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Let Ω be a bounded symmetric domain of rank ≥ 2, and Γ ⊂ Aut(Ω) be a torsion-free
irreducible cocompact lattice, X := Ω/Γ. On the projective manifold X there is the canonical
Kähler-Einstein metric, which is of nonpositive holomorphic bisectional curvature. In Mok
[M1,2] we established a Hermitian metric rigidity theorem for such projective manifolds X,
which in the case when Ω is irreducible says that any Hermitian metric of nonpositive curva-
ture in the sense of Griffiths is necessarily a constant multiple of the Kähler-Einstein metric.
As a consequence, we proved in the latter case that any nontrivial holomorphic mapping
f : X → Z into a Hermitian manifold Z of nonpositive curvature in the sense of Griffiths is
necessarily an isometric immersion totally geodesic with respect to the Hermitian connection
on Z. The Hermitian metric rigidity theorem can be taken as a tool in establishing the
statement that any f : X → Z is necessarily a holomorphic immersion, a statement which
only concerns the complex structure of X and Z. The Hermitian metric rigidity theorem
and its consequences were generalized by To [To] to be applicable to any torsion-free lattice
Γ ⊂ Aut(Ω), where X := Ω/Γ may be noncompact.

For holomorphic mappings into complex manifolds defined on X, we expect that rigidity
theorems should hold under much weaker conditions of nonpositivity of the target space.
One natural hypothesis, when the target space N is nonsingular, is the existence on N of a
continuous complex Finsler metric of nonpositive curvature. This is the case, e.g., when X is
uniformized by a bounded domain in a Stein manifold, where the Carathéodory metric on the
universal cover, which descends to N , is of nonpositive curvature as a continuous complex
Finsler metric. With this and other examples in mind we established in Mok [M3] in the
compact case a Hermitian metric rigidity theorem for continuous complex Finsler metrics,
where for obvious reasons the conclusion has to be weaker, by proving in the locally irreducible
case that any continuous complex Finsler metric on X has to agree with a constant multiple
of the canonical metric when we restrict to the characteristic bundle on X, i.e., to vectors
of type (1,0) tangent in local liftings to minimal disks. With this “partial” Finsler metric
rigidity we showed that, for large classes of irreducible bounded symmetric domains Ω of rank
≥ 2, any nonconstant holomorphic mapping from X into a complex manifold admitting a
continuous Finsler metric of nonpositive curvature must be an immersion at some point.

In this article we study specifically the case where the continuous complex Finsler metric
arises from the Carathéodory pseudometric. In this case, in addition to the Finsler metric
rigidity theorem, we have the additional tool of bounded holomorphic functions, which are at
the origin of the Carathéodory pseudometric. The Carathéodory length of any given nonzero
tangent vector η of type (1, 0) on X is realized by some Carathéodory extremal function, not
necessarily unique. By means of Finsler metric rigidity and a study of Carathéodory extremal
functions we prove that any nontrivial holomorphic mapping f of X into a complex manifold
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uniformized by a bounded domain is necessarily a holomorphic immersion. Moreover, we show
that the lifting of F : Ω → Ñ to universal covers is a holomorphic embedding. The latter, to
be referred to as the Embedding Theorem, is especially unexpected, since the corresponding
statement is unknown even when the Hermitian metric rigidity theorem is applicable. Our
method of proof yields a number of surprising consequences. It shows that the image of X

under any proper holomorphic mapping f must have finite fundamental group unless f is
an unramified covering map. In particular, for any arithmetic lattice Γ∗ ⊂ Aut(Ω) which
is not torsion-free, π1(Ω/Γ∗) is finite. In another direction, in the locally irreducible case
we show that the universal cover of any singular complex space normalized by X admits no
nonconstant bounded holomorphic functions.

To illustrate the philosophy of our proofs we will treat first of all the special case where Ω
is the polydisk ∆n and Γ ⊂ Aut(Ω) is cocompact. In this case using Finsler metric rigidity we
showed that the “flats” of a continuous complex Finsler metric on N is compatible with the
local foliations on N induced by the canonical foliations on ∆n, and the crux of the argument
is to deduce from there the existence on N of special Carathéodory extremal functions which
are constant on leaves of some canonical foliations. We call this the Splitting Phenomenon.
This is done by taking “boundary values” of initial Carathéodory extremal functions. The
proof that F : ∆n → Ñ separates points will be completed by invoking a density lemma for
canonical projections of irreducible lattices into direct factors.

In the cocompact case using the Polydisk Theorem on a bounded symmetric domain
the preceding arguments can be easily adapted to show in general that F : Ω → Ñ is an
immersion, but the proof that F separates points in general requires new ideas. For the
separation of points if an analogue of the Splitting Phenomenon can be established for the
general case, then in place of a density lemma for polydisks we may use Moore’s Ergodicity
Theorem applied to a certain moduli space M of maximal polydisks with additional struc-
tures. However, a straightforward generalization of the Splitting Phenomenon breaks down
because the orbit of a point p ∈M may fail to be dense for p belonging to some exceptional
null subset E ⊂M.

To circumvent the difficulty we introduce a new extremal problem adapted to F : Ω → Ñ

such that for every maximal polydisk P ⊂ Ω any extremal function adapted to P will auto-
matically be dependent on only one of the direct factors of P . The extremal problem only
makes sense on Ω, not on Ñ , but is applied to the space F of holomorphic functions s : Ω → ∆
which are pull-backs of bounded holomorphic functions on Ñ by F . Our extremal problem
corresponds to defining a continuous Hermitian metric e(F) on the restriction of the tauto-
logical line bundle L to the characteristic bundle SΩ ⊂ PTΩ consisting of projectivizations of
vectors tangent to minimal disks. For any characteristic vector η ∈ Sx and s ∈ F , the length
‖α‖s is measured by averaging the Poincaré lengths ‖ds(α′)‖ds2

∆
of translates α′ of α on some

geodesic circle of the minimal disk determined by x and α, and the continuous Hermitian
metric e(F) on L|SΩ is defined by taking suprema as s ranges over F . By making use of
e(F) and the idea of proof of metric rigidity theorems on X = Ω/Γ we show that appropriate
extremal functions adapted to a maximal polydisk P depend only on one of the direct factors
to give a proof of the Embedding Theorem.
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Although the argument using e(F)-extremal functions applies both to the locally irre-
ducible and the locally reducible cases, we have included a separate and more elementary
treatment of the case of the polydisk, with an aim to identifying the principal problem in the
general case and giving a motivation for introducing the new extremal problem. The latter
can be readily adapted to the general case of X := Ω/Γ where Γ ⊂ Ω is a torsion-free irre-
ducible lattice. The adaptation consists of a justification of a special form of metric rigidity,
and will be given after a complete proof of the Embedding Theorem for the cocompact case.
While extremal bounded holomorphic functions are well studied in one complex variable,
they are seldom understood and exploited in higher dimensions. In this context the present
article represents a novel application of extremal bounded holomorphic functions to rigidity
problems in Several Complex Variables.

Table of Contents

§1 Preliminaries and statements of results

§2 Irreducible compact quotients of the polydisk
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§4 The Embedding Theorem for arithmetic varieties of rank ≥ 2 and proofs of other results

§1 Preliminaries and statements of results.

(1.1) We consider a continuous complex Finsler metric h on a complex manifold M as equiva-
lently a continuous Hermitian metric on the tautological line bundle L of PT (M). h is said to
be of nonpositive curvature if and only if it is of nonpositive curvature in the sense of currents
when regarded as a Hermitian metric on L. In other words, the curvature (1,1) current is a
(closed) positive current. As a starting point, we generalized the Hermitian metric rigidity
theorem of Mok [1,2] to a “partial” Finsler metric rigidity theorem. Such a theorem was
implicit in Mok [3, Proposition 3] for the case of compact complex manifolds X uniformized
by irreducible bounded symmetric domains Ω of rank ≥ 2. For its formulation, write G for
the identity component of the group of biholomorphic automorphisms of Ω and K ⊂ G for
the isotropy subgroup at some base point o ∈ Ω. K has a one-dimensional centre. Write k for
the Lie algebra of K and ks for [k, k]. The ks is the Lie algebra of a real semisimple compact
Lie group Ks ⊂ K, which we call the semisimple part of K. Then, Ks acts irreducibly on
the holomorphic tangent space To(Ω). A nonzero vector η ∈ To(Ω) is called a characteristic
vector if and only if it is a highest weight vector of To(Ω) as a Ks-representation space, with
respect to some choice of Cartan subalgebra hs ⊂ ks. Denote by S ′o ⊂ To(Ω) the set of char-
acteristic vectors at 0, and So ⊂ PTo(Ω) its projectivization. Then, So is the highest weight
orbit of the isotropy representation of Ks and is thus a homogenenous complex projective
submanifold. The characteristic bundle SΩ ⊂ PT (Ω) is the orbit of some [η] ∈ So under
G. It descends to S ⊂ PTX on X. The Hermitian metric rigidity theorem in Mok [1,2] was
obtained by an integral formula of Chern forms over S. The same integral formula works
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for smooth complex Finsler metrics. For applications to Carathéodory metrics we have to
deal with continuous complex Finsler metrics. By Mok [M3, proof of Proposition 3] and a
straightforward extension to the locally reducible case, we have

Theorem (Finsler metric rigidity). Let Ω be a bounded symmetric domain of rank ≥ 2.
Let Γ ⊂ Aut(Ω) be a torsion-free irreducible cocompact lattice, X := Ω/Γ. Let g be the
canonical Kähler-Einstein metric on X, and h be a continuous complex Finsler metric on
X of nonpositive curvature. Denote by ‖ · ‖g resp. ‖ · ‖h lengths of vectors measured with
respect to g resp. h. Let Ω = Ω1×· · ·×Ωm be the decomposition of Ω into irreducible factors,
T (Ω) = T1⊕· · ·⊕Tm be the corresponding direct sum decomposition of the holomorphic tangent
bundle. Then, there exist positive constants c1, . . . , cm such that for any η ∈ T (X) that can
be lifted to a characteristic vector belonging to Tk; 1 ≤ k ≤ m; we have ‖η‖h = ck‖η‖g.

Here and until the end of §3 we will solely consider cocompact lattices Γ ⊂ Aut(Ω).
Modifications and generalizations for the non-cocompact case will be given in §4.

(1.2) Let D be a bounded domain in some Stein manifold M , p ∈ D, and η ∈ Tp(D). Denote
by ds2

∆ the Poincaré metric on ∆ normalized to have constant Gaussian curvature −2. Let
H be the family of holomorphic maps h : D → ∆. We have by definition

‖η‖κ = sup
h∈H

‖dh(η)‖ds2
∆

.

From Cauchy estimates it follows readily that κ is continuous. Since D b M , and M is
a Stein manifold, ‖η‖κ 6= 0 whenever η 6= 0. In other words, κ is nondegenerate. Thus,
‖ · ‖κ defines the Carathéodory metric κ on D as a continuous complex Finsler metric. Let
B ⊂ TD be the unit ball bundle with respect to κ, i.e., the open set of all vectors of length
< 1, Bx := B ∩ Tx(D). B ⊂ TD

∼= D × C2 is defined by the inequalities ‖dh(η)‖ds2
∆

< 1,
h ∈ F . Denoting by −ρ the Ricci form of (∆, ds2

∆) and by π : TD → D the canonical
projection, we have

√−1∂∂ log ‖dh(η)‖2
ds2

∆
= π∗(h∗ρ) ≥ 0 on TD-(zero section). It follows

that B =
⋂

h∈H
{η ∈ TD : log ‖dh(η)‖2

ds2
∆

< 0} is weakly pseudoconvex at each b ∈ ∂Bx,

x ∈ D. This means by definition that κ is a continuous complex Finsler metric of nonpositive
curvature.

Let now p ∈ D, η ∈ Tp(D), η 6= 0. Consider any h ∈ H such that ‖η‖κ = ‖dh(η)‖ds2
∆
. We

call h a Carathéodory extremal function at p for, or adapted to, η ∈ Tp(D). Given η, h may
not be unique even under the normalizations h(p) = 0, dh(η) real and positive. For instance,
in the case of the unit 2-ball B2 = {(z, w) ∈ C2 : |z|2 + |w|2 < 1} the bounded holomorphic
functions f(λ) := z + λw2 for any complex number λ, |λ| < 1

2 , all map B2 into the unit disk
∆. They all restrict to the identity function of ∆ × {0}, and is thus at any p ∈ ∆ × {0} a
Carathéodory extremal function adapted to any nonzero η ∈ Tp(∆× {0}).

All of the above applies to an arbitrary complex manifold in place of D b M , with the
difference that the length function thus defined only gives the Carathéodory pseudometric.
One of the problems encountered in the article is the identification of “special” extremal func-
tions adapted to some specific tangent vectors. In the case of irreducible compact quotients
of the polydisk we will obtain pull-backs of Carathéodory extremal functions depending on a
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single direct factor ∆k of the polydisk. In the general case we use the Polydisk Theorem and
apply a classical ergodicity result for semisimple real Lie groups, as follows.

Polydisk Theorem (cf. Wolf [Wo, p.280]). Let Ω be a bounded symmetric domain of rank
r, equipped with the Kähler-Einstein metric g. Then, there exists an r-dimensional totally-
geodesic complex submanifold P biholomorphic to the polydisk ∆r. Moreover, the identity
component Auto(Ω) of Aut(Ω) acts transitively on the space of all such polydisks.

Moore’s Ergodicity Theorem (cf. Zimmer [Zi, Thm.(2.2.6), p.19]). Let G be a semisimple
real Lie group and Γ be an irreducible lattice on G, i.e., Γ\G is of finite volume in the left
invariant Haar measure. Suppose H ⊂ G is a closed subgroup. Consider the action of H on
Γ\G by multiplication on the right. Then, H acts ergodically if and only if H is noncompact.

(1.3) Let X := Ω/Γ be as in Proposition 1 and f : X → N be a nonconstant holomor-
phic mapping into a complex manifold N admitting a continuous complex Finsler metric of
nonpositive curvature. From Finsler metric rigidity, we deduce readily that df(η) 6= 0 for
any nonzero vector η corresponding to a characteristic vector of some local de Rham factor
of X. However, it does not rule out the possibility the f is ramified. When we consider
Carathéodory metrics and their analogues, we have the additional tool of extremal bounded
holomorphic functions. Together with a version of Finsler metric rigidity applicable also to
X := Ω/Γ with Γ ⊂ Aut(Ω) only of finite covolume, we will prove

Theorem 1. Let Ω be an irreducible bounded symmetric domain of rank ≥ 2 and Γ ⊂ Aut(Ω)
be a torsion-free lattice, X := Ω/Γ. Let N be a complex manifold and denote by Ñ its
universal cover. Let f : X → N be a holomorphic mapping and F : Ω → Ñ be its lifting to
universal covers. Assume that there exists a bounded holomorphic function h on Ñ such that
h is nonconstant on the image F (Ω). Then, F : Ω → Ñ is a holomorphic embedding.

The analogue of Theorem 1 remains true in the locally reducible case, under a slightly
stronger hypothesis. For a reducible bounded symmetric domain Ω, let Ω = Ω1 × · · · ×
Ωm be the decomposition of Ω into irreducible factors. A subdomain such as Ω′1 = Ω1 ×
{(x2, . . . , xm)} will be called an irreducible factor subdomain. We have

Theorem 1’. Let Ω be a reducible bounded symmetric domain, Ω = Ω1 × · · · × Ωm its
decomposition into irreducible factors. Let Γ ⊂ Aut(Ω) be a torsion-free irreducible lattice,
X := Ω/Γ. Let N be a complex manifold and denote by Ñ its universal cover. Let f : X → N

be a holomorphic mapping and F : Ω → Ñ be its lifting to universal covers. Assume that, for
each k, 1 ≤ k ≤ m, there exists a bounded holomorphic function hk on Ñ and an irreducible
factor subdomain Ω′k ⊂ Ω such that hk is nonconstant on F (Ω′k). Then, F : Ω → Ñ is a
holomorphic embedding.

We will refer to Theorem 1 and Theorem 1’ as the Embedding Theorem. When N is
uniformized by a bounded domain D in some Stein manifold, the Carathéodory pseudometric
is a metric, and we have
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Theorem 2. Let Ω be a bounded symmetric domain of rank ≥ 2 and Γ ⊂ Aut(Ω) be a
torsion-free irreducible lattice, X := Ω/Γ. Let D be a bounded domain in some Stein manifold,
G ⊂ Aut(D) be a torsion-free discrete group of automorphisms, N := D/G. Let f : X → N

be a nonconstant holomorphic mapping and F : Ω → D be its lifting to universal covering
spaces. Then, F : Ω → D is a holomorphic embedding.

The Embedding Theorems can be formulated for complex spaces N . A special case
of the generalized theorem is the case when f : X → N is a local biholomorphism at a
generic point. Especially, we have the following consequence which shows that the existence
of bounded holomorphic functions on universal covers can be very sensitive to perturbations
which introduce singularities.

Theorem 3. Let Ω be an irreducible bounded symmetric domain of rank ≥ 2 and Γ ⊂ Aut(Ω)
be a torsion-free lattice, X := Ω/Γ. Let N be a singular complex space whose normalization
is given by f : X → N , and denoted by Ñ the universal cover of N . Then, there exist no
nonconstant bounded holomorphic functions on the universal cover Ñ .

We note that in the special case when N is locally irreducible as a complex space,
f : X → N is bijective and hence a homeomorphism, so that it lifts to a bijective holomorphic
map F : Ω → Ñ . Even in this case Ñ admits no nonconstant bounded holomorphic function
(whenever N is actually singular). This is in constrast with the situation when Ω = ∆, the
unit disk. In fact, for any irreducible algebraic curve C on a projective manifold uniformized
by a bounded domain, there are plenty of bounded holomorphic functions on the universal
cover of C, and the normalization of C is uniformized by the unit disk. We note also that
the strict analogue of Theorem 3 fails in the locally reducible case.

In conjunction with a result of Margulis’ [Ma] regarding normal subgroups of irreducible
lattices, we establish the following on fundamental groups of normal complex spaces domi-
nated by X.

Theorem 4. Let Ω be a bounded symmetric domain of rank ≥ 2 and Γ ⊂ Aut(Ω) be any
torsion-free irreducible lattice. Let Z be a normal complex space and f : X → Z be a proper
holomorphic mapping onto Z. Then, either f : X → Z is an unramified covering map, or
π1(Z) is finite.

A corollary of Theorem 3 of particular interest is the following result concerning the
fundamental group of arithmetic varieties.

Corollary 1. Let Ω be a bounded symmetric domain of rank ≥ 2 and Γ∗ ⊂ Aut(Ω) be any
irreducible lattice which is not torsion-free. Write Z = Ω/Γ∗. Then, π1(Z) is finite.

From the proof of Theorem 1 we will deduce the following stronger result on equivariant
holomorphic mappings on X = Ω/Γ.

Theorem 5. Let Ω be an irreducible bounded symmetric domain of rank ≥ 2 and Γ ⊂ Aut(Ω)
be a torsion-free irreducible lattice, X := Ω/Γ. Let M be a complex manifold, Φ : Γ →
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Aut(M) be a homomorphism, and F : Ω → M be a nonconstant Φ-equivariant holomorphic
map in the sense that F (γx) = Φ(γ)(F (x)) for any x ∈ Ω, γ ∈ Γ. Assume that there exists
a bounded holomorphic function h on M such that h|F (Ω) is nonconstant. Then, F is a
holomorphic embedding.

§2 Irreducible compact quotients of the polydisk

(2.1) For the proof of the Embedding Theorem, we will first deal with the case of irreducible
torsion-free cocompact lattices Γ ⊂ Aut(Ω). From now on X := Ω/Γ will be compact until
§4. In this section we consider the case of the polydisk ∆n, n ≥ 2, presenting the arguments
for the bidisk ∆2. For our purpose irreducible lattices in the case of the polydisk are partic-
ularly simple, in view of classical density results for canonical projections. Understanding of
the polydisk is also important for the general case, since an irreducible bounded symmetric
domain is swept out by its maximal polydisks, by the Polydisk Theorem. For irreducible lat-
tices we have the following density lemma which is sufficient for our study of Carathéodory
extremal functions by taking boundary values.

Density Lemma (special case of Raghunathan [Ra, Cor.(5.21), p.86]). Let Ω be a reducible
bounded symmetric domain, Ω = Ω × · · · × Ωk be the decomposition of Ω into irreducible
factors. Let I = (i(1), . . . , i(p)), 1 ≤ i(1) < · · · < i(p) ≤ k, be a multi-index and prI :
Aut0(Ω) → Aut0(Ωi(1)) × · · · × Aut0(Ωi(p)) be the canonical projection. Let Γ ⊂ Auto(Ω)
be an irreducible lattice. Then, prI(Γ) is dense in Aut0(Ωi(1)) × · · · × Aut0(Ωi(p)) whenever
p < k.

(2.2) We proceed now to prove Theorem 1’ for irreducible compact quotients of the polydisk,
presenting the argument in the case of the bidisk for simplicity. Without loss of generality let
Γ ⊂ Aut(∆)2 be a torsion-free irreducible cocompact lattice, X := ∆2/Γ. Write z = (z1, z2)
for Euclidean coordinates on ∆2 ⊂ C2. By the i-th canonical foliation on ∆2 we will mean
the one with leaves {x1} × ∆ for i = 1 resp. ∆ × {x2} for i = 2. Passing to quotients we
have the i-th canonical foliation on X = ∆2/Γ. Let f : X → N be a holomorphic mapping
into a complex manifold N , F : ∆2 → Ñ its lifting to universal covers. Assume for the
time being that f is an immersion at a generic point. Let ε > 0 be small enough so that
for Uε(x) := ∆(x1, ε) × ∆(x2, ε), F |Uε(x) : Uε(x) → Ñ is a biholomorphism onto an open
neighborhood Vε(p) of p = F (x) in Ñ . Denote the leaves of the i-th canonical foliation on
Uε(x) by Λi; i = 1, 2; and those induced on Vε(p) by Li. For q ∈ Vε(p), Li(q) will denote the
leaf Li passing through q. Recall that H is the set of all holomorphic mappings h : Ñ → ∆.
Let now η ∈ Tp(Ñ), η 6= 0. Recall that any h ∈ H such that ‖η‖κ = ‖dh(η)‖ds2

∆
, is said

to be a Carathéodory extremal function at p for, or adapted to, η ∈ Tp(Ñ). Let now i = 1
or 2, and η ∈ Tp(Ñ) be dF ( ∂

∂zi
). Pick any Carathéodory extremal function h adapted to

η. Write T∆2 = T1 ⊕ T2 as in the Finsler Metric Rigidity Theorem. By the latter theorem
F ∗κ|T1 ≡ c1g|T1 , F ∗κ|T2 ≡ c2g|T2 for the canonical Kähler-Einstein metric on ∆2. From the
hypothesis of Theorem 1’; c1, c2 6= 0. We are going to derive the existence of special extremal
functions adapted to η, as follows.
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Proposition 1. Let h be any Carathéodory extremal function h ∈ H for η = dFx( ∂
∂zi

),
η ∈ Tp(Ñ). Let q ∈ Li(p), q = F (y), y ∈ Uε(x), and ηq := dFy( ∂

∂zi
), ηp = η. Then, h is a

Carathéodory extremal function for ηq at q, and h is constant on the leaf Li(p).

Proof. Without loss of generality we may assume that h(p) = 0. Consider the holomorphic
function θ(q) = dh(ηq) on Li(p). Then

‖ηq‖κ ≥ ‖dh(ηq)‖ds2
∆

=
|θ(q)|

1− |h(q)|2 ≥ |θ(q)| ,

‖ηp‖κ =
|θ(p)|

1− |h(p)|2 = |θ(p)| .

By Finsler metric rigidity, ‖ηq‖κ is a positive constant λ, since ‖ ∂
∂zi
‖ is of constant length on

∆2 on each leaf Λi(x). Thus,

log |θ(q)| ≤ ‖ηq‖κ = log λ ;

log |θ(p)| = log λ .

It follows from the harmonicity of log |θ(q)| in q that log |θ(q)| is a constant. As a consequence,

‖ηq‖κ = ‖dh(ηq)‖ds2
∆

= λ ; h(q) = 0 .

In particular, h is a Carathéodory extremal function for ηq at any q ∈ Li(p) and h is constant
on Li(p), as desired. ¤

Proposition 1 can be strengthened to give Carathéodory extremal functions compatible
with the local foliations on F (∆2) induced by the canonical foliations on ∆2. In other words,
we have

Proposition 2. There exists a Carathéodory extremal function h ∈ H for η = dF ( ∂
∂zi

) such
that h|Vε(p) is constant on each leaf Li(q), q ∈ Vε(p).

Take i = 1. For the Carathéodory extremal functions h on Ñ adapted to η = dF
(

∂
∂z1

)
,

F ∗h = s(z1, z2) enjoys the special properties that (i) s(x1, z2) is independent of z2, and
(ii)

∣∣ ∂s
∂z1

(x1, z2)
∣∣ = c

1−|x1|2 for the constant c = c1 appearing in the Finsler Metric Rigidity
Theorem. Replacing h by ϕ ◦ h for some Möbius transformation ϕ if necessary, we may
assume in (i) that s(x1, z2) = 0. From (ii) we deduce that ∂s

∂z1
(x1, z2) is a constant. To prove

Proposition 2 we will modify h and hence s so that s(z1, z2) is independent of z2.

Proof of Proposition 2. Denote by Φ : Γ → π1(N) the homomorphism induced by f : X → N .
We are going to modify h and s by composing with elements of Φ(Γ) and taking limits, in
such a way that it amounts to taking boundary values of s. For x = (x1, x2) ∈ ∆2, let Ex

denote the set of pullbacks s = F ∗h of Carathéodory extremal functions h at F (x) = p such
that h(p) = 0. We note that

(i) for any s ∈ Ex, ∂s
∂z1

(x1, z2) is independent of z2;
8



(ii) for any γ ∈ Γ, s ∈ Ex implies that s ◦ γ ∈ Eγ−1(x).

Write E for the union of all Ex, as x ranges over ∆2. For x ∈ ∆2 and positive integers k we
define inductively Ex,k; Ex,1 = Ex; to be the set of all elements in Ex such that ∂is

∂zi
1
(x1, z2)

is independent of z2 for any nonnegative integer i ≤ k. Write Ek for the union of all Ex,k

as x ranges over ∆2. Clearly Ek ⊂ E` whenever k ≥ `. We define Ex,∞ :=
⋂

k≥1 Ex,k,
E∞ =

⋃
x∈∆2 Ex,∞. For each positive integer k we are going to establish:

(∗)k Ek 6= ∅.

Denote by (∗) the statement that (∗)k holds for all positive integers k. Proposition 2 consists of
the statement that E∞ 6= ∅. We assert that this follows from (∗). To see this, let sk ∈ Ek. Let
K ⊂ ∆2 be a compact subset which contains a fundamental domain of ∆2 with respect to Γ.
Suppose sk ∈ Ex,k. Let γk ∈ Γ be an element such that γ−1

k (x) ∈ K. Then, sk ◦γk ∈ Eγ−1
k

(x).
In what follows we replace sk by sk ◦γk. Then, for some xk ∈ K; xk = (xk,1, xk,2); sk(xk) = 0
and ∂s

∂z1
(xk,1, z1) = ak for some constant ak 6= 0. Since |ak| = | ∂s

∂z1
(xk,1, z2)| = c

1−|xk,1|2 , we
conclude from xk ∈ K that |ak| is uniformly bounded from below by some positive number b.
(In this passage the suffix in xk carries two different meanings but the context should make
it clear.) Since sk : ∆2 → ∆, {sk} constitutes a normal family. Passing to a subsequence
we may assume that xk converges to x∞ ∈ K, x∞ = (x∞,1, x∞,2), and that sk converges
uniformly on compact sets to some holomorphic function s : ∆2 → ∆ such that s(x∞) = 0,
and ∂s

∂z1
(x∞,1, z2) = a∞ such that |a∞| ≥ b > 0. Write now sk = F ∗hk for some Carathéodory

extremal function hk on Ñ . Then hk : Ñ → ∆ forms a normal family, and we may assume
without loss of generality that hk converges to some bounded holomorphic function h∞ such
that s∞ = F ∗h∞. From this we conclude that s∞ is the pull-back of a Carathéodory extremal
function. It follows that s∞ ∈ Ex∞,k for every positive integer k, i.e., s∞ ∈ E∞, as asserted.

It remains to establish (∗), which we will do by induction. For k = 1 we know actually
that Ex,1 6= ∅ for any x ∈ ∆2, by Finsler metric rigidity and the resulting Proposition 1.
Suppose (∗)k is established. Let s ∈ Ek,x for some x ∈ ∆2, x = (x1, x2). For a ∈ ∆ let
ψa ∈ Aut(∆) be such that ψa(0) = a. Writing t = s ◦ (ψx1 , id) we have t(0, z2) = 0 and
t(z1, z2) = c1z1 + c2z

2
1 + · · · + ckzk

1 + ck+1(z2)zk+1
1 + · · · . t is uniquely determined up to a

rotation of ∆, so that |ck+1(z2)| := λk+1(s; z2) is completely determined by s and z2. Note
that for any γ ∈ Γ, γ = (γ1, γ2), λk+1(s; z2) = λk+1(s◦γ−1; γ2(z2)). Furthermore, λk+1(s; z2)
is uniformly bounded from above independent of z2 and of s, by Cauchy estimates. Let µ

be the supremum of all λk+1(s; z2) as s ranges over all of Ek and z2 runs over ∆. Then,
there exist xm = (xm,1, xm,2) ∈ ∆2, sm ∈ Exm,k, and ym = (xm,1, ym,2) ∈ ∆ such that,
writing λk+1(sm; ym,2) := µk, µk increases and converges to µ. Let γm ∈ Γ be such that
γm(xm,1, ym,2) = um = (um,1, um,2) ∈ K. Write σm := sm ◦ γ−1

m . Then, σm ∈ Eum,k, and
λk+1(σm;um,2) = µk. Passing to a subsequence if necessary, um ∈ K converges to some
u = (u1, u2) ∈ K and the normal family {σm} converges uniformly on compact subsets of ∆2

to some holomorphic function σ ∈ Eu,k. Furthermore, λk+1(σ; u2) = µ, while λk+1(σ; z2) ≤ µ

for any z2 ∈ ∆. By the Maximum Principle we conclude that ck+1(z2) must be a constant,
so that σ ∈ Ek+1, as desired. This proves (∗) by induction, and the proof of Proposition 2 is
complete. ¤
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Remarks. Regarding (∗) from the Density Lemma we deduce readily that at any x ∈ ∆2 and
for any positive integer k, Ex,∞ 6= ∅. We will refer to the existence of extremal functions h in
Proposition 2, where F ∗h depends only on one direct factor, as the Splitting Phenomenon.

Proof of Theorem 1’ for ∆n in the cocompact case. Consider the case of the bidisk. The
assumptions in Proposition 1 and 2 that f : X → N is generically an immersion was just
for linguistic convenience. As is apparent from the proofs there the hypothesis of Theorem
1’ already ensures the applicability of analogues of Propositions 1 and 2 since we can work
with the foliations on ∆2 by pulling back extremal functions. We claim that f : X → N

is unramified, i.e., equivalently, F : ∆2 → Ñ is unramified. To this end let x ∈ ∆2 and
ξ ∈ Tx(∆2), x = (x1, x2), such that dF (ξ) = 0. By the proof of Proposition 1 there exist
Carathéodory extremal functions h1 and h2 on Ñ such that for si = hi ◦F ; i = 1, 2; we have
s1(x1, z2) = s1(x1, 0), s2(z1, x2) = s2(0, x2). Write H = (h1, h2). From dF (ξ) = 0 it follows
that 0 = dH(dF (ξ)) = (ds1(ξ1), ds2(ξ2)) =

(
ξ1

∂s1
∂z1

(x1), ξ2
∂s2
∂z2

(x2)
)
, so that ξ1 = ξ2 = 0, i.e.,

ξ = 0. In other words, F is unramified, as claimed. To prove Theorem 1’ for the bidisk it
remains to show that F separates points.

Suppose x, y ∈ ∆2, x 6= y, are such that F (x) = F (y). Let now h be a Carathéodory
extremal function as obtained in Proposition 2 such that h ◦ F (z1, z2) = s(zi) for i = 1 or 2.
In what follows take i = 1. Write Φ : Γ → π1(N) for the homomorphism f∗ induced by f ,
identifying π1(N) with the group of Deck transformations of the covering map π : Ñ → N .
Then, for any γ ∈ Γ, z ∈ ∆2, we have F (γz) = Φ(γ)(F (z)), so that

F (γx) = Φ(γ)(F (x)) = Φ(γ)(F (y)) = F (γy) ;

s(γ1x1) = h(F (γx)) = h(F (γy)) = s(γ1y1) ,

where x = (x1, x2), y = (y1, y2), γ = (γ1, γ2). By the Density Lemma, as γ ranges over
Γ, γ1 ranges over a dense subset of Aut(∆), with respect to the complex topology. We
may take x1 = 0. In particular, given any θ ∈ R we can choose γ = (γn,1, γn,2) such that
γn,1(z1) converges to eiθz1. It follows that for any θ ∈ R, s(eiθy1) = lim

n→∞
s(γn,1y1) =

lim
n→∞

s(γn,1(0)) = s(0), so that s is constant on the circle of radius |y1|. Since y1 6= 0, s must

be constant, a contradiction. Thus F (x) = F (y) implies x1 = y1. Similarly F (x) = F (y)
implies x2 = y2, so that x = y, i.e., F is an embedding, as desired.

The proof of Theorem 1’ for the polydisk ∆n, follows verbatim. ¤

Proposition 1, which has led to the proof that f : X → N is an immersion, will be
adapted to give the same statement of the general cocompact case. For the proof of separation
of points in the general cocompact case, a straightforward adaptation of Proposition 2 fails
completely. We will in its place formulate and prove a variant of Proposition 2 involving a
new extremal problem. The proof necessitates new ideas.

§3 The Embedding Theorem in the locally irreducible case via a new extremal
problem

10



(3.1) For the proof of the Embedding Theorem in the cocompact case we will need to prove
analogues of Propositions 1 and 2. For this purpose it will be necessary to study the action
of automorphism groups on spaces of totally-geodesic complex submanifolds using Moore’s
Ergodicity Theorem. We start with some preliminary discussion on implications of the latter
theorem in our context.

For a connected real Lie group G and for any closed subgroup S ⊂ G, the left (resp.
right) coset space G/S (resp. S \ G) inherits the canonical structure of a smooth manifold,
on which G acts as diffeomorphisms. Although G/S resp. S \G may not carry a G-invariant
measure the notion of a null subset is well defined, viz., a set E ⊂ G/S (resp. S \G) is said
to be a null subset if it is of measure zero with respect to any choice of a Riemannian metric
on G/S (resp. S \ G). Given two closed subgroups S1, S2 ⊂ G it makes sense therefore to
talk about ergodicity of the left action of S1 on G/S2 (resp. the right action of S2 on S1 \G.
We have the following special case of [Zi, Corollary 2.2.3, p.18].

Lemma 1. Let G be a connected real Lie group and S1, S2 ⊂ G be closed subgroups. Then S1

acts ergodically on the left on G/S2 if and only if S2 acts ergodically on the right on S1 \G.

From now on Ω denotes an irreducible bounded symmetric domain of rank r ≥ 2, G =
Auto(Ω), Ω = G/K. We apply Lemma 1 to the simple Lie group G, S1 = Γ ⊂ G a lattice, and
S2 = H some noncompact closed subgroup G to be determined. From Moore’s Ergodicity
Theorem we conclude therefore that Γ acts ergodically on the left on G/H.

Since G is paracompact, Zimmer [Zi, Proposition 2.1.7, p.10] applies to give the following
density result.

Lemma 2. Let H ⊂ G be a closed subgroup. Then there exists a null subset E ⊂ G/H such
that for any point gH ∈ G/H − E, the orbit Γ(gH) is dense in G/H, in the metric topology
on G/H defined by the canonical smooth structure on G/H.

Remarks. In general the subset E ⊂ G may be nonempty. An example close to what we are
considering where E ⊂ G/H is nonempty is the following. Let Ω be any bounded symmetric
domain and D ⊂ Ω be a totally-geodesic complex submanifold. Then, the subgroup H of
G := Auto(Ω) which fixes D as a subset is a noncompact closed Lie subgroup. The coset space
G/H parametrizes the space of all totally-geodesic complex submanfolds in Ω congruent to
D under the action of G. Denote by o ∈ G/H the point corresponding to D itself. The
inclusion D ⊂ Ω gives an inclusion Auto(D) ⊂ G. Let Γ ⊂ G be a torsion-free irreducible
lattice. If Γ ∩ Auto(D) is a lattice in Auto(D), then the Γ-orbit of o is discrete in G/H.
In fact, denoting by π : Ω → X the canonical projection and write Z := π(D), which is a
subvariety of X from the assumptions, then π−1(Z) is closed and is the union of γ(D) as γ

ranges over Γ. This means that the Γ-orbit of o is a discrete subset of G/H.

By the Polydisk Theorem (stated in (1.3)) there is a totally-geodesic r-dimensional poly-
disk P ⊂ Ω, and G acts transitively on the space of such polydisks. We give here a brief
description of maximal polydisks, and refer the reader to Wolf [Wo, p.280] and Mok [M3,
Chapter 3, p.89ff.] for details. Write Ω = G/K as in the above and use notations as in (1.1).
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Write g for the Lie algebra of real Lie group G, and denote by gC, etc. the complexification of
the real Lie algebra g, etc. Let z ⊂ k be the one-dimensional centre of k. We have k = ks + z.
Write h = hs + z. Then, h ⊂ k is a Cartan subalgebra of g. Write h∗ = Hom(h,R) and
h∗R =

√−1h∗. Let Φ ⊂ h∗R be the space of hC-roots ρ of gC. The root space belonging to
ρ ∈ Φ is one-dimensional, generated by Eρ ∈ gC satsifying [h, Eρ] = ρ(h)Eρ for any h ∈ hC.
Choosing in an appropriate way a positive Weyl chamber on h∗R we have the notion of positive
resp. negative roots. Let θ be the Lie algebra involution on g corresponding to the symme-
try of G/K at o = eK, and write g = k ⊕ m for the Cartan decomposition with respect to
the involution θ. The space of roots decompose into ΦK ∪ ΦM consisting of compact resp.
noncompact roots according to whether Eρ ∈ kC or Eρ ∈ mC. Then, mC = m+ + m−, where
m+ is spanned by root spaces belonging to Φ+

M , the set of positive noncompact roots, and
m− = m+. m+ resp. m− can be canonically identified with To(Ω) resp. To(Ω). We say that
two roots ϕ1, ϕ2 are strongly orthogonal if and only if neither ϕ + ψ nor ϕ−ψ is a root. Let
Ψ ⊂ Φ+

M be a maximal subset of roots which are mutually orthogonal. Then card(Ψ) agrees
with the rank r of Ω = G/K. Let a+ ⊂ m+ ∼= To(Ω) be the complex vector subspace spanned
by {Eψ : ψ ∈ Ψ}, and write a− = a+. Then a+ + a− = a ⊗R C for some maximal abelian
subspace a ⊂ m. All a+ ⊂ m+ are conjugate under the isotropy action of K. Furthermore,
for each a+ there is a unique totally-geodesic polydisk P ⊂ Ω, P ∼= ∆r, passing through o

such that To(P ) = a+. P will be called a maximal polydisk. From the general theory of
Riemannian symmetric spaces we have readily (cf. Helgason [He, Lemma 6.3, pp.247-8].)

Lemma 3. Fix a maximal polydisk P ⊂ Ω passing through o and write To(P ) := a+. Then,
To(Ω) =

⋃
k∈K k(a+), where k acts on To(Ω) by the isotropy action. As a consequence, given

any (nonzero) ξ ∈ To(Ω) there exists some maximal polydisk Q ⊂ Ω passing through o such
that ξ ∈ To(Q).

For the proof of Theorem 1 we have the following immediate analogue of Proposition 1.

Proposition 3. Let Ω be an irreducible bounded symmetric domain of rank r ≥ 2. Let
P ⊂ Ω be a totally-geodesic polydisk of dimension r, as given by the Polydisk Theorem. Write
P ∼= ∆r ∼= ∆ × ∆r−1. Denote by z = (z1, . . . , zr) Euclidean coordinates on P ∼= ∆r ⊂ Cr.
Let Γ ⊂ Auto(Ω) := G be a torsion-free cocompact lattice; X := Ω/Γ. Let N be a complex
manifold, f : X → N be a holomorphic mapping and F : Ω → Ñ its lifting to universal
covering spaces. Assume that there exists a bounded holomorphic function on Ñ which is
nonconstant on F (Ω). Let x = (x1, . . . , xr) ∈ P be an arbitrary point. Then, there exists
a Carathéodory extremal function h on Ñ , s := h ◦ F : Ω → Ñ , such that on the polydisk
P ∼= ∆r ⊂ Cr we have s(x1; z2, · · · zr) = 0 in terms of Euclidean coordinates, and, at any
point of F ({x1} ×∆r−1), h is a Carathéodory extremal function on Ñ adapted to the vector
dF ( ∂

∂z1
) 6= 0.

From Proposition 3 we have readily

Proof that f : X → N is an immersion in Theorem 1 in the cocompact case. Equivalently
we need to prove that F : Ω → Ñ is an immersion. For any s ∈ Ω and any nonzero vector
ξ ∈ Tx(Ω) we have to prove that dF (ξ) 6= 0. By Lemma 3 there exists a maximal polydisk
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P ⊂ Ω passing through x such that ξ ∈ Tx(P ). The argument for the proof that F : Ω → Ñ

is an immersion in the case of the polydisk given in (2.2) in conjunction with Proposition 3,
applies to show here that F : Ω → Ñ is an immersion. ¤

As an analogue to the Splitting Phenomenon given by Proposition 2 for the bidisk, we
have

Proposition 4. With the same assumptions as in the statement of Proposition 3, there exists
bounded holomorphic function h : Ñ → ∆, s := h ◦ F : Ω → Ñ , such that on the maximal
polydisk P ∼= ∆r ⊂ Cn we have s(z1; z2, · · · , zr) = s(z1) in terms of Euclidean coordinates.

There is an essential difference in the formulation of Proposition 4 from that of Proposi-
tion 2. The bounded holomorphic function h : Ñ → ∆ will not be a Carathéodory extremal
function. It will rather be an extremal function for an extremal problem on Ω to be defined in
the next section. The extremal problem will be constructed in such a way that any extremal
function for the problem adapted to a given maximal polydisk will automatically have the
property as stated in the conclusion of Proposition 4.

(3.2) Recall that H is the space of holomorphic maps h : Ñ → ∆. Denote by F the space
of holomorphic maps s : Ω → ∆ of the form s = F ∗h, h ∈ H. We are going to define an
extremal problem on the irreducible bounded symmetric domain Ω of rank ≥ 2 for the space
F , as follows. For every x ∈ Ω, and every characteristic vector α ∈ S ′x, there is a unique
minimal disk ∆α such that x ∈ ∆α and such that α is tangent to ∆α. Fix a positive number
ε. The ensuing construction depends on the choice of ε. For convenience we will choose ε

sufficiently small, in a way to be specified later in (3.4). Denote by Bα(x, ε) the geodesic ball
on (∆α, g|∆α) centred at x and of radius ε, and by Sα,ε the geodesic circle ∂Bα(x, ε) on ∆α.
Let s ∈ F . We define a length function ‖ · ‖s on S ′Ω, as follows. At every point y ∈ Sα,ε let
αy ∈ T∆α be a tangent vector of the same length as α with respect to the canonical Kähler-
Einstein metric. Define u(s, α, y) = ‖ds(αy)‖ds2

∆
. Then u(s, α, y) ≥ 0 is defined independent

of the choice of αy. Let ‖α‖s be the average of u(s, α, y) as y runs over Sα, with respect to a
measure of total mass 1 on Sα invariant under the isotropy group of (∆α, g|∆α). Define now

‖α‖e(F) := sup{‖α‖s : s ∈ F} .

Writing ‖0‖ = 0 we have a length function defined on S ′Ω ∪ {0}, which corresponds to a
Hermitian metric on the tautological line bundle L over the characteristic bundle SΩ. From
Cauchy estimates, the length functions ‖α‖s are uniformly Lipschitz on any compact subset
of S ′Ω, so that the suprema define a Lipschitz function on SΩ, and ‖ · ‖e(F) is a continuous
Hermitian metric on L|SΩ . For any γ ∈ Γ, and s ∈ F , where s = F ∗h for some h ∈ H, we
have γ∗s = F ∗(Φ∗γh), Φγ = f∗γ ∈ π1(N), so that F is invariant under the canonical action of
Γ. As a consequence ‖ · ‖e(F) descends to a continuous Hermitian metric on the tautological
line bundle over S0. On the quotient manifold X we will denote the tautological line bundle
and the corresponding length function by the same symbols L resp. ‖ · ‖e(F). e(F) will also
be used to denote the continuous Hermitian pseudometric on L.

The idea of proof of Proposition 4 is to apply Finsler metric rigidity to (L|S , e(F)). We
note that the argument of Finsler metric rigidity applies, provided that we have a continuous
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Hermitian metric on L|S of nonpositive curvature in the sense of (1.2). However, it is not
clear from the construction of our length function ‖ · ‖e(F) that the curvature is nonpositive.
As a matter of fact, the averaging process applies to local log-plurisubharmonic functions
defined on some open subsets of S, and the averaging process in general does not give log-
plurisubharmonic functions, for the following reason. Denote by π : S → X the canonical
projection. Let ϕ be a log-plurisubharmonic function on some open subset U of X and con-
sider the log-plurisubharmonic function π∗ϕ. Let V ⊂ U be a nonempty relatively compact
open subset and choose ε > 0 sufficiently small so that the averaging process makes sense
on π−1(V ). ϕ is by definition constant on the fiber π−1(x) for any x ∈ U . However, the
averaging at [α] ∈ Sx depends on [α], and obviously one can choose U , ϕ smooth, V ⊂ U and
x ∈ X such that the resulting function ϕε is not constant on π−1(x). But then ϕε cannot be
log-plurisubharmonic on the projective variety Sx. By the same reasoning one cannot expect
in general to get continuous Hermitian metrics of nonpositive curvature by the averaging
process described in the last paragraph.

Although we cannot expect a priori that (L|S , e(F)) is of nonpositive curvature, we
know nonetheless that its restriction to certain submanifolds of S is of nonpositive curvature,
and we are going to show that this is enough to establish metric rigidity.

(3.3) Let x ∈ Ω and α ∈ S ′x. Since F is a normal family there exists a bounded holomorphic
function s ∈ F such that ‖α‖e(F) agrees with ‖α‖s. We call s an e(F)-extremal function at
x adapted to α. In analogy with Proposition 1 on Carathéodory extremal functions on Ñ ,
e(F)-extremal functions enjoy special properties when restricted to maximal polydisks. In
fact, they are more rigid so that the analogue of Propoition 2 is automatic. We are going to
prove the following result concerning e(F)-extremal functions which imply Proposition 4.

Proposition 4’. Let P ⊂ Ω be a maximal polydisk, P ∼= ∆r, and use Euclidean coordinates
of the latter as coordinates for P . Let x ∈ P, x = (x1; x′) and denote by P ′ ⊂ P the polydisk
corresponding to {x1} ×∆r−1. Let α be a nonzero characteristic vector at x tangent to the
minimal disk D corresponding to ∆ × {x′} and denote by s an e(F)-extremal function at x

adapted to α. Then s(z1; z2, · · · , zr) = s(z1).

For the proof of Proposition 4’ we will show that e(F) defines a continuous Hermitian
metric on L|S which is of nonpositive curvature when restricted to certain submanifolds.
We will then formulate a version of metric rigidity for continuous Hermitian metrics on L|S
which shows that the partial nonpositivity of curvatures at our disposal is enough. The metric
rigidity result will be applied to prove that the e(F)-extremal functions have the splitting
property when restricted to maximal polydisks. To start with we have the following lemma
which is relevant to our averaging process on geodesic circles on minimal disks.

Lemma 4. Let U ⊂ Cn be an open subset, and a, b ∈ R; a < b. Let u : [a, b] × U → R be
a continuous function such that for any t ∈ [a, b], writing ut(z) := u(t, z), ut : U → R is
plurisubharmonic. Define ϕ : U → R by ϕ(z) := log

∫ b

a
eut(z)dt. Then, ϕ is plurisubharmonic.

Moreover, eϕ
√−1∂∂ϕ ≥ ∫ b

a
eut
√−1∂∂ut dt in the sense of currents.

Proof. The problem being local, it is enough to prove Lemma 4 with U replaced by a Euclidean
14



ball B ⊂ U relatively compact in U . We may extend u to I × B for some open interval I

containing [a, b] in such a way that u(z) := u(t, z) remains plurisubharmonic for t ∈ I.
Applying smoothing convolution operators we get smooth functions uε : [a, b]×B → R such
that uε

t : B → R is plurisubharmonic and uε
t converges uniformly on B to ut for each t ∈ [a, b]

as ∈ converges to 0. Defining ϕε using uε in place of u, we are going to verify the lemma
for the function ϕε in place of ϕ. Since the uniform limit of plurisubharmonic functions is
plurisubharmonic, and eϕε√−1∂∂ϕε converges to eϕ

√−1∂∂ϕ as positive currents, etc., we
will have proven Lemma 4 by letting ε tend to 0.

From now on we change the meaning of the notations and assume that u is already
smooth. The function ϕt is defined as an integral, and can thus be approximated by Riemann
sums. Expressing ϕ as a uniform limit of Riemann sums, it suffices to prove the analogue of
the lemma for the sum of a finite number of smooth plurisubharmonic functions in place of
an integral over [a, b]. Thus, we have ui : [a, b] × U → R smooth and plurisubharmonic for
1 ≤ i ≤ N , and, defining a new ϕ(z) = log(eu1(z) + · · ·+ euN (z)), we have to prove that ϕ is
plurisubharmonic, and that eϕ

√−1∂∂ϕ ≥ ∑
euk

√−1∂∂uk as smooth (1,1)-forms. We give a
geometric proof, as follows. For each i, 1 ≤ k ≤ N , we can define a Hermitian metric on the
trivial line bundle O on U by writing ‖1‖hk

= euk . Then, −√−1∂∂ϕ is the curvature form
of the Hermitian line bundle (O, h1 + · · ·hN ), while −√−1∂∂uk is the curvature form of the
Hermitian line bundle (O, hk), 1 ≤ k ≤ N . The inequality eϕ

√−1∂∂ϕ ≥ ∑
euk

√−1∂∂uk and
in particular the plurisubharmonicity of ϕ follow from the Gauss equation on curvatures of
Hermitian holomorphic vector subbundles, when we regard (O, h1 + · · ·+hN ) as a Hermitian
holomorphic vector subbundle of (On, h1⊕· · ·⊕hN ) by means of the diagonal embedding, as
desired. Note that if we introduce a scaling constant λ ∈ R, λ > 0, and consider instead ϕ̃ =
log(λ(eu1 +· · ·+euN )), it corresponds to replacing uk by uk+log λ, and the inequality becomes
eϕ̃
√−1∂∂ϕ̃ ≥ ∑

euk+log λ
√−1∂∂uk = λ

∑
euk

√−1∂∂uk. This is the case for Riemann
sums, which allows us to pass to limits to establish Lemma 4 for u smooth and hence for u

continuous.

Alternatively, without using geometry, the inequality eϕ
√−1∂∂ϕ ≥ ∑

euk
√−1∂∂uk

(with the new definition of ϕ) in case of N = 2 follows from the direct computation

(eu1 + eu2)
√−1∂∂ log(eu1 + eu2)

= eu1
√−1∂∂u1 + eu2

√−1∂∂u2 +
eu1+u2

eu1 + eu2

√−1(∂u1 − ∂u2) ∧ (∂u1 − ∂u2) .

The case of general N follows by induction. ¤

The following result is a strengthening of the principle underlying the proof of the Her-
mitian Metric Rigidity Theorem of Mok [M3] in the compact case. In [M1,2] we worked with
Hermitian holomorphic line bundles of nonpositive curvature in the generalized sense, and
global nonpositivity was required to justify the integration by parts. Here we observe that
for certain problems it is enough that the continuous Hermitian metrics are of nonpositive
curvature when restricted to certain complex submanifolds. Suppose L is some holomorphic
line bundle, and h1, h1 are continuous Hermitian metrics on L. Then h2 = euh1, and eu can
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be regarded as a Hermitian metric on the trivial line bundle. With this understanding the
principle can be formulated entirely in terms of continuous functions, as follows.

Proposition 5. Let (Z, ω) be an m-dimensional compact Kähler manifold, and θ be a smooth
closed nonnegative (1,1)-form on Z such that Ker(θ) is of constant rank q > 0 everywhere
on Z. Denote by K the foliation on Z with holomorphic leaves defined by the distribution
Re(Ker(θ)). Let u : Z → R be a continuous function whose restriction to every leaf L of the
foliation K is plurisubharmonic. Then, the restriction of u to every leaf L is pluriharmonic.
If u is Lipschitz, then it is constant on every leaf L. If in addition there is a dense leaf of K,
then u is constant on Z.

Proof. Let U be any small coordinate open set on Z, (η1, · · · , ηq) be a smooth basis of
Ker(θ)|U and complete it to a basis (η1, · · · , ηm) of TU . Denote the corresponding dual basis
of T ∗U by (ν1, · · · , νm). Consider the currents on U given by

T =
√−1 ∂u ∧ θm−q ∧ ωq−1 , S = dT .

Then,

S(
√−1η1 ∧ η1 ∧ · · · ∧

√−1ηm ∧ ηm)

= (
√−1∂∂u ∧ ωq−1)(

√−1η1 ∧ η1 ∧ · · · ∧
√−1ηq ∧ ηq)×

×θm−q(
√−1ηq+1 ∧ ηq+1 ∧ · · · ∧

√−1ηm ∧ ηm) ,

which follows readily from the fact that θ(ηk ∧ ηk) = 0 whenever 1 ≤ k ≤ q. Since u|L is
plurisubharmonic on every leaf L, the (m,m)-current S is a nonnegative measure. From

S(1) =
∫

Z

√−1∂∂u ∧ θm−q ∧ ωq−1 = 0

it follows readily that S ≡ 0 and hence
√−1∂∂u ∧ ωq−1(

√−1η1 ∧ η1 ∧ · · · ∧
√−1ηq ∧ ηq) = 0 ,

which implies that √−1∂∂u ∧ ωq−1|Lo ≡ 0 .

for almost every local leaf Lo, by Fubini’s Theorem. Since by assumption the restriction of
u to every leaf L is plurisubharmonic, ω|L is a Kähler form, and u is continuous, it follows
that u is pluriharmonic on each leaf L. When u is Lipschitz we can perform integration by
parts to get

0 =
∫

Z

−√−1u∂∂u ∧ θm−q ∧ ωq−1 =
∫

Z

√−1∂u ∧ ∂u ∧ θm−q ∧ ωq−1,

which forces u to be constant on each (complete) leaf L of K. If there exists a leaf L dense
on Z, obviously the continuous function u is constant on the topological closure Z, so that u

is constant, as desired. ¤

We now apply Proposition 5 to Z = S and to holomorphic line bundle L|S , equipped
with two Hermitian metrics h1 = ĝ|S induced by the canonical Kähler-Einstein metric g, and
h2 = e(F) + ĝ. We are going to prove
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Proposition 6. Let Ω be a an irreducible bounded symmetric of rank ≥ 2, and g be the
canonical Kähler-Einstein metric on Ω. Let Γ ⊂ Aut(Ω) be a torsion-free irreducible lattice,
X := Ω/Γ. Denote by ĝ the canonical Hermitian metric on the tautological line bundle L, and
by S ⊂ PTX the characteristic bundle on X. Let e(F) be the continuous Hermitian metric
on L|S as defined in (3.2). Then, there is some constant c > 0 such that e(F) ≡ cĝ on L|S .

Proof. Consider the nonnegative closed smooth (1,1)-form −c1(L, ĝ) on PTX and let α be a
characteristic vector on X, α ∈ S ′x. Then, from [M1], Ker(−c1(L, ĝ)([α]) ⊂ T[α](S). Write
θ = −c1(L, ĝ)|S .

Lift α to a characteristic vector at o ∈ Ω and maintain the same notation for the lifted
vector. In the notations of (3.1), with respect to some choice of Cartan subalgebra h ⊂ g

we may take α to be a root vector belonging to a root ψ ∈ Ψ. Let ψ⊥ be the set of
all positive noncompact roots ϕ such that ψ − ϕ is not a root. Then, the root vectors
{Eϕ : ϕ ∈ ψ⊥} span the null space Nα associated to α, i.e., the space of all η ∈ To(Ω) such
that Rααηη = 0. Write q := dimNα. Then, using Lie triple systems arising from ψ⊥, we
see that Nα = To(N) for some q-dimensional totally-geodesic complex submanfold N ⊂ Ω.
Moreover Cα + Nα = To(M) for some totally-geodesic complex submanifold M ⊂ Ω which
can be canonically identified with ∆ × N . From the construction M ⊃ P for the maximal
polydisk P ⊂ Ω determined by Ψ. We may write N = Nα,M = Mα. Because of the product
structure Mα

∼= ∆α ×Nα, there is a parallel vector field A on Nα which gives the vector α

at o. Write A ⊂ SΩ|Nα for its tautological lifting. Denote also by π : SΩ → S the canonical
projection. Then, the leaf L at [α] ∈ Sx is precisely π(A).

The canonical Kähler-Einstein metric g on Ω restricts to a product metric on M = ∆×N .
It follows that (L|L, ĝ|L) is the trivial Hermitian holomorphic line bundle. On the other
hand, h2 = e(F), when restricted to L, gives a continuous Hermitian metric of nonpositive
curvature on L|L, by Lemma 4, again by using the product structure M = ∆ × N on Ω.
Writing h2 = euh1 we conclude that u is plurisubharmonic on each leaf L of the foliation K
on Z = S defined by Re(Ker(θ)). By Proposition 5, we conclude that u|L is pluriharmonic.
From Cauchy estimates it follows readily that u is Lipschitz. Furthermore, from Moore’s
Ergodicity Theorem and Lemma 2 there exists a dense leaf L of K. It follows that u is
constant on S. In other words, e(F) agrees with some constant multiple of ĝ on L|S , as
desired. ¤

Remarks. We note that for our application to study e(F)-extremal functions on Ω the
weaker statement that u|L is pluriharmonic for every leaf L of K is already sufficient.

Proof of Proposition 4’. Let x ∈ Ω, P ⊂ Ω be a maximal polydisk, and α ∈ Tx(X) be
a characteristic vector. Let s ∈ F be an e(F)-extremal function adapted to α at x, i.e.,
‖α‖s = ‖α‖e(F). Write P ∼= ∆r = ∆×∆r−1. In the notations of the proof of Proposition 6
we have totally-geodesic complex submanifolds Nα,Mα ⊂ Ω, Mα

∼= ∆α×Nα. (From now on
we drop the subscript α.) Recall that P ⊂ M . We may assume x to be the origin and use
Euclidean coordinates (z1; z2, · · · , zr) of ∆r as coordinates for P ∼= ∆r. We may take α to be

∂
∂z1

at 0. By Proposition 5, ‖ ∂
∂z1
‖e(F) is constant on N ⊃ {0} ×∆r−1 := P ′. For any z ∈ P
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write αz for ∂
∂z1

at z and ν(z) for ds(αz). Let δ > 0 be such that Sα,ε = {(δeiθ; o) : θ ∈ R}
for the geodesic circle Sα,ε ⊂ ∆α. Then, for y ∈ P ′ ⊂ N , y = (0, y′), we have

‖αy‖e(F) ≥ ‖αy‖s =
a

2π

∫ 2π

0

‖ds(δeiθ; y′)‖ds2
∆
dθ =

a

2π

∫ 2π

0

|ν(δeiθ, y′)|
1− |s(δeiθ, y′)|2 dθ := eϕ(y) ,

‖αo‖e(F) =
a

2π

∫ 2π

0

|ν(δeiθ, o)|
1− |s(δeiθ, o)|2 = eϕ(o) ,

where a is the constant such that ‖αz‖g = 1
a for z belonging to the geodesic circle Sα,ε,

‖αo‖g = 1. By Proposition ‖αy‖e(F) is constant on P ′. By Lemma 4, ϕ(y) is plurisubhar-
monic in y ∈ P ′ and attains its maximum at the origin. It follows that ϕ ≡ C on P ′ for some
constant C > 0. Write euθ(y) for the integrand in the definition of eϕ(y). Again by Lemma 4

eϕ
√−1∂∂ϕ ≥ a

2π

∫ 2π

0

euθ
√−1∂∂uθ dθ

in the sense of currents. It follows that for almost all θ ∈ [0, 2π], uθ is pluriharmonic.
However,

√−1∂∂uθ is the pull-back of the curvature form of (∆, ds2
∆) by σ

θ
: P ′ → ∆,

given by σ
θ
(y′) = s(δeiθ; y′), so that σ

θ
must be constant for almost all θ ∈ [0, 2π], hence

for all θ by continuity. It follows that the e(F)-extremal function s must be of the form
s(z1; z2, · · · , zr) = s(z1) when restricted to the polydisk P . The proof of Proposition 4’ is
complete, from which also Proposition 4 follows. ¤

(3.4) Using Proposition 4 we are readily to complete the proof of Theorem 1 in the cocompact
case.

Proof of Theorem 1 in the cocompact case. Recall that the e(F)-extremal function s : Ω → ∆
adapted to (P, P ′) is of the form s(z1, z2, . . . , zr) = s(z1) when restricted to P ∼= ∆r. For any
θ ∈ R define sθ : ∆r → ∆ by sθ(z1; z2, · · · , zr) = s(eiθz1; z2, · · · , zr). We are going to show
that for almost every maximal polydisk P ⊂ Ω, and for any θ ∈ R we can write sθ = F ∗hθ|P
for some hθ : Ñ → ∆. Consider the problem of classifying triples (P, P ′, α), where (P, P ′)
is as in the above, and α is some characteristic vector of unit length with respect to the
canonical Kähler-Einstein metric at a point x ∈ P ′, x = (x1;x′), tangent to the minimal disk
D ∼= ∆× {x′}. We declare (P, P ′, α) and (P, P ′, β) to be equivalent if ρ∗(α) = ρ∗(β) for the
canonical projection ρ : P ∼= ∆r → ∆ onto the first factor. The inclusion P ⊂ Ω gives an
inclusion Auto(P ) ⊂ Auto(Ω) = G. Let H ⊂ G be the closed subgroup which preserves the
triple (P, P ′, α) up to equivalence. Then, H contains {id} × Aut(∆r−1), and must therefore
be noncompact. We may assume that Γ ⊂ Auto(Ω) = G. By Moore’s Ergodicity Theorem
and Lemma 1, Γ acts ergodically on G/H. Thus, by Lemma 2, there exists a null subset
E ⊂ G/H such that for every p ∈ G/H − E, the Γ-orbit of p is dense in G/H. We will say
that (P, P ′, α) is generic if the corresponding point p ∈ G/H lies outside E. Let (P, P ′, α) be
a generic triple. For any fixed θ ∈ R, (P, P ′, eiθα) is in the closure of the Γ-orbit of (P, P ′, α).
Let γi ∈ Γ be such that γi(P, P ′, α) converges to (P, P ′, eiθα) as elements in G/H. Then,
γ∗i s converges to the holomorphic function s(e−iθz1; z2, · · · , zr). It follows that for any θ ∈ R
the function sθ as defined above actually lies in F . Averaging e−iθsθ over [0, 2π] we obtain
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a holomorphic function σ : Ω → ∆, σ = F ∗g for some g : Ñ → ∆. Here g is obtained by a
normal family argument by interpreting the integral as a limit of finite sums, and may not
be uniquely determined by {hθ}. From Taylor expansions we see that, when restricted to the
maximal polydisk P , we have σ(z1; z2, · · · , zr) = s′(0)z1 and P ′ corresponds to {0} ×∆r−1.
We call such a function σ a special function. The existence of a special function is a property
of the pair (P, P ′) alone, and we say that the special function σ is adapted to (P, P ′). We
say that a pair (P, P ′) is generic if and only if (P, P ′, α) is generic for some α (and hence for
any α). What we have proven is that for a generic pair (P, P ′) there exists a special function
adapted to (P, P ′).

s′(0) can be related to the constant c in the identity F ∗κ ≡ cĝ for the Carathéodory
metric as given in the Finsler Metric Rigidity Theorem. Here all metrics will be applied to the
covering domain Ω. We claim that, if ε > 0 is sufficiently small, then there exists a constant
a > 0 such that for any choice of generic pair (P, P ′), we have |s′(0)| ≥ a. (Obviously |s′(0)|
is bounded from above independent of (P, P ′), from Cauchy estimates.) Let θ be an extremal
function for F = F ∗H at o ∈ P ′ adapted to α = ∂

∂z1
. Then ‖α‖e(F) ≥ ‖α‖θ by definition.

On the other hand, by the sub-mean value inequality, ‖α‖θ ≥ ‖α‖F∗κ since θ is an extremal
function adapted to α. By Cauchy estimates for second derivatives we can choose ε > 0
sufficiently small such that |t′(z1) − t′(0)| < c

2 for any holomorphic function t : ∆α → ∆
and any (z1; o) ∈ Sα,ε. If |s′(0)| < c

2 we will have |s′(z1)| < c, whenever (z1; o) ∈ Sα,ε,
contradicting the estimate ‖α‖e(F) ≥ ‖α‖F∗κ = c, as claimed.

From the lower bound |s′(0)| > a and taking limits we conclude that for every pair
(P, P ′) there is a special function σ ∈ F . When P and a base point x ∈ P are given,
the latter statement is valid for P ′ being any of the (r − 1)-dimensional polydisk Pk ⊂ P

corresponding to setting zk = 0 for some some k, 1 ≤ k ≤ r. As in the proof of Theorem 1’
in the cocompact case for polydisks we conclude that F |P separates points for any maximal
polydisk P ⊂ Ω. Hence F : Ω → Ñ separates points. Since f : X → N is an immersion, we
have proven that F : Ω → Ñ is an embedding. The proof of Theorem 1 for the cocompact
case is complete. ¤

Remarks. The last part of the proof reveals a subtle role played by metric rigidity. For
instance, there may exist a maximal polydisk P ⊂ Ω such that π(P ) ⊂ X is a reducible
quotient of the polydisk, in which the argument that F separates points on P cannot be
applied directly. Metric rigidity enables us to work with generic maximal polydisks and pass
to limits.

Proof of Theorem 1’ in the cocompact case. Since Moore’s Ergodicity Theorem applies to the
case of irreducible lattices and the Polydisk Theorem also applies to reducible domains, the
proof of Theorem 1 actually applies to give a proof of Theorem 1’.

§4 The Embedding Theorem for arithmetic varieties of rank ≥ 2 and proofs of
other results

(4.1) We are ready to complete the proof of the Embedding Theorem by extending the
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argument for all torsion-free irreducible lattices Γ ⊂ Aut(Ω), i.e., to include the case where
X := Ω/Γ is noncompact and of finite volume with respect to the Kähler-Einstein metric.
The Hermitian metric rigidity for quotient manifolds of finite volume was established in Mok
[M1] under a boundedness assumption and in To [To] in full generality. Here we will need
an adaptation of Mok [M1] to the case of continuous complex Finsler metrics defined on
S satisfying the boundedness assumption which are however only partially of nonpositive
curvature as in Proposition 6. The proof of Finsler metric rigidity as stated in (1.1) in the
cocompact case relied on nonpositivity of curvatures. In our case, the use of full nonpositivity
of curvature can be replaced by the property that our complex Finsler metrics on L|S are
actually uniformly Lipschitz. More precisely, we have

Lemma 5. Let Ω be a bounded symmetric domain of rank ≥ 2, Γ ⊂ Aut(Ω) be a torsion-free
irreducible lattice, X := Ω/Γ, f : X → N be a holomorphic mapping into a complex manifold
N , and F : Ω → Ñ be its lifting to universal covers. Let κ be the Carathéodory pseudometric
on Ñ , and e(F) be the continuous Hermitian pseudometric on Ω defined on L|SΩ as in (3.2),
and denote by the same symbols the Hermitian metrics obtained by descending to X = Ω/Γ.
Define v, u : S → R, v, u ≥ 0, by f∗κ + ĝ = ev ĝ, e(F) + ĝ = euĝ. Denote by ω

KE
the Kähler

form of the canonical Kähler-Einstein metric g on X, π : S → X the canonical projection,
and by ν the Kähler form on S given by ν = π∗ωKE − c1(L, ĝ). Then, v, u : S → R; v, u ≥ 0;
are bounded and uniformly Lipschitz, i.e., dv and du are locally bounded 1-forms such that
for some positive constant C; ‖dv‖g̃, ‖du‖g̃ ≤ C almost everywhere on S.

Proof. Obvious from Cauchy estimates on second derivatives for holomorphic functions s :
Ω → ∆, s ∈ F = F ∗H. ¤

From Lemma 5 we have the following partial analogue of Proposition 5 for complete
Kähler manifolds of finite volume.

Proposition 5’. Let (Z, ω) be an m-dimensional complete Kähler manifold of finite volume,
and θ be a smooth closed nonnegative (1,1)-form on Z, bounded with respect to ω, such that
Ker(θ) is of constant rank q > 0 everywhere on Z. Denote by K the foliation on Z with
holomorphic leaves defined by the distribution Re(Ker(θ)). Let u : Z → R be a uniformly
Lipschitz function whose restriction to every leaf L of the foliation K is plurisubharmonic.
Then, u is constant on each leaf L. If in addition there is a dense leaf of K, then u is constant
on Z.

Proof. Fix a base point z0 ∈ Z and denote by BR the geodesic ball centred at z0 of radius
R. For R > 0 there exists a smooth function ρ

R
such that ρ

R
≡ 1 on BR, ρ

R
≡ 0 on BR+1

and such that ‖dρ
R
‖ ≤ 2, where norms are measured in terms of the Kähler form ω on Z.

Define on Z the currents

TR =
√−1ρ

R
∂u ∧ θm−q ∧ ωq−1 , SR = dTR .

Then,
SR =

√−1∂ρR ∧ ∂u ∧ θm−q ∧ ωq−1 +
√−1ρR∂∂u ∧ θm−q ∧ ωq−1 .
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SR is a d-closed (m,m)-current with compact support. Since u is Lipschitz, and u is plurisub-
harmonic on leaves L of K, coefficients of SR are complex-valued measures. We have

0 = SR(1) =
∫

Z

√−1∂ρ
R
∧ ∂u ∧ θm−q ∧ ωq−1(∗)

+
∫

Z

ρ
R

√−1∂∂u ∧ θm−q ∧ ωq−1 ,

where
√−1∂∂u ∧ θm−q ∧ ωq−1 := S is a nonnegative measure. Thus, by (∗)

S(BR) ≤
∫

Z

ρ
R

√−1∂∂u ∧ θm−q ∧ ωq−1

≤ Const.

∫

Supp(∂ρ
R

)

‖∂u‖

≤ Const.× V olume(Z −BR) .

Since (Z, ω) is of finite volume, letting R →∞ we conclude that

lim
R→∞

S(BR) = 0 ; hence S ≡ 0 ,

since S is a nonnegative measure. Integrating by parts we have

0 =
∫

Z

−√−1ρ
R
u∂∂u ∧ θm−q ∧ ωq−1

=
∫

Z

ρ
R

√−1∂u ∧ ∂u ∧ θm−q ∧ ωq−1 +
∫

Z

√−1u∂ρ
R
∧ ∂u ∧ θm−q ∧ ωq−1 ,

so that ∫

BR

√−1∂u ∧ ∂u ∧ θm−q ∧ ωq−1 ≤ Const.× V olume(Supp(∂ρ
R
)) ,

as both u and ‖∂u‖ are bounded. Since V olume(Z, ω) < ∞, we conclude by letting R →∞
that √−1∂u ∧ ∂u ∧ θm−q ∧ ωq−1 ≡ 0 ,

which means precisely that u is constant on almost every local leaf Lo of K. Since the
Lipschitz function u is continuous, u is constant on all leaves L of K. Obviously u is constant
on Z if there exists a dense leaf L of K. ¤

In the same notations as in Proposition 5’, we have

Proposition 6’. There exists some constants c1, c2 > 0 such that

f∗κ ≡ c1ĝ and e(F) ≡ c2ĝ on L|S .

Proof. The proof of Proposition 6 applies verbatim as a consequence of the metric rigidity
result Proposition 5’. ¤
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Finally, we have

Proof of the Embedding Theorem (Theorems 1 and 1’). Given Proposition 5’ and 6’, the
analogues of Proposition 3 and 4 in (3.1) follow. The rest of the proof of Theorem 1 is
identical to the cocompact case. Theorem 1’ follows from an obvious reformulation of the
metric rigidity result Proposition 5’. ¤

(4.2) It remains to complete the proofs of Theorems 2-5 and Corollary 1.

Proof of Theorem 2. Since D is a bounded domain in a Stein manifold, and F : Ω → D

is nonconstant, there exists some bounded holomorphic function h on D such that h|F (Ω) is
nonconstant. Thus, for Ω irreducible, F : Ω → D is a holomorphic embedding, by Theorem 1.
In the locally reducible case, we can conclude that F : Ω → D is an embedding by Theorem
1’, provided that f has been shown to be an immersion at a generic point. By the proof of
Theorem 1’, if f : X → N is not generically an immersion, then there exists some nontrivial
canonical projection ρI : Ω → Ωi(1) × · · · × Ωi(p) such that F is constant on the fibers L of
πI . It follows that f : X → N is constant on π(L) for the canonical projection π : Ω → X.
By the Density Lemma in (2.1), there exists some fiber L ⊂ Ω such that π(L) is dense in X,
so that f is constant on X, a plain contradiction. Thus, Theorem 1’ applies to give a proof
of Theorem 2 in the locally reducible case, as desired. ¤

Proof of Theorem 3. In the proof of Theorem 1 we were working on F = F ∗H on the
irreducible bounded symmetric domain Ω. For instance, Finsler metric rigidity applies even
when N is singular to show that df(α) 6= 0 for any characteristic vector α on X. Here N

can be locally embedded as a complex-analytic subvariety of a domain in some Cm, so that
f can be locally regarded as a vector-valued holomorphic function, and the statement that
df(α) 6= 0 carries a meaning independent of the choice of local holomorphic embeddings. The
assumption that N is nonsingular is inessential in the proof of Theorem 1 and Theorem 3
follows as a special case of the generalization of Theorem 1 to possibly singular target complex
spaces N . ¤

A counter-example to the analogue of Theorem 3 in the locally reducible case. For the lo-
cally reducible case the proof of Theorem 1’ only implies that at any point p ∈ Ñ bounded
holomorphic functions on Ñ cannot give local coordinates at p. It is in fact possible that
there exist nontrivial bounded holomorphic functions on Ñ . We give here an example in the
case of X = ∆2/Γ, with Γ ⊂ Aut(∆)2 a torsion-free irreducible lattice. Pick any x ∈ X.
Lifting x to the origin o ∈ ∆2 we identify some open neighborhood U of x ∈ X with an
open neighborhood of o ∈ ∆2, to be denoted also by U . Let V ⊂ U be a relatively open
subset, o ∈ V . We have X = U ∪ (X − V ). Consider now the holomorphic map ρ : C2 → C4

defined by ρ(z1, z2) = (z1, z
2
2 , z3

2 , z1z2). Clearly ρ maps U onto an open subset U ′ = ρ(U)
of an irreducible affine subvariety of C4, such that ρ|U : U → U ′ is a normalization and a
homeomorphism, and o ∈ U ′ is the unique singular point of U ′, which is non-normal. Define
a new complex space N by piecing together U ′ and X − V , where y ∈ U ′ and w ∈ X − V

are identified if and only if y = ρ(w). We have then naturally a complex-analytic homeomor-
phism ν : X → N , which is a normalization. Since ν : X → N is a homeomorphism, we have
canonically ν∗ : Γ = π1(X) ∼= π1(N). Clearly any bounded holomorphic function h on the
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universal cover ∆2 of X of the form h(z1, z2) = h(z1) descends to a bounded holomorphic
function on the universal cover Ñ of N . (We note that the proof of Theorem 1’ implies
that these are the only possible bounded holomorphic functions on Ñ .) This furnishes a
counter-example to the analogue of Theorem 4 for the locally reducible case. ¤

Proof of Theorem 4. Since f is surjective, dim(Z) ≤ dim(X). We claim that f is finite.
Otherwise there exists a positive-dimensional irreducible subvariety S ⊂ X such that f maps
S to a point. Then the image of π1(S) in π1(X) = Γ is trivial, and S lifts to a compact
subvariety of the covering bounded domain Ω, which is impossible. We note furthermore that
f∗(Γ) ⊂ π1(Z) is a subgroup of finite index. Suppose otherwise and write τ : Z ′ → Z for
the intermediate covering of Z corresponding to the subgroup f∗(Γ). Then, the holomorphic
mapping f : X → Z lifts to f ′ : X → Z ′. Since f and hence f ′ are proper, f ′(X) ⊂ Z ′ is
a subvariety, and must therefore agree with Z as f ′ is finite and dim(Z) = dim(X). This
contradicts with the fact that τ : Z ′ → Z has infinite fibers.

We will use an algebraic result of Margulis [Ma, Chapter VIII, Theorem A, p.258ff.],
according to which any normal subgroup of Γ is either finite or of finite index in Γ. To
prove Theorem 4 suppose f∗(Γ) ⊂ π1(Z) is not finite. Then, Ker(f∗) ⊂ Γ must be finite, by
Margulis [Ma, loc. cit.]. Let F : Ω → Z̃ be the lifting of f to universal covering spaces. Since
f : X → Z is finite, proper and surjective, and Ker(f∗) ⊂ Γ is also finite, F : Ω → Z̃ is a finite
proper surjective map. It follows that, given any bounded holomorphic function θ on Ω, one
can form symmetric polynomials over the fibers of F : Ω → Z̃ to get bounded holomorphic
functions on Ω which are constant on fibers of F . Since Z is assumed normal, these bounded
holomorphic functions descend to bounded holomorphic functions on the normal complex
space Z̃. Obviously one can choose θ to obtain this way nontrivial holomorphic functions
on Z̃. By the generalization of Theorem 1 to possibly singular target complex spaces N

(cf. Proof of Theorem 3), it follows that F : Ω → Z̃ is a biholomorphism. In particular,
f : X → Z is an unramified covering map, as desired. ¤

Proof of Corollary 1. For the irreducible lattice Γ∗ ⊂ Aut(Ω) with nontrivial torsion elements,
there exists a torsion-free subgroup Γ ⊂ Γ∗ of finite index. Consider the canonical map
f : X = Ω/Γ∗ → Ω/Γ = Z, which is finite, proper and surjective. We give Z the structure
of a normal complex space but note that the statement of Corollary 1 is independent of the
choice of complex structure on Z, which is uniquely determined as a topological space. By
Theorem 3, either π1(Z) is finite, or f : X → Z is an unramified covering map. But the
latter cannot occur, since the lifting F : Ω → Z̃ to universal covering spaces fails to be a local
embedding at any point x ∈ Ω fixed by some nontrivial torsion element of Γ. In other words,
π1(Z) is finite, as desired. ¤

Finally, Theorem 5 follows immediately from the proof of Theorem 1. We note also that
there is an obvious analogue of Theorem 5 for the locally reducible case, which we omit.
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