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Bounded Symmetric Domains

Classical cases

DI
p,q = {Z ∈ M(p, q,C) : I−Z

t
Z > 0} , p, q ≥ 1

DII
n = {Z ∈ DI

n,n : Zt = −Z} , n ≥ 2

DIII
n = {Z ∈ DI

n,n : Zt = −Z} , n ≥ 3

DIV
n =

{
(z1, . . . , zn) ∈ Cn : ‖z‖2 < 2 ;

‖z‖2 < 1 +
∣∣∣ 2

n∑

i=1

z2
i

∣∣∣
2}

, n ≥ 3 .

Exceptional Domains

DV , dim16, type E6

DV I , dim27, type E7
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Hermitian Metric Rigidity (Mok 87,To 89)

Ω irr. bounded symmetric domain,

rank(Ω) ≥ 2

Γ ⊂ Aut(Ω) torsion-free lattice

X := Ω/Γ, g = canonical Kähler-Einstein met-

ric on X

h = Hermitian metric on X

Θ(h) = Curvature of (TX , h)

Θ(h) ≤ 0 in the sense of Griffiths, i.e.,

Θααββ(h) ≤ 0 ∀α, β ∈ Tx(X).

Then,

h ≡ cg for some constant c > 0 .

3



Theorem. (Rigidity on Holomorphic Maps)

Ω irr. bounded symmetric domain,

rank(Ω) ≥ 2

Γ ⊂ Aut(Ω) torsion-free lattice,

X := Ω/Γ, g = canonical Kähler-Einstein met-

ric

(N, h) = Hermitian manifold of nonpositive cur-

vature in the sense of Griffiths.

f : X → N nonconstant holomorphic map

Then,

f : X → N is an immersion ,

totally-geodesic if (N, h) is Kähler .
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Remarks:

(1) When N = Ω′/Γ′, is Hermitian locally sym-

metric, f : X → N lifts to

F : Ω → Ω′ , totally geodesic .

In particular, F is an embedding .

(2) The same as in (1) can be asserted if we as-

sume that (N,h) is a complete Kähler man-

ifold of nonpositive Riemannian Sectional

curvature, by Comparison Theorems.
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Ω irr. BSD, rank(Ω) ≥ 2

G = Auto(Ω), o ∈ Ω, K = Isoto(Ω; o) ⊂ G

∃ polydisk P ∼= ∆r ⊂ Ω, totally geodesic⋃
k∈K

kP = Ω. (Polydisk Theorem).

D = ∆× {(0, . . . , 0)} minimal disk (e.g.)

η ∈ Tx(Ω) is called a minimal characteristic vec-

tor

⇔ η is tangent to a minimal disk.

SΩ = {[η] ∈ PTΩ : η is a char. vect.}

S = SΩ/Γ, the minimal characteristic bundle

on X.

• Hermitian Metric Rigidity for the compact

case is proven by an integral curvature iden-

tity on S.

• For the noncompact case, to studied the as-

ymptotic behavior of Hermitian metrics.
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Integral Curvature Identity

Ω irr. BSD rank(Ω) ≥ 2

Γ ⊂ Aut(Ω) torsion-free lattice, X := Ω/Γ,

g = KE metric on X, ω = Kähler form

(L, ĝ) → PTX taugological line bundle

θ = −c1(L, ĝ) ≥ 0, Kerθ([α]) ⊂ T[α](S)

∀[α] ∈ S, rank(Kerθ([α])) = q,

π : PTX → X; ν = π∗ω − c1(L, ĝ) > 0

loc. homogeneous Kähler form. Then,

0 =
∫

S
[−c1(L, ĝ)]2n−2q ∧ νq−1

=
∫

S
[−c1(L, h)] ∧ [−c1(L, ĝ)]2n−2q−1 ∧ νq−1

for any Hermitian metric h on L. The integrand

≥ 0, hence ≡ 0, if c1(L, h) ≤ 0.
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The minimal characteristic bundle as a

foliated manifold

• Ω = an irreducible bounded symmetric do-
main of rank ≥ 2.

• Γ ⊂ Aut(Ω) torsion-free discrete subgroup
X := Ω/Γ of finite volume.

• S := minimal characteristic bundle on X.

• There is a canonical foliation N on S, as
follows.

• For any [η] ∈ PTo(Ω), Nη := {ζ ∈ To(Ω) =
Rηηζζ = 0}, the null-space of η. Write q =
dim(Nα) for [α] ∈ S. Let 4 ⊂ Ω be the
unique minimal disk passing through o such
that To(4) = Cα. Then, there exists a
unique totally geodesic complex submani-
fold Ωo passing through o such that To(Ωo) =
Nα. Moreover, Cα ⊕ Nα is tangent to a
unique totally geodesic (q + 1)-dimensional
complex submanifold ∼= 4× Ωo.
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• Identify {o}×Ωo with Ωo. For every z ∈ Ωo

write [α(z)] := PTz(4 × {z}) ∈ Sz(Ω). As
z runs over Ωo, this defines a lifting of Ωo

to a complex submanifold F ⊂ S(Ω) which
is by definition the leaf of the lifting of N
to S(Ω) passing through [α]. Note that G

acts transitively on S(Ω). Let H ⊂ G be the
closed subgroup which fixes Ωo as a set. The
leaf space of the lifted foliation on Ω ∼= G/H.
Set-theoretically the leaf space of N is given
by Γ \G/H.

• For [α] ∈ S, T[α](N ) = Kerθ([α]).
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Theorem 1. (Mok, Invent. math. 2004)
Ω irreducible bounded symmetric domain,
rank(Ω) ≥ 2

Γ ⊂ Aut(Ω) torsion-free lattice

X := Ω/Γ, N = complex manifold. Assume
• f : X → N holomorphic map,

F : Ω → Ñ lifting to universal covers.
• ∃ bounded holomorphic function on Ñ such

that F ∗h 6≡ Constant.

Then,

F : Ω → Ñ is an embedding .

In particular,

f : X → N is an immersion
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Theorem 1’.

Analogue for locally reducible case,
e.g., irr. quotients of the polydisk ∆n

Ω = bounded symmetric domain

Ω = Ω1 × · · · × Ωm, Ωk irreducible factor

Ω′1 := Ω1 × {(x2, . . . , xm)} called an

irreducible factor subdomain, etc.

Then, the analogue of Theorem 1

holds under the assumption

(†)For any k, 1 ≤ k ≤ m,∃ bounded

holomorphic function hk on Ñ such that

F ∗hk 6≡ Constant on some Ω′k .

Embedding Theorem = Theorems 1 + 1′.
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Theorem 2.

Ω bounded symmetric domain,
rank(Ω) ≥ 2

Γ ⊂ Aut(Ω) torsion-free irreducible lattice

X := Ω/Γ

D arbitrary bounded domain,
Γ′ ⊂ Aut(D) torsion-free, discrete

N := D/Γ′

f : X → N nonconstant holomorphic map, F :
Ω → Ñ lifting to universal covers

Then,

F : Ω → D is an embedding.
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Theorem 3.

Ω irreducible bounded symmetric domain of rank
≥ 2,

Γ ⊂ Aut(Ω) torsion-free lattice; X := Ω/Γ

N = singular complex space

f : X → N normalization

ρ : Ñ → N universal cover

Assume that Ñ is irreducible.

Then,

there does not exist any bounded

holomorphic function on Ñ .
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Theorem 4.

Ω bounded symmetric domain,
rank(Ω) ≥ 2

Γ ⊂ Aut(Ω) torsion-free irreducible lattice

X := Ω/Γ, Z = normal complex space

f : X → Z proper holomorphic map

Then, either

(a) f is an unramified covering, OR

(b) |π1(Z)| < ∞.
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Complex Finsler metrics
‖η‖ defined, ‖λη‖ = |λ|‖η‖ whenever λ ∈ C, no
inner products

Complex Finsler metric on TX

= Hermitian metric h on the tautological line
bundle L → PTX

‖ · ‖ continuous ⇔ h continuous, etc.

(X, ‖ · ‖) is of nonpositive curvaure def⇔ (L, h) is
of nonpositive curvature.

For ‖ · ‖ smooth, Θ(L, h) ≤ 0 defined.
h given by e−ϕ locally, Θ(L, h) =

√−1∂∂ϕ,
which makes sense also for h (hence ϕ) contin-
uous. For ‖ · ‖ continuous

• We say that (X, ‖ · ‖) is of nonpositive cur-
vature iff ϕ is plurisubharmonic.
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Carthéodory Pseudometric

M complex manifold,

H(M) := {holo. functions f : M → ∆}
η ∈ Tx(M), ‖η‖κ := sup

f∈H(M)

‖f∗η‖ds2
∆
,

where ds2
∆ = Poincaré metric on ∆

κ = Carathéodory pseudometric on M

κ nondegenerate for M = D b Cn a bounded
domain

κ is invariant under Aut(M). It descends to any
quotient of M by a torsion-free discrete group of
automorphisms. The quotient pseudometric is
called the induced Carathéodory pseudometric.
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κ agrees with the Bergman metric on Bn (up to
a constant).

On ∆n, η ∈ Tx(∆n), η = (η1, . . . , ηn)

‖η‖κ = sup
k
‖ηk‖ds2

∆
.

For Ω any bounded symmetric domain,
P ⊂ Ω maximal polydisk,
x ∈ P , η ∈ Tx(P ), we have

‖η‖κ(P ) = ‖η‖κ(Ω) .

In other words,
P ⊂ Ω is an isometric embedding with re-
spect to Carathéodory metrics.
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Finsler Metric Rigidity (Mok 2002)

Ω bounded symmetric domain,
rank(Ω) ≥ 2.
Γ ⊂ Aut(Ω) torsion-free lattice
X := Ω/Γ, g = canonical Kähler-Einstein met-
ric on X

h = continuous complex Finsler metric of non-
positive curvature
Ω = Ω1 × · · · × Ωm, Ωk irr. factor,
TΩ = T1 ⊕ · · · ⊕ TM

Then,

∃c1, . . . , cm > 0 such that

‖η(k)‖h = ck‖η(k)‖g

for any η(k) ∈ Tx(X) whose

lifting to Ω belongs to S̃k.
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Density Lemma.

Ω = Ω1×· · ·×Ωm reducible bounded symmetric
domain

I = (i(1), . . . , i(p)), 1 ≤ i(i), . . . , i(p)),
1 ≤ i(1) < · · · < i(p) ≤ m

prI : Auto(Ω) → Auto(Ωi(1))×· · ·×Auto(Ωi(p))
canonical projection

Then,

prI(Γ) = Auto(Ωi(1))× · · · ×Auto(Ωi(p))

whenever 1 ≤ p < m.
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Moore’s Ergodicity Theorem

G semisimple Lie group over R

Γ ⊂ G irreducible lattice,
i.e., Vol(Γ \G) < ∞
H ⊂ G closed subgroup

H acts on Γ \G by right multiplication. Then,

H acts ergodically ⇔ H noncompact .

Corollary. Γ acts ergodically on G/H ⇔ H

noncompact.

Lemma. ∃E ⊂ G/H null subset such that
for any gH ∈ G/H−E, Γ(gH) is dense in G/H.
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F-extremal bounded holomorphic functions

f : X = ∆n/Γ → N

F : ∆n → Ñ

H = {h : Ñ → ∆ holomorphic}
F := F ∗H = {h ◦ F : ∆n → ∆}

Proposition.
Dn−1 = {0} × ∆n−1 ⊂ ∆n; η ∈ To(∆n), η ⊥
To(Dn−1). g = h ◦ F , g ∈ F . Then,

‖df(η)‖
κ(Ñ)

= ‖ds(η)‖Poin.

⇒ s|Dn−1 ≡ Constant .

Here, s is called an F-extremal bounded holo-
morphic function adapted to η.
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Proof. Take s(0; 0) = 0. Write

‖η‖F = sup{‖ds(η)‖Poin. : s ∈ F} ,

so that
‖η‖F = ‖df(η)‖

κ(Ñ)
.

Then,

• ‖η(0; z)‖F ≥ ‖ds(η)(0; z)‖Poin.

=
|ds(η)(0; z)|
1− |s(0; z)|2 ≥ |ds(η)(0; z)| ;

• ‖η(0; 0)‖F = |ds(η)(0; 0)| .

Finsler metric rigidity

⇒ ‖η(0; z)‖F = λ ,

independent of z ∈ ∆n−1 .
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Thus, {
log |ds(η)(0; z)| ≤ log λ

log |ds(η)(0; 0)| = log λ

log |ds(η)(0; z)| pluriharmonic in z

⇒ log |ds(η)(0; z)| ≡ log λ

‖η(0; z)‖F ≡ log λ ≡ log |ds(η)(0; z)| .

⇒ s(0; z) = 0 for any z ∈ ∆n−1 .
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Proof that f : X → N is an immersion in Thm.
1’ for X = ∆n/Γ irreducible:

Suppose η ∈ Ker dF (o). η = η1+η′, orthogonal
decomposition, η1 = Const.× ∂

∂z1
.

Let s ∈ F be F-extremal, adapted to η1, s ≡
h ◦ F . (by Prop.)

s constant on Dn−1 ⇒ ds(η′) = 0

η ∈ Ker dF (o) ⇒ ds(η) = dh(F∗η)dF (η) = 0.
Hence,

ds(η1) = ds(η)− ds(η′) = 0 .

If η1 6= 0, then, ds( ∂
∂z1

)(0; 0) = 0.
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By Proposition,

ds
( ∂

∂z1

)
(0; z) = 0 for any z ∈ ∆n−1 ,

which contradicts Finsler metric rigidity.

We have proven:

η ∈ Ker dF (o) ⇒ η1 = 0 .

Same argument gives η = (η1, . . . , ηn) = 0, so
that Ker (dF ) ≡ 0, i.e.

f is a holomorphic immersion .
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Proof that F : ∆n → Ñ is an embedding in the
cocompact case:

By normal family argument, ∃ F -extremal
bounded holomorphic function s such that
s(x1; z′) ≡ s(x1), s = F ∗h.

Suppose F (x) = F (y), x1 6= y1.

s(x) = h(F (x)) = h(F (y)) = s(y).

Hence, s(x1) = s(y1). May assume x1 = 0,
y1 = |y1| = r > 0.

Density Lemma ⇒ s(0) = s(reiθ) for all θ ∈ R.
Contradiction!
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Difficulty in general case:

(1) Normal family argument fails for
Γ ⊂ Aut(∆)n non-uniform.

(2) For Ω irreducible, rank(Ω) ≥ 2, Γ ⊂ Aut(Ω)
cocompact normal family argument may lead
to maximal polydisk P ⊂ Ω such that {γP :
γ ∈ Γ} is discrete.

In (2), there is an exceptional set when we apply
Moore’s Ergodicity Theorem on some moduli
space of maximal polydisks. We cannot apply
density argument on P .
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Partial complex Finsler metric on Ω by
averaging over geodesic circles

x ∈ Ω , η ∈ Tx(Ω)

‖η‖F = sup{‖ds(η)‖Poin. : s ∈ F = F ∗H} .

Suppose α characteristic. Dα minimal disk such
that α ∈ Tx(Dα). δ > 0 fixed. Define

‖α‖e(F) = sup{Average(‖ds(α̃(y))‖Poin.) :

y ∈ ∂Bα(x; δ)}

‖α̃(y)‖ = ‖α(x)‖. Bα(x; δ) geodesic disk on Dα.

Main Proposition. s an e(F)-extremal bounded
holomorphic function adapted to α. P maximal
polydisk through x, α ∈ Tx(P ). Then,

s(z; z′) ≡ s(z) .
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Remarks:

(1) ‖α‖e(F) is defined on Ω and hence on X =
Ω/Γ only for characteristic vectors α. It cor-
responds to a continuous Hermitian metric
on the tautological line bundle L → S over
the characteristic bundle S.

(2) e(F), as a continuous Hermitian metric on
L → S, is not a-priori of nonpositive cur-
vature. It is only of nonpositive curvature
when restricted to liftings of certain totally
geodesic product complex submanifolds e.g.
maximal polydisks P .
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Proposition.

(Z, ω) compact Kähler manifold, dimC Z = m.
θ ≥ 0 on Z, smooth closed (1, 1)-form.
Ker θ of constant rank on Z.
K = foliation on Z defined by Re(Ker θ).
Leave L of K automatically holomorphic.

u : Z → R continuous such that

u|L is plurisubharmonic for any leaf L .

Then,

u|L is pluriharmonic for every leaf L .

If u is Lipschitz, then

u|L ≡ Const. for every L .

If ∃ a dense leaf of K, then

u ≡ Const. on Z .
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Lemma.

U ⊂ Cn open; a < b.

u : [a, b]× U → R continuous; ut(z) := u(t; z).

ut : U → R plurisubharmonic

ϕ,ψ : U → R given by

ϕ(z) := log
∫ b

a

eut(z)dt

ψ(z) :=
∫ b

a

ut(z)dt .

Then

eϕ
√−1∂∂ϕ ≥ eψ

√−1∂∂ψ ≥ 0 .

In particular,

ϕ, ψ are plurisubharmonic .
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Proof.

(eu1 + eu2)
√−1∂∂ log(eu1 + eu2)

= eu1
√−1∂∂u1 + eu2

√−1∂∂u2+

eu1+u2

eu1 + eu2

√−1(∂u1 − ∂u2) ∧ (∂u1 − ∂u2) .

Apply now to finite Riemann sums and take lim-
its. ¤
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The foliated minimal characteristic bundle
with a transverse measure

• The closed (1,1)-form λ := −c1(L, ĝ)|S is a
real 2-form on the real 2(n + p)-dimensional
underlying smooth manifold of the minimal
characteristic bundle S.

• As a skew-symmetric bilinear form on S, λ

is of constant rank 4p + 2.

• The foliation N is precisely defined by the
distribution Ker(λ), which is integrable be-
cause λ is d-closed. The leaves of N are
holomorphic, dimC L = (n + p)− (2p + 1) =
n− p− 1 = q.

• For the corresponding foliation Ñ on S(Ω),
the leaves are closed, and the leaf space can
be given the structure of a smooth real (4p+
2)-dimensional manifold of G/H.
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• The real skew-symmetric bilinear form λ cor-
responds to some λ̃ on S(Ω).

• G/H is then endowed with a quotient skew-
symmetric bilinear form λ, which is
G-invariant and non-degenerate everywhere
on G/H.

• Λ4p+2λ = dµ is a G-invariant volume form
on the homogeneous space G/H.

• Since Γ acts ergodically on G/H the leaf
space Γ \ G/H of N on S does not carry
the structure of a smooth manifold. In this
sense λ does not descend to the leaf space of
N .

• However, the structure of S as a foliated
manifold in the small lifts to S(Ω), and as
far as integration on S is concerned we can
sometimes make use of the volume form dµ

on local pieces of S.
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Fix a triple (P, P ′; α), P = ∆×P ′, and con-
sider the subgroup H ⊂ G consisting of µ ∈ G

such that µ(P ) = P, µ(P ′) = P ′ and such that
dµ(α) projects to the same vector as α under
the canonical projection π : P → ∆.

Lemma.

Suppose γi ∈ Γ are such that γiH converges to
τθH in G/H. Then, s◦γ−1

i converges to s◦ τ−θ

on P , i.e., s
(
γ−1

i (z; z′)
)

converges to s(e−iθz; z′)
uniformly on compact subsets of P .

Proof. Write γi = λiτθhi, where hi ∈ H and
λi ∈ G converges to the identity element e ∈ G.
Then for (z; z′) ∈ P

(s ◦ γ−1
i )

(
λi(z; z′)

)
= s

(
γ−1

i (λi(z; z′)
))

= s
(
h−1

i τ−1
θ λ−1

i

(
λi(z; z′)

))
= s

(
h−1

i τ−θ(z; z′)
)

= s
(
h−1

i (e−iθz; z′)
)

= s
(
e−iθz;µi(z′)

)

for some µi ∈ Aut(P ′). Here we make use of the
fact that any h ∈ H preserves P , and that h|P
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is necessarily of the form h(z; z′) =
(
z, ν(z′)

)
,

where ν ∈ Aut(P ′). By Main Proposition, we
conclude that

(s◦γ−1
i )

(
λi(z; z′)

)
= s(e−iθz; z′) = (s◦τ−θ)(z, z′) .

Fix an arbitrary compact subset Q ⊂ P . Then
there exists a compact subset Q′ ⊂ Ω such that
λi(Q) ⊂ Q′ for any i. On the other hand, s ◦
γ−1

i : Ω → ∆, so that by Cauchy estimates

∣∣∣(s ◦ γ−1
i )

(
λi(z; z′)

)− (s ◦ γ−1
i )(z; z′)

∣∣∣
≤ C(Q′)‖λi(z, z′)− (z; z′)‖ ,

where C(Q′) is a constant depending only on
Q′ (and independent of i), and ‖ · ‖ denotes the
Euclidean norm. Since λi converges to e ∈ G,
we conclude that the right hand side converges
to 0. It follows from (2) that

lim
i→∞

‖(s ◦ τ−θ)− (s ◦ γ−1
i )‖Q = 0
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for every compact subset Q ⊂ P , ‖ · ‖Q being
the supremum norm for continuous functions on
Q. In other words, s ◦ γ−1

i converges uniformly
on compact subsets of P to s ◦ τ−θ. ¤

Derivation of injectivity from Main Proposition

• Special extremal functions. Let s be an e(F)-
extremal function on Ω. For any γ ∈ Γ,
s ◦ γ ∈ F . An e(F)-extremal function σ will
be called special if σ(z1; z′) = σ(z1) = λz1

for some λ 6= 0. Injectivity follows if this
can be done for all P = ∆× P ′.

• Moore’s Ergodicity Theorem. Since Γ ⊂ G

is discrete, its left action on G/H is ergodic
for any noncompact closed subgroup H ⊂
G. As a consequence, the orbit under Γ of
νH ∈ G/H is dense in G/H, provided that
νH lies outside a certain null set E ⊂ G/H.
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• Since s(z1, z
′) = s(z1), s|P is invariant under

the group H. Suppose we choose γi ∈ Γ
such that γiH converges to τθH. Then, by
Lemma, s ◦ γ−1

i

∣∣
P

converges to s ◦ τ−θ

∣∣
P

,
and the S1-averaging argument applies to
produce a special function σ adapted to the
triple (P, P ′; α).

• The null set E. There may in fact be a max-
imal polydisk P such that its orbit under Γ
gives a discrete set of maximal polydisks on
Ω. Then, completing P to a triple (P, P ′;α),
the latter corresponds to an element of G/H

whose orbit under Γ is discrete, and the ar-
gument above to produce special functions
by S1-averaging fails.
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• However, from the estimate |s′(0)| > c >

0 for the e(F)-extremal function s the S1-
averaging argument produces a special func-
tion σ for which |λ| = |s′(0)| is bounded
from below independent of (P, P ′, α), which
allows us to take care of the ‘exceptional’
by taking limits to obtain special functions
for every triple (P, P ′;α). This proves that
F : Ω → D is injective. ¤
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Theorem on the Extension Problem.

Let Ω b Cn be the Harish-Chandra realization

of a bounded symmetric domain of rank ≥ 2

and Γ ⊂ Aut(Ω) be a torsion-free irreducible

lattice, X := Ω/Γ. Let N be a Zariski-open

subset of some compact complex manifold and

denote by Ñ its universal cover. Let f : X → N

be a nonconstant holomorphic mapping into N ,

and denote by F : Ω → Ñ the lifting to univer-

sal covering spaces. Suppose (X,N ; f) satisfies

the nondegeneracy condition (†). For the holo-

morphic embedding F : Ω ∼= F (Ω) ⊂ Ñ denote

by i : F (Ω) → Ω the inverse mapping. Then,

there exists a (not necessarily unique) bounded

vector-valued holomorphic map R : Ñ → Cn

such that R|F (Ω) ≡ i, i.e., R ◦ F ∼= idΩ.
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Scheme of proof

• When Ω is reducible the analogous theorem
holds true provided that Γ is irreducible.

• For Ω = ∆n, the Density Lemma allows us
to apply the S1-averaging argument to get
special extremal functions. Thus, there are
bounded holomorphic functions h1, · · ·hn on
Ñ such that

(
h1(F (z)

)
, · · · , hn(F (z)

)

= (z1, · · · , zn).

• Extremal functions are not important in the
argument. One can start with any
bounded holomorphic function h and com-
pose with γi ∈ Γ, where γi converges to the
projection onto a boundary disk in a non-
tangential way. The limit of functions thus
obtained is given by the boundary values of
the holomorphic function F ∗h. Now choose
h with nontrivial boundary values.
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• When Ω is irreducible and of rank ≥ 2, the
analogue of the Density Lemma is given by
Moore’s Ergodicity Theorem. γi can be cho-
sen to converge to a projection map π onto
a rank-1 boundary component Φ. If F ∗h ex-
tends continuously to Ω, then γ∗i h converges
to π∗h, where h is defined on the face Φ.
In general, choose γi so that for any point
x ∈ Ω, γi(x) converges “non-tangentially”
to π(x) ∈ Φ.

• The usual Fatou-type results in Harmonic
Analysis on bounded symmetric domains are
in terms of non-tangential convergence to
the Šilov boundary. We need Fatou-type
theorems for non-tangential convergence to
a boundary component, which is related to
the standard result for the Šilov boundary
when we express boundary values on a bound-
ary component in terms of Poisson integrals
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on a subset of the Šilov boundary. Such
a Fatou-type result is covered by Koranyi
1976.

• Each face Φ is biholomorphic to a complex
unit ball. By the technique of S1-averaging
we can recover the projection map π = πΦ.

• Averaging πΦ over the set of rank-1 bound-
ary components Φ recovers the identity map,
giving R : Ñ → Cn such that R ◦ F = idΩ,
i.e., R(F (x)) = x.

• In the averaging argument we need to uni-
formly bound from below constants appear-
ing in first derivative of certain bounded holo-
morphic functions, which follows from Finsler
metric rigidity. It requires actually some-
thing weaker, viz. a metric inequality for
minimal characteristic vectors.
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The Fibration Theorem.

Let Ω be a bounded symmetric domain of rank

≥ 2 and Γ ⊂ Aut(Ω) be a torsion-free irre-

ducible lattice, X := Ω/Γ. Let N be a Zariski-

open subset of some compact complex mani-

fold and denote by Ñ its universal cover. Let

f : X → N be a holomorphic mapping into N ,

F : Ω → Ñ its lifting to universal covers. Sup-

pose (X,N ; f) satisfies (†). Then, f : X → N

is a holomorphic embedding, and there exists

a holomorphic fibration ρ : N → X with con-

nected fibers such that ρ ◦ f = id.

Argument. Lifting to universal covers we obtain

R◦F = idΩ. Then, we prove the Γ equivariance

of R, i.e., R ◦ γ ≡ γ ◦ R for every γ ∈ Γ, which

follows from the Maximum Principle.
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Isomorphism Theorem

Let Ω be a bounded symmetric domain of rank

≥ 2 and Γ ⊂ Aut(Ω) be a torsion-free irre-

ducible lattice, X := Ω/Γ. Let D be a bounded

domain on a Stein manifold, Γ′ be a torsion-free

discrete group of automorphisms on D, N :=

D/Γ′. Suppose N is of finite measure with re-

spect to the Kobayashi-Royden volume form,

and f : X → N is a holomorphic map which

induces an isomorphism f∗ : Γ ∼= Γ′. Then,

f : X → N is a biholomorphic map.

Scheme of Proof

• f : X → N lifts to a holomorphic embedding

F : Ω → N .

• To make use of Kähler metrics, embed D

into its hull of holomorphy D̂, on which there

is a complete Kähler-Einstein metric of neg-

ative Ricci curvature.
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• f induces Γ ∼= Γ′ = π1(N). Γ′ acts on D̂,

giving N̂ = D̂/Γ′ := N̂ .

• By an estimate of Kobayashi-Royden vol-

ume form, we show that N̂ − N is of zero

Lebesgue measure. By the Schwarz Lemma

on volume forms we conclude that

Volume (N̂ , ωKE) < ∞.

• The argument of the Fibration Theorem yields

a projection ρ : N̂ → X. Integration by part

and Fubini’s Theorem yield that the fibers

of ρ are 0-dimensional. This relies on

Lemma. Let (Z, ω) be a complete Kähler
manifold of finite volume, and u be a uni-
formly Lipschitz bounded plurisubharmonic
function on Z. Then, u is a constant.
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Open Question (following by Prof. Lu)

Let Ω be an irreducible bounded symmetric do-

main of rank ≥ 2, and Γ ⊂ Aut(Ω) be a lat-

tice. Let D be a bounded homogeneous domain,

Φ : Γ ∈ Aut(D) be an injective homomorphism.

Suppose F : Ω → D is a Φ-equivariant holo-

morphic mapping.

Is F necessarily a holomorphic isometry up to

a scalar constant?

Background

1. If F : Ω → D is a holomorphic isometry

up to a scalar constant, then its image is

necessarily totally geodesic.

2. D admits the Carathéodory metric κD, which

is of nonpositive curvature in the sense of

currents. By the Embedding Theorem, F :

Ω → D is a holomorphic embedding.
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3. If the Bergman metric on D is of nonpos-

itive bisectional curvature, then Hermitian

metric rigidity applies. However, for a non-

symmetric bounded homogeneous domain D,

some holomorphic bisectional curvatures may

be positive.

4. Finsler metric rigidity says that F is up to a

scalar constant isometric on minimal charac-

teristic vectors, i.e., (1,0) vectors tangent to

minimal disks. In particular, these

Poincaré disks are isometrically embedded

into (D,κD). One needs to have a structure

theorem for such isometric embeddings. The

latter is not known even when D is a sym-

metric.

48




