From Rational Curves to

Complex Structures

on Fano Manifolds

Ngaiming MOK

The University of Hong Kong

X Fano Miyaoka-Mori, i.e. $K_{X}^{-1}>0$

By Miyaoka-Mori,

$$
X \text { is uniruled, i.e. }
$$

"filled up by rational curves"

By Kollar-Miyaoka-Mori

X is rationally connected

Differential-geometric criterion:
X Fano $\Leftrightarrow \exists g$ Kähler, Ric $(X, g)>0$

Holomorphic Vector Bundles on \mathbb{P}^{1}

Riemann Sphere $\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}$
$=\left(\mathbb{P}^{1}-\{0\}\right) \cup\left(\mathbb{P}^{1}-\{\infty\}\right)=\mathbb{C}_{1} \cup \mathbb{C}_{2}$
$\pi: V \rightarrow \mathbb{P}^{1}$ hol. vector bundle of rank r means

$$
\begin{gathered}
\pi^{-1}\left(\mathbb{C}_{1}\right)=\mathbb{C}_{1} \times \mathbb{C}^{r} \\
\pi^{-1}\left(\mathbb{C}_{2}\right)=\mathbb{C}_{2} \times \mathbb{C}^{r}
\end{gathered}
$$

Over $\mathbb{C}_{1} \cap \mathbb{C}_{2}=\mathbb{C}^{*}$, we introduce an equivalence relation

$$
(z, u)_{1} \sim(z, v)_{2} \Leftrightarrow u=f(z) v, \quad \text { where }
$$

$f: \mathbb{C}^{*} \xrightarrow{\text { hol }}\{$ invertible n-by- n matrices $\}$
$\mathcal{O}=$ trivial bundle,$\quad f \equiv 1$ $T_{\mathbb{P}^{1}}=$ tangent bundle.

Hol. section of $T_{\mathbb{P}^{1}}=$ hol. vector field. On $\mathbb{P}^{1}-\{\infty\}$, write $w=\frac{1}{z}$

$$
\begin{gathered}
\frac{\partial}{\partial z} \text { vector field on } \mathbb{C} \\
\frac{\partial}{\partial z}=\frac{\partial w}{\partial z} \frac{\partial}{\partial w}=-\frac{1}{z^{2}} \frac{\partial}{\partial w}=-w^{2} \frac{\partial}{\partial w}
\end{gathered}
$$

Thus, $\frac{\partial}{\partial z}$ defines a hol. vector field with a double zero at ∞.

$$
\begin{aligned}
& -z^{2} \frac{\partial}{\partial z} \sim \frac{\partial}{\partial w} ; \quad u=-z^{2} v \\
& f(z)=-z^{2}
\end{aligned}
$$

We write $T_{\mathbb{P}^{1}} \cong \mathcal{O}(2)$
Line bundle : rank =1
Any hol. line bundle on $\mathbb{P}^{1} \cong \mathcal{O}(a)$ for some a, defined by $f(z)=z^{a}$ on \mathbb{C}^{*}.

Grothendieck Splitting Theorem (1956)

$V \mapsto \mathbb{P}^{1}$ holomorphic vector bundle. Then

$$
V \cong \mathcal{O}\left(a_{1}\right) \oplus \cdots \oplus \mathcal{O}\left(a_{r}\right),
$$

where $a_{1} \leq \cdots \leq a_{r}$ are unique.

Formulation in terms of matrices
Let $f: \mathbb{C}-\{0\} \mapsto G L(n, \mathbb{C})$ be holomorphic.
Then there exist
$g_{1}: \mathbb{C} \rightarrow G L(n, \mathbb{C}), \quad g_{2}: \mathbb{P}^{1}-\{0\} \rightarrow G L(n, \mathbb{C})$
such that

$$
g_{1} f g_{2}^{-1}(z)=\left[\begin{array}{lll}
z^{a_{1}} & & \\
& \ddots & \\
& & z^{a_{r}}
\end{array}\right]
$$

Hilbert (1905), Plemelj (1908), Birkhoff (1913), Hasse (1895)

Deformation of Rational Curves

X complex mfld, $f: \mathbb{P}^{1} \rightarrow X, f\left(\mathbb{P}^{1}\right)=C$
$\left\{C_{t}\right\}$ hol. family of \mathbb{P}^{1}, defined by
$f_{t}: \mathbb{P}^{1} \rightarrow X, f_{0}=f, C_{0}=C$.
Write $F(z, t)=f_{t}(z)$

$$
\left.\frac{\partial F}{\partial t}\right|_{t=0}=s \in \Gamma\left(\mathbb{P}^{1}, f^{*} T_{X}\right)
$$

Any section $s \in \Gamma\left(\mathbb{P}^{1}, f^{*} T_{X}\right)$ is a candidate for infinitesimal deformation.
Use power series to construct
$F(z, t)=f_{t}(z)$
Obstruction to construction given by $H^{1}\left(\mathbb{P}^{1}, f^{*} T_{X}\right)$

$$
\begin{gathered}
H^{1}\left(\mathbb{P}^{1}, f^{*} T_{X}\right)=\sum_{i=1}^{r} H^{1}\left(\mathbb{P}^{1}, \mathcal{O}\left(a_{i}\right)\right) \\
H^{1}\left(\mathbb{P}^{1}, \mathcal{O}(a)\right)=0 \quad \forall a \geq-1
\end{gathered}
$$

Example of hol. vector bundles on \mathbb{P}^{1}
(A) $\mathbb{P}^{1} \subset \mathbb{P}^{2} ; V=\left.T_{\mathbb{P}^{2}}\right|_{\mathbb{P}^{1}}$

$$
V / T_{\mathbb{P}^{1}}=N_{\mathbb{P}^{1} \mid \mathbb{P}^{2}}, N=\text { normal bundle. }
$$

\exists hol. vector fields of \mathbb{P}^{2}, along \mathbb{P}^{1}, corresponding to inf. deformation of lines in \mathbb{P}^{2}. Using s, we have, $s(P)=0$

$$
\begin{aligned}
V & \cong T_{\mathbb{P}^{1}} \oplus N_{\mathbb{P}^{1} \mid \mathbb{P}^{2}} \\
& \cong \mathcal{O}(2) \oplus \mathcal{O}(1) .
\end{aligned}
$$

In general,

$$
\left.T_{\mathbb{P}^{n}}\right|_{\mathbb{P}^{1}} \cong \mathcal{O}(2) \oplus[\mathcal{O}(1)]^{n-1}
$$

(B) $\mathbb{P}^{1} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}, \quad z \rightarrow(z, 0)$

$$
\left.T_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\right|_{\mathbb{P}^{1}} \cong \mathcal{O}(2) \oplus \mathcal{O}
$$

(C) $Q^{n} \subset \mathbb{P}^{n+1}$ hyperquadric, defined by $z_{0}^{2}+$ $\cdots+z_{n+1}^{2}=0$

$$
\left.T_{Q^{n}}\right|_{\mathbb{P}^{1}} \cong \mathcal{O}(2) \oplus[\mathcal{O}(1)]^{n-2} \oplus \mathcal{O}
$$

Trivial factor: $Q^{2} \subset Q^{n} ; Q^{2} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$.

X Fano, $\quad L>0, \quad \delta_{L}=$ deg.

minimal rational curve C attains

$$
\min \left\{\delta_{L}(C):\left.T_{X}\right|_{C} \geq 0\right\}
$$

Deformation Theory of Rational Curves
\Longrightarrow For a very general point $P \in X$,

$$
\left.T_{X}\right|_{C} \geq 0 \quad \forall C \text { rat. }, \quad P \in C
$$

Consequence

$\mathcal{K}=$ choice of irr. comp. of mrc
For P generic, $[C] \in \mathcal{K}$ generic $f: \mathbb{P}^{1} \rightarrow X, \quad C=f\left(\mathbb{P}^{1}\right)$. Then,

$$
f^{*} T_{X} \cong \mathcal{O}(2) \oplus[\mathcal{O}(1)]^{p} \oplus \mathcal{O}^{q}
$$

Mori's "Breakin g-up Lemma"

Family of curves fixing 2 points $P, Q \in X$ must break up. Otherwise $T_{\infty} \cdot T_{\infty}=-\Gamma_{0} \cdot T_{\vartheta \theta}$

Varieties of Minimal Rational Tangents

X uniruled,
$\mathcal{K}=$ component of Chow space of minimal rational curves
$\mu: \mathcal{U} \rightarrow X ; \rho: \mathcal{U} \rightarrow \mathcal{K}$ universal family
$x \in X$ generic; \mathcal{U}_{x} smooth

The tangent map $\tau: \mathcal{U}_{x} \rightarrow \mathbb{P} T_{x}(X)$ is given by

$$
\tau([C])=\left[T_{x}(C)\right] ;
$$

for C smooth at $x \in X$.
τ is rational, generically finite,
a priori undefined for C singular at x.

We call the strict transform

$$
\tau\left(\mathcal{U}_{x}\right)=\mathcal{C}_{x} \subset \mathbb{P} T_{x}(X)
$$

variety of minimal rational tangents.

For C standard, $T_{x}(C)=\mathbb{C} \alpha$

$$
\begin{gathered}
\left.T\right|_{C} \cong \mathcal{O}(2) \oplus \mathcal{O}(1)^{p} \oplus \mathcal{O}^{q} \\
P_{\alpha}:=\left[\mathcal{O}(2) \oplus \mathcal{O}(1)^{p}\right]_{x}, \text { positive part } .
\end{gathered}
$$

Then,

$$
\begin{aligned}
& T_{\alpha}\left(\tilde{C}_{x}\right)=P_{\alpha} \\
& T_{[\alpha]}\left(C_{x}\right)=P_{\alpha} \bmod \mathbb{C} \alpha
\end{aligned}
$$

In other words,

$$
\operatorname{dim}\left(\mathcal{C}_{x}\right)=p,
$$

and \mathcal{C}_{x} is infinitesimally determined by splitting types.

Minimal Rational Curves

Variety of Minimal Rational Tangents (VMRT)

Characterization of \mathbb{P}^{n} (Cho-Miyaoka-Shepherd-Barron 2002)
X irr. normal variety, $\operatorname{dim}(X)=n$.
Suppose there exists a minimal component \mathcal{K} on X such that

$$
\mathcal{C}(\mathcal{K})=\mathbb{P} T_{X}
$$

Then, there exists

$$
\nu: \mathbb{P}^{n} \rightarrow X
$$

étale over $X-\operatorname{Sing}(X)$ such that
members of $\mathcal{K}=$ images of lines in \mathbb{P}^{n}.

In particular

$$
X \text { smooth } \Rightarrow X \cong \mathbb{P}^{n}
$$

Theorem (Kebekus 2002, JAG).

The tangent map

$$
\tau_{x}: \mathcal{U}_{x} \rightarrow \mathbb{P} T_{x}(X)
$$

is a morphism at a generic point $x \in X$.

Theorem (Hwang-Mok 2004, AJM).

The tangent map

$$
\tau_{x}: \mathcal{U}_{x} \rightarrow \mathcal{C}_{x} \subset \mathbb{P} T_{x}(X)
$$

is a birational morphism at a generic point $x \in$ X.

Examples of VMRTs

Fermat hypersurface $1 \leq d \leq n-1$

$$
\begin{aligned}
& \quad X=\left\{Z_{0}^{d}+Z_{1}^{d}+\cdots+Z_{n}^{d}=0\right\} \\
& x=\left[z_{0}, z_{1}, \ldots, z_{n}\right] \in X .
\end{aligned}
$$

FIND all $\left(w_{0}, w_{r}, \ldots, w_{n}\right)$ such that $\forall t \in \mathbb{C}$.

$$
\begin{gathered}
{\left[z_{0}+t w_{0}, z_{1}+t w_{1}, \ldots, z_{n}+t w_{n}\right] \in X} \\
\left(z_{0}+t w_{0}\right)^{d}+\cdots+\left(z_{n}+t w_{n}\right)^{d}=0 \\
0=\left(z_{0}^{d}+\cdots+z_{n}^{d}\right) \\
\quad+t\left(z_{0}^{d-1} w_{0}+\cdots+z_{n}^{d-1} w_{n}\right) \cdot d \\
+t^{2}\left(z_{0}^{d-2} w_{0}^{2}+\cdots+z_{n}^{d-2} w_{n}^{2}\right) \cdot \frac{d(d-1)}{2} \\
\quad+\cdots+t^{d}\left(w_{0}^{d}+\cdots+w_{n}^{d}\right) .
\end{gathered}
$$

When $\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ is fixed, we get $d+1$ equations, and
$\mathcal{C}_{x}=$ complete intersection of $d-1$ hypersurfaces of degree $2,3, \ldots, d$ in $\mathbb{P}_{x}(X) \cong \mathbb{P}^{n-1}$ If $d \leq n-1, \operatorname{dim}\left(\mathcal{C}_{x}\right)=(n+1)-(d+1)-1=$ $n-d-1 \geq 0$.

Examples of VMRT

X	(generic) VMRT \mathcal{C}_{x}
\mathbb{P}^{n}	\mathbb{P}^{n-1}
Q^{n}	Q^{n-2}
cubic	codim $2 \subset \mathbb{P}^{n-1}$
in \mathbb{P}^{n+1}	$=$ quadric \cap cubic, deg. 6
$X_{3}^{3} \subset \mathbb{P}^{4}$	6 points
$X_{3}^{4} \subset \mathbb{P}^{5}$	deg. 6 curve of genus 4
$X_{3}^{5} \subset \mathbb{P}^{6}$	$K^{3}-$ surfaces

$$
\begin{array}{cc}
X_{d}^{n} \subset \mathbb{P}^{n+1}, & \text { complete intersection } \subset \mathbb{P}^{n} \\
d<n & \text { of degrees } 1,2, \ldots, d
\end{array}
$$

In these examples,
$\{\operatorname{mrc}\}=\left\{\right.$ lines in \mathbb{P}^{n} contained in $\left.X\right\}$.

Type	G	K	$G / K=S$	\mathcal{C}_{o}	Embedding
I	$S U(p+q)$	$S(U(p) \times U(q))$	$G(p, q)$	$\mathbb{P}^{p-1} \times \mathbb{P}^{q-1}$	Segre
II	$S O(2 n)$	$U(n)$	$G^{I I}(n, n)$	$G(2, n-2)$	Plücker
III	$S p(n)$	$U(n)$	$G^{I I I}(n, n)$	\mathbb{P}^{n-1}	Veronese
IV	$S O(n+2)$	$S O(n) \times S O(2)$	Q^{n}	Q^{n-2}	by $\mathcal{O}(1)$
V	E_{6}	$\operatorname{Spin}(10) \times U(1)$	$\mathbb{P}^{2}(\mathbb{O}) \otimes_{\mathbb{R}} \mathbb{C}$	$G^{I I}(5,5)$	by $\mathcal{O}(1)$
VI	E_{7}	$E_{6} \times U(1)$	exceptional	$\mathbb{P}^{2}(\mathbb{O}) \otimes_{\mathbb{R}} \mathbb{C}$	Severi

Scope

Algebraic Geometry $\left\{\begin{array}{l}\text { Mori theory } \\ \text { Hilbert schemes } \\ \text { projective geometry }\end{array}\right.$

Differential Geometry $\left\{\begin{array}{l}\text { distributions } \\ G \text {-structures }\end{array}\right.$

Several
Complex Variables $\left\{\begin{array}{l}\text { Hartogs phenomenon } \\ \text { analytic continuation }\end{array}\right.$

Lie Theory $\left\{\begin{array}{l}\text { Hermitian symmetric spaces } \\ \text { rational homog. spaces } G / P\end{array}\right.$

Examples of G-structures

Riemannian Geometry

A Riemannian metric $\Sigma g_{i j} d x^{i} \otimes d x^{j}$ gives a reduction of the structure group from $G L(n, \mathbb{R})$ to $O(n, \mathbb{R}) ; G=O(n, \mathbb{R})$.

Holomorphic Metrics
X complex manifold,

$$
\sum g_{i j} d z^{i} \otimes d z^{j}
$$

hol. symmetric 2-tensor,

$$
\operatorname{det}\left(g_{i j}\right) \neq 0 ;
$$

g a holomorphic metric;
Hol. G-structure with $G=O(n ; \mathbb{C})$.

Theorem (Hwang-Mok, Crelle 1997)
V model vector space $\cong \mathbb{C}^{n}$,
G reductive complex Lie group,
$G \varsubsetneqq G L(V)$ irreducible faithful representation,
M Fano manifold with holomorphic G-structure.

Then, the G-structure is flat

$$
M \cong S
$$

where $S=$ irr. HSS, compact type of rank ≥ 2.

Lazarsfeld's Problem

Theorem (Hwang-Mok, Invent. 1999).

$Y=G / P$ rational homogeneous
P maximal parabolic, ie. $b_{2}(Y)=1$

X projective manifold
$f: Y \rightarrow X$ finite holomorphic map

Then,

EITHER
(a) $X \cong \mathbb{P}^{n} ; O R$
(b) $f: Y \xrightarrow{\cong} X$ is a biholomorphism.

Lazarsfeld's Problem

Principle of Proof:

$$
f: Y \rightarrow X ; \quad Y=G / P, \quad b_{2}(Y)=1
$$

Suppose $X \not \not \mathbb{P}^{n} ; f$ not a biholomorphism. To derive a contradiction let

$$
\begin{gathered}
\varphi: U \xrightarrow{\cong} V ; U, V \subset Y \\
\text { such that } \quad f \circ \varphi \equiv f .
\end{gathered}
$$

$\mathcal{C} \subset \mathbb{P} T(X)$ varieties of mrt
$\mathcal{D}:=f^{*} \mathcal{C} \subset \mathbb{P} T(Y)$

$$
\left.\varphi_{*} \mathcal{D}\right|_{U}=\left.\mathcal{D}\right|_{V} \text { tautologically. }
$$

Prove that $\varphi=\left.\Phi\right|_{U}$ for some $\Phi \in \operatorname{Aut}(Y)$ to derive a contradiction!

Stratification with respect to a morphism

M, Z quasi-projective varieties
$h: M \rightarrow Z$ morphism
An h-stratification of M is a decomposition $M=M_{1} \cup \cdots \cup M_{k}$ such that
(i) Each M_{i} is smooth and its image $h\left(M_{i}\right)$ is also smooth.
(ii) For any tangent vector v to $h\left(M_{i}\right)$, there exists a local holomorphic arc in M_{i} whose image under h is tangent to v.
(iii) When a connected Lie group acts on M and Z, and h is equivariant under these actions, each M_{i} is invariant under the group action.

Proposition.
 h-strafications exist.

Varieties of distinguished tangents

$\mathcal{N}=$ irr. comp. of Chow space of curves on X passing through $x \in X$
$\mathcal{N}^{\prime} \subset \mathcal{N}$ subset smooth of curves smooth at x
$\mathcal{N}^{\prime}=N^{1} \cup \cdots \cup N^{\ell}$ decomposition in terms of geometric genus
$\tau: N^{j} \rightarrow \mathbb{P} T_{x}(X)$ tangent map
$N^{j}=M_{1}^{j} \cup \cdots \cup M_{k}^{j} \tau$-stratification

Definition.

An irreducible subvariety $\mathcal{D} \subset \mathbb{P} T_{x}(X)$ is called a variety of distinguished tangents (VMRT) if $\mathcal{D}=\overline{\tau\left(M_{i}^{j}\right)}$ for some choice of \mathcal{N}, N^{j} and M_{i}^{j}.

Varieties of distinguished tangents

Properties
(i) Given an irreducible smooth projective variety X and $x \in X$, there are only countably many varieties of distinguished tangent in $\mathbb{P} T_{x}(X)$.
(ii) Let $\mathcal{D} \subset \mathbb{P} T_{x}(X)$ be a variety of distinguished tangents associated to some choice of \mathcal{N}, N^{j} and M_{i}^{j}. Then for any tangent vector v to \mathcal{D}, we can find a family of curves $\left\{l_{t}, t \in \Delta\right\}$ belonging to \mathcal{N} smooth at x so that the derivative of the tangent directions $\mathbb{P} T_{y}\left(l_{t}\right) \in \mathbb{P} T_{x}(X)$ at $t=0$ is v.
(iii) Suppose a connected Lie group P acts on X fixing x. Then any variety of distinguished tangents in $\mathbb{P} T_{x}(X)$ is invariant under the isotropy action of P on $\mathbb{P} T_{x}(X)$.

Theorem. (Hwang-Mok 2004)
G simple Lie group over \mathbb{C}, $\mathfrak{g}=$ Lie algebra
$P \subset G$ maximal parabolic subgroup
$S=$ rational homogeneous of type $(G ; \alpha)$
$\pi: \mathcal{X} \rightarrow \triangle=\{t \in \mathbb{C}:|t|<1\}$ regular family such that
(i) $X_{t}:=\pi^{-1}(t) \cong S$ for $t \neq 0$ and
(ii) $X_{0}:=\pi^{-1}(0)$ is Kähler.

Then,

$$
X_{0} \cong S
$$

x

$$
S=G / P
$$

G simple P maximal parabolic

$$
\begin{aligned}
& X_{t} \cong S, \quad \forall t \neq 0 \\
& \underline{Q} \quad X_{0} \stackrel{?}{\cong} S
\end{aligned}
$$

Deformation rigidity in the Kähler case

Scheme
(1) S Hermitian symmetric
[Hwang-Mok, Invent. Math 1998]
(2) S of type $(G, \alpha), \alpha$ a long simple root [Hwang, Crelle 1997] for the contact case [Hwang-Mok, Ann. ENS 2002] in general
(3) S of type $\left(F_{4}, \alpha_{1}\right)$
[Hwang-Mok, Springer-Verlag 2004]
(4) S of type $\left(C_{n}, \alpha_{k}\right), 1<k<n$; or $\left(F_{4}, \alpha_{2}\right)$
[Hwang-Mok, Invent. Math 2005]

Deformation rigidity in the Kähler case

Methods
(1) Distribution spanned by VMRT Integrability
(2) Differential systems generated by distributions spanned by VMRT
(3) Methods of (2)
(4) Holomorphic vector fields on uniruled projective manifolds.
Uses also conditions on integrability of (1).

Distributions Spanned by MRT

X uniruled,
\mathcal{K} : component of Chow space of minimal ratonal curves
\mathcal{C}_{x} : variety of mot;
$\mathcal{C}_{x} \subset \mathbb{P} T_{x}(X) ; \tilde{\mathcal{C}}_{x} \subset T_{x}(X) ;$
$W_{x}=\operatorname{Span}\left(\tilde{\mathcal{C}}_{x}\right) \subset T_{x}(X)$.
Assume $W \neq T(X)$.
Q. Is W integrable?
$\operatorname{Pic}(X)=1 \Rightarrow W$ not integrable
Projective-geometric properties of \mathcal{C}_{x} $\Rightarrow W$ integrable

For \mathcal{C} on $X_{0}, W=T\left(X_{0}\right)$, i.e. \mathcal{C}_{x} lin. nondeg.

Integrability of Distributions

Proposition.
$\Omega \subset \mathbb{C}^{n}, W \subset T_{\Omega}$ hol. distribution. Then, W is integrable iff
$(*)$ Given $x \in \Omega, \exists$ hol. vector fields α_{j}, β_{j} def. on a nbd of x s.t.
(i) $\left[\alpha_{j}, \beta_{j}\right](x) \in W_{x}$.
(ii) $\operatorname{Span}\left\{\alpha_{j} \wedge \beta_{j}\right\}=\Lambda^{2} W_{x}$.

Verification of Integrability

$C \subset X_{0}$ be a smooth standard mrc.

$$
\left.T_{X_{0}}\right|_{C} \cong \mathcal{O}(2) \oplus[\mathcal{O}(1)]^{p} \oplus \mathcal{O}^{q}
$$

For $x \in C ; T_{x}(C) \cong \mathbb{C} \alpha_{x}$. Define

$$
P_{\alpha_{x}}=\left(\mathcal{O}(2) \oplus[\mathcal{O}(1)]^{p}\right)_{x}
$$

Proposition

$C \subset X_{0}$ standard mrc; $x \in C . \xi_{x} \in P_{\alpha_{x}}$ s.t. $\left(\alpha_{x}, \xi_{x}\right)$ linearly independent. Then, there exists a loc. smooth complex-analytic surface Σ at x such that
(i) $T_{x}(\Sigma)=\mathbb{C} \alpha_{x}+\mathbb{C} \xi_{x}$;
(ii) at every $y \in \Sigma$ near x;

$$
T_{y}(\Sigma) \subset W_{y}
$$

Proposition.

$\mathcal{C}_{x} \subset \mathbb{P} W_{x}$ VMRT at generic x $\mathcal{T}_{x} \subset \mathbb{P}\left(\wedge^{2} W_{x}\right)$ variety of tangents.

Then,

$$
\begin{aligned}
& \mathcal{T}_{x} \subset \mathbb{P}\left(\wedge^{2} W_{x}\right) \text { lin. nondeg. } \\
& \quad \Rightarrow W \text { integrable }
\end{aligned}
$$

Proposition. $\quad \mathcal{T}_{x} \subset \mathbb{P}\left(\wedge^{2} W_{x}\right)$ is linearly non-degenerate if
$\operatorname{dim} \mathcal{C}_{x} \geq \operatorname{codim} \mathcal{C}_{x}$ in $\mathbb{P} W_{x}$, $\mathcal{C}_{x} \subset \mathbb{P} W_{x}$ is smooth.
E_{6}

E_{7}

E_{8}

Highest weight varieties

F_{4}
$G^{\prime \prime}(4,4)$
$P_{1} \times P_{2}$
$\mathrm{P}_{1} \times\left[\mathrm{P}_{2}\right]^{2}$
$G^{I I I}(3,3)$
G_{2}

Differential system

$$
0 \neq D_{1} \varsubsetneqq D_{2} \varsubsetneqq \cdots \varsubsetneqq D_{m} \subset T_{U}
$$

filtration of X by hol. distributions.

Weak derived system (X, D)

$$
\begin{gathered}
D^{1}=D, \text { meromorphic distribution } \\
D^{k}=D^{k-1}+\left[D, D^{k-1}\right]
\end{gathered}
$$

- On a Fano manifold $X, b_{2}(X)=1, D^{m}=$ T_{X} for some m.

Symbol algebra of a weak derived system:

$$
\mathfrak{s}(X, D):=D^{1} \oplus D^{2} / D^{1} \oplus \cdots \oplus D^{m} / D^{m-1}
$$

- On a rational homogeneous space $S=G / P$, $b_{2}(S)=1$, with $D=$ min. nontrivial G-inv. hol. distribution,

$$
\mathfrak{n}^{+}:=\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{m} \cong \mathfrak{s}(S, D)
$$

Serre relations

\mathfrak{g} simplie Lie algebra over \mathbb{C}
$\Sigma=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ system of simple roots
$n(i, j)=$ entries of Cartan matrix
Then, \mathfrak{g} is the universal Lie algebra generated by $\left\{x_{i}, y_{i}, h_{i}: 1 \leq i \leq \ell\right\}$ subject to the identities

- $\left[h_{i}, h_{j}\right]=0$
- $\left[x_{i}, y_{i}\right]=h_{i},\left[x_{i}, y_{j}\right]=0$ if $i \neq j$
- $\left[h_{i}, x_{j}\right]=n(i, j) x_{j},\left[h_{i}, y_{j}\right]=-n(i, j) y_{j}$
- $a d\left(x_{i}\right)^{-n(i, j)+1}\left(x_{j}\right)=0$ if $i \neq j$
- $a d\left(y_{i}\right)^{-n(i, j)+1}\left(y_{j}\right)=0$ if $i \neq j$

Objective

For the regular family $\pi: \mathfrak{X} \rightarrow \triangle$ consider $D \subset T_{X_{0}}$ spanned by VMRTs. Show that $\mathfrak{s}\left(X_{0}, D\right) \cong \mathfrak{n}^{+}=\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{m}$ for the model $S=G / P$.

Serre relations for \mathfrak{n}^{+}

Write $\mathfrak{n}^{+} \subset \mathfrak{g}$ subalgebra generated by $\left\{x_{1}, x_{2}, \ldots, x_{\ell}\right\}$. Then, \mathfrak{n}^{+}is the universal Lie algebra generated by $\left\{x_{1}, \ldots, x_{\ell}\right\}$ subject to

$$
a d\left(x_{i}\right)^{-n(i, j)+1}\left(x_{j}\right)=0 .
$$

Note that

- When α_{i} is a long simple root,

$$
n(i, j)=\frac{2\left(\alpha_{i}, \alpha_{j}\right)}{\left\|\alpha_{i}\right\|^{2}}=0 \text { or }-1
$$

For us the crucial relations are

$$
\left[x_{i},\left[x_{i}, x_{j}\right]\right]=0 \text { if } n(i, j) \neq 0
$$

Proof of $\sigma\left(X_{0}, D\right) \cong \mathfrak{n}^{+}$
α_{i} long simple root, $S=G / P$ of type $\left(G, \alpha_{i}\right)$
$\pi: \mathfrak{X} \rightarrow \triangle$ regular family, $X_{t} \cong S$ for $t \neq 0$
$\sigma: \triangle \rightarrow \mathfrak{X}$ "generic" hol. cross-section

$$
\mathcal{U}_{\sigma(t)} \rightarrow \triangle \text { regular family }
$$

$\Rightarrow \mathcal{U}_{\sigma(0)} \cong \mathcal{U}_{o}$ of the model $S, \tau_{o}: \mathcal{U}_{o} \cong \mathcal{C}_{o}$
$D_{\sigma(0)}$ spanned by $\mathcal{C}_{\sigma(0)}$, image under the tangent map

$$
\tau_{\sigma(0)}: \mathcal{U}_{\sigma(0)} \rightarrow \mathbb{P} T_{\sigma(0)}\left(X_{0}\right)
$$

To prove:

$$
\tau_{\sigma(0)}: \mathcal{U}_{\sigma(0)} \cong \mathcal{C}_{\sigma(0)} \varsubsetneqq \mathbb{P} T_{\sigma(0)}\left(X_{0}\right)
$$

$\mathcal{C}_{\sigma(0)} \cong \mathcal{C}_{\sigma(t)} \cong \mathcal{C}_{o}$ as proj. subvarieties

Weak derived system (X, D)

$$
0 \neq D^{1} \subset D^{2} \subset \cdots \subset D^{r}=T_{X_{0}}
$$

$\mathfrak{s}\left(X_{0}, D\right)$ is a quotient of the universal Lie algebra generated by \mathfrak{g}_{1} subject to relations defined by pencils of mrc.

On the model, x_{i} represents a tangent vector

- $x_{j}, j \neq i$, represents an element of \mathfrak{g}_{0}
- $\left[x_{i},\left[x_{i}, x_{j}\right]\right]=0 \bmod \mathfrak{g}_{1}$ results from argument using pencils of mrc
- $a d\left(x_{j}\right)^{-n(i, j)+1}\left(x_{i}\right)=0$ is a property in \mathfrak{g}_{1}

Conclusion:
$\mathfrak{s}\left(X_{0}, D\right)$ is a quotient of the universal Lie algebra \mathbf{U} gen. by $\left\{x_{1}, \ldots, x_{\ell}\right\}$ subject to

$$
a d\left(x_{j}\right)^{-n(i, j)+1}\left(x_{i}\right)=0 .
$$

By Serre relations,

$$
\mathbf{U} \cong \mathfrak{n}^{+}, \quad \mathfrak{s}\left(X_{0}, D\right) \cong \mathfrak{n}^{+} / J
$$

If $J \neq 0$, the weak derived system (X, D) would terminate at $D^{m}, \operatorname{dim} D^{m}<n$, giving an integrable distribution $W=D^{m}$ containing VMRTs, which contradicts with $b_{2}\left(X_{0}\right)=1$. \square

Conjecture 1
X Fano, $b_{2}(X)=1$
$x \in X$ generic point
$Z \in \Gamma\left(X, T_{X}\right)$.
Then,

$$
\operatorname{ord}_{x}(Z) \geq 3 \Rightarrow Z \equiv 0
$$

Conjecture 2
X Fano, $b_{2}(X)=1, \operatorname{dim}_{\mathbb{C}} X=n$
$\Rightarrow \operatorname{dim}_{\mathbb{C}}(\operatorname{Aut}(X)) \leq n^{2}+2 n ;$
$=n^{2}+2 n \Leftrightarrow X \cong \mathbb{P}^{n}$.

Theorem (Hwang 1999)
X Fano, $b_{2}(X)=1, \operatorname{dim} X=n$
$x \in X$ generic point, Then,

$$
Z \in \Gamma\left(X, T_{X}\right), \operatorname{ord}_{x}(Z)>n \Rightarrow Z \equiv 0
$$

Corollary
$\operatorname{dim}(\operatorname{Aut}(X))=\operatorname{dim} \Gamma\left(X, T_{X}\right) \leq n\binom{2 n}{n}$.

Remark:
(1) For $\Sigma_{k}=\mathbb{P}(\mathcal{O} \oplus \mathcal{O}(k))$, the k-th Hirzebruch surface,
$\operatorname{dim}\left(\operatorname{Aut}\left(\Sigma_{k}\right)\right)>\operatorname{dim} \Gamma\left(\mathbb{P}^{1}, \mathcal{O}(k)\right)=k+1$.

Bounds fail in general for projective uniruled projective manifolds.
(2) If $\exists \mathcal{K}$ on X such that $\operatorname{dim} \mathcal{C}_{x}=0$, Hwang shows that there are no hol. v.f. vanishing at a generic point $x \in X$. In that case, $\operatorname{dim}(\operatorname{Aut}(X)) \leq$ n.
(3)

$$
\begin{aligned}
& \operatorname{dim}\left\{Z \in \Gamma\left(X, T_{X}\right): \operatorname{ord}_{x}(Z) \leq 2\right\} \\
\leq & \frac{n(n+1)(n+2)}{2} \cong \frac{n^{3}}{2}
\end{aligned}
$$

Theorem 1 (Hwang-Mok)
X projective uniruled manifold
$\mathcal{K}=$ minimal rational component
$x \in X$ generic point
$\mathcal{C}_{x} \subset \mathbb{P} T_{x}(X)$, VMRT at $x, \operatorname{dim} \mathcal{C}_{x}=p>0$

Assume $\mathcal{C}_{x} \subset \mathbb{P} T_{x}(X)$
nonsingular, irreducible,
linearly non-degenerate.

Then,

$$
Z \in \Gamma\left(X, T_{X}\right), \operatorname{ord}_{x}(Z) \geq 3 \Rightarrow Z \equiv 0
$$

Theorem 2

Assume $\mathcal{C}_{x} \subset \mathbb{P} T_{x}(X), \operatorname{dim} X=n$
nonsingular, irreducible,
linearly non-degenerate,
linearly normal.

Then,

$$
\begin{gathered}
\operatorname{dim}(\operatorname{Aut}(X)) \leq n^{2}+2 n \\
=n^{2}+2 n \Leftrightarrow X \cong \mathbb{P}^{n}
\end{gathered}
$$

Corollary
X Fano, $b_{2}(X)=1, \operatorname{dim} X=n$
$\mathcal{O}(1)$ positive generator of $\operatorname{Pic}(X) \cong \mathbb{Z}$.

Assume $\mathcal{O}(1)$ very ample.
$c_{1}(X)>\frac{n+1}{2}, x \in X$ generic. Then,

$$
0 \neq Z \in \Gamma\left(X, T_{X}\right) \Rightarrow \operatorname{ord}_{x}(Z) \leq 3
$$

$c_{1}(X)>\frac{2(n+2)}{3}, X \not \equiv \mathbb{P}^{n}$
$\Rightarrow \operatorname{dim}(\operatorname{Aut}(X))<n^{2}+2 n$.

Ideas of Proof

(1) A holomorphic vector field Z vanishing at $x \in X$ to the order ≥ 2 gives by power series expansion

$$
Z=\sum_{i, j, k} A_{i j}^{k} z^{i} z^{j} \frac{\partial}{\partial z_{k}}+\text { higher order terms }
$$

$$
A \in S^{2} T_{x}^{*} \otimes T_{x} \text { with the property that }
$$

(\dagger) for any $\alpha \in \tilde{\mathcal{C}}_{x}$, for

$$
A_{\alpha}:=\sum A_{\alpha j}^{k} d z^{j} \otimes \frac{\partial}{\partial z_{k}} \in \operatorname{End}\left(T_{x}\right)
$$

$\left.A_{\alpha}\right|_{\tilde{\mathcal{C}}_{x}}$ is tangent to $\tilde{\mathcal{C}}_{x}$.

Here we identify vector fields on T_{x} with endomorphisms.
(2) Taking $\alpha, \beta \in \tilde{\mathcal{C}}_{x} ; \alpha, \beta \neq 0$

$$
A_{\alpha \beta}=A_{\alpha}(\beta)=A_{\beta}(\alpha)
$$

is tangent to $\tilde{\mathcal{C}}_{x}$ both at α and β, i.e.

$$
A_{\alpha \beta} \in P_{\alpha} \cap P_{\beta}
$$

(3) The symmetry property on A forces (by letting $\beta \rightarrow \alpha$) that $A_{\alpha \alpha} \in \operatorname{Ker}\left(\sigma_{\alpha}\right)$ for the second fundamental form σ_{α} on $\tilde{\mathcal{C}}_{x}-\{0\}$. If $\mathcal{C}_{x} \varsubsetneqq \mathbb{P} T_{x}$ is smooth and non-linear, $\operatorname{Ker}\left(\sigma_{\alpha}\right)=$ $\mathbb{C} \alpha$ (Zak's Thm.), and

$$
\bar{A} \in \Gamma\left(\mathcal{C}_{x} ; \operatorname{Hom}\left(L^{2}, L\right)\right)=\Gamma\left(\mathcal{C}_{x}, L^{*}\right)
$$

for the tautological line bundle L.
(4) We can get bounds for the dimension of Z with $\operatorname{ord}_{x}(Z) \geq 2$ if we know that
(*)

$$
\bar{A}=0 \Rightarrow A=0
$$

Moreover, the latter is enough to prove the nonexistence of nontrivial Z with $\operatorname{ord}_{x}(Z) \geq 3$. If $\operatorname{ord}_{x}(Z) \geq 3$ start with

$$
\begin{gathered}
A \in S^{3} T_{x}^{*} \otimes T_{x} \quad \text { such that } \\
A_{\alpha \beta \gamma} \in P_{\alpha} \cap P_{\beta} \cap P_{\gamma} \text { for } \alpha, \beta, \gamma \in \tilde{\mathcal{C}}_{x}-\{0\} .
\end{gathered}
$$

Then, we get

$$
\begin{aligned}
& A_{\alpha \alpha \gamma} \in P_{\alpha} \cap P_{\gamma} \text { for any } \alpha, \gamma \in \tilde{\mathcal{C}}_{x}-\{0\} \\
& \Rightarrow A_{\alpha \alpha \gamma}=0 \\
& \Rightarrow A \equiv 0 \text { if }(*) \text { holds } .
\end{aligned}
$$

Proof of $(*)$

We prove $\bar{A}=0 \Rightarrow A=0$ by induction. The hypothesis $\bar{A}=0$ implies
(a) \mathcal{C}_{x} is uniruled by lines;
(b) for any $\alpha \in \tilde{\mathcal{C}}_{x}, \alpha \neq 0, A_{\alpha}$ induces a hol. vector field \mathcal{Z} on \mathcal{C}_{x} such that $\mathcal{Z}([\alpha])=0$, $\operatorname{ord}_{[\alpha]}(\mathcal{Z}) \geq 2 ;$
(c) for $\mathcal{K}^{\prime}=$ space of lines on $\mathcal{C}_{x},\left(\mathcal{C}_{x}, \mathcal{K}^{\prime}\right)$ is similar to (X, \mathcal{K}), viz. for the generic VMRT $\mathcal{C}_{[\alpha]}^{\prime}$,

$$
\mathcal{C}_{[\alpha]}^{\prime} \varsubsetneqq \mathbb{P} T_{[\alpha]}\left(\mathcal{C}_{x}\right) \text { nonsingular, }
$$

connected and linearly non-degenerate;
(d) for $\mathcal{A} \in S^{2} T_{[\alpha]}^{*} \otimes T_{[\alpha]}$ induced by \mathcal{Z} (as A is induced by $Z), \overline{\mathcal{A}}=0$.

Comments on the proof:

- We actually prove that \mathcal{C}_{x} is rationally 2 connected by lines. The starting point is:

$$
\bar{A}=0 \Rightarrow A_{\alpha}^{2} \equiv 0 \text { as endomorphisms } .
$$

Then, for $[\alpha],[\beta] \in \mathcal{C}_{x}$ generic, both points are joined on \mathcal{C}_{x} by lines to $[\gamma], \gamma=A_{\alpha \beta}$.

- The delicate part is the proof of linear nondegeneracy of the iterated VMRTs $\mathcal{C}_{[\alpha]}^{\prime} \varsubsetneqq$ $\mathbb{P} T_{[\alpha]}\left(\mathcal{C}_{x}\right)$. The proof makes use of the theory on distributions spanned by VMRTs which we developed in connection with deformation rigidity.

Prolongation of infinitesimal automorphisms of projective varieties

V complex vector space, $\operatorname{dim} V=n$
$\mathfrak{g} \subset \operatorname{End}(V)$ Lie subalgebra
$\mathfrak{g}^{(k)} \subset S^{k+1} V^{*} \otimes V, \sigma \in \mathfrak{g}^{(k)} \Leftrightarrow$
$\forall v_{1}, \ldots, v_{k} \in V$, writing

$$
\sigma_{v_{1}, \ldots, v_{k}}(v)=\sigma\left(v ; v_{1}, \ldots, v_{k}\right)
$$

we have $\sigma_{v_{1}, \ldots, v_{k}} \in \mathfrak{g}$.
$\mathfrak{g}^{(k)}=k$-th prolongation of $\mathfrak{g} ; \mathfrak{g}^{(0)}=\mathfrak{g}$.
$\mathfrak{g}^{(k)}=0 \Rightarrow \mathfrak{g}^{(k+1)}=0$.
$\mathfrak{h} \subset \mathfrak{g} \Rightarrow \mathfrak{h}^{(k)} \subset \mathfrak{g}^{(k)}$.
$\left[\mathfrak{g}^{(k)} ; \mathfrak{g}^{(\ell)}\right] \subset \mathfrak{g}^{(k+\ell)}$.
$Y \subset \mathbb{P} V$ projective subvariety, $\operatorname{dim} Y=p$
$\tilde{Y} \subset V$ affine cone of Y. Define
$\operatorname{aut}(Y)=\{A \in \operatorname{End}(V): \exp (t A)(\tilde{Y}) \subset \tilde{Y}, t \in \mathbb{C}\}$.
X complex manifold, $\operatorname{dim} X=n$
$\mathcal{C} \subset \mathbb{P} T(X)$ projective and flat over X
$\mathcal{C}_{x} \subset \mathbb{P} T_{x}(X)$ irreducible, reduced
$\mathfrak{f}:=$ germs of \mathcal{C}-preserving holomorphic vector fields at x

For $\ell \geq-1$, let

$$
\mathfrak{f}^{\ell}=\left\{Z \in \mathfrak{f}: \operatorname{ord}_{x}(Z) \geq \ell+1\right\}
$$

Proposition. For $k \geq 0$, identify $\mathfrak{f}^{k} / \mathfrak{f}^{k+1} \subset$ $S^{k+1} T_{x}^{*}(X) \otimes T_{x}(X)$ by taking leading terms of Taylor expansions of the vector fields at x. Then

$$
\mathfrak{f}^{k} / \mathfrak{f}^{k+1} \subset \operatorname{aut}\left(\mathcal{C}_{x}\right)^{(k)},
$$

the k-th prolongation of the Lie algebra of infinitesimal automorphisms of the projective variety \mathcal{C}_{x}.

Proof. Z hol. vector field at x, defined on $U \subset$ X, ord $_{x} Z \geq k+1$

$$
j_{x}^{j+1}(Z) \in S^{k+1} T_{x}^{*}(X) \otimes T_{x}(X)
$$

Z can be lifted canonically to Z^{\prime} on $\mathbb{P} T(U)$: $Z=$ inf. generator of $\left\{f_{t}\right\}$, germs of biholomorphism at x
$f_{t}: U \rightarrow X$ gives $F_{t}: T(U) \rightarrow T(X)$, where $F_{t}(x, \eta)=\left(f_{t}(x), d f_{t}(x)(\eta)\right)$.
$\eta \in T_{x}(X), \operatorname{ord}_{\eta}\left(Z^{\prime}\right) \geq k$,

$$
j_{\eta}^{k} \in S^{k} T_{\eta}^{*}(T(X)) \otimes T_{\eta}(T(X))
$$

For $k=0, j_{\eta}^{0} \in T_{\eta}(T(X))$.
For $k \geq 1,\left.Z^{\prime}\right|_{T_{x}(X)} \equiv 0$,

$$
j_{\eta}^{k} \in S^{k} N_{\eta}^{*} \otimes T_{\eta}(T(X)),
$$

where $N=$ normal bundle of $T_{x}(X)$ in $T(X)$, $N \cong \pi^{*} T(X) . \quad$ Since $\operatorname{ord}_{x}(Z) \geq k+1$, $\pi_{*}\left(j_{\eta}^{k}\left(v_{1}, \ldots, v_{k}\right)\right)=0$ for $v_{1}, \ldots, v_{k} \in T_{x}(X)$. Hence,
$j_{\eta}^{k}\left(Z^{\prime}\right) \in S^{k} N_{\eta}^{*} \otimes T_{\eta}\left(T_{x}(X)\right) \cong S^{k} T_{x}^{*}(X) \otimes T_{x}(X)$.
Straightforward calculations give

$$
j_{\eta}^{k}\left(Z^{\prime}\right)\left(v_{1}, \ldots, v_{k}\right)=j_{x}^{k+1}(Z)\left(v, v_{1}, \ldots, v_{k}\right)
$$

where we write η and v for the same thing, η when it is consider a point on the fiber $T_{x}(X)$, v when it is considered a tangent vector at x.

Lie algebras of infinitesimal linear automorphisms

Theorem. Let $Y \subset \mathbb{P} V$ be an irreducible, smooth, non-degenerate subvariety. Then aut $(Y)^{(2)}=$ 0 , unless $Y=\mathbb{P} V$.

Geometric proofs of results on the prolongation of Lie algebras

Proposition 1. Let $\mathfrak{g} \subset \mathfrak{g l}(n)$ be a Lie subalgebra which acts irreducibly on \mathbb{C}^{n}. Then $\mathfrak{g}^{(2)}=0$ unless \mathfrak{g} acts transitivley on \mathbb{P}_{n-1}, i.e., unless $\mathfrak{g}=\mathfrak{g l}(n), \mathfrak{s l}(n), \mathfrak{c s p}(m)$ or $\mathfrak{s p}(m)$, where in the last two cases $n=2 m$.

Proposition 2. Let $\mathfrak{g} \subset \mathfrak{g l}(n)$ be a Lie subalgebra which acts irreducibly on \mathbb{C}^{n}. Suppose $\mathfrak{g}^{(2)}=0$. Then $\mathfrak{g}^{(1)}=0$ unless the image of \mathfrak{g} in $\mathfrak{s l}(n)$ is isomorphic to the semi-simple part of the isotropy representation of an irreducible Hermitian symmetric space of compact type of rank ≥ 2.

Leading Terms of Hol. Vector Fields
$0 \in \Omega \subset \mathbb{C}^{n} ; Z=$ hol. vector field on Ω
$\operatorname{ord}_{0}(Z)=p \geq 0$
$Z=\sum A_{i_{1} \cdots i_{p}}^{k} z^{i_{1}} z^{i_{2}} \cdots z^{i_{p}} \frac{\partial}{\partial z_{k}}+O\left(|z|^{p+1}\right)$
Principal term $\rho(Z)$ at o :

$$
\rho(Z)=A \in S^{p} T_{o}^{*} \otimes T_{o} .
$$

Lemma. $Z, W=$ germs of hol. vector fields at $o, \operatorname{ord}_{o}(Z)=p, \operatorname{ord}_{o}(Z)=q$. Then $\operatorname{ord}_{o}[Z, W]$
$\geq p+q-1$. Suppose $\operatorname{ord}_{o}[Z, W]=p+q-1$, $p+q \geq 1$. Then,
$\rho([Z, W])=$ bilinear expression in $\rho(Z), \rho(W)$.
For $p=1$, so that $\rho(Z) \in \operatorname{End}\left(T_{o}\right)$,

$$
\rho([Z, W])=\rho(Z)(\rho(W)) .
$$

Symbolic Lie algebra of leading terms

Hermitian symmetric case

$$
\begin{gathered}
\mathfrak{g}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \\
=\mathfrak{m}^{-} \oplus \mathfrak{k}^{\mathbb{C}} \oplus \mathfrak{m}^{+} \\
{\left[\mathfrak{m}^{-}, \mathfrak{m}^{-}\right]=\left[\mathfrak{m}^{+}, \mathfrak{m}^{+}\right]=0} \\
\mathfrak{m}^{-}=\left\{Z \in \Gamma\left(S, T_{S}\right): \operatorname{ord}_{o} Z \geq 2\right\} .
\end{gathered}
$$

All Lie brackets determined by principal terms:

$$
\left[k, m^{+}\right],\left[k, m^{-}\right],\left[k, k^{\prime}\right],\left[m^{-}, m^{+}\right] .
$$

Deformation Rigidity
Given $\pi: \mathfrak{X} \rightarrow \Delta$

$$
\begin{aligned}
\mathfrak{g}^{t} & =\mathfrak{a u t}\left(X_{t}\right) \text { for } t \neq 0 \\
\mathfrak{g}^{0} & =\text { Limiting Lie algebra } .
\end{aligned}
$$

More precisely,
$\mathcal{T}=$ relative tangent bundle $\pi_{*} \mathcal{T}=\mathcal{O}(V), V$ hol. vector bundle on Δ $\mathfrak{g}^{t}:=V_{t}$, Lie alg. structure induced from \mathcal{T}.

Assume stability of $\mathcal{C}_{\sigma(t)}$ as $t \mapsto 0$. Define

$$
\begin{gathered}
J_{t}^{(k)}=\left\{Z \in \mathfrak{g}^{t}: \operatorname{ord}_{\sigma(t)}(Z) \geq k\right\} \\
I_{t}=\left\{Z \in \mathfrak{g}^{t}: Z(\sigma(t))=0, A_{Z} \in \mathbb{C} \cdot i d\right\}
\end{gathered}
$$

For $t \neq 0$, any $Z \in E_{t}, A_{Z} \not \equiv 0$ determines a \mathbb{C}^{*}-action. Since $\mathcal{C}_{\sigma(0)} \subset \mathbb{P} T_{\sigma(0)}\left(X_{0}\right)$ is conjugate to $\mathcal{C}_{o} \subset \mathbb{P} T_{o}(S)$
$\operatorname{dim} E_{0}^{(2)} \leq n, E_{0}^{(k)}=0$ for $k \geq 3$
$\operatorname{dim} I_{0} \geq n+1$ (upper semicontinuity) $\operatorname{dim} I_{0} \leq n+1(\mathrm{VMRT})$.

Therefore, $\operatorname{dim} I_{0}=n+1$ and \exists a hol. vector bundle I of rank $n+1, \mathcal{I}=\mathcal{O}(I)$.
$\exists Z \in I_{0}$ such that $A_{Z} \not \equiv 0$, and we have a hol. family of \mathbb{C}^{*}-actions T_{t}.
$T_{t}=\left\{e^{\lambda E_{t}}\right\}$, period $2 \pi i$.

$$
\begin{aligned}
& \mathfrak{g}_{i}^{t} \stackrel{\text { def }}{=}\left\{Z \in \mathfrak{g}^{t}:\left[E_{t}, Z\right]=i Z\right\} \\
& \mathfrak{g}^{t}=\mathfrak{g}_{-1}^{t} \oplus \mathfrak{g}_{0}^{t} \oplus \mathfrak{g}_{1}^{t}
\end{aligned}
$$

For $t \neq 0$,

$$
\begin{aligned}
\mathfrak{g}_{0}^{t} \cong & \left\{A \in \operatorname{End}_{\sigma(t)}\left(T_{\sigma(t)}\right):\left.A\right|_{\tilde{\mathcal{C}}_{\sigma(t)}}\right. \\
& \text { is tangent to } \left.\tilde{\mathcal{C}}_{\sigma(t)}\right\} .
\end{aligned}
$$

Dimension count forces the same for $t=0$. $\left[\mathfrak{g}_{1}^{0}, \mathfrak{g}_{1}^{0}\right]=\left[\mathfrak{g}_{-1}^{0}, \mathfrak{g}_{-1}^{0}\right]=0$. Lie algebra structure on \mathfrak{g}^{0} completely determined by leading terms. Hence $X_{0}=G / P \cong S$.

Grassmannian of isotropic k planes in a symplectic $2 n$-dimensional vector space $W, 1<$ $k<n$.

For S of type $\left(C_{n}, \alpha_{k}\right), 2 \leq k \leq n$, we call S a symplectic Grassmannian $:=S_{k, n}$.
$k=n \Rightarrow S=$ Lagrangian Grassmannian, Hermitian symmetric.

Minimal rational curves on $S_{k, n}$

$W \cong \mathbb{C}^{2 n} ;(W ; A)$ symplectic vector space $V^{(k)} \subset W$ isotropic k-plane, $L \subset S_{k, n}$ line: $E^{(k-1)} \subset V^{(k)} \subset F^{(k+1)}$

Two isomorphism classes of lines:
(a) $F^{(k+1)} \subset W$ isotropic; i.e. $\left.A\right|_{F \times F} \equiv 0$.
(b) $F^{(k+1)} \subset W$ not isotropic.

Highest weight lines: Case (a)

$V_{t} \subset F,\left.A\right|_{V_{t} \times V_{t}} \equiv 0$
$\left.\dot{V}_{t}\right|_{t=0}$ gives $\eta \in \operatorname{Hom}(V, W / V)$.

From $A\left(v_{t}, v_{t}^{\prime}\right)=0 v_{t}, v_{t}^{\prime} \in V_{t}$ we have

$$
A\left(v, \dot{v}^{\prime}\right)=0 \Rightarrow \eta \in \operatorname{Hom}\left(V, V^{\perp} / V\right)
$$

$V \subset V^{\perp}, \operatorname{dim} V^{\perp}=2 n-k$.

Minimal Invariant Distribution

$S_{k, n} \subset G r\left(k, \mathbb{C}^{2 n}\right)$,
$T_{G r} \cong \operatorname{Hom}(V \otimes Q)=V^{*} \otimes Q$
$\operatorname{Hom}\left(V, V^{\perp} / V\right) \subset T_{S_{k, n}}$
$D_{[V]}:=\operatorname{Hom}\left(V, V^{\perp} / V\right) \varsubsetneqq T_{S_{k, n}}$
$D=$ minimal invariant distribution

Geometric features of $S=S_{k, n}$:

- $\mathcal{C}_{0} \subset \mathbb{P} T_{0}(S)$ not homogeneous, $\mathcal{C}_{0}=$ VMRT
- $\mathcal{C}_{0} \subset \mathbb{P} T_{0}(S)$ linearly non-degenerate
- minimal invariant distribution D spanned by highest weight lines (not by \mathcal{C}_{0})
- complex structure of S determined not just by VMRTs, but also by the Frobenius form $\varphi: \wedge^{2} D \rightarrow T / D$
- φ cannot by recovered from minimal rational curves and their VMRTs

Gradation on the maximal parabolic
$\mathfrak{p}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \subset \mathfrak{g}=\Gamma\left(S, T_{S}\right)$
$\mathfrak{g}_{0}=\mathfrak{z} \oplus \mathfrak{l}=$ centre \oplus Levi factor

Represent \mathfrak{g} by global vector fields Z.
$Z \in \mathfrak{p} \Leftrightarrow Z(o)=0, o \in S$ base point,
$Z=\Sigma A_{i}^{j} z^{i} \frac{\partial}{\partial z_{j}}+\cdots$

- $Z \in \mathfrak{g}_{-2} \Leftrightarrow A \equiv 0$
- $\left.Z \in \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \Leftrightarrow A\right|_{D_{0}} \equiv 0$
- $Z \in \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{z}$ if and only if $\left.[A]\right|_{\mathbb{P} D_{0}} \equiv 0$, $A: D_{0} \rightarrow D_{0}$ given by $A(\eta)=\lambda \eta$.
- Any $Z \in \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{z}, Z \notin \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$, generates a \mathbb{C}^{*}-action.

Recovery of \mathbb{C}^{*}-action on the central fiber

$\pi: \mathfrak{X} \rightarrow \triangle$ regular family, $X_{t} \cong S_{k, n}$ for $t \neq 0$.

To recover \mathbb{C}^{*}-action on X_{0}, needs to prove that $Z_{t} \rightsquigarrow Z_{0}$ does not degenerate.

Take $\sigma: \triangle \rightarrow \mathfrak{X}$ a "generic" cross-section

$$
H_{t}:=\left\{Z \in \Gamma\left(X_{t}, T_{X_{t}}\right): \operatorname{ord}_{\sigma(t)} Z \geq 2\right\}
$$

Trouble: $\operatorname{dim} H_{t}$ may jump at $t=0$.

Key point:

- Methods in Theorem 1 on hol. vector fields force that $\operatorname{ord}_{\sigma(0)} Z_{0} \leq 2$ for any $Z_{0} \in \Gamma\left(X_{0}, T_{X_{0}}\right), Z_{0} \not \equiv 0$.
- They give actually $\operatorname{dim} H_{0}=\operatorname{dim} \mathfrak{g}_{-2}$.

Define now

$$
\begin{aligned}
& F_{t}=\left\{Z \in \Gamma\left(X_{t}, T_{X_{t}}\right):\left.A(Z)\right|_{D_{0}} \equiv 0\right\} \\
& E_{t}=\left\{Z \in \Gamma\left(X_{t}, T_{X_{t}}\right):\left.[A]\right|_{\mathbb{P} D_{0}} \equiv 0\right\}
\end{aligned}
$$

This gives a geometric filtration of parabolic subalgebras stable under passage to limits as $t \mapsto 0$

$$
H_{t} \subset F_{t} \subset E_{t} \quad \text { such that }, \forall t \in \triangle
$$

- $\operatorname{dim} H_{t}=\operatorname{dim} \mathfrak{g}_{-2}$;
- $\operatorname{dim} F_{t}=\operatorname{dim} \mathfrak{g}_{-2}+\operatorname{dim} \mathfrak{g}_{-1}$;
- $\operatorname{dim} E_{t}=\operatorname{dim} \mathfrak{g}_{-2}+\operatorname{dim} \mathfrak{g}_{-1}+1$

Some element Z_{0} of $E_{0}-F_{0}$ gives $\left.\left[Z_{0}\right]\right|_{D_{0}} \equiv i d$.

With some work Z_{0} integrates to a \mathbb{C}^{*}-action on X_{0} to define $X_{0} \cong S_{k, n}$.

Ideas of proof of deformation rigidity af-

 ter extending \mathbb{C}^{*}-actionsThe simplest case: $X_{t} \cong S_{2,3}$ for $t \neq 0$
$S_{2,3}=\{$ isotropic 2-planes in 6-dim symplectic vector space $\}, \operatorname{dim} S_{2,3}=7$,
$D_{0} \cong U_{0} \otimes Q_{0}, T_{0} / D_{0} \cong S^{2} U_{0} ;$ where $U_{0} \cong \mathbb{C}^{2}$ as an $G L(2, \mathbb{C})$-rep. space; $Q_{0} \cong \mathbb{C}^{2}$ as an $S p(1) \cong S L(2)$ rep. space.
$\operatorname{rank}(D)=4, \operatorname{rank}(T / D)=3$.

Frobenius forms

$$
\varphi\left(u \otimes q, u^{\prime} \otimes q^{\prime}\right)=\nu\left(q, q^{\prime}\right) u \circ u^{\prime}
$$

$\nu=$ symplectic form on $Q_{0} \cong \mathbb{C}^{2}$.

Degeneration of Frobenius forms φ_{t}
\leftrightarrow Degeneration of symplectic forms ν_{t}.

For $S=S_{2,3}$ only possibility of degeneration is caused by the total degeneration of ν_{t} to $\nu_{0} \equiv 0$.

Extension of \mathbb{C}^{*}-action T_{t} on X_{t};
$E_{t}=$ normalized infinitesimal generator, $\sigma(t) \in X_{t}$ isolated zero of $E_{t} ; E_{t} \rightarrow E_{0}$. Recall

$$
\mathfrak{g}^{t}:=\mathfrak{a u t}\left(X_{t}\right) \text { for } t \neq 0
$$

$\mathfrak{g}^{0}=$ Lie algebra of limiting hol. vector fields

$$
\begin{aligned}
& \mathfrak{g}^{t}=\mathfrak{g}_{-2}^{t} \oplus \mathfrak{g}_{-1}^{t} \oplus \mathfrak{g}_{0}^{t} \oplus \mathfrak{g}_{1}^{t} \oplus \mathfrak{g}_{2}^{t} \\
& \mathfrak{h}^{t}:=\mathfrak{g}_{-2}^{t} \oplus \mathfrak{g}_{0}^{t} \oplus \mathfrak{g}_{2}^{t} \\
& \mathfrak{h}^{t} \mapsto \mathfrak{h}^{0} \cong \mathfrak{s p}(2, \mathbb{C}) \text { no degeneration } .
\end{aligned}
$$

Only degeneration

$$
[\cdot, \cdot]: \mathfrak{g}_{1}^{0} \times \mathfrak{g}_{1}^{0} \rightarrow \mathfrak{g}_{2}^{0} \text { trivial }
$$

Orbit of $\sigma(0)=x_{0} \in X_{0}$ under $H^{0}:=\operatorname{Exp}\left(\mathfrak{h}^{0}\right)$ gives $N_{0} \cong$ the Lagrangian Grassmannian of rank $2 \cong Q^{3}$. Choose $N_{t} \mapsto N_{0}, N_{t} \cong Q^{3}$.

Total degeneration of ν_{t} (and hence φ_{t}) gives the structure of the total space of a rank 4 holomorphic vector bundle $V_{0} \rightarrow N_{0}$ on $X_{0}-$ B, codim $B \geq 2$.

- $V_{0} \cong U_{0} \otimes Q_{0}, U_{0}$ rank- $2, Q_{0}$ rank- 2
- $V_{0} \cong$ normal bundle \mathcal{N}_{0} of N_{0} in X_{0}
- $\mathcal{N}_{t} \mapsto \mathcal{N}_{0} . \mathcal{N}_{t} \cong U_{t} \otimes Q_{t} ;$
$\operatorname{Exp}\left(\mathfrak{g}_{0}^{t}\right) \approx G L(2) \times S p(1)$.
- $G L(2)$ acts on $U_{x_{t}} \cong \mathbb{C}^{2}$;
- $S p(1)$ acts on $Q_{x_{t}} \cong\left(\mathbb{C}^{2}, \nu_{t}\right)$.
- $U_{t} \mapsto U_{0}$ no degeneration; $Q_{t} \mapsto Q_{0}$ trivial.

Fibers of $V_{0} \mapsto X_{0}$ gives $V_{y} \cong \mathbb{C}^{4}$.
$\bar{V}_{y} \subset X_{0}$ smooth, by showing that \bar{V}_{y} is a component of the fixed point set of some \mathbb{C}^{*} action.

Using rational curves and Grassmann structures, we show $\bar{V}_{y} \cong G(2,2) \cong Q^{3}$. We have

- $\mu: Y \rightarrow N_{0}$ a $G(2,2)$-bundle; $f: Y \rightarrow X_{0}$ modification;
- $\bar{V}_{y}=V_{y} \amalg$ hypersurface I_{y};
- I contains isolated singular point ∞_{y};
- infinity section $\Gamma_{\infty}=\left\{\infty_{y}: y \in N_{0}\right\}$.

By studying rational curves on an X_{0}, we show that $f\left(\Gamma_{\infty}\right)=\omega$.
$G L(2)$ fixes $\omega . S p(2)$ fixes ω.

Each factor of $G L(2) \times S p(2)$ acts nontrivially on $T_{\omega}\left(X_{0}\right) \cong \mathbb{C}^{7}$.

Lowest irreducible representation of $G L(2) \times$ $S p(2)$ where each factor acts nontrivially is of dimension $8>7$! CONTRADICTION!

General case

1. The same argument works for $S_{2, \ell}$ to contradict total degeneration. It also works for $S_{k, \ell}$ by a slicing argument, using \mathbb{C}^{*} action.
2. In the case of partial degeneration we recover the structure of the total space $V_{0} \rightarrow$ $S_{k, m}$ for some $m, k<m<\ell$; use a slicing argument by \mathbb{C}^{*}-action to reduce to the case of $k=2$.
3. To get $V_{0} \mapsto S_{k, m}$ in (2) we consider the symbolic Lie algebra of leading terms of hol. vector fields in $\mathfrak{g}_{i}^{0}, i=-2,-1,0,1,2$. There is $\mathfrak{h}^{0} \subset \mathfrak{g}^{0}$ s.t. $\mathfrak{h}^{0}=\mathfrak{h}_{-2}^{0} \oplus \mathfrak{h}_{-1}^{0} \oplus$ $\mathfrak{h}_{0}^{0} \oplus \mathfrak{h}_{1}^{0} \oplus \mathfrak{h}_{2}^{0}$ is isomorphic as a graded Lie algebra to $\mathfrak{s p}(m)$. Here $\mathfrak{h}_{1}^{0}=U_{x_{0}} \otimes Q_{x_{0}}^{\prime}$, where

$$
\begin{aligned}
& Q_{x_{0}}^{\prime} \subset Q_{x_{0}}^{\prime} \text { such that } \\
& \left.\nu_{0}\right|_{Q_{x_{0}}^{\prime}} ^{\prime} \text { is non-deg., } Q_{x_{0}}^{\prime} \oplus \operatorname{Ker} \nu_{0}=Q_{x_{0}} .
\end{aligned}
$$

Uniqueness of tautological foliation:

$\rho: \mathcal{U} \rightarrow \mathcal{K}, \mu: \mathcal{U} \rightarrow X$ universal family
$\pi: \mathcal{C} \rightarrow X$ family of VMRTs
$\mathcal{F}=1-\operatorname{dim}$. multi-foliation on \mathcal{C} defined by tautological liftings \hat{C} of C,
$\mathcal{F}:=$ tautological foliation
For C standard $\left.T_{X}\right|_{C} \cong \mathcal{O}(2) \oplus \mathcal{O}(1)^{p} \oplus \mathcal{O}^{q}$. Write $T_{x} C=\mathbb{C} \alpha, P_{\alpha}=\left(\mathcal{O}(2) \oplus \mathcal{O}(1)^{p}\right)_{x}$.

$$
\mathcal{P}_{[\alpha]}=\left\{\eta \in T_{[\alpha]}(\mathcal{C}): d \pi(\eta) \in P_{\alpha}\right\} .
$$

As $T_{[\alpha]}\left(\mathcal{C}_{x}\right) \cong P_{\alpha} / \mathbb{C} \alpha, \mathcal{P}$ is defined by \mathcal{C}.
$\mathcal{W}=$ distribution on \mathcal{K} defined by

$$
\mathcal{W}_{[C]}=\Gamma\left(C, \mathcal{O}(1)^{p}\right) \subset \Gamma\left(C, N_{C \mid X}\right) \cong T_{[C]}(\mathcal{K})
$$

We have

$$
\mathcal{P}=\rho^{-1} \mathcal{W}, \quad \mathcal{F}=\rho^{-1}(0) \Rightarrow[\mathcal{F}, \mathcal{P}] \subset \mathcal{P}
$$

Proposition

Assume Gauss map on a generic VMRT \mathcal{C}_{x} to be injective at a generic $[\alpha] \in \mathcal{C}_{x}$. Then, $[v, \mathcal{P}] \subset \mathcal{P} \Rightarrow v \in \mathcal{F}$, i.e.,

$$
\text { Cauchy Char. }(\mathcal{P})=\mathcal{F} .
$$

Corollary
Assume $U \subset X, U^{\prime} \subset X^{\prime}, f: U \xrightarrow{\cong} U^{\prime}$,
$[d f]^{*} \mathcal{C}^{\prime}=\left.\mathcal{C}\right|_{U}$. Then,
f maps open pieces of mrc on X to open pieces of mrc on X.

Proof. Write $f^{*} \mathcal{C}^{\prime}$ for $[d f]^{*} \mathcal{C}^{\prime}$, etc. Then, $f^{*} \mathcal{C}^{\prime}=$ $\left.\mathcal{C}\right|_{U}$ implies $f^{*} \mathcal{P}^{\prime}=\left.\mathcal{P}\right|_{U}$. Thus,

$$
\begin{aligned}
& {\left[f^{*} \mathcal{F}^{\prime}, \mathcal{P}\right]=\left[f^{*} \mathcal{F}^{\prime}, f^{*} \mathcal{P}^{\prime}\right] } \\
= & f^{*}\left[\mathcal{F}^{\prime}, \mathcal{P}^{\prime}\right] \subset f^{*} \mathcal{P}^{\prime}=\mathcal{P} .
\end{aligned}
$$

Proposition implies $f^{*} \mathcal{F}^{\prime}=\mathcal{F} . \quad \square$

Theorem (Hwang-Mok, JMPA 2001)
X projective uniruled, $b_{2}(X)=1$,
\mathcal{K} minimal rational component on X.
Assume
$(\dagger) \mathcal{C}_{x}$ irreducible for x generic,
Gauss map on \mathcal{C}_{x} generically finite.
Then,
(X, \mathcal{K}) has the Cartan-Fubini Extension Property

Examples:

(1) $X=G / P \neq \mathbb{P}^{N}, G$ simple, P maximal parabolic.
(2) $X \subset \mathbb{P}^{N}$ smooth complete intersection, Fano with $\operatorname{dim}(X) \geq 3, c_{1}(X) \geq 3$.

Ideas of proof of CF:
(1) $f:(X, \mathcal{K}) \rightarrow\left(X^{\prime}, \mathcal{K}^{\prime}\right)$ gen. finite surj. map, $f^{*} \mathcal{C}^{\prime}=\mathcal{C}$ (i.e., VMRT - preserving.)

Uniqueness of tautological foliation $\Rightarrow f$ preserves tautological foliation
(2) Analytic continuation along mrc, obtained by passing to moduli spaces of mrc:
$f: X \rightarrow X^{\prime}$ induces $f^{\#}: \mathcal{V} \rightarrow \mathcal{K}^{\prime}$ on some open subset $\mathcal{V} \subset \mathcal{K}$.

Now, interpret a point $x \in X$ as the intersection of $C,[C] \in \mathcal{K}_{x}$, to do analytic continuation.
(3) (X, \mathcal{K}) is rationally connected, Analytic cont. along chains of mrc defines a multi-valued map $F: X \rightarrow X^{\prime}$.
(4) $b_{2}(X)=1 \Rightarrow$ any mrc C intersects any hypersurface $H \subset X$.
Analytic cont. along C forces univalence of F, viz., F is a birational map preserving VMRTs
(5) birational + VMRT-preserving \Rightarrow biholomorphic
(a) VMRT-preserving
$\Rightarrow R(F)=\emptyset, \quad R$: ramification divisor
(b) Embed X to \mathbb{P}^{N} by $K_{X}^{-\ell}, X$ being Fano, etc. $R(F)=\emptyset$ gives hol. extension of $F^{*} s$ for sections s of $K_{X}^{-\ell,}$
$F: X \rightarrow X^{\prime}$ is the restriction of some projective linear isomorphism of \mathbb{P}^{N}.

Local rigidity of holomorphic maps

$\pi: \mathfrak{X} \rightarrow \triangle$ regular family
X_{t} Fano, $\operatorname{Pic}\left(X_{t}\right) \cong \mathbb{Z}$
X_{0} carries a rational curve C, with trivial normal bundle
X^{\prime} projective manifold
$f_{t}: X^{\prime} \rightarrow X_{t}$ holomorphic family of generically finite surjective holomorphic maps. Then,

There exist $\varphi_{t}: X_{0} \xrightarrow{\cong} X_{t}$ such that $f_{t} \equiv \varphi_{t} \circ f_{0}$

Application of Cartan-Fubini

Theorem (Hwang-Mok, JMPA 2001)
X Fano manifold; $b_{2}(X)=1$
\mathcal{K} : minimal rational component
$\mathcal{C}_{x}:$ VMRT of $(X, \mathcal{K}), x \in X$ generic
Y projective manifold
$f_{t}: Y \rightarrow X$ one-parameter family
of surjective finite holomorphic maps.

Assume $\operatorname{dim} \mathcal{C}_{x}:=p>0$, and

$$
\mathcal{C}_{x} \subset \mathbb{P} T_{x}(X) \text { satisfies the }
$$

Gauss map condition (\dagger). Then,

$$
\begin{gathered}
\exists \Phi_{t} \in \operatorname{Aut}(X) \text { such that } \\
f_{t} \equiv \phi_{t} \circ f_{0} ; \Phi_{0}=i d .
\end{gathered}
$$

Theorem (Hwang-Mok 2004, AJM). Local rigidity for $f_{t}: Y \rightarrow X_{t}$ remains valid under the assumption that X_{0} carries a minimal component \mathcal{K}_{0} whose general VMRT is nonlinear.

New solution of Lazarsfeld Problem
$Y=G / P G$ simple, P maximal parabolic
Take $X_{t}=X, f: Y \rightarrow X$.
Assume generic $\mathcal{C}_{x} \subset \mathbb{P} T_{x}(X)$ non-linear.
Local rigidity \Rightarrow Any holomorphic vector field \mathcal{Z} on Y descends to a holomorphic vector field \mathcal{W} on X such that $f: Y \rightarrow X$ is equivariant w.r.t. 1-parameter groups generated by \mathcal{Z} and \mathcal{W}.

$$
\begin{aligned}
& R:=\text { ramification divisor of } f \\
& B:=f(R)
\end{aligned}
$$

Then, \mathcal{W} is tangent to B.
Hence, \mathcal{Z} is tangent to R,
contradicting homogeneity of $Y=G / P$!

Bounding degrees of holomorphic maps

X^{\prime} projective manifold

$$
\begin{aligned}
\mathcal{F}_{0}= & \{X \text { Fano: } \operatorname{Pic}(X) \cong \mathbb{Z} ; \exists \text { rat. curve } \\
& C \subset X \text { with trivial normal bundle }\}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \text { There exists a constant } C\left(X^{\prime}\right) \text { such that } \\
& \forall f: X^{\prime} \rightarrow X, X \in \mathcal{F}_{0} \\
& \text { generically finite, surjective hol. map } \\
& \qquad \operatorname{deg}(f) \leq C\left(X^{\prime}\right) .
\end{aligned}
$$

Finiteness Theorem

Given X^{\prime}, there exists at most finitely many pairs (X, f) of such maps $f: X^{\prime} \rightarrow X$.

Finiteness Theorem in 3 dimensions
Y Fano manifold, $\operatorname{Pic}(Y) \cong \mathbb{Z}, \operatorname{dim} Y=3$.

Then, there are at most finitely many projective manifolds X for which there exists a surjective holomorphic map

$$
f: Y \rightarrow X
$$

Proof.
From sol'n to Lazarsfeld's Problem,

$$
\begin{aligned}
& Y \cong \mathbb{P}^{3} \Rightarrow X \cong \mathbb{P}^{3} \\
& Y \cong Q^{3} \Rightarrow X \cong Q^{3} \text { or } \mathbb{P}^{3} .
\end{aligned}
$$

Otherwise, Y carries a rational curve with trivial normal bundle, from Iskovskih's classification. Then,

$$
X \cong \mathbb{P}^{3}, Q^{3} \text { or }
$$

a finite no. of possibilities in \mathcal{F}_{0}.

Webs on a Fano manifold
$\mathcal{F}_{0}=\{X$ Fano: $\operatorname{Pic}(X) \cong \mathbb{Z} ; \exists$ a rat. curve $C \subset X$ with trivial normal bundle $\}$
$X \in \mathcal{F}_{0}, C \subset X, N_{C \mid X} \cong \mathcal{O}^{n-1}$
$\mathcal{K}=$ minimal rational component, $[C] \in \mathcal{K}$.
$\mu: \mathcal{U} \rightarrow X, \rho: \mathcal{U} \rightarrow \mathcal{K}$ universal family
$X \in \mathcal{F}_{0} \Leftrightarrow$ For $\pi: \mathcal{C} \rightarrow X$ of VMRTs, $\operatorname{dim} \mathcal{C}_{x}=$ 0 for x generic.
$\mathcal{R} \subset \mathcal{U}$ ramification divisor,
$M=\mu(\mathcal{R}) \subset X$ branching divisor
$M:=$ discriminantal divisor of \mathcal{K}.
$L \subset X$ smallest hypersurface such that $\pi: \mathcal{C} \rightarrow X$ is unramified over $X-L-Z$ for some $Z \subset X$ of codim. $\geq 2, M \subset L$.
$L:=$ extended discriminantal divisor of \mathcal{K}

Principal properties on webs

- $f: X^{\prime} \rightarrow X$ gen. finite surj. hol. map, \mathcal{K} web of rational curves on X
$\Rightarrow f^{-1} \mathcal{K}$ finite union of webs of rational curves on X^{\prime}.
- $f^{-1} \mathcal{K}:=\mathcal{K}^{\prime}=\mathcal{K}_{1} \cup \cdots \cup \mathcal{K}_{m}$
$L^{\prime}:=L_{\mathcal{K}_{1}} \cup \cdots \cup L_{\mathcal{K}_{m}}$, etc.
Then,

$$
f^{-1}(L) \subset L^{\prime}
$$

X projective manifold
\mathcal{K} web of rat. curves on X
L extended discriminantal divisor of (X, \mathcal{K}), $L_{1} \subset L$ component;
$y \in L_{1}$ generic, U small nbd. of y;
$\left.\mathcal{G} \subset \mathcal{C}\right|_{U}$ union of components \mathcal{G}_{i} such that

$$
\mathcal{G}_{i} \cap \mathbb{P} T_{y}\left(L_{1}\right) \neq \emptyset
$$

Assume

$(\dagger) \mathcal{G} \neq \emptyset$ and $\left.\pi\right|_{\mathcal{G}}$ gen. m-to- $1, m>1$.

$$
V=v_{1} \frac{\partial}{\partial z_{1}}+\cdots+v_{n} \frac{\partial}{\partial z_{n}}
$$

hol. vector field defining the multi-foliation on U given by min. rat. curves. Here, v_{i} can either be considered
(a) as multi-valued hol. functions on U; or
(b) as hol. functions on the normalization $\tilde{\mathcal{G}}$ of \mathcal{G}.

The discriminantal order
$Q=\left(q^{i j}\right), n \times n$ skew-sym. matrix
$\Gamma_{Q}(x):=\prod_{1 \leq \alpha \neq \beta \leq m}\left(\sum_{i, j=1}^{n} q^{i j} v_{i}\left(x^{\alpha}\right) v_{j}\left(x^{\beta}\right)\right)$
$\gamma_{Q}>0=$ vanishing order of Γ_{Q} along L_{1}
$\delta_{y}:=\min _{Q} \gamma_{Q}$ the discriminantal order.

Proposition

$f: X^{\prime} \rightarrow X, R=$ ramif. divisor,
$M \subset X$ discriminantal divisor,
$M_{1} \subset M$ component
$L_{1}^{\prime} \subset f^{-1}\left(M_{1}\right) \subset L^{\prime}$ component s.t. $L_{1}^{\prime} \subset R$.
Local sheeting no. of f at a gen. point of $L_{1}^{\prime}:=r>1$. Then,

$$
r \leq m \delta_{L_{1}^{\prime}}
$$

Solution to the Frankel Conjecture:

Theorem (Siu-Yau 1980).

(X, g) compact Kähler, $\operatorname{Bisect}(X, g)>0$ $\Rightarrow X \cong \mathbb{P}^{n}$.

Solution to the Generalized Frankel Conjecture:

Theorem (Mok 1988).
(X, g) compact Kähler, Bisect $(X, g) \geq 0$
$\Rightarrow \tilde{X} \cong \mathbb{C}^{m} \times$ Hermitian symmetric space of compact type.

For X Fano, we have
$X \cong$ Hermitian symmetric space of compact type.

Solution to the Harshorne Conjecture:

Theorem (Mori 1979).

X projective manifold, T_{X} ample
$\Rightarrow X \cong \mathbb{P}^{n}$.
How about a "Generalized Hartshorne Conjecture"?

Conjecture (Campana-Peternell 1991).
X Fano manifold, T_{X} numerically effective
$\Rightarrow X \cong$ rational homogeneous space
Solved for dim ≤ 3 independently by CampanaPeternell and Fangyuan Zheng:

Case of 3 dimensions:
$X \cong \mathbb{P}^{3}, Q^{3}, \mathbb{P}^{1} \times \mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \quad$ or $\quad \mathbb{P}\left(T_{\mathbb{P}^{2}}\right)$

Theorem (Mok 2002, Trans. AMS).

X projective manifold
$b_{2}(X)=b_{4}(X)=1$,
$T_{X} \geq 0$ (numerically effective).
Suppose $\operatorname{dim} \mathcal{C}_{x}=1$ for x generic.
Then,

$$
X \cong \mathbb{P}^{2}, Q^{3} \quad \text { or } \quad K\left(G_{2}\right)
$$

where $K\left(G_{2}\right)=5$-dimensional Fano contact homogeneous manifold associated to the exceptional Lie group G_{2}.

Theorem (Hwang 2004).

The condition $b_{4}=1$ can be dropped.

Campana-Peternell 1993

Their conjecture is valid in dimension 4 except for the possible exception of a Fano manifold X of Picard number 1 with nef tangent bundle such that $c_{1}(X)=1$ (i.e. positive generator of $\operatorname{Pic}(X) \cong \mathbb{Z})$.

Elimination of the exceptional case $c_{1}=1$

$p=0$ implies the existence of a 1-dim (hence integrable) distribution spanned by VMRTs, contradicting $b_{2}=1$
$p=1$ ruled out by Mok + Hwang's improvement
$p=2$ would contradict Miyaoka's characterization of the hyperquadric
$p=3$ ruled out by the characterization of projective spaces of Cho-Miyaoka-ShepherdBarron, Kebekus

Theorem (Hwang-Mok 2004). Let $S=G / P$ be a rational homogeneous manifold of Picard number 1 corresponding to a long simple root α. (We say that S is of type (\mathfrak{g}, α)), $S \not \not \mathbb{P}^{n}$.

Let X be a Fano manifold of Picard number 1 admitting a component \mathcal{K} of minimal rational tangents. Write
$\mathcal{C}_{0}(S) \subset \mathbb{P} T_{o}(S), \quad o \in S \quad$ reference point ;
$\mathcal{C}_{x}(\mathcal{K}) \subset \mathbb{P} T_{x}(X), \quad x \in X \quad$ general point
for varieties of minimal tangents. Then,

$$
\begin{aligned}
\mathcal{C}_{x}(\mathcal{K}) & \subset \mathbb{P} T_{o}(X) \quad \text { congruent to } \\
\mathcal{C}_{0}(S) & \subset \mathbb{P} T_{o}(S) \\
& \Rightarrow \quad X \cong S
\end{aligned}
$$

Ideas of proof

- parallel transport along tautological liftings \hat{C} of minimal rational tangents
- behavior of second fundamental forms σ of $\mathcal{C}_{x} \subset \mathbb{P} T_{x}(X)$ invariant under parallel transport, hence kernels, images, etc. are invariant.
- $\mathcal{C}_{o} \subset \mathbb{P} T_{o}(S)$ are quadratic or cubic Hermitian symmetric subspaces. If irreducible and of rank >1 the G-structure on \mathcal{C}_{o} is determined by second and third fundamental forms σ and κ, which determine $\mathcal{C}_{[\alpha]}\left(\mathcal{C}_{o}\right)$.
- In the reducible case transversal foliations are preserved by parallel transport.
- The special case of the second Veronese embedding of a projective space can be recovered from the surjectivity of the second fundamental form σ.

Theorem (Hwang-Mok 2004, JAG). X Fano manifold, $\operatorname{Pic}(X) \cong \mathbb{Z}$.
M an irreducible component of the space of minimal rational curves.
$M^{x} \subset M$ subset of members of M passing through a general point $x \in X$.
If M^{x} is irreducible, and $\operatorname{dim}\left(M^{x}\right) \geq 2$.
Then, $A u t_{0}(X)=A u t_{0}(M)$.

Remarks. Theorem fails when $\operatorname{dim}\left(M^{x}\right)=$ 0,1 .

Examples:

(a) $\operatorname{dim}\left(M^{x}\right)=0$. Take $X=\operatorname{codim}-3$ general linear section of $G(2,3), M \cong$ \mathbb{P}^{2}
$\operatorname{Aut}_{0}(X) \cong \mathbb{P} S L(2, \mathbb{C}) ;$
$\operatorname{Aut}_{0}(M) \cong \mathbb{P} S L(3, \mathbb{C})$.
(b) $\operatorname{dim}\left(M^{x}\right)=1$. Take $X=Q_{3}, M \cong \mathbb{P}^{3}$
$\operatorname{Aut}_{0}(X) \cong \mathbb{P} S O(5, \mathbb{C}) ;$
$\operatorname{Aut}_{0}(X) \cong \mathbb{P} S L(4, \mathbb{C})$.

Applications

- Deformation rigidity of complex structure under Kähler deformation
- Characterization of Fano manifolds with geometric structures,

HM 1997, Hong 2001, HM 2004

- Holomorphic maps onto Fano manifolds

> - Lazarsfeld-type problems HM 1999, 2001, Lau 2003, 2004

- Severi-type finiteness theorems, HM 2003
- Local rigidity, HM 2001, 2003
- Stability of tangent bundles, Hwang 1998, HM 1999
- Chow spaces of rational curves, HM 2004
- Moduli spaces of Hecke curves Hwang 2001, Hwang-Ramanan 2003, Sun 2004
- Nefness of tangent bundles, Mok 2002

Open Problems

(1) Irreducibility of VMRTs

Conjecture: X uniruled, projective
\mathcal{K} minimal rational component, $p(X, \mathcal{K})>0$.
Then, \mathcal{C}_{x} is irreducible for generic in X.

Special case:
If \mathcal{C}_{x} is a union of projective linear subspaces and $p(X, \mathcal{K})>0$, then \mathcal{C}_{x} is irreducible.

Consequence of special case

$f: X^{\prime} \rightarrow X$ a generically finite map onto a Fano manifold X of Picard number $1, X \nsubseteq \mathbb{P}^{n}$. Then f is locally rigid when X^{\prime} is fixed and X is allowed to vary.
(2) Contact Fano manifolds

Conjecture:
X Fano, $\operatorname{Pic}(X) \cong \mathbb{Z}$,
equipped with a contact structure
$\Rightarrow \quad X$ rational homogeneous.
(3) Finite holomorphic maps
X, Y n-dim. Fano manifolds of Picard number $1, X, Y \not \not \mathbb{P}^{n}$. Then
$\operatorname{deg}(f) \leq$ function of Chern numbers of X, Y.

Consequence

$X \not \approx \mathbb{P}^{n}, \operatorname{Pic}(X) \cong \mathbb{Z}$
$\Rightarrow \quad \operatorname{End}(X)=\operatorname{Aut}(X)$
(4) Vector Fields

Conjecture:
X Fano, $\operatorname{Pic}(X) \cong \mathbb{Z}$. Then,
(a) At a general point \exists holomorphic vector fields vanishing to the order ≥ 3.
(b) $\operatorname{dim}(\operatorname{Aut}(X))<n^{2}+2 n$ unless $X \cong \mathbb{P}^{n}$.

