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Bounded Symmetric Domains
Classical cases
DII,,q ={Z € M(p,q,C) : I-Z'7 > 0}, p,g>1
D'={ZeD,,:2"'=-Z}, n>2
DM ={ZeD),,:2'=-Z}y, n>3
DIV — {(zl,... ) €T 2|2 < 2 ;

i 2
Hz||2<1+‘ QZzZQ }, n>3.
i=1

Exceptional Domains
DV, dim 16, type Eg

DV, dim 27, type E-



Hermitian Metric Rigidity (Mok 87,To 89)

() irr. bounded symmetric domain,

rank({2) > 2
[' C Aut(€2) torsion-free lattice

X :=Q/T', g = canonical Kéhler-Einstein met-

ric on X

h = Hermitian metric on X

©(h) = Curvature of (Tx, h)

©(h) < 0 in the sense of Griffiths, i.e.,

O .a55(h) <0 Vo, B € Tp(X).

Then,

h = cg for some constant ¢ > 0 .




Theorem. (Rigidity on Holomorphic Maps)

() irr. bounded symmetric domain,

rank({2) > 2

[' C Aut(€?) torsion-free lattice,

X :=Q/T', g = canonical Kéhler-Einstein met-
ric

(N, h) = Hermitian manifold of nonpositive cur-

vature in the sense of Griffiths.

f : X — N nonconstant holomorphic map

Then,

f: X — N is an immersion ,

totally-geodesic if (N, h) is Kahler .




Remarks:

(1)

When N = Q'/T”, is Hermitian locally sym-
metric, f : X — N lifts to

F:Q — Q' totally geodesic .

In particular, F' is an embedding.

The same as in (1) can be asserted if we as-
sume that (IV, h) is a complete Kéhler man-
ifold of nonpositive Riemannian Sectional

curvature, by Comparison Theorems.



() irr. BSD, rank(Q2) > 2
G = Aut,(2), 0 € Q, K = Isot,(Q2;0) C G
1 polydisk P = A" C (2, totally geodesic

L kP = Q. (Polydisk Theorem).
keK

D =Ax{(0,...,0)} minimal disk (e.g.)
n € T, () is called a minimal characteristic vec-
tor

& 1 is tangent to a minimal disk.
Sqa = {[n] € PTy : n is a char. vect.}
S = Sq/T', the minimal characteristic bundle

on X.

e Hermitian Metric Rigidity for the compact
case is proven by an integral curvature iden-

tity on S.

e For the noncompact case, to studied the as-

ymptotic behavior of Hermitian metrics.



Integral Curvature Identity

() irr. BSD rank(€2) > 2

[' C Aut(Q?) torsion-free lattice, X := Q/T,
g = KE metric on X, w = Kahler form

(L,g) — PTx taugological line bundle

0 = —ci(L,g) > 0, Kerf([a]) C T74(S)
Vial € S, rank(Kerf([a])) = q,

m:PTxy - X;v=n"w—ci1(L,g) >0

loc. homogeneous Kahler form. Then,

0— / ey (L, §)220 A o
S

— /S[—Cl (L, )] A [—ec1(L, §)]?n2a71 A ot

for any Hermitian metric h on L. The integrand

> 0, hence =0, if ¢1 (L, h) < 0.



The minimal characteristic bundle as a

foliated manifold

e () = an irreducible bounded symmetric do-

main of rank > 2.

o I' C Aut(f)) torsion-free discrete subgroup
X :=Q/T of finite volume.

e S := minimal characteristic bundle on X.

e There is a canonical foliation N on S, as
follows.

e For any [n] € PT,(Q2), N, :={¢ € T,(2) =
R o= 0}, the null-space of . Write ¢ =
dim(N,) for [a] € §. Let A C Q be the
unique minimal disk passing through o such
that T,(A) = Ca. Then, there exists a
unique totally geodesic complex submani-
fold €2, passing through o such that T,(€2,) =
N,. Moreover, Ca & N, is tangent to a
unique totally geodesic (¢ + 1)-dimensional

complex submanifold & A x Q.



e Identify {o} x Q, with €,. For every z € €,
write [a(z)] := PT,(A x {z}) € S,(2). As
z runs over {2,, this defines a lifting of €2,
to a complex submanifold F' C S(£2) which
is by definition the leaf of the lifting of N
to S(€2) passing through [a]. Note that G
acts transitively on S(€2). Let H C G be the
closed subgroup which fixes €2, as a set. The
leaf space of the lifted foliation on 2 = G/H.
Set-theoretically the leaf space of N is given

by I'\ G/H.
o For [o] € S, Tiy(N) = Kerf([a]).



Theorem 1. (Mok, Invent. math. 2004)

() irreducible bounded symmetric domain,
rank({2) > 2

[' C Aut(Q?) torsion-free lattice

X :=Q/I', N = complex manifold. Assume
e f: X — N holomorphic map,
F:Q— N lifting to universal covers.

e 1 bounded holomorphic function on N such
that F'*h = Constant.

Then,
F:Q— Nisan embedding.
In particular,

f: X — N is an immersion
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Theorem 1°.
Analogue for locally reducible case,

e.g., irr. quotients of the polydisk A"

() = bounded symmetric domain
=01 x---xQ,,, Q) irreducible factor

1= Q1 x {(xa2,...,1,,)} called an

irreducible factor subdomain, etc.

Then, the analogue of Theorem 1
holds under the assumption

(t)For any k,1 < k < m, d bounded

holomorphic function hj; on N such that

F*hy, # Constant on some 2}, .

Embedding Theorem = Theorems 1 + 1.
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Theorem 2.

() bounded symmetric domain,
rank({2) > 2

[' C Aut(?) torsion-free irreducible lattice
X =Q/T

D arbitrary bounded domain,
[V C Aut(D) torsion-free, discrete

N := D/T"

f : X — N nonconstant holomorphic map, F':

Q— N lifting to universal covers

Then,
F:Q — D is an embedding.
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Theorem 3.

() irreducible bounded symmetric domain of rank
> 2,

[' C Aut(Q?) torsion-free lattice; X := Q /I’

N = singular complex space

f: X — N normalization

p: N — N universal cover

Assume that N is irreducible.

Then,
there does not exist any bounded

holomorphic function on N.
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Theorem 4.

() bounded symmetric domain,
rank({2) > 2

[' C Aut(?) torsion-free irreducible lattice
X :=Q/I', Z = normal complex space

f : X — Z proper holomorphic map

Then, either
(a) f is an unramified covering, OR

(b) |m1(2)] < oo.
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Complex Finsler metrics
|7|| defined, ||An|| = |A|||n|| whenever A € C, no

inner products

Complex Finsler metric on 1'x
= Hermitian metric h on the tautological line
bundle L — PT'x

| - || continuous < h continuous, etc.

(X, ]| - ||) is of nonpositive curvaure « (L, h) is

of nonpositive curvature.

For || - || smooth, ©(L, h) < 0 defined.
h given by e~ % locally, ©(L, h) = /=199,
which makes sense also for A (hence ) contin-

uous. For || - || continuous

e We say that (X, || -||) is of nonpositive cur-

vature iff ¢ is plurisubharmonic.

15



Carthéodory Pseudometric

M complex manifold,
H(M) := {holo. functions f: M — A}

nc Tx(M), H77Hf<c .— Sup ”f*ansiv
feEH(M)

where ds4 = Poincaré metric on A
r = Carathéodory pseudometric on M

+ nondegenerate for M = D € C" a bounded

domain

K is invariant under Aut(M ). It descends to any
quotient of M by a torsion-free discrete group of
automorphisms. The quotient pseudometric is

called the induced Carathéodory pseudometric.
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 agrees with the Bergman metric on B™ (up to

a constant).

On A”, n € T(A"), n=(m,...,nn)
||77Hm — Sl}ip Hn/ﬁHdsQA .

For (2 any bounded symmetric domain,
P C Q) maximal polydisk,
x e P,neT.(P), we have

HUer(p) = HT}HFL(Q) :

In other words,
P C ) is an isometric embedding with re-

spect to Carathéodory metrics.
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Finsler Metric Rigidity (Mok 2002)

() bounded symmetric domain,

rank({2) > 2.

[' C Aut(Q?) torsion-free lattice

X :=Q/T', g = canonical Kéhler-Einstein met-
ric on X

h = continuous complex Finsler metric of non-
positive curvature

N=0; x---xQ,,,  irr. factor,
To=1T1® - ®1m

Then,
de1, ..., ¢y > 0 such that
[ = exlln™ 1
for any n'®) € T,(X) whose
lifting to €2 belongs to Sk.
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Density Lemma.

() =y x--- xS, reducible bounded symmetric

domain

I=(i(1),...,i(p)), 1 <i(i),...,i(p)),
1<i(l)<---<i(p) <m

| AU_tO(Q) — AUto(Qi(l)) XX AU‘tO(Qi(p))

canonical projection

Then,

PTI(F) — AUto(Qi(l)) X X AUtO(Qi(p))

whenever 1 < p < m.
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Moore’s Ergodicity Theorem
(G semisimple Lie group over R

I' C G irreducible lattice,
i.e., Vol(I'\ G) < o0

H C G closed subgroup

H acts on I' \ G by right multiplication. Then,

H acts ergodically < H noncompact .

Corollary. I acts ergodically on G/H < H

noncompact.

Lemma. dJFE C G/H null subset such that
forany gH € G/H—FE,T'(gH) is dense in G/ H.
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F-extremal bounded holomorphic functions

f: X=A"/T"—- N

F:A" - N

H = {h: N — A holomorphic}
F:=FH={hoF :A™ — A}
Proposition.

D1 = {0} x A"t Cc A" p e T,(A™), n L
T,(D"1Y). g=hoF, g€ F. Then,

df (), 5, = s () o

=  §|pn-1 = Constant .

Here, s is called an F-extremal bounded holo-

morphic function adapted to n.
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Proof. Take s(0;0) = 0. Write

Inllz = sup{llds(n)llpos. = s € F}

so that
Inlle = ldf )l 5 -

Then,

o [17(0; 2)[|7 = [lds(1)(0; 2) || posa

_ |ds(n)(0; 2)| N
= T is(0 ] ds(n)(0; 2)] ;

e [|7(0;0)[|7 = [ds(n)(0; 0)] .
Finsler metric rigidity

= [[n(0; 2)[[l7 = A,

independent of z € A" 1.
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Thus,
{ log [ds(n)(0; 2)| < log A
log |ds(n)(0; 0)| = log A

log |ds(n)(0; z)| pluriharmonic in z

= log|ds(n)(0;z)| = log A
1m(0; 2)|| 7 = log A = log |ds(n)(0; 2)| .

=  5(0;2) =0 for any z € A" .
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Proof that f : X — N 1s an immersion in Thm.
1’ for X = A™/T" irreducible:

Suppose n € Ker dF'(0). n = n,+1n’, orthogonal

.l . o
decomposition, 71 = Const. X P

Let s € F be F-extremal, adapted to 0, s =
hoF. (by Prop.)

s constant on D" = ds(n’) =0

n € Ker dF (o) = ds(n) = dh(Fyn)dF(n) = 0.

Hence,

ds(m) = ds(n) —ds(n') = 0.

If 71 # 0, then, ds(3%)(0;0) = 0.
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By Proposition,

0 n—1
ds(a—Zl)(O,z) =0 for any z € A ,

which contradicts Finsler metric rigidity.

We have proven:
n € Ker dF(o) =n1 =0

Same argument gives n = (n1,... ,7,) = 0, S0
that Ker (dF') =0, i.e.

f is a holomorphic immersion .
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Proof that F : A™ — N is an embedding in the

cocompact case:

By normal family argument, 4 JF-extremal

bounded holomorphic function s such that
s(x1;2") = s(x1), s = F*h.

Suppose F(x) = F(y), x1 # y1.
s(z) = h(F(z)) = h(F(y)) = s(y).

Hence, s(x1) = s(y1). May assume x; = 0,

y1 = |y1| =7 > 0.

Density Lemma = s(0) = s(re*’) for all § € R.

Contradiction!
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Difficulty in general case:

(1) Normal family argument fails for

[' C Aut(A)™ non-uniform.

(2) For Q irreducible, rank(€2) > 2, I' C Aut(Q2)
cocompact normal family argument may lead
to maximal polydisk P C 2 such that {vP :
v € I'} is discrete.

In (2), there is an exceptional set when we apply
Moore’s Ergodicity Theorem on some moduli
space of maximal polydisks. We cannot apply

density argument on P.
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Partial complex Finsler metric on €2 by

averaging over geodesic circles

reQ, neT,(Q)
Inll7 = sup{llds(n)lpesn. : s € F = F7H} .

Suppose « characteristic. D, minimal disk such
that a € T, (D,). 6 > 0 fixed. Define

|c||e(7) =sup{Average(||ds(a(y))| posn.) :
y € OBy (x;0)}

|a(y)|| = ||a(z)|]. Ba(x;d) geodesic disk on D,,.

Main Proposition. s an e(F)-extremal bounded

holomorphic function adapted to a. P maximal
polydisk through x, o € T,.(P). Then,

s(z;2') = s(2) .
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Remarks:

(1)

|||le(r) is defined on €2 and hence on X =
(2/T only for characteristic vectors a.. It cor-
responds to a continuous Hermitian metric
on the tautological line bundle L. — § over

the characteristic bundle S.

e(F), as a continuous Hermitian metric on
L — &, is not a-prior: of nonpositive cur-
vature. It is only of nonpositive curvature
when restricted to liftings of certain totally
geodesic product complex submanifolds e.g.

maximal polydisks P.
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Proposition.

(Z,w) compact Kéahler manifold, dim¢ Z = m.

¢ > 0 on Z, smooth closed (1, 1)-form.

Ker 6 of constant rank on Z.
JC = foliation on Z defined by Re(Ker 6).

Leave L of K automatically holomorphic.

u : Z — R continuous such that

u| is plurisubharmonic for any leaf L .

Then,

u|c is pluriharmonic for every leaf L .
If v is Lipschitz, then
u|s = Const. for every L .

If 4 a dense leaf of IC, then

u = Const. on 2 .
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Lemma.

U C C" open; a < b.

u : |a,b] x U — R continuous; u¢(2) := u(t; 2).

ut : U — R plurisubharmonic

w, : U — R given by

b
p(z) = log/ vt (?) gt

Then

e?/—100p > e¥/—100y > 0 .
In particular,

©, 1) are plurisubharmonic .
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Proof.

(e*t 4 6“2)\/—7185 log(e*t + e“2)
— e%1v/—100uq + €“2v/—190uy+

eU1 +usg

V—=1(0uy — Ous) A (Ouy — Ous) .

el + ez

Apply now to finite Riemann sums and take lim-
its. [
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The foliated minimal characteristic bundle

with a transverse measure

e The closed (1,1)-form A := —c1(L,g)|s is a
real 2-form on the real 2(n + p)-dimensional
underlying smooth manifold of the minimal

characteristic bundle S.

e As a skew-symmetric bilinear form on S, A

is of constant rank 4p + 2.

e The foliation N is precisely defined by the
distribution Ker(\), which is integrable be-
cause A is d-closed. The leaves of N are
holomorphic, dim¢ L = (n+p) — (2p+1) =
n—p—1=q.

e For the corresponding foliation N on S (€2),
the leaves are closed, and the leaf space can

be given the structure of a smooth real (4p+
2)-dimensional manifold of G/H.
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The real skew-symmetric bilinear form A cor-

responds to some A on S(€).

G /H is then endowed with a quotient skew-
symmetric bilinear form )\, which is

G-invariant and non-degenerate everywhere

on G/H.

A*PT2)\ = dyu is a G-invariant volume form

on the homogeneous space G/H.

Since I' acts ergodically on G/H the leaf
space I' \ G/H of N on § does not carry
the structure of a smooth manifold. In this

sense X\ does not descend to the leaf space of

N.

However, the structure of S as a foliated
manifold in the small lifts to S(€2), and as
far as integration on § is concerned we can
sometimes make use of the volume form du

on local pieces of S.
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Fix a triple (P, P";a), P = A x P’, and con-
sider the subgroup H C G consisting of 4 € G
such that u(P) = P, u(P’) = P’ and such that
du(a) projects to the same vector as a under

the canonical projection 7 : P — A.

Lemma.
Suppose y; € I' are such that v; H converges to
T9H in G/H. Then, :so%._]L converges to soT_y
—i6

on P, i.e., s(; '(2;2")) converges to s(e=%z; 2')

uniformly on compact subsets of P.

Proof. Write ~v; = \;79h;, where h;, € H and
Ai € G converges to the identity element e € G.
Then for (z;2') € P

(son; 1)()\ (z; 2 )) s(v; Y(Ni(z; 2 )
=s(h; 1, A (Ni(2;2))) = s(hy '1_a(2;2)
= s(hi_l(e_wz; 2 )) = s(e7 "z ui(2"))
for some p; € Aut(P’). Here we make use of the
fact that any h € H preserves P, and that h|p
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is necessarily of the form h(z;2") = (z,v(2)),
where v € Aut(P’). By Main Proposition, we

conclude that
(s09 1) (Ailz:2)) = s(e 72 /) = (s07_9) (2. 7')

Fix an arbitrary compact subset () C P. Then
there exists a compact subset Q" C () such that

A (Q) C @ for any i. On the other hand, s o
v; 1.0 — A, so that by Cauchy estimates

(5077 (Nil2:2) = (s047)(2:2)
< C@)Ai(z2) = (2]

where C'(Q)") is a constant depending only on
()’ (and independent of 7), and || - || denotes the
Fuclidean norm. Since A\; converges to e € G,
we conclude that the right hand side converges
to 0. It follows from (2) that

Tim [[(s07g) — (507 V)@ =0
36



for every compact subset Q C P, || - ||o being
the supremum norm for continuous functions on
(). In other words, so~y, ! converges uniformly

on compact subsets of P to so7_g. [

Derivation of injectivity from Main Proposition

o Special extremal functions. Let s be an e(F)-
extremal function on (). For any v € I,
soy € F. An e(F)-extremal function o will
be called special if o(z1;2") = 0(z1) = Az
for some A\ # 0. Injectivity follows if this
can be done for all P = A x P’.

e Moore’s Ergodicity Theorem. Since I' C G
is discrete, its left action on G/H is ergodic
for any noncompact closed subgroup H C
(G. As a consequence, the orbit under I' of
vH € G/H is dense in G/H, provided that
vH lies outside a certain null set £ C G/H.
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e Since s(z1,2") = s(z1), s|p is invariant under
the group H. Suppose we choose v, € I’
such that v, H converges to 79fH. Then, by

1|P converges to s o T_g|,

and the S'-averaging argument applies to

Lemma, s o 7,

produce a special function o adapted to the
triple (P, P’; «).

e The null set E/. There may in fact be a max-
imal polydisk P such that its orbit under I'
gives a discrete set of maximal polydisks on
(). Then, completing P to a triple (P, P’; ),
the latter corresponds to an element of G/H
whose orbit under I' is discrete, and the ar-
gument above to produce special functions

by S'-averaging fails.
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e However, from the estimate |s’(0)] > ¢ >
0 for the e(F)-extremal function s the S*-
averaging argument produces a special func-
tion o for which |A| = |s'(0)| is bounded
from below independent of (P, P, «), which
allows us to take care of the ‘exceptional’
by taking limits to obtain special functions
for every triple (P, P'; ). This proves that
F:Q — D is injective. [
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Theorem on the Extension Problem.

Let 2 € C" be the Harish-Chandra realization
of a bounded symmetric domain of rank > 2
and I' C Aut(2) be a torsion-free irreducible
lattice, X := Q/I". Let N be a Zariski-open
subset of some compact complex manifold and
denote by N its universal cover. Let f: X—N
be a nonconstant holomorphic mapping into IV,
and denote by F': {} — N the lifting to univer-
sal covering spaces. Suppose (X, N; f) satisfies
the nondegeneracy condition (7). For the holo-
morphic embedding F : Q 2 F(Q) C N denote
by ¢ : F(2) — Q the inverse mapping. Then,
there exists a (not necessarily unique) bounded
vector-valued holomorphic map R : N — C»

such that R|pq) =1, i.e., Ro F Zidg.
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Scheme of proof

e When () is reducible the analogous theorem

holds true provided that I' is irreducible.

e For () = A", the Density Lemma allows us
to apply the S'-averaging argument to get

special extremal functions. Thus, there are

bounded holomorphic functions hq, - - - h,, on
N such that (h1(F(2)), - ,hn(F(2))
— (zla T 7Z’rL)-

e Extremal functions are not important in the
argument. One can start with any
bounded holomorphic function A and com-
pose with v; € I', where ~; converges to the
projection onto a boundary disk in a non-
tangential way. The limit of functions thus
obtained is given by the boundary values of
the holomorphic function F*h. Now choose

h with nontrivial boundary values.
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e When () is irreducible and of rank > 2, the
analogue of the Density Lemma is given by
Moore’s Ergodicity Theorem. ~y; can be cho-
sen to converge to a projection map 7 onto
a rank-1 boundary component ®. If F"*h ex-
tends continuously to €, then +}h converges
to m*h, where h is defined on the face .
In general, choose ~; so that for any point
r € ), v;(x) converges “non-tangentially”
to m(x) € P.

e The usual Fatou-type results in Harmonic
Analysis on bounded symmetric domains are
in terms of non-tangential convergence to
the Silov boundary. We need Fatou-type
theorems for non-tangential convergence to
a boundary component, which is related to
the standard result for the Silov boundary
when we express boundary values on a bound-

ary component in terms of Poisson integrals
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on a subset of the Silov boundary. Such

a Fatou-type result is covered by Koranyi
1976.

Each face ® is biholomorphic to a complex
unit ball. By the technique of S!-averaging

we can recover the projection map m = 7.

Averaging mg over the set of rank-1 bound-
ary components ® recovers the identity map,
giving R : N — C"™ such that Ro F = idq,
i.e., R(F(x)) = .

In the averaging argument we need to uni-
formly bound from below constants appear-
ing in first derivative of certain bounded holo-
morphic functions, which follows from Finsler
metric rigidity. It requires actually some-
thing weaker, viz. a metric inequality for

minimal characteristic vectors.
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The Fibration Theorem.

Let Q2 be a bounded symmetric domain of rank
> 2 and I' C Aut(Q2) be a torsion-free irre-
ducible lattice, X := Q/I". Let N be a Zariski-
open subset of some compact complex mani-
fold and denote by N its universal cover. Let
f : X — N be a holomorphic mapping into IV,
F:Q — N its lifting to universal covers. Sup-
pose (X, N; f) satisfies (). Then, f: X — N
is a holomorphic embedding, and there exists
a holomorphic fibration p : N — X with con-
nected fibers such that po f =id.

Arqgument. Lifting to universal covers we obtain
RoF = idg. Then, we prove the I' equivariance
of R, i.e., Roy = vyo R for every v € I', which

tollows from the Maximum Principle.
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Isomorphism Theorem

Let Q2 be a bounded symmetric domain of rank
> 2 and I' C Aut(Q2) be a torsion-free irre-
ducible lattice, X := Q/I". Let D be a bounded
domain on a Stein manifold, I'/ be a torsion-free
discrete group of automorphisms on D, N :=
D/T’. Suppose N is of finite measure with re-
spect to the Kobayashi-Royden volume form,
and f : X — N is a holomorphic map which
induces an isomorphism f, : I' = IV. Then,

f: X — N is a biholomorphic map.
Scheme of Proof

e f: X — N lifts to a holomorphic embedding
F:Q— N.

e To make use of Kahler metrics, embed D
into its hull of holomorphy lA?, on which there
is a complete Kahler-Einstein metric of neg-

ative Riccl curvature.
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o finduces I' IV = m;(N). I' acts on D,
giving N = E/F’ .= N.

e By an estimate of Kobayashi-Royden vol-
ume form, we show that N — N is of zero
Lebesgue measure. By the Schwarz Lemma
on volume forms we conclude that

Volume (N,wxr) < 00.

e The argument of the Fibration Theorem yields
a projection p : N — X. Integration by part
and Fubini’s Theorem yield that the fibers

of p are 0-dimensional. This relies on

Lemma. Let (Z,w) be a complete Kahler
manifold of finite volume, and u be a uni-
formly Lipschitz bounded plurisubharmonic

function on Z. Then, u is a constant.
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Open Question (following by Prof. Lu)

Let €2 be an irreducible bounded symmetric do-
main of rank > 2, and I' C Aut(f2) be a lat-
tice. Let D be a bounded homogeneous domain,
¢ : ' € Aut(D) be an injective homomorphism.
Suppose F' : 8 — D is a P-equivariant holo-

morphic mapping.

Is F' necessarily a holomorphic isometry up to

a scalar constant?

Background

1. If F' : 2 — D is a holomorphic isometry
up to a scalar constant, then its image is

necessarily totally geodesic.

2. D admits the Carathéodory metric xp, which
is of nonpositive curvature in the sense of
currents. By the Embedding Theorem, F' :
() — D is a holomorphic embedding.
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3. If the Bergman metric on D is of nonpos-
itive bisectional curvature, then Hermitian
metric rigidity applies. However, for a non-
symmetric bounded homogeneous domain D,
some holomorphic bisectional curvatures may

be positive.

4. Finsler metric rigidity says that F'is up to a
scalar constant isometric on minimal charac-
teristic vectors, i.e., (1,0) vectors tangent to
minimal disks. In particular, these
Poincaré disks are isometrically embedded
into (D, kp). One needs to have a structure
theorem for such isometric embeddings. The
latter is not known even when D is a sym-

metric.
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