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Hermitian Metric Rigidity (Mok 87,To 89)

Ω irr. bounded symmetric domain,

rank(Ω) ≥ 2

Γ ⊂ Aut(Ω) torsion-free lattice

X := Ω/Γ, g = canonical Kähler-Einstein met-

ric on X

h = Hermitian metric on X

Θ(h) = Curvature of (TX , h)

Θ(h) ≤ 0 in the sense of Griffiths, i.e.,

Θααββ(h) ≤ 0 ∀α, β ∈ Tx(X).

Then,

h ≡ cg for some constant c > 0 .
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Theorem. (Rigidity on Holomorphic Maps)

Ω irr. bounded symmetric domain,

rank(Ω) ≥ 2

Γ ⊂ Aut(Ω) torsion-free lattice,

X := Ω/Γ, g = canonical Kähler-Einstein met-

ric

(N, h) = Hermitian manifold of nonpositive cur-

vature in the sense of Griffiths.

f : X → N nonconstant holomorphic map

Then,

f : X → N is an immersion ,

totally-geodesic if (N, h) is Kähler .
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Remarks:

(1) When N = Ω′/Γ′, is Hermitian locally sym-

metric, f : X → N lifts to

F : Ω → Ω′ , totally geodesic .

In particular, F is an embedding .

(2) The same as in (1) can be asserted if we as-

sume that (N, h) is a complete Kähler man-

ifold of nonpositive Riemannian Sectional

curvature, by Comparison Theorems.
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Ω irr. BSD, rank(Ω) ≥ 2

G = Auto(Ω), o ∈ Ω, K = Isoto(Ω; o) ⊂ G

∃ polydisk P ∼= ∆r ⊂ Ω, totally geodesic⋃
k∈K

kP = Ω. (Polydisk Theorem).

D = ∆× {(0, . . . , 0)} minimal disk (e.g.)

η ∈ Tx(Ω) is called a characteristic vector

⇔ η is tangent to a minimal disk.

SΩ = {[η] ∈ PTΩ : η is a char. vect.}

S = SΩ/Γ, the minimal characteristic bundle

on X.

• Hermitian Metric Rigidity for the compact

case is proven by an integral curvature iden-

tity on S.

• For the noncompact case. To studied the

asymptotic behavior of Hermitian metrics.
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Ergodic actions

(X, µ) σ-finite measure space

G group acting on (X, µ) as measure-preserving

transformations

We say that G acts ergodically on (X,µ)

if and only if

every G-invariant subset S is either of

0 or full measure, i.e.

µ(S) = 0 or µ(X− S) = 0 .

More generally, we do not require G to be measure-

preserving. Two measures µ and µ′ on a Borel

space (X,B) is said to be equivalent if and only

if they have the same null sets, i.e. µ(S) = 0 ⇔
µ′(S) = 0.
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Denote by (X, {µ}) the measure class, i.e. iden-

tifying equivalent measures on (X,B), where B
is understood.

We consider actions of X on (X, {µ}) such

that γ∗µ ∼ µ for every γ ∈ G. Then, G acts

ergodically on (X, {µ}) if and only if the space

of null-sets is preserved under any γ ∈ G.

Example

G semisimple Lie group H ⊂ G closed sub-

group. Then G/H carries a canonical measure

class, and G acts ergodically on G/H.
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Density Lemma. (Raghunathan)

Ω = Ω1×· · ·×Ωm reducible bounded symmetric

domain

I = (i(1), . . . , i(p)), 1 ≤ i(i), . . . , i(p)),

1 ≤ i(1) < · · · < i(p) ≤ m

prI : Auto(Ω) → Auto(Ωi(1))×· · ·×Auto(Ωi(p))

canonical projection

Then,

prI(Γ) = Auto(Ωi(1))× · · · ×Auto(Ωi(p))

whenever 1 ≤ p < m.
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Moore’s Ergodicity Theorem

G semisimple Lie group over R

Γ ⊂ G irreducible lattice,

i.e., Vol(Γ \G) < ∞

H ⊂ G closed subgroup

H acts on Γ \G by right multiplication. Then,

H acts ergodically ⇔ H noncompact .

Corollary. Γ acts ergodically on G/H ⇔ H

noncompact.

Lemma. ∃E ⊂ G/H null subset such that for

any gH ∈ G/H − E, Γ(gH) is dense in G/H.
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Integral Curvature Identity

Ω irr. BSD rank(Ω) ≥ 2

Γ ⊂ Aut(Ω) torsion-free lattice, X := Ω/Γ,

g = KE metric on X, ω = Kähler form

(L, ĝ) → PTX taugological line bundle

θ = −c1(L, ĝ) ≥ 0, Kerθ([α]) ⊂ T[α](S)

∀[α] ∈ S, rank(Kerθ([α])) = q,

π : PTX → X; ν = π∗ω − c1(L, ĝ) > 0

loc. homogeneous Kähler form. Then,

0 =
∫

S
[−c1(L, ĝ)]2n−2q ∧ νq−1

=
∫

S
[−c1(L, h)] ∧ [−c1(L, ĝ)]2n−2q−1 ∧ νq−1

for any Hermitian metric h on L. The integrand

≥ 0, hence ≡ 0, if c1(L, h) ≤ 0.
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The minimal characteristic bundle as a

foliated manifold

• Ω = an irreducible bounded symmetric do-
main of rank ≥ 2.

• Γ ⊂ Aut(Ω) torsion-free discrete subgroup
X := Ω/Γ of finite volume.

• S := minimal characteristic bundle on X.

• There is a canonical foliation N on S, as
follows.

• For any [η] ∈ PTo(Ω), Nη := {ζ ∈ To(Ω) =
Rηηζζ = 0}, the null-space of η. Write
q = dim(Nα) for [α] ∈ S. Let 4 ⊂ Ω be
the unique minimal disk passing through o

such that To(4) = Cα. Then, there ex-
ists a unique totally geodesic complex sub-
manifold Ωo passing through o such that
To(Ωo) = Nα. Moreover, Cα ⊕ Nα is tan-



11

gent to a unique totally geodesic (q + 1)-
dimensional complex submanifold ∼= 4 ×
Ωo.

• Identify {o}×Ωo with Ωo. For every z ∈ Ωo

write [α(z)] := PTz(4× {z}) ∈ Sz(Ω). As
z runs over Ωo, this defines a lifting of Ωo

to a complex submanifold F ⊂ S(Ω) which
is by definition the leaf of the lifting of N
to S(Ω) passing through [α]. Note that G

acts transitively on S(Ω). Let H ⊂ G be
the closed subgroup which fixes Ωo as a set.
The leaf space of the lifted foliation on Ω ∼=
G/H. Set-theoretically the leaf space of N
is given by Γ \G/H.

• For [α] ∈ S, T[α](N ) = Kerθ([α]).
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Complex Finsler metrics
‖η‖ defined, ‖λη‖ = |λ|‖η‖ whenever λ ∈ C, no
inner products

Complex Finsler metric on TX

= Hermitian metric h on the tautological line
bundle L → PTX

‖ · ‖ continuous ⇔ h continuous, etc.

(X, ‖ · ‖) is of nonpositive curvaure def⇔ (L, h) is
of nonpositive curvature.

For ‖ · ‖ smooth, Θ(L, h) ≤ 0 defined.
h given by e−ϕ locally, Θ(L, h) =

√−1∂∂ϕ,
which makes sense also for h (hence ϕ) contin-
uous. For ‖ · ‖ continuous
• We say that (X, ‖ · ‖) is of nonpositive cur-

vature iff ϕ is plurisubharmonic.
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Carathéodory Pseudometric

M complex manifold,

H(M) := {holo. functions f : M → ∆}
η ∈ Tx(M), ‖η‖κ := sup

f∈H(M)

‖f∗η‖ds2
∆
,

where ds2
∆ = Poincaré metric on ∆

κ = Carathéodory pseudometric on M

κ nondegenerate for M = D b Cn a bounded
domain

κ is invariant under Aut(M). It descends to any
quotient of M by a torsion-free discrete group of
automorphisms. The quotient pseudometric is
called the induced Carathéodory pseudometric.
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κ agrees with the Bergman metric on Bn (up to
a constant).

On ∆n, η ∈ Tx(∆n), η = (η1, . . . , ηn)

‖η‖κ = sup
k
‖ηk‖ds2

∆
.

For Ω any bounded symmetric domain,
P ⊂ Ω maximal polydisk,
x ∈ P , η ∈ Tx(P ), we have

‖η‖κ(P ) = ‖η‖κ(Ω) .

In other words,
P ⊂ Ω is an isometric embedding with re-
spect to Carathéodory metrics.
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Finsler Metric Rigidity (Mok 2002)

Ω bounded symmetric domain,
rank(Ω) ≥ 2.
Γ ⊂ Aut(Ω) torsion-free lattice
X := Ω/Γ, g = canonical Kähler-Einstein met-
ric on X

h = continuous complex Finsler metric of non-
positive curvature
Ω = Ω1 × · · · × Ωm, Ωk irr. factor,
TΩ = T1 ⊕ · · · ⊕ TM

Then,

∃c1, . . . , cm > 0 such that

‖η(k)‖h = ck‖η(k)‖g

for any η(k) ∈ Tx(X) whose

lifting to Ω belongs to Tk.



16

Theorem 1. (Mok, Invent Math 2004)
Ω irreducible bounded symmetric domain,
rank(Ω) ≥ 2

Γ ⊂ Aut(Ω) torsion-free lattice

X := Ω/Γ, N = complex manifold. Assume
• f : X → N holomorphic map,

F : Ω → Ñ lifting to universal covers.
• ∃ bounded holomorphic function on Ñ such

that F ∗h 6≡ Constant.

Then,

F : Ω → Ñ is an embedding .

In particular,

f : X → N is an immersion
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Theorem 1’.

Analogue for locally reducible case,
e.g., irr. quotients of the polydisk ∆n

Ω = bounded symmetric domain

Ω = Ω1 × · · · × Ωm, Ωk irreducible factor

Ω′1 := Ω1 × {(x2, . . . , xm)} called an

irreducible factor subdomain, etc.

Then, the analogue of Theorem 1

holds under the assumption

(†)For any k, 1 ≤ k ≤ m,∃ bounded

holomorphic function hk on Ñ such that

F ∗hk 6≡ Constant on some Ω′k .

Embedding Theorem = Theorems 1 + 1′.
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Theorem 2.

Ω bounded symmetric domain,
rank(Ω) ≥ 2

Γ ⊂ Aut(Ω) torsion-free irreducible lattice

X := Ω/Γ

D arbitrary bounded domain,
Γ′ ⊂ Aut(D) torsion-free, discrete

N := D/Γ′

f : X → N nonconstant holomorphic map, F :
Ω → Ñ lifting to universal covers

Then,

F : Ω → D is an embedding.
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Theorem 3.

Ω bounded symmetric domain,
rank(Ω) ≥ 2

Γ ⊂ Aut(Ω) torsion-free irreducible lattice

X := Ω/Γ, Z = normal complex space

f : X → Z proper holomorphic map

Then, either

(a) f is an unramified covering, OR

(b) |π1(Z)| < ∞.
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F-extremal bounded holomorphic functions

f : X = ∆n/Γ → N

F : ∆n → Ñ

H = {h : Ñ → ∆ holomorphic}
F := F ∗H = {h ◦ F : ∆n → ∆}

Proposition.
Dn−1 = {0} × ∆n−1 ⊂ ∆n; η ∈ To(∆n), η ⊥
To(Dn−1). g = h ◦ F , g ∈ F . Then,

‖df(η)‖
κ(Ñ)

= ‖ds(η)‖Poin.

⇒ s|Dn−1 ≡ Constant .

Here, s is called an F-extremal bounded holo-
morphic function adapted to η.
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Proof. Take s(0; 0) = 0. Write

‖η‖F = sup{‖ds(η)‖Poin. : s ∈ F} ,

so that
‖η‖F = ‖df(η)‖

κ(Ñ)
.

Then,

• ‖η(0; z)‖F ≥ ‖ds(η)(0; z)‖Poin.

=
|ds(η)(0; z)|
1− |s(0; z)|2 ≥ |ds(η)(0; z)| ;

• ‖η(0; 0)‖F = |ds(η)(0; 0)| .

Finsler metric rigidity

⇒ ‖η(0; z)‖F = λ ,

independent of z ∈ ∆n−1 .
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Thus, {
log |ds(η)(0; z)| ≤ log λ

log |ds(η)(0; 0)| = log λ

log |ds(η)(0; z)| pluriharmonic in z

⇒ log |ds(η)(0; z)| ≡ log λ

‖η(0; z)‖F ≡ log λ ≡ log |ds(η)(0; z)| .

⇒ s(0; z) = 0 for any z ∈ ∆n−1 .
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Proof that f : X → N is an immersion in Thm.
1’ for X = ∆n/Γ irreducible:

Suppose η ∈ Ker dF (o). η = η1+η′, orthogonal
decomposition, η1 = Const.× ∂

∂z1
.

Let s ∈ F be F-extremal, adapted to η1, s ≡
h ◦ F . (by Prop.)

s constant on Dn−1 ⇒ ds(η′) = 0

η ∈ Ker dF (o) ⇒ ds(η) = dh(F∗η)dF (η) = 0.
Hence,

ds(η1) = ds(η)− ds(η′) = 0 .

If η1 6= 0, then, ds( ∂
∂z1

)(0; 0) = 0.
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By Proposition,

ds
( ∂

∂z1

)
(0; z) = 0 for any z ∈ ∆n−1 ,

which contradicts Finsler metric rigidity.

We have proven:

η ∈ Ker dF (o) ⇒ η1 = 0 .

Same argument gives η = (η1, . . . , ηn) = 0, so
that Ker (dF ) ≡ 0, i.e.

f is a holomorphic immersion .
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Proof that F : ∆n → Ñ is an embedding in the
cocompact case:

By normal family argument, ∃ F -extremal
bounded holomorphic function s such that
s(x1; z′) ≡ s(x1), s = F ∗h.

Suppose F (x) = F (y), x1 6= y1.

s(x) = h(F (x)) = h(F (y)) = s(y).

Hence, s(x1) = s(y1). May assume x1 = 0,
y1 = |y1| = r > 0.

Density Lemma ⇒ s(0) = s(reiθ) for all θ ∈ R.
Contradiction!
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Difficulty in general case:

(1) Normal family argument fails for
Γ ⊂ Aut(∆)n non-uniform.

(2) For Ω irreducible, rank(Ω) ≥ 2, Γ ⊂ Aut(Ω)
cocompact normal family argument may lead
to maximal polydisk P ⊂ Ω such that {γP :
γ ∈ Γ} is discrete.

In (2), there is an exceptional set when we apply
Moore’s Ergodicity Theorem on some moduli
space of maximal polydisks. We cannot apply
density argument on P .
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Partial complex Finsler metric on Ω by

averaging over geodesic circles

x ∈ Ω , η ∈ Tx(Ω)

‖η‖F = sup{‖ds(η)‖Poin. : s ∈ F = F ∗H} .

Suppose α characteristic. Dα minimal disk such
that α ∈ Tx(Dα). δ > 0 fixed. Define

‖α‖e(F) = sup{Average(‖ds(α̃(y))‖Poin.) :

y ∈ ∂Bα(x; δ)}

‖α̃(y)‖ = ‖α(x)‖. Bα(x; δ) geodesic disk on Dα.

Main Proposition. s an e(F)-extremal bounded
holomorphic function adapted to α. P maximal
polydisk through x, α ∈ Tx(P ). Then,

s(z; z′) ≡ s(z) .
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Remarks:

(1) ‖α‖e(F) is defined on Ω and hence on X =
Ω/Γ only for characteristic vectors α. It
corresponds to a continuous Hermitian met-
ric on the tautological line bundle L → S
over the characteristic bundle S.

(2) e(F), as a continuous Hermitian metric on
L → S, is not a-priori of nonpositive cur-
vature. It is only of nonpositive curva-
ture when restricted to liftings of certain
totally geodesic product complex subman-
ifolds e.g. maximal polydisks P .
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Proposition.
(Z, ω) compact Kähler manifold, dimC Z = m.
θ ≥ 0 on Z, smooth closed (1, 1)-form.
Ker θ of constant rank on Z.
K = foliation on Z defined by Re(Ker θ).
Leave L of K automatically holomorphic.

u : Z → R continuous such that

u|L is plurisubharmonic for any leaf L .

Then,

u|L is pluriharmonic for every leaf L .

If u is Lipschitz, then

u|L ≡ Const. for every L .

If ∃ a dense leaf of K, then

u ≡ Const. on Z .
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Lemma.

U ⊂ Cn open; a < b.

u : [a, b]× U → R continuous; ut(z) := u(t; z).

ut : U → R plurisubharmonic

ϕ,ψ : U → R given by

ϕ(z) := log
∫ b

a

eut(z)dt

ψ(z) :=
∫ b

a

ut(z)dt .

Then

eϕ
√−1∂∂ϕ ≥ eψ

√−1∂∂ψ ≥ 0 .

In particular,

ϕ, ψ are plurisubharmonic .
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Proof.

(eu1 + eu2)
√−1∂∂ log(eu1 + eu2)

= eu1
√−1∂∂u1 + eu2

√−1∂∂u2+

eu1+u2

eu1 + eu2

√−1(∂u1 − ∂u2) ∧ (∂u1 − ∂u2) .

Apply now to finite Riemann sums and take lim-
its. ¤
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The foliated minimal characteristic bundle
with a transverse measure
• The closed (1,1)-form λ := −c1(L, ĝ)|S is a

real 2-form on the real 2(n+p)-dimensional
underlying smooth manifold of the minimal
characteristic bundle S.

• As a skew-symmetric bilinear form on S, λ

is of constant rank 4p + 2.
• The foliation N is precisely defined by the

distribution Ker(λ), which is integrable be-
cause λ is d-closed. The leaves of N are
holomorphic, dimC L = (n+p)−(2p+1) =
n− p− 1 = q.

• For the corresponding foliation Ñ on S(Ω),
the leaves are closed, and the leaf space
can be given the structure of a smooth real
(4p + 2)-dimensional manifold of G/H.
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• The real skew-symmetric bilinear form λ

corresponds to some λ̃ on S(Ω).

• G/H is then endowed with a quotient skew-
symmetric bilinear form λ, which is
G-invariant and non-degenerate everywhere
on G/H.

• Λ4p+2λ = dµ is a G-invariant volume form
on the homogeneous space G/H.

• Since Γ acts ergodically on G/H the leaf
space Γ \ G/H of N on S does not carry
the structure of a smooth manifold. In this
sense λ does not descend to the leaf space
of N .

• However, the structure of S as a foliated
manifold in the small lifts to S(Ω), and as
far as integration on S is concerned we can
sometimes make use of the volume form dµ

on local pieces of S.
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Fix a triple (P, P ′; α), P = ∆×P ′, and con-
sider the subgroup H ⊂ G consisting of µ ∈ G

such that µ(P ) = P, µ(P ′) = P ′ and such that
dµ(α) projects to the same vector as α under
the canonical projection π : P → ∆.

Lemma.

Suppose γi ∈ Γ are such that γiH converges to
τθH in G/H. Then, s◦γ−1

i converges to s◦ τ−θ

on P , i.e., s
(
γ−1

i (z; z′)
)

converges to s(e−iθz; z′)
uniformly on compact subsets of P .

Proof. Write γi = λiτθhi, where hi ∈ H and
λi ∈ G converges to the identity element e ∈ G.
Then for (z; z′) ∈ P

(s ◦ γ−1
i )

(
λi(z; z′)

)
= s

(
γ−1

i (λi(z; z′)
))

= s
(
h−1

i τ−1
θ λ−1

i

(
λi(z; z′)

))
= s

(
h−1

i τ−θ(z; z′)
)

= s
(
h−1

i (e−iθz; z′)
)

= s
(
e−iθz;µi(z′)

)
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for some µi ∈ Aut(P ′). Here we make use of the
fact that any h ∈ H preserves P , and that h|P
is necessarily of the form h(z; z′) =

(
z, ν(z′)

)
,

where ν ∈ Aut(P ′). By Main Proposition, we
conclude that

(s◦γ−1
i )

(
λi(z; z′)

)
= s(e−iθz; z′) = (s◦τ−θ)(z, z′) .

Fix an arbitrary compact subset Q ⊂ P . Then
there exists a compact subset Q′ ⊂ Ω such that
λi(Q) ⊂ Q′ for any i. On the other hand, s ◦
γ−1

i : Ω → ∆, so that by Cauchy estimates

∣∣∣(s ◦ γ−1
i )

(
λi(z; z′)

)− (s ◦ γ−1
i )(z; z′)

∣∣∣
≤ C(Q′)‖λi(z, z′)− (z; z′)‖ ,

where C(Q′) is a constant depending only on
Q′ (and independent of i), and ‖ · ‖ denotes the
Euclidean norm. Since λi converges to e ∈ G,
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we conclude that the right hand side converges
to 0. It follows from (2) that

lim
i→∞

‖(s ◦ τ−θ)− (s ◦ γ−1
i )‖Q = 0

for every compact subset Q ⊂ P , ‖ · ‖Q being
the supremum norm for continuous functions on
Q. In other words, s ◦ γ−1

i converges uniformly
on compact subsets of P to s ◦ τ−θ. ¤

Derivation of injectivity from

Main Proposition.

• Special extremal functions. Let s be an
e(F)-extremal function on Ω. For any γ ∈
Γ, s ◦ γ ∈ F . An e(F)-extremal function σ

will be called special if σ(z1; z′) = σ(z1) =
λz1 for some λ 6= 0. Injectivity follows if
this can be done for all P = ∆× P ′.

• Moore’s Ergodicity Theorem. Since Γ ⊂ G

is discrete, its left action on G/H is ergodic
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for any noncompact closed subgroup H ⊂
G. As a consequence, the orbit under Γ of
νH ∈ G/H is dense in G/H, provided that
νH lies outside a certain null set E ⊂ G/H.

• Since s(z1, z
′) = s(z1), s|P is invariant un-

der the group H. Suppose we choose γi ∈ Γ
such that γiH converges to τθH. Then, by
Lemma, s ◦ γ−1

i

∣∣
P

converges to s ◦ τ−θ

∣∣
P

,
and the S1-averaging argument applies to
produce a special function σ adapted to
(P, P ′; α).

• The null set E. There may in fact be a
maximal polydisk P such that its orbit un-
der Γ gives a discrete set of maximal poly-
disks on Ω. Then, completing P to a triple
(P, P ′; α), the latter corresponds to an el-
ement of G/H whose orbit under Γ is dis-
crete, and the argument above to produce
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special functions by S1-averaging fails.
• However, from the estimate |s′(0)| > c > 0

for the e(F)-extremal function s the S1-
averaging argument produces a special func-
tion σ for which |λ| = |s′(0)| is bounded
from below independent of (P, P ′, α), which
allows us to take care of the ‘exceptional’
by taking limits to obtain special functions
for every triple (P, P ′; α). This proves that
F : Ω → D is injective. ¤
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Theorem on the Extension Problem.

Ω b Cn Harish-Chandra realization of a bounded
symmetric domain of rank ≥ 2, Γ ⊂ Aut(Ω) ir-
reducible lattice, X := Ω/Γ.

N quasi-compact, i.e., it is a Zariski-open subset
of some compact complex manifold

f : X → N holomorphic map

F : Ω → Ñ lifting to universal covers

Assume (X,N ; f) satisfies the non-degeneracy

condition (†). Then,

there exists a bounded vector-valued

holomorphic map : Ñ → Cn such that

R ◦ F = idΩ .
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The Set-up and Ideas of Proof

Write H(·) for the space of bounded holomor-
phic functions, F ∗H(Ñ) := F ⊂ H(Ω).

• s ∈ F and γ ∈ Γ ⇒ γ∗s ∈ F
• sk ∈ F and uniformly bounded
⇒ sk subconverges to s ∈ F .

To get σ ∈ F such that σ(z1, . . . , zn) = λz1 on a
maximal polydisk P we look first of all for s ∈ F
such that s(z1, . . . , zn) = t(z1) 6≡ constant and
then introduce an averaging argument. For a
bounded holomorphic function g ∈ H(P ), P =
∆ × P ′, for almost every η ∈ Shilov(P ′) ∼=
(S1)r−1 we have the non-tangential limit
g∗η(z) = lim

{
g(z, w) : w 7→ η non-tangentially

}

Given g ∈ F , the idea is to recuperate g∗η
as a limit of γ∗kg for a sequence γk ∈ Γ so that in
the limit we get s = g∗η ◦π ∈ F for some projec-
tion P

π−→ ∆, s depending only on 1 variable.
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The basis of the limiting process is given by a
following lemma deduced from Moore’s Ergod-
icity Theorem.
Lemma 6. Let P ∼= ∆r, P ⊂ Ω be a maxi-
mal polydisk in Ω, which gives canonically the
embedding Aut(∆)r ↪→ Aut0(Ω). Let H0 ⊂
Aut(∆) be the 1-parameter group of transvec-
tions given by H0 = {ψ ∈ Aut(∆) : ψ(z) = z+t

1+tz

for some t, −1 < t < 1}, and H = {id∆} ×
diag(Hr−1

0 ), H ⊂ Aut(∆)r ↪→ Aut0(Ω). For
θ ∈ R, −1 < t < 1, denote by ϕt,θ ∈ S1 ×
diag(Hr−1

0 ) the element given by (eiθ, ψt, . . . , ψt).
Suppose ΓH := {γH : γ ∈ Γ} ⊂ G/H is dense
in G/H. Then, excepting for ζ = eiθ, θ ∈ [0, 2π]
belonging to an at most countable subset E ⊂
∂∆, there always exists a discrete sequence (γk),
γk ∈ Γ, such that γk = ϕtk,θδk for some δk ∈
Aut0(Ω) converging to the identity and for some
tk ∈ (−1, 1) such that |tk| → 1.
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Scheme of proof.

• When Ω is reducible the analogous theorem
holds true provided that Γ is irreducible.

• For Ω = ∆n, the Density Lemma allows us
to apply the S1-averaging argument to get
special extremal functions. Thus, there are
bounded holomorphic functions h1, · · ·hn

on Ñ such that
(
h1(F (z)

)
, · · · , hn(F (z)

)
=

(z1, · · · , zn).
• Extremal functions are not important in

the argument. One can start with any
bounded holomorphic function h and com-
pose with γi ∈ Γ, where γi converges to
the projection onto a boundary disk in a
non-tangential way. The limit of functions
thus obtained is given by the boundary val-
ues of the holomorphic function F ∗h. Now
choose h with nontrivial boundary values.

• When Ω is irreducible and of rank ≥ 2,
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the analogue of the Density Lemma is given
by Moore’s Ergodicity Theorem. γi can be
chosen to converge to a projection map π

onto a rank-1 boundary component Φ. If
F ∗h extends continuously to Ω, then γ∗i h

converges to π∗h, where h is defined on
the face Φ. In general, choose γi so that
for any point x ∈ Ω, γi(x) converges “non-
tangentially” to π(x) ∈ Φ.

• The usual Fatou-type results in Harmonic
Analysis on bounded symmetric domains
are in terms of non-tangential convergence
to the Šilov boundary. We need Fatou-type
theorems for non-tangential convergence to
a boundary component, which is related to
the standard result for the Šilov bound-
ary when we express boundary values on
a boundary component in terms of Poisson
integrals on a subset of the Šilov bound-
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ary. Such a Fatou-type result is covered by
Koranyi 1976.

• Each face Φ is biholomorphic to a complex
unit ball. By the technique of S1-averaging
we can recover the projection map π = πΦ.

• Averaging πΦ over the set of rank-1 bound-
ary components Φ recovers the identity map,
giving R : Ñ → Cn such that R ◦ F = idΩ,
i.e., R(F (x)) = x.

• In the averaging argument we need to uni-
formly bound from below constants appear-
ing in first derivative of certain bounded
holomorphic functions, which follows from
Finsler metric rigidity. It requires actually
something weaker, viz. a metric inequality
for minimal characteristic vectors.
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The Fibration Theorem.

Ω b Cn bounded symmetric domain of rank

≥ 2; X = Ω/Γ

N quasi-compact, i.e., it is a Zariski-open subset

of some compact complex manifold

f : X → N holomorphic map

Suppose f∗ : Γ ∼= π1(N). Then,

(a) f : X → N is a holomorphic embedding

(b) ∃ a holomorphic fibration ρ : N → X

with connected fibers such that ρ ◦ f = idX .

Argument. Lifting to universal covers we obtain

R◦F = idΩ. Then, we prove the Γ equivariance

of R, i.e., R ◦ γ ≡ γ ◦ R for every γ ∈ Γ, which

follows from the Maximum Principle.
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Isomorphism Theorem.

Ω b Cn bounded symmetric domain of rank

≥ 2; X = Ω/Γ

M Stein manifold, D b M

Γ′ = torsion-free discrete group of automorphisms

on D; N := D/Γ′

µ = Kobayashi-Royden measure

Suppose µ(N) < ∞; f∗ : Γ ∼= Γ′. Then,

f : X → N is a biholomorphic map

Scheme of Proof

• f : X → N lifts to a holomorphic embed-

ding F : Ω → N .

• To make use of Kähler metrics, embed D

into its hull of holomorphy D̂, on which

there is a complete Kähler-Einstein metric

of negative Ricci curvature.
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• f induces Γ ∼= Γ′ = π1(N). Γ′ acts on D̂,

giving N̂ = D̂/Γ′ := N̂ .

• By an estimate of Kobayashi-Royden vol-

ume form, we show that N̂ − N is of zero

Lebesgue measure. By the Schwarz Lemma

on volume forms we conclude that

Volume (N̂ , ωKE) < ∞.

• The argument of the Fibration Theorem

yields a projection ρ : N̂ → X. Integra-

tion by part and Fubini’s Theorem yield

that the fibers of ρ are 0-dimensional. This

relies on

Lemma. Let (Z, ω) be a complete Kähler
manifold of finite volume, and u be a uni-
formly Lipschitz bounded plurisubharmonic
function on Z. Then, u is a constant.
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Varieties of Minimal Rational Tangents

X uniruled,

K = component of Chow space of minimal ra-
tional curves

µ : U → X; ρ : U → K universal family

x ∈ X generic; Ux smooth

The tangent map τ : Ux → PTx(X) is given by

τ([C]) = [Tx(C)] ;

for C smooth at x ∈ X.

τ is rational, generically finite,

a priori undefined for C singular at x.

We call the strict transform

τ(Ux) = Cx ⊂ PTx(X)

variety of minimal rational tangents.
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Theorem (Kebekus 2002, JAG).

The tangent map

τx : Ux → PTx(X)

is a morphism at a generic point x ∈ X.

Theorem (Hwang-Mok 2004, AJM).

The tangent map

τx : Ux → Cx ⊂ PTx(X)

is a birational morphism at a generic point x ∈
X.
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Examples of VMRTs
Fermat hypersurface 1 ≤ d ≤ n− 1

X = {Zd
0 + Zd

1 + · · ·+ Zd
n = 0}

x = [z0, z1, . . . , zn] ∈ X.
FIND all (w0, wr, . . . , wn) such that ∀ t ∈ C.

[z0 + tw0, z1 + tw1, . . . , zn + twn] ∈ X

(z0 + tw0)d + · · ·+ (zn + twn)d = 0

0 = (zd
0 + · · ·+ zd

n)

+t(zd−1
0 w0 + · · ·+ zd−1

n wn) · d

+t2(zd−2
0 w2

0 + · · ·+ zd−2
n w2

n) · d(d− 1)
2

+ · · ·+ td(wd
0 + · · ·+ wd

n) .

When (z0, z1, . . . , zn) is fixed, we get d+1 equa-
tions.
If d ≤ n− 1, dim(Cx) = (n + 1)− (d + 1)− 1 =
n− d− 1 ≥ 0.
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Examples of VMRT

X (generic) VMRT Cx

Pn Pn−1

Qn Qn−2

cubic codim 2 ⊂ Pn−1

in Pn+1 = quadric ∩ cubic, deg. 6

X3
3 ⊂ P4 6 points

X4
3 ⊂ P5 deg. 6 curve of genus 4

X5
3 ⊂ P6 K3 − surfaces

Xn
d ⊂ Pn+1 , complete intersection ⊂ Pn

d < n of degrees 1, 2, . . . , d

In these examples,

{mrc} = {lines in Pn contained in X} .



Type G K G/K = S Co Embedding

I SU(p + q) S(U(p)× U(q)) G(p, q) Pp−1 × Pq−1 Segre

II SO(2n) U(n) GII(n, n) G(2, n− 2) Plücker

III Sp(n) U(n) GIII(n, n) Pn−1 Veronese

IV SO(n + 2) SO(n)× SO(2) Qn Qn−2 by O(1)

V E6 Spin(10)× U(1) P2(O)⊗R C GII(5, 5) by O(1)

VI E7 E6 × U(1) exceptional P2(O)⊗R C Severi

54
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Theorem (Hwang-Mok, AJM 2004)
X projective uniruled, b2(X) = 1,
K minimal rational component on X.
Assume
(†) The VMRT Cx at a general point x is not

a finite union of linear subspaces. Then,

For any Fano manifold X ′ of Picard

number 1 equipped with a minimal

rational component K′, any local

VMRT-preserving holomorphic map

f : (U,K∣∣
U

) → (V,K′∣∣
V ′) extends to a

biholomorphic map f : (X,K) ∼= (X ′K′).

We say that (X,K) has the Cartan-Fubini Ex-
tension Property. Examples include
(1) X = G/P 6= PN , G simple, P maximal.
(2) X ⊂ PN smooth complete intersection, Fano

with dim(X) ≥ 3, c1(X) ≥ 3.
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Proper holomorphic maps and related prob-
lems

Problems:
• To characterize convex realizations of an

irreducible bounded symmetric domain D

of rank ≥ 2.
• To characterize proper holomorphic map-

pings from D into a bounded symmetric
domain D′.

Convex realizations

Background:
Every bounded symmetric domain D admits a
convex realization as an open subset of some
CN by means of the Harish-Chandra embed-
ding (E. Cartan’s realizations in the classical
case). They also admit unbounded realizations
via Cayley transforms.



57

Results
• Mok-Tsai (J. reine angew. Math. 1992)

proves that every bounded convex realiza-
tion of a bounded symmetric domain of
rank ≥ 2 must be the Harish-Chandra re-
alization up to an affine transformation.

• In the same paper, it was proven that un-
bounded realizations of D must come from
Cayley transforms up to affine linear trans-
formations. E.g.

Hn = {τ ∈ M(n, n;C) : τ t = τ, Im(τ) > 0}
is the Siegel upper half-plane, which is a
Cayley transform of a Type-III bounded
symmetric domain.

• Generalizations to the cases of reducible
bounded symmetric domains of rank ≥ 2
were obtained by Taishun Liu and Guang-
bin Ren (J. reine angew. Math. 1998).
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Proper holomorphic mappings
Link with rigidity problems for compact quo-
tients
Suppose X = Γ\G/K is compact, D′ = G′/K ′,
Γ′ ⊂ G′ is discrete, and F : D → D′ is the lift-
ing of a holomorphic mapping f : X → X ′ such
that the induced map f∗ : Γ → Γ′ is injective,
then f : D → D′ is a proper holomorphic map.

In 1989, I made a conjecture on proper
holomorphic mappings under some conditions
on the ranks of the domain and target mani-
folds. This was later established by Tsai.

Theorem (Tsai, JDG 1993).
F : D → D′ proper holomorphic, rank(D) ≥ 2,
rank(D′) ≤ rank(D). Then, rank(D) = rank(D′),
and f is totally geodesic.
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The Set-up for proper holomorphic maps

between bounded symmetric domains

Ω b Cn irreducible of rank r ≥ 2
There exists a totally geodesic subspace Ω0 ×
∆ ⊂ Ω such that Ω is a bounded symmetric
domain of rank r − 1.

Given a proper mapping F : Ω → Ω′. For al-
most every ζ ∈ ∂∆ by Fatou’s Lemma

lim
{
F (w, z) : z → ζ non-tangentially

}
:=

F ∗(w, ζ) := F ∗ζ (w)

exists as a vector-valued bounded holomorphic
function on Ω0.
Properness of F : Ω → Ω′ implies that
F ∗ζ : Ω0 → ∂Ω′. By Fatou’s Lemma

F (w, z) =
∫

∂D

F ∗(w, ζ)dζ

ζ − z
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forces restrictions on images of Fz : Ω0 → Ω′,
where Fz(w) = F (w, z).
Thus, non-tangential limits + integrals of bound-
ary values ⇒ algebraic constraints on images of
totally geodesic subpaces congruent to Ω0 ↪→ Ω

The Set-up for bounded convex realiza-

tions

F : Ω → D a biholomorphism, where D is a
bounded convex domain.

The same set-up gives F ∗ζ (Ω0) ⊂ ∂D.
There is no structure of boundary components
on ∂D, but convexity implies that ζ(Ω0) must
lie on some proper affine linear subspace.

Cauchy’s Integral Formula forces each “interior
face” Ω0 to be mapped into a proper affine lin-
ear subspace.
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Relevant geometric ideas for convex realizations

• There is a class of complex submanifolds

of a given bounded symmetric domain D

which are totally geodesic submanifolds and

which correspond to affine-linear sections

of D with respect to the Harish-Chandra

embedding. We call these the characteris-

tic subdomains. They are open subsets of

certain Hermitian symmetric submanifolds

S′ of the compact dual S of D.

• By taking nontangent limits on product sub-

domains of D, we obtain a holomorphic

map F ] defined on some connected open

subset U of a moduli space M of charac-

teristic subdomains into some Grassmann

manifold of affine linear subspaces, by the
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assumption of convexity of the embedding.

• U consists of those S′ which intersect D. It

is a ‘big’ open subset complex-analytically.

In fact, it is pseudoconcave, which implies

a meromorphic extension of f ] from U to

M.

• Employing the idea of duality in projective

geometry, an extension of F ] yields an ex-

tension of F , by interpreting a point x on

S simply as the intersections of members

of M containing x.
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Scheme of Proof of Tsai’s result

• There is the notion of rank of a (holomor-

phic) tangent vector. The hypothesis on

the ranks of the domain and the target

manifold, together with the idea of tak-

ing non-tangential limits of product subdo-

mains, implies that a generic tangent vec-

tor of rank 1 is mapped to a tangent vec-

tor of rank 1. A tangent vector of rank

1 is nothing other than a minimal charac-

teristic vector. [For the first 3 classical se-

ries, the notion of rank of a tangent vector

agrees with that of a matrix.]

• After this step, the rest involves local

differential-geometric computations and Lie

Theory.
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Other results

• Zhenhan Tu (Proc. AMS 2002) established

that any equi-dimensional proper holomor-

phic map from an irreducible bounded sym-

metric domain of rank ≥ 2 to a bounded

symmetric domain is a biholomorphism.

• For the non-equidimensional case he estab-

lished (Math. Zeit. 2002) examples where

rank(D′) = rank(D) + 1 for which still

rigidity for proper holomorphic maps hold.

• Given any integer ` > 0, Tu’s method can

be expanded to give examples of pairs of

irreducible bounded symmetric domains D

and D′, such that rank(D′)−rank(D) = `

and such that there are no proper holomor-

phic mapping from D to D′.
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Proper holomorphic mappings from the perspec-

tive of geometric structures:

• It is desirable to incorporate the study of

proper holomorphic maps into the study of

germs of holomorphic embeddings preserv-

ing some form of geometric structures.

• Properness should be used solely to verify

a condition on the preservation of geomet-

ric structures. After that, the problem in-

volves projective geometry of subvarieties

of the projectivized tangent space at a gen-

eral point

• An irreducible BSD is dual to an irreducible

HSS of the compact type, which is a Fano

manifold of Picard number 1. A general

theory for variable geometric structures have

been developed for such manifolds X.
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Proposition A.

Let p, q ≥ 2. Suppose p ≤ p′, q ≤ q′. Let U ⊂
G(p, q) be a connected open subset. Suppose

f : U → G(p′, q′) is a local holomorphic embed-

ding such that (*) for every rank-1 vector α),

df(α) is also a rank-1 vector, Then, f extends

to a holomorphic embedding of of G(p, q) into

G(p′, q′) congruent to the standard embedding

up to automorphisms of G(p, q) and G(p′, q′).

The proposition was established by Yu. A.

Neretin (AMS translation of Sbornik, 1999). A

stronger result was established by J. Hong (Trans.

AMS 2006). I will sketch a proof of the Propo-

sition involving a non-equidimensional Cartan-

Fubini extension principle. The proof can be

extended to the general context of Fano mani-
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folds of Picard number 1.

The basic difficulty of the argument in the

Cartan-Fubini extension principle comes from

the fact that the distribution defined on the sub-

manifold need not a priori extend locally to the

ambient manifold in a way that corresponds to

families of local holomorphic curves.

The non-equidimensional analogue of Ochiai’s

Theorem.

Proposition.

Let Ω1 and Ω2 be two irreducible bounded sym-

metric domains in their Harish-Chandra real-

izations. Let U ⊂ Ω1 be an nbd. of 0, and

f : U → Ω be a holomorphic map such that

f(0) = 0 and dfx

(S̃x(Ω1)
) ⊂ S̃f(x)(Ω2) for ev-
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ery x ∈ U . For y ∈ Ω2, β ∈ S̃y(Ω2), write

σβ : Tβ

(S̃0(Ω2)
)× Tβ

(S̃0(Ω2)
) →

Tβ

(
Ty(Ω2)

)
/Tβ

(S̃0(Ω2)
)

for the second fundamental form with respect

to the Euclidean flat connection ∇ on Ty(Ω2).

For any subspace V ⊂ Tβ

(S̃0(Ω2)
)
, define

Ker σβ(V, ·) :=
{
δ ∈ Tβ

(S̃0(Ω2)
)

:

σβ(δ, γ) = 0 , ∀ γ ∈ V
}

.

For any x ∈ U , and α ∈ S̃x(Ω1), denote by α̃

the constant vector field on Ω1 which is α at x

and identify Tdf(α)

(
T0(Ω2)

)
with T0(Ω2). Then,

∇df(α)df(α̃) ∈ Kerσdf(α)

(
Tdf(α)

(
df(S̃x(Ω1))

)
, ·) .
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Scheme of proof of Proposition A
• A computation of second fundamental forms

shows that f maps lines into lines.
• Analytic continuation as in Cartan-Fubini

applies to get a meromorphic extension.
• Comparison of the image with a sub-

Grassmannian yields total geodesy of the
mapping. This relies on an argument on
parallel transport of tangents to VMRTs
along a minimal rational curve.

Theorem (Hong-Mok 2007)
Many examples of pairs of rational homogeneous
manifolds of G/P ↪→ G′/P ′ of Picard number
1 are found such that they exhibit rigidity of
holomorphic maps as in Theorem A. For such
pairs the moduli space of deformations of G/P

in G′/P ′ is compact.
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Open problems:

• Characterize convex realizations of bounded

homogeneous domains

Bounded homogeneous domains were studied

by Piatetski-Shapiro, who produced the first ex-

amples of such domains which are not biholo-

morphic to bounded symmetric domains, start-

ing with 4 dimensions.

Piatetski-Shapiro proved that any bounded

homogeneous domain is biholomorphic to a Siegel

domain of the second kind, which is a convex do-

main. So far, there are no bounded convex re-

alizations in the non-symmetric case. Gindikin

raised the question whether bounded symmetric

domains are characterized among bounded ho-

mogeneous domains by the existence of bounded
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convex realizations.

• Characterize proper holomorphic mappings

between bounded homogeneous domains un-

der some rank conditions

This problem gives a motivation for devel-

oping a theory of geometric structures at least

for certain bounded homogeneous domains, and

to place the problem within the framework of

local holomorphic embeddings preserving such

geometric structures.




