type finiteness theorems,
HM 2003

— Local rigidity, HM 2001, 2003

Stability of tangent bundles,
Hwang 1998, HM 1999

Chow spaces of rational curves,
HM 2004

Moduli spaces of Hecke curves
Hwang 2001, Hwang-Ramanan 2003,
Sun 2004

Nefness of tangent bundles, Mok 2002
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Open Problems

(1) Irreducibility of VMRT's

Conjecture: X uniruled, projective

JC minimal rational component, p(X, ) > 0.

Then, C, is irreducible for generic in X.

Special case:

If C, is a union of projective linear subspaces
and p(X, ) > 0, then C, is irreducible.

Consequence of special case

f : X" — X a generically finite map onto a
Fano manifold X of Picard number 1, X 2 P™.
Then f is locally rigid when X' is fixed and X

is allowed to vary.

(2) Contact Fano manifolds
Conjecture:
X Fano, Pic(X) 2 Z,

equipped with a contact structure

= X rational homogeneous.
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(3) Finite holomorphic maps
X.,Y n-dim. Fano manifolds of Picard number
1, X,Y 2 P". Then

deg(f) < function of Chern numbers of X,Y .
Consequence

X & P, Pic(X) & Z
= End(X) = Aut(X)

(4) Vector Fields
Conjecture:
X Fano, Pic(X) = Z. Then,
(a) At a general point ¥ holomorphic vector
fields vanishing to the order > 3.
(b) dim (Aut(X)) < n?+2n unless X = P".
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