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Abstract.
Over the years the author has been interested in rigidity problems on bounded symmetric domains
of rank ≥ 2. In this article we give an overview on rigidity problems arising from holomorphic
mappings either on bounded symmetric domains of rank ≥ 2 or on their finite-volume quotient
manifolds into complex manifolds, placing the focus on recent developments. The article highlights
the use of some fundamental elements in the theory, including ergodicity, bounded holomorphic
functions and geometric structures. Especially, bounded holomorphic functions play an important
role linking up with the other key elements of the theory. On the one hand, certain notions of
extremal bounded holomorphic functions are essential for the proof of rigidity results arising from
integral formulas on Chern forms and involving the use of Ergodic Theory. These results enlarge the
scope of study of rigidity phenomena on holomorphic maps equivariant with respect to a lattice,
allowing the target manifolds to be arbitrary bounded domains. On the other hand, integral
representations of boundary values of bounded holomorphic functions, used in conjunction with
Ergodic Theory, allow us to give a function-theoretic proof of the same results with strengthened
applications. At the same time, the same tool in Harmonic Analysis allows us to recover proper
holomorphic maps from admissible limits on boundary components, and the approach is now linked
in rigidity problems with the study of geometric structures, more specifically with the geometric
theory of varieties of minimal rational tangents (VMRTs) that the author has been developing
with J.-M. Hwang in the study of uniruled projective manifolds in Algebraic Geometry.
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Over the years the author has been interested in rigidity problems on bounded sym-
metric domains of rank ≥ 2. There are a number of different sources of such problems,
and we will specialize in this article to give an overview on rigidity problems arising from
holomorphic mappings on bounded symmetric domains of rank ≥ 2 into complex manifolds.
Such problems arise from different contexts, when hypotheses are imposed either on the
target complex manifolds or on the holomorphic mapping or on both. To start with, the
author proved in [Mo1, 1987] a Hermitian metric rigidity theorem on quotients of bounded
symmetric domains of rank ≥ 2 by torsion-free irreducible lattices, deriving thereby rigidity
results of holomorphic mappings of such quotient manifolds into Kähler manifolds of nonpos-
itive bisectional curvature, showing in the locally irreducible case that they are necessarily
totally-geodesic embeddings isometric up to scaling constants. The crux of the argument
is an integral formula arising from Chern forms on certain holomorphic fiber subbundles of
the projectized tangent bundle and the monotonicity of curvature in the sense of Griffiths
on Hermitian holomorphic vector subbundles. In Mok [Mo2, 1989], a modified proof of Her-
mitian metric rigidity is obtained by means of the integral formula and Moore’s Ergodicity

*Research partially supported by a CERG grant of the Research Grants Council of Hong Kong.

1



Theorem. This proof is generalized in Mok ([Mo4, 2002]) to the case of continuous complex
Finsler metrics, and in [Mo5, 2004] for complex Finsler metrics of the Lipschitz class which
are only defined for certain types of vectors called minimal characteristic vectors. The latter
is applied to the study of holomorphic mappings on a bounded symmetric domain Ω of rank
≥ 2 equivariant with respect to an irreducible lattice Γ into a complex manifold Ñ admit-
ting enough nonconstant holomorphic functions, thereby showing in the locally irreducible
case that any such Γ-equivariant holomorphic mapping must necessarily be a holomorphic
embedding. Here we have brought in a new element in the study of rigidity of holomorphic
mappings on bounded symmetric domains of rank ≥ 2, viz., the use of bounded holomorphic
functions, specifically those that are extremal with respect to complex Finsler pseudometrics
constructed on the bounded symmetric domain Ω by means of the Γ-equivariant holomorphic
mapping F : Ω → Ñ and bounded holomorphic functions on Ñ . Here in the proof Moore’s
Ergodicity Theorem is brought into use in a much stronger form when we study extremal
functions, in that we have to examine the action of Γ on a certain space of maximal polydisks
equipped some refined structure, and the density of the Γ-orbit of almost every point in the
moduli space, which follows from ergodicity, is used in an essential way in conjunction with
the Finsler metric rigidity theorem to ascertain the injectivity of the holomorphic mapping
by making use of extremal functions.

There is another element in the study of bounded holomorphic functions on bounded
symmetric domains from the point of view of Harmonic Analysis, viz., its boundary val-
ues, specifically the existence of radial and more generally non-tangential limits of bounded
holomorphic functions in various forms. We are now able to give a function-theoretic proof
([Mo9]) of the main result of [Mo5]. Ergodicity is used again in the process of taking non-
tangential limits. Given a nonconstant Γ-equivariant mapping F : Ω → Ñ , the function-
theoretic proof allows us actually to extend the inverse map F−1 : F (Ω) → Ω to a bounded
holomorphic map into the Euclidean space. There are interesting geometric ramifications of
the strengthened Embedding Theorem. In fact, in the event that F arises from a holomor-
phic map f : X := Ω/Γ → N := Ñ/Γ′ between compact complex manifolds and that f

induces an isomorphism on fundamental groups, we deduce a fibration theorem of N over
X without the hypothesis that N is Kähler (while assuming as before that Ñ has enough
bounded holomorphic functions). A further application has to do with holomorphic mappings
f : X := Ω/Γ → D/Γ′ := N , in the event that X is of finite volume, D b Z is a bounded
domain of some Stein manifold, and N := D/Γ′ is of finite intrinsic measure with respect
to the Kobayashi-Royden volume form. We prove that f is necessarily a biholomorphic map
provided that f induces an isomorphism on fundamental groups.

There is another type of rigidity problems related to bounded symmetric domains in
which, in place of studying holomorphic mappings equivariant with respect to some represen-
tation of a lattice one imposes a condition of properness on the mapping. To deal with such
problems an important approach is again to consider boundary values of bounded holomor-
phic functions. This approach started with the work of Mok-Tsai ([MT], 1992) in which we
proved among other things that any bounded convex realization of an irreducible bounded
symmetric domain of rank ≥ 2 is equivalent to the Harish-Chandra realization up to an
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affine linear transformation. The approach applies to the study of proper holomorphic maps
between irreducible bounded symmetric domains of rank ≥ 2. In particular, it constitutes
the starting point of Tsai’s result ([Ts], 1993) confirming a conjecture of the author’s ([Mo2],
1989) according to which any proper holomorphic map f : Ω → Ω′ from an irreducible
bounded symmetric domain Ω of rank r ≥ 2 to Ω′ is necessarily totally geodesic provided
that the target domain is of rank ≤ r. A proof of Tsai’s result which avoids the use of
Kähler geometry and Lie theory as in [Ts] would be desirable, as that would be applicable
to the study of other bounded domains such as the bounded homogeneous domains defined
by Pyatetskii-Shapiro [P-S]. In this regard irreducible bounded symmetric domains of rank
≥ 2 carry geometric structures, and as such rigidity problems on proper holomorphic maps
between them are intimately linked to the geometric theory of uniruled projective manifolds
basing on the study of varieties of minimal rational tangents, a programme undertaken by
Hwang-Mok (cf. [HM2, 3, 4]). This link is realized by identifying a bounded symmetric do-
main as a domain in its compact dual, e.g., a Type-I domain as a domain on the Grassmann
manifold. Harmonic Analysis on bounded symmetric domains leads to differential constraints
which translate the rigidity problem to a question of characterizing non-equidimensional lo-
cal holomorphic maps which respect VMRTs. As an illustration to the use of the geometric
theory of VMRTs to study proper holomorphic maps, we have given in [Mo7] a new proof of a
local characterization of standard holomorphic embeddings between Grassmann manifolds of
rank ≥ 2. To start with, this proof relies on a method of analytic continuation along minimal
rational curves established in the case of equidimensional maps in [HM2, 3]. The latter can
be generalized to the non-equidimensional and Hermitian symmetric case by a method of
Mok [Mo3]. Recently, we are able to extend the method of analytic continuation for local
VMRT-respecting non-equidimensional holomorphic maps in a general setting applicable to
most Fano manifolds of Picard number 1 (Hong-Mok [HoM]). In view of this, it is interesting
to revisit the question of characterization of non-equidimensional proper holomorphic maps
between bounded domains carrying interesting geometric structures inherited for instance
from some quasi-projective dual manifolds.

The main purpose of the current article is to give a survey on current topics on rigidity
related to holomorphic mappings. We adopt a style that is mostly expository and informal,
and proofs are only given on an occasional basis, mostly in a schematic form for illustration
or motivation. The article serves to relate to each other a variety of results pertaining to the
study of rigidity problems of bounded symmetric domains, and to highlight the use of some
fundamental elements in the theory, including ergodicity, bounded holomorphic functions,
and geometric structures. Especially, the use of bounded holomorphic functions serves as a
link between these essential elements in the problem. On the one hand, bounded holomorphic
functions extremal with respect to canonical complex Finsler metrics play an important role
in [Mo5] which enlarged the scope of study of rigidity problems for Γ-equivariant holomorphic
maps, allowing the target domains to be arbitrary bounded domains. On the other hand,
integral representations of boundary values of bounded holomorphic functions allow us to
give a function-theoretic proof of the same results with strengthened applications, and the
approach of recovering proper holomorphic maps from their boundary values as initiated in
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[MT] is now linked with geometric structures, more generally with the geometric theory of
VMRTs.

Table of Contents

§1 Metric rigidity, ergodicity and extremal bounded holomorphic functions

§2 Extending the inverse of a holomorphic embedding by means of boundary values of
bounded holomorphic functions and ergodicity

§3 Boundary values of proper holomorphic maps and geometric structures

§1 Metric rigidity, ergodicity and extremal bounded holomorphic functions

(1.1) In [Mo1, 1987] the author proved a Hermitian metric rigidity theorem on quotients of
bounded symmetric domains of rank ≥ 2 by torsion-free irreducible lattices, deriving thereby
rigidity results of holomorphic mappings of such quotient manifolds into Kähler manifolds
of nonpositive bisectional curvature. In the case of a compact quotient X of an irreducible
bounded symmetric domain Ω of rank ≥ 2, X = Ω/Γ, where Γ ⊂ Aut(Ω) is a torsion-free
cocompact lattice, we proved that the Kähler-Einstein metric g on X is the unique Hermitian
metric of nonpositive curvature in the sense of Griffiths, a fortiori the unique Kähler metric
of nonpositive holomorphic bisectional curvature. It follows from the Gauss equations for
Kähler submanifolds that any nonconstant holomorphic mapping into a Kähler manifold
(N,h) is up to a normalizing constant necessarily a totally geodesic isometric immersion.
Hermitian metric rigidity in the case of finite volume quotients was established in [Mo1]
under a boundedness assumption, and it was completed by To ([To], 1989) in which the
boundedness assumption is removed by a study of the asymptotic behavior of Hermitian
metrics of nonpositive curvature in terms of the Satake-Baily-Borel compactification.

More recently, with geometric applications in mind the author has revisited the circle of
problems revolving around metric rigidity for finite volume quotients of bounded symmetric
domains of rank ≥ 2, and established in [Mo4] (2002) and [Mo5] (2004) generalizations of Her-
mitian metric rigidity to the context of complex Finsler metrics. A smooth complex Finsler
metric h on a complex manifold M is equivalently a Hermitian metric ĥ on its tautological
line bundle τ : LM → PTM . We say that h is of nonpositive curvature to mean that the
Hermitian holomorphic line bundle (LM , ĥ) is of nonpositive curvature. In applications we
will be dealing with complex Finsler metrics that need not be smooth, but are continuous
and may satisfy some additional property, for instance belonging to the Lipschitz class. For
continuous complex Finsler metrics we say that (M,h) is of nonpositive curvautre to mean
that the curvature of (LM , ĥ) is nonpositive in the sense of currents. In other words, if the
length of a local holomorphic basis of τ : LM → M is given by eu, then u is a continuous
plurisubharmonic function. For the formulations of generalizations of Hermitian metric rigid-
ity, we start with [Mo4], in which metric rigidity is established for continuous complex Finsler
metrics of nonpositive curvature. For the formulation, on an irreducible bounded symmetric
domain (of rank r) there is the notion of a minimal disk, and a minimal characteristic vector
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is by definition a non-zero (1,0) vector tangent to a minimal disk. In differential-geometric
terms, if we normalize the Kähler-Einstein metric so that holomorphic sectional curvatures
vary between − 1

r and −1, then a non-zero (1,0) vector η is a minimal characteristic vector if
and only if the holomorphic sectional curvature in the direction of η is −1. We have

Theorem 1 (Finsler metric rigidity). Let Ω be a bounded symmetric domain of rank ≥ 2.
Let Γ ⊂ Aut(Ω) be a torsion-free irreducible lattice, X := Ω/Γ. Let g be the canonical Kähler-
Einstein metric on X, and h be a continuous complex Finsler metric on X of nonpositive
curvature. Denote by ‖ · ‖g resp. ‖ · ‖h lengths of vectors measured with respect to g resp. h.
Let Ω = Ω1×· · ·×Ωm be the decomposition of Ω into irreducible factors, T (Ω) = T1⊕· · ·⊕Tm

be the corresponding direct sum decomposition of the holomorphic tangent bundle. Then, there
exist positive constants c1, . . . , cm such that for any η ∈ T (X) that can be lifted to a minimal
characteristic vector belonging to Tk; 1 ≤ k ≤ m; we have ‖η‖h = ck‖η‖g.

Here uniqueness of the complex Finsler metric holds true only for minimal characteristic
vectors. We note that Hermitian metric rigidity follows from Finsler metric rigidity from
a polarization argument (Mok [Mo6, (2.1), Proof of Theorem 4]). In this section taking
Theorem 1 (Finsler metric rigidity) as a point of departure we will describe how ergodicity
and the use of bounded holomorphic functions enter into the study of rigidity problems on
bounded symmetric domains. As to the details of the various rigidity results we refer the
readers to Mok [Mo1, 2, 4, 5, 6], To [To], and especially to the recent survey article [Mo6].
Our use of Ergodic Theory is in the context of semisimple Lie groups, for which the standard
reference is Zimmer [Zi].

Let (X, µ) be a σ-finite measure space and G be a group acting on (X, µ) as measure-
preserving transformations. In other words, for any µ-measurable subset S ⊂ X we have
µ(γ(S)) = µ(S) for any γ ∈ G. We say that G acts ergodically on (X, µ) if and only if every
G-invariant subset S of X is either of zero or full measure with respect to µ. Here we say
that S ⊂ X is of full measure if and only if X− S is of measure zero. A µ-measurable subset
of zero measure is also called a (µ−)null subset.

The context of the notion of ergodic actions can be enlarged by relaxing the requirement
that G acts as measure-preserving transformations. In fact, in place of considering a single
measure µ, we can consider an equivalence class of measures {µ} in the following sense. Let
X be a Borel space, i.e., X is equipped with a fixed σ-algebra B of subsets. Then, two
σ-finite measures µ and µ′ on (X,B) are said to be equivalent if and only if they have the
same null subsets. In what follows the σ-algebra B is understood, and an equivalence class
of measures on X is referred to as a measure class. We can now enlarge the notion of ergodic
actions to the context (X, {µ}) of a Borel space equipped with a measure class {µ}. Let G

be a group acting on (X, {µ}). Taking µ as a representative of the measure class, we say
that {µ} is quasi-invariant under the action of G if and only if the set of µ-null subsets is
preserved under the action of G. In other words, given any Borel subset S ⊂ X and any
γ ∈ G, µ(S) = 0 if and only if µ(γ(S)) = 0. When X comes equipped with a natural measure
class the reference to {µ} is dropped. This is the case when X = G is a semisimple real Lie
group, which is equipped with a Haar measure dλG unique up to a scaling constant, or when
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X = G/H for H ⊂ G denoting some closed subgroup, in which case dλG induces a unique
measure class {µ} which is quasi-invariant under the action of G.

In our study of rigidity problems on bounded symmetric domains our focus is on lattices
Γ ⊂ G of semisimple real Lie groups G. We consider the action of Γ on G-homogeneous
spaces G/H, where H ⊂ G is a closed subgroup. The primary source of the use of Ergodic
Theory is Moore’s Ergodicity Theorem, as follows.

Moore’s Ergodicity Theorem (cf. Zimmer [Zi, Thm.(2.2.6), p.19]). Let G be a semisimple
real Lie group and Γ be an irreducible lattice on G, i.e., Γ \ G is of finite volume in the left
invariant Haar measure. Suppose H ⊂ G is a closed subgroup. Consider the action of H on
Γ\G by multiplication on the right. Then, H acts ergodically on Γ\G if and only if H is
noncompact.

We are led to introduce the use of Ergodic Theory in the study of rigidity problems on
bounded symmetric domains in the following context. Let Ω be a bounded symmetric domain,
G := Aut(Ω), K ⊂ G be the isotropy at 0, Ω = G/K, and Γ ⊂ G be an irreducible lattice.
We consider the classification problem of a certain geometric object on G, for example, that
of a certain type of totally geodesic complex submanifolds, which leads to a moduli space in
the form of a G-homogenenous G/H in which H ⊂ G is a closed subgroup. Descending to
X = Γ\G/K the moduli space for the same problem on X is given by Γ\G/H as a set. To
relate the left action of Γ on G/H to the right action of H on Γ\G we have by a special case
of [Zi, Corollary 2.2.3, p.18]

Lemma 1. Let G be a connected real Lie group and S1, S2 ⊂ G be closed subgroups. Then S1

acts ergodically on the left on G/S2 if and only if S2 acts ergodically on the right on S1 \G.

Applying Lemma 1 to Moore’s Ergodicity Theorem we conclude

Corollary. Let G be a semisimple real Lie group and Γ be an irreducible lattice on G.
Consider the action of Γ on G/H by multiplication on the left. Then, Γ acts ergodically on
G/H if and only if H is noncompact.

The first instance of our use of Moore’s Ergodicity Theorem is in an alternative proof
in of Hermitian metric rigidity in [Mo2, (3.1), p.113ff.]. The proof there gives Finsler metric
rigidity as in Theorem 1 in the special case of smooth complex Finsler metrics of nonpositive
curvature. We will sketch the main argument for the case where Ω is irreducible and of
rank ≥ 2, and refer the reader to [Mo4] and to [Mo5] for generalizations to the context of
continuous complex Finsler metrics, and especially to [Mo6, §2, p.212ff.] for a discussion of
the geometric ideas involved.

(1.2) For the ensuing discussion it helps to have in mind an example of an irreducible bounded
symmetric domain. We use the example of bounded symmetric domains of Type I, which are
dual to Grassmannians. Let p and q be positive integers. Fix a complex vector space W of
dimension p + q and consider the set of p-planes in W . This gives the Grassmann manifold
Gr(p,W ) also denoted as G(p, q). Fix a Hermitian bilinear form H := Hp,q of signature (p, q)
on W and consider on G(p, q) the open subset D(p, q) of p-planes Π ⊂ W such that H|Π
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is positive definite. ¿From linear algebra on Hermitian forms SU(p, q) acts transitively on
D(p, q) while trivially the compact real form SU(p + q) acts transitively on G(p, q), with the
same isotropy subgroup at the identity given by S(U(p)× U(q)). The embedding D(p, q) ⊂
G(p, q) is the Borel embedding between a dual pair of Hermitian symmetric spaces, of rank
min(p, q).

Identifying G(p, q) as a projective submanifold by means of the Plücker embedding, a
(projective) line ` on G(p, q) passing through a point [E] ∈ G(p, q) is defined by the choice
of a (p − 1)-dimensional vector subspace E′ ⊂ E and a (p + 1)-dimensional vector subspace
E′′ ⊂ W containing E. The line ` consists of all p-planes Π such that E′ ⊂ Π ⊂ E′′.
The orthogonal complement Ψ of E′ in E′′ with respect to H gives a 2-plane such that
H|Ψ is of signature (1,1). From this description, the intersection ` ∩ D(p, q) is the set of
1-dimensional subspaces Cη of Ψ such that H(η, η) > 0. Thus, ` ∩ D(p, q) ∼= D(1, 1) ∼= ∆,
and `∩D(p, q) ⊂ ` gives the Borel embedding ∆ ⊂ P1. We call ` ⊂ G(p, q) a minimal rational
curve, its intersection with D(p, q) a minimal disk.

In terms of the usual covering of the Grassmannian by a finite number of Euclidean cells
consisting of p-by-q matrices, the open subset D(p, q) ⊂ G(p, q), which consists of p-planes
Π such that H|Π > 0, is defined by the matrix inequality I − Z

t
Z > 0. In terms of the

coordinates of the matrix Z, D(p, q) is a bounded domain on the vector space M(p, q) of
p-by-q matrices with complex entries, and its symmetry at the origin 0 ∈ M(p, q) is given by
the involution σ(Z) = −Z. D(p, q) ⊂ M(p, q) is the Harish-Chandra embedding. The Kähler
form of the Kähler-Einstein metric on D(p, q) is given by

√−1∂∂ log det
(
I − Z

t
Z

)
, that on

the the compact dual G(p, q) by
√−1∂∂ log det

(
I+Z

t
Z

)
. ¿From this description it is easy to

check that the Borel embedding ∆ ⊂ P1 gives a totally geodesic complex curve ∆ ⊂ D(p, q)
holomorphically isometric to the Poincaré metric, and a totally geodesic curve P1 ⊂ G(p, q)
holomorphically isometric to the Riemann sphere equipped with the spherical metric. Only
metrics on D(p, q) concern us here. ¿From the description of the Kähler-Einstein metric we
see that when D(p, q) is of rank at least 2 we have a holomorphic isometric embedding of
D(1, 1)×D(p− 1, q − 1) into D(p, q), D(1, 1) ∼= ∆.

For an irreducible bounded symmetric domain Ω of rank ≥ 2 and complex dimension n,
embedded into its compact dual M by the Borel Embedding Ω ⊂ M , there is a geometric
picture analogous to preceding description of D(p, q) ⊂ G(p, q), although to describe it in
general it would require a fair amount of Lie Theory. In particular, we have the Harish-
Chandra embedding in conjunction with the Borel embedding, given by Ω ⊂ Cn ⊂ M . In
standard notations write the dual pair as Ω = G/K, M = Gc/K. We have M = GC/P

as a rational homogeneous manifold, where GC is the complexification of G and of Gc, and
P ⊂ GC is a parabolic subgroup. Let π : PTM → M be the projectivized tangent bundle of
M . Consider now the subset M⊂ PTM of projectivizations of tangents to minimal rational
curves. Then, π|M(M) : M(M) → M is a holomorphic bundle of projective submanifolds
homogeneous under the action of GC, with the fiber M0 homogeneous under the action
of the compact Lie group K and hence under the complexification KC of K, since M0 is
holomorphic. The intersection M(Ω) := M∩PTΩ is holomorphic with the fiber homogeneous
under K ⊂ G, so that π|M(Ω) : M(Ω) → Ω is homogeneous under G. In analogy to D(p, q),
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there exists an irreducible bounded symmetric domain Ω′ of rank = rank(Ω) − 1 for which
the following holds. Given any minimal disk D ⊂ Ω, there is a totally geodesic complex
submanifold Z ⊂ Ω containing D such that Z is holomorphically isometric to ∆ × Ω′ and
such that D corresponds to a direct factor ∆ × {w0} for some x0 ∈ Ω′. Let now x ∈ S and
[α] ∈ Mx. Let D ⊂ Ω be a minimal disk such that Tx(D) = Cα. Write x = (z0, w0) in
the coordinates of ∆ × Ω′. Then, {z0} × Ω′ lifts to a complex submanifold S[ ⊂ M(Ω) by
assigning to each point (z0, w) ∈ {z0} × Ω′ to

[
∂
∂z

]
lying above (z0, w). From the isometric

product decomposition the vector field ∂
∂z on {z0} × Ω′ is of constant length.

Given a Hermitian metric h on Ω we have an induced Hermitian metric ĥ on the tau-
tological line bundle τ : L → PTΩ. For the canonical (complete) Kähler-Einstein metric g

on Ω, from the description in the last paragraph the Hermitian metric ĝ is flat on L|S[ . We
have a decomposition of M(Ω) into the liftings of such S[ ⊂M(Ω), such that the first Chern
form c1(L, ĝ) vanishes identically on S[. The decomposition of M(Ω) into the disjoint union
of such S[ corresponds in fact to a foliation on M by closed complex submanifolds given by
the integrable distribution Re(Ker(c1(L, ĝ)), noting that −c1(L, ĝ) ≥ 0 on PTΩ since (Ω, g) is
of nonpositive holomorphic bisectional curvature.

(1.3) We return now to Finsler metric rigidity in [(1.1), Theorem 1]. Consider now the quotient
manifold X = Ω/Γ of finite volume with respect to the complete Kähler metric induced from
Ω still to be denoted by g. (Here and henceforth we will often use the same notations for Ω
and for its finite volume quotient X without mentioning it.) A nonzero (1,0)-vector tangent
to a minimal disk is called a minimal characteristic vector, and the bundle π : M(Ω) → Ω the
minimal characteristic bundle ([Mo6, (2.1), p.214ff.]). π : M(Ω) → Ω is homogeneous under
the action of G and, it descends to a locally homogeneous bundle on X to be denoted as M.
Let ν be a Kähler form on the minimal characteristic bundle π : M→ X. For instance, we
may take ν = −c1(L, ĝ) + π∗ω. Let p be the fiber dimension of π : M → X and q be such
that 1 + p + q = n = dimX. Then

∫

M
(−c1(L, ĝ))2n−2q ∧ νq−1 = 0. (1)

In [Mo1] the vanishing of the integral is verified by showing that the integrand vanishes
identically using Harish-Chandra coordinates, which consists of checking that the kernels of
the nonnegative closed (1,1)-form −c1(L, ĝ) on Ω is tangent to M(Ω) at the origin 0. More
conceptually, the latter fact follows from the lifting of S[ as in the last paragraphs. In the
notations there, Z ∼= D × Ω′, Tx(D) = Cα, and S[ is a lifting of {z0} × Ω′ to M(Ω). One
checks easily that S[ is of dimension q, hence of codimension (n + p) − q = 2n − 2q − 1 on
M(Ω) and it is a leaf of the integral distribution N := Re(Ker(c1(L, ĝ)). Let now h be any
Hermitian metric on the tautological line bundle τ : L → PTX . Then, by Stokes’ Theorem

∫

M
−c1(L, h) ∧ (−c1(L, ĝ))2n−2q−1 ∧ νq−1 =

∫

M
(−c1(L, ĝ))2n−2q ∧ νq−1 = 0. (2)

The minimal characteristic bundle M(Ω) is equipped with the smooth foliation N with holo-
morphic leaves. The leaf space L of N is given by G/H for some noncompact closed subgroup
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H ⊂ G. The G-invariant nonnegative (1,1)-form −c1(L, ĝ) induces on L a symplectic form,
equipping the foliated space (M(Ω),F) with a G-invariant tranverse measure dµ ([Mo6,
(2.1), p.215ff.]. By Fubini’s Theorem the integral on the L.H.S. of (2) can be interpreted
as an integral in two steps, first integrating on the local leaves of N , and then against the
local transverse measure dµ. Writing −c1(L, h) = −c1(L, h) +

√−1∂∂u, by the assumption
that (L, h) is of nonpositive curvature it follows that u|L is plurisubharmonic when restricted
to each leaf L of N on M. The integrand on the L.H.S. is now pointwise nonnegative,
and the integral identity forces

√−1∂∂u ∧ (−c1(L, ĝ))2n−2q−1 ∧ νq−1 = 0, in other words,√−1∂∂u|L = 0 for each local leaf L. Multiplying by −u and integrating by parts on M we
conclude that ∫

M

√−1∂u ∧ ∂u ∧ (−c1(L, ĝ))2n−2q−1 ∧ νq−1 = 0. (3)

In other words, u is constant when restricted to each leaf L on M. For the proof of Theorem
1 for X compact, locally irreducible and h smooth, it remains to show that u is constant
on M. Noting that H ⊂ G is noncompact, the constancy of u follows now from Moore’s
Ergodicity Theorem, since otherwise some sub-level set of u defined by {a ≤ u ≤ b]} would
be neither of zero measure nor of full measure. In the case where (X, g) is of finite volume and
where no growth condition is imposed on h, for the justification of integration by part one
has to resort to the use of Satake-Baily-Borel compactifications (To [To]). The generalization
to the irreducible and locally reducible case results from a modification of the proof sketched.
When a local factor, say Ω1, is of rank 1, Ω = Ω1×Ω′, we consider simply the (holomorphic)
foliation on X = Ω/Γ whose lifting to Ω corresponds to the foliation by leaves {x1} × Ω′.
The argument of Finsler metric rigidity remains valid due to global irreducibility, in view of
Moore’s Ergodicity Theorem. Alternatively, one can use the following Density Lemma.

Density Lemma (special case of Raghunathan [Ra, Cor.(5.21), p.86]). Let Ω be a reducible
bounded symmetric domain, Ω = Ω × · · · × Ωk be the decomposition of Ω into irreducible
factors. Let I = (i(1), . . . , i(p)), 1 ≤ i(1) < · · · < i(p) ≤ k, be a multi-index and prI :
Aut0(Ω) → Aut0(Ωi(1)) × · · · × Aut0(Ωi(p)) be the canonical projection. Let Γ ⊂ Aut0(Ω)
be an irreducible lattice. Then, prI(Γ) is dense in Aut0(Ωi(1)) × · · · × Aut0(Ωi(p)) whenever
p < k.

As mentioned Finsler metric rigidity for smooth complex Finsler metrics already implies
Hermitian metric rigidity, which in turn implies the following rigidity result for holomorphic
mappings. We have

Theorem 2. Let Ω be a bounded symmetric domain of rank ≥ 2 and Γ ⊂ Aut(Ω) be a torsion-
free irreducible lattice; X := Ω/Γ, equipped with the canonical Kähler-Einstein metric g. Let
f : X → N be a nonconstant holomorphic mapping into a complex manifold N endowed
with a Kähler metric h of nonpositive holomorphic bisectional curvature. If X is locally
irreducible, the f : X → N is a totally geodesic isometric immersion up to a normalizing
constant. In the locally reducible case the restriction of f to each local director factor is a
a totally geodesic isometric immersion up to a normalizing constant. In the event that the
Kähler manifold (N, h) is complete and of nonpositive Riemannian sectional curvature, then

9



the lifting to universal covering spaces F : X → Ñ is a totally geodesic isometric embedding
up to normalizing constants without assuming that X is locally irreducible.

The first statement of Theorem 2 follows from Hermitian metric rigidity and the Gauss
equation for Kähler submanifolds, which implies monotonicity of holomorphic bisectional
curvatures for Kähler submanifolds. First of all, the holomorphic mapping f : X → N is a
holomorphic isometric immersion as a consequence of Hermitian metric rigidity applied to the
Kähler metric g + f∗h. For a holomorphic isometric immersion the zeros (α, ζ) of bisectional
curvatures are preserved, and from the Gauss equation it follows that σ(α, ζ) = 0 for the
second fundamental form of any such pair (α, ζ). In the locally reducible case, in Mok [Mo1,
§4] it is shown that while a Kähler metric of nonpositive bisectional curvature may have mixed
terms involving the different local direct factors, one has a complete description of the moduli
space of possible Kähler metrics of nonpositive curvature on X = Ω/Γ, and it is easy to check
that when Riemannian sectional curvatures are nonpositive, such a Kähler metric must agree
with g up to normalizing factors of the individual local direct factors. In the last statement of
Theorem 2, where we assume that the Kähler manifold (N, h) is of nonpositive Riemannian
sectional curvature, it follows that f∗h agrees with g up to normalizing constants, and total
geodesy follows readily again from the Gauss equation. Since (N, h) is further assumed to
be complete, by the Theorem of Cartan-Hadamard the exponential map on the universal
covering space (Ñ , h̃) at any point is a diffeomorphism. It follows that the lifting F : Ω → Ñ

is in fact an embedding.

(1.4) For rigidity results on holomorphic mappings such as Theorem 2 and its analogues
to apply, we need the target manifold to carry a Kähler metric of nonpositive bisectional
curvature, or at least a Hermitian metric of nonpositive curvature in the sense of Griffiths.
We consider now target manifolds N which are of nonpositive curvature in a more general
sense, including complex manifolds N equipped with continuous complex Finsler metrics
h of nonpositive curvature. The first examples that come to mind are complex manifolds
uniformized by bounded domains. On any bounded domain U we have the Carathéodory
metric κU , invariant under Aut(U), defined as follows. Equip the unit disk ∆ with the
Poincaré metric with norms | · |Poin. For any x ∈ and any tangent vector η of type (1,0) at x,
we define ‖η‖κU

to be the supremum of ‖df(η)‖Poin as f ranges over all holomorphic maps
f : U → ∆. In general on any complex manifold M we can by the same procedure define the
Carathéodory pseudometric κM , except that the latter may be non-degenerate. In general,
either κM ≡ 0, or it is of nonpositive curvature in the generalized sense (cf. below for more
details).

By including target manifolds equipped with more general classes of metrics of nonpos-
itive curvature, we have significantly enlarged the scope of problems in the study of rigidity
phenomena on irreducible finite-volume quotients X of bounded symmetric domains of rank
≥ 2. Obviously, complex Finsler metrics are much less rigid, noting that in Finsler metric
rigidity in the locally irreducible case, there is no control over the lengths of (1,0) vectors
that are not minimal characteristic vectors. Taking the example of target manifolds N uni-
formized by bounded domains, we make use of the Carathéodory metric as an intermediate
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tool, and our first aim is to examine properties of holomorphic maps f : X → N which are
purely holomorphic in nature, independent of any canonical metrics. In contrast to [(1.3),
Theorem 2] our first aim is to find conditions under which f is necessarily a holomorphic
immersion or even a holomorphic embedding. In this direction we proved in Mok [Mo5]

Theorem 3 (The Embedding Theorem). Let Ω be an irreducible bounded symmetric
domain of rank ≥ 2 and Γ ⊂ Aut(Ω) be a torsion-free lattice, X := Ω/Γ. Let N be a
complex manifold and denote by Ñ its universal cover. Let f : X → N be a holomorphic
map and F : Ω → Ñ be its lifting to universal covering spaces. Assume that there exists a
bounded holomorphic function h on Ñ such that h is nonconstant on the image F (Ω). Then,
F : Ω → Ñ is a holomorphic embedding.

Theorem 3 can be generalized to include the case of irreducible finite volume quotients
of reducible bounded symmetric domains. For its formulation let N be a complex manifold
and denote by Ñ its universal cover. Let f : X → N be a holomorphic map and F : Ω → Ñ

be its lifting to universal covering spaces. We say that (X,N ; f) satisfies the non-degeneracy
condition (]) if and only if for each k, 1 ≤ k ≤ m, there exists a bounded holomorphic
function hk on Ñ and an irreducible factor subdomain Ω′k ⊂ Ω such that hk is nonconstant
on F (Ω′k).

Theorem 3’ (The Embedding Theorem, general form). Let Ω be a bounded symmetric
domain of rank ≥ 2, Ω = Ω1 × · · · × Ωm its decomposition into irreducible factors. Let
Γ ⊂ Aut(Ω) be a torsion-free irreducible lattice, X := Ω/Γ. Let N be a complex manifold and
denote by Ñ its universal cover. Let f : X → N be a holomorphic map and F : Ω → Ñ be its
lifting to universal covering spaces. Suppose (X,N ; f) satisfies the non-degeneracy condition
(]). Then, F : Ω → Ñ is a holomorphic embedding.

In what follows we highlight two important elements in the proof of the Embedding
Theorem, viz., the use of Moore’s Ergodicity Theorem and the introduction of bounded holo-
morphic functions into the study of rigidity problems on bounded symmetric domains. The
example of irreducible finite-volume quotients of the polydisk serves as a first example to
examine. In general, we will still make use of polydisks, noting that a bounded symmetric
domain of rank r comes equipped with an abundant supply of maximal polydisks. We have

Polydisk Theorem (cf. Wolf [Wo]). Let Ω be a bounded symmetric domain of rank r,
equipped with the Kähler-Einstein metric g. Then, there exists an r-dimensional totally-
geodesic complex submanifold P biholomorphic to the polydisk ∆r. Moreover, the identity
component Aut0(Ω) of Aut(Ω) acts transitively on the space of all such polydisks.

The polydisks P ∼= ∆r are called maximal polydisks. Regarding tangent vectors of type
(1,0) on Ω we have the following basic fact about the isotropy action formulated here in terms
of maximal polydisks.

Lemma 2. For a bounded symmetric domain Ω write G for Aut0(Ω) and K ⊂ G for the
isotropy subgroup at 0 ∈ Ω. Fix a maximal polydisk P ⊂ Ω passing through 0 write T0(P ) :=
a+. Then, T0(Ω) =

⋃
k∈K k(a+), where K acts on T0(Ω) by the isotropy action. As a
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consequence, given any (nonzero) ξ ∈ T0(Ω) there exists some maximal polydisk Q ⊂ Ω
passing through 0 such that ξ ∈ T0(Q).

As the proof of the special case Theorem 3 (the locally irreducible case) of Theorem 3’ is
not in any essential way different, we will consider the general result Theorem 3’, bearing in
mind that the case of irreducible quotients of the polydisk is the prototype. The Embedding
Theorem consists of the assertions that (a) F : Ω → Ñ is a holomorphic immersion (i.e.,
f : X → N is a holomorphic immersion), and (b) F : Ω → Ñ is injective. The proof of both
statements will rely on Finsler metric rigidity, which will be applied to the special case of
Carathéodory-like pseudometrics. For the proof of (a), i.e., that F : Ω → Ñ is an immersion,
it suffices to use the the pull-back of the Carathéodory pseudometric. For the proof of (b),
i.e., that F : Ω → Ñ separates points, we will need to introduce a new norm, similar to
the Carathéodory norm, which is however only defined for (1,0) vectors which are minimal
characteristic vectors with respect to one of the direct factors Ωk.

A crucial element in the proof of the Embedding Theorem is the notion of extremal
functions among a certain class of bounded holomorphic functions. We start with a general
discussion. Let H(Ω) be the set of all holomorphic mappings of Ω into the unit disk ∆. Let
S ⊂ H(Ω) be a subset satisfying the following conditions.
(a) For any s ∈ S and any γ ∈ Γ the composite map s ◦ γ : Ω → ∆ lies on S.
(b) If sn are elements of S such that sn converges uniformly on compact subsets to some

s ∈ H(Ω), then s ∈ S.
Define now a length function κ(S) on (0,1)-vectors η by ‖η‖κ(S) = sup

{‖ds(η)‖ : s ∈ G}
.

We will call κ(S) the S-Carathéodory pseudometric on Ω. When S = H(Ω) we recover
the usual Carathéodory metric κ, which is invariant under Aut(Ω). The Poincaré metric
ds2

∆ is of negative curvature. The length function κ(S) can be locally represented as the
(continuous) supremum of a family of (smooth) log-plurisubharmonic functions, and as such
either κ(S) ≡ 0, or κ(S) is of nonpositive curvature in the generalized sense. Note that a priori
S may be degenerate, i.e., there may exist non-zero (1,0) vectors η such that ‖η‖κ(S) = 0.
¿From Cauchy estimates it follows that κ(S) is uniformly Lipschitz. Under the assumption
(a), ‖η‖κ(S) is Γ-invariant. Under the assumption (b), for any (1,0)-vector η, there exists
s ∈ S such that ‖η‖κ(S) = ‖ds(η)‖. We call s a κ(S)-extremal (bounded holomorphic)
function for η.

To apply the above construction to the study of the holomorphic mapping f : X → N in
Theorem 3’ consider now F = F ∗(H(Ñ)), whereH(Ñ) stands for the set of holomorphic maps
of the universal covering space Ñ of N into the unit disk ∆. By Montel’s Theorem, given
any sn := F ∗hn ∈ S with hn ∈ H(Ñ) converging to some s ∈ F , there exists a subsequence
of hn which converges uniformly on compact subsets to some h ∈ H(Ñ), as a consequence of
which s = F ∗h ∈ F , so that (b) is satisfied. The F-Carathéodory pseudometric κ(F) reveals
properties of F : Ω → Ñ . In fact, κ(F) = F ∗κ

Ñ
, and the F-Carathéodory pseudometric is

degenerate at a (1,0)-vector η if and only if η ∈ Ker(dF ).

Let s ∈ F , i.e., s = F ∗h for some h ∈ H. Then, ds(η) = dh
(
dF (η)

)
. Hence, to show

that F is immersive it suffices to show that, for any x ∈ Ω and any non-zero (1,0) vector η
12



at x, there exists some s ∈ F such that ds(η) 6= 0. By the Polydisk Theorem η is tangent to
a maximal polydisk P passing through x. Let η = η1 + · · · ηr be the decomposition of η into
the sum of components tangent to minimal disks passing through x. Each ηk, 1 ≤ k ≤ r is
either 0 or a minimal characteristic vector. We may assume that η1 6= 0. To proceed we take
s to be a κ(F)-extremal function for η1, and apply the following result on extremal functions.

Proposition 1. Let P ⊂ Ω be a maximal polydisk, P ∼= ∆r, and use Euclidean coordinates
of the latter as coordinates for P . Let x ∈ P, x = (x1; x′) and denote by P ′ ⊂ P the polydisk
corresponding to {x1} ×∆r−1. Let α be a minimal characteristic vector at x tangent to the
minimal disk ∆α corresponding to ∆ × {x′} and denote by s a κ(F)-extremal function at x

for α. Then s(x1; z2, · · · , zr) = s(x1) for any (z2, · · · , zr) ∈ P ′.

By Proposition 1, ds(η) = ds(η1). By Finsler metric rigidity [(1.1), Theorem 1] and
the assumption that (X,N ; f) satisfies the non-degeneracy assumption (]), it follows that
‖η1‖κ(F) > 0. By the extremality of s we must have ‖ds(η1)‖Poin = ‖η1‖κ(F) > 0, so that
ds(η) 6= 0 and we are done.

It remains to justify Proposition 1 using Finsler metric rigidity. In the Euclidean co-
ordinates of P we have a constant vector field ∂

∂z1
along the fiber P ′ of ρ1 : P → ∆,

which is of constant length c1 with respect to κ(F), by Theorem 1. On the other hand,∥∥ ∂
∂z1

∥∥
κ(F)

(x) =
∥∥ds

(
∂

∂z1

)
(x)

∥∥
Poin

by the exremality of s. As y varies on P ′ we have a function

ψ(y) :=
∥∥ds

(
∂

∂z1

)
(y)

∥∥
Poin

such that (i) ψ ≤ c1, and (ii) ψ(x) = c1. Then, ψ is a plurisub-
harmonic function on P ′ attaining a maximum at x, so that it must be a constant by the
Maximum Principle. Without loss of generality we may assume s(x) = 0. Since the Poincaré
metric on ∆ with Euclidean coordinate z is given by |dz|2

(1−|z|2)2 , we have c1 = ψ(y) ≥
∣∣ ∂s
∂z1

(y)
∣∣

with equality if and only if s(y) = 0. Since
∣∣ ∂s
∂z1

(y)
∣∣ is plurisubharmonic and equal to c1 at

x, again by the Maximum Principle we must have
∣∣ ∂s
∂z1

(y)
∣∣ = c1 and s(y) = 0 for all y ∈ P ′,

proving Proposition 1, and hence concluding (a) that F : Ω → Ñ is a holomorphic immersion
in the Embedding Theorem.

(1.5) For the proof of the Embedding Theorem, to prove (b) that F : Ω → Ñ is injective
we will have to introduce a new Carathéodory-like norm ‖η‖e(F) on Ω which is only defined
for η being a minimal characteristic vector for one of the direct factors Ωk. Equivalently,
this means that we will be defining a continuous Hermitian metric on the restriction of the
tautological line bundle to the minimal characteristic bundles. We will be using the same
space of bounded holomorphic functions F = F ∗H(Ñ) as for κ(F) in (1.4) but the norms will
be defined differently. To apply this norm we will have to introduce a further use of Moore’s
Ergodicity Theorem. As will be seen, the method of proof of injectivity of F : Ω → Ñ

actually gives at the same time that F is an immersion. We deem it however much easier
to understand the structure of the proof of the Embedding Theorem when the two steps (a)
and (b) are separated.

Without even defining the norm e(F) we proceed to state a property of e(F)-extremal
functions which gives the very reason for introducing a new norm.
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Proposition 2. Let P ⊂ Ω be a maximal polydisk, P ∼= ∆r, and use Euclidean coordinates
of the latter as coordinates for P . Let x ∈ P, x = (x1; x′) and denote by P ′ ⊂ P the polydisk
corresponding to {x1} × ∆r−1. Let η be a nonzero characteristic vector at x tangent to the
minimal disk D corresponding to ∆ × {x′} and denote by s an e(F)-extremal function at x

adapted to α. Then s(z1; z2, · · · , zr) = s(z1).

While [(1.4), Proposition 1] gives a κ(F)-extremal function which is constant along one
fiber of the projection ρ1 : P → ∆. Proposition 2 gives an e(F)-extremal function which is
constant on all fibers of ρ1 : P → ∆. To make use of such extremal functions for the proof
of the Embedding Theorem, it remains to determine properties of the function s(z1) in 1
complex variable. For this purpose we introduce an averaging argument involving Moore’s
Ergodicity Theorem to obtain

Proposition 3. Let P ⊂ Ω be a maximal polydisk, P ∼= ∆r, and use Euclidean coordinates
of the latter as coordinates for P . Let x ∈ P, x = (x1; x′) and denote by P ′ ⊂ P the polydisk
corresponding to {x1}×∆r−1. Then, there exists σ ∈ F = F ∗H(Ñ) and a real number λ > 0
such that σ(z1; z2, · · · , zr) = λz1.

Granting Proposition 3, we proceed to derive the injectivity of F : Ω → Ñ , i.e., to
prove that for any two distinct points x, y ∈ Ω, F (x) 6= F (y). To this end without loss
of generality we may assume that x = 0. By Lemma 2, y lies on a maximal polydisk
P ∼= ∆r. Furthermore, in terms of Euclidean coordinates on ∆r we may assume without
loss of generality that y = (y1; y′) such that y1 6= 0. Then Proposition gives a function
σ ∈ F = F ∗H(Ñ) such that σ(x) = 0 and σ(y) = λy1 6= 0. Writing σ = F ∗h, h ∈ H(Ñ),
we conclude that h(F (x)) 6= h(F (y). In particular, F (x) 6= F (y). Since the pair of distinct
points (x, y) is arbitrary, we have proven that F is injective, and we are done.

It remains to introduce the Carathéodory-like norm ‖ · ‖e(F) for Proposition 2 and the
averaging argument using ergodicity for Proposition 3. For the definition of ‖ · ‖e(F), to
motivate consider the unit disk ∆ and the space H(∆) of holomorphic maps s : ∆ → ∆.
Given a (1,0) vector η at x ∈ ∆ on ∆ we can define ‖η‖s := ‖ds(η)‖Poin, and ‖ · ‖κ(F) =
sup{‖η‖s : s ∈ H(∆)}. Fix now any ε > 0. Denote by B(x, ε) the geodesic disk centred
at x and of radius ε with respect to the Poincaré metric on ∆ and consider ∂B(x, ε). For
each x′ ∈ ∂B(x, ε) we denote by η′(x′) a (1,0) vector at x′ of the same length as η. Even
though η′(x′) is well-defined only up to multiplication by a complex number of norm 1,
‖ds(η′(x′))‖Poin is well defined. We define now ‖η‖ε

s to be the average of ‖ds(η′(x′))‖Poin

over ∂B(x, ε), where the latter is equipped with the probability measure defined by the polar
angle at x in the normal geodesic coordinate at x.

The averaging process as explained is not an average under a family of holomorphic
isometries, and there is no reason to expect that the length function ‖η‖ε

s exhibits nice
curvature properties. However, the length function becomes meaningful when we have a
product ∆×D for some bounded domain D. In terms of Euclidean coordinates z = (z1, z

′),
the vector field η := ∂

∂z1
is holomorphic on a fiber D′ of the canonical projection ρ1 : ∆×D →

∆, and the length function ‖η‖ε
s(y) as a function in y ∈ D′ is log-plurisubharmonic. Taking

now the situation as in the Embedding Theorem where Ω is a bounded symmetric domain,
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for any x ∈ Ω and any minimal characteristic vector η with respect to one of the irreducible
direct factors Ωk, where we fix k, we can insert a totally geodesic complex submanifold of the
form ∆×D passing through x, in which D is itself a bounded symmetric domain, such that
η is tangent to the direct factor ∆. We can then define

‖η‖e(F) := sup
{‖η‖ε

s : s ∈ F ∗H(Ñ) = F}
.

The length function ‖ · ‖e(F) is then only defined on a minimal characteristic bundle Mk(Ω)
on Ω, which corresponds to a Hermitian metric on the restriction of the tautological line
bundle πk : LM → Mk(Ω). It behaves very much like the length function given by the
Carathéodory metric κ(F). e(F) is uniformly Lipschitz and invariant under Γ and it descends
to a characteristic bundle on X, to be denoted by Mk. Furthermore e(F) is of nonpositive
curvature on each fiber D′ of the canonical projection ρ1 : ∆ × D → ∆. In fact, over D′,
for η := ∂

∂z1
, ‖η‖ε

s(y) is an average of an S1-family of log-plurisubharmonic functions. Log-
plurisubharmonicity equates to nonpositive curvature, and the averaging process is the limit
of taking Riemann sums. As is well-known, on a holomorphic line bundle the sum h1+· · ·+hm

of a finite number of smooth Hermitian metrics hi of nonpositive curvature gives by the Gauss
equation also a smooth Hermitian metric of nonpositive curvature, and the same holds true for
continuous Hermitian metrics hk by a standard smoothing argument. Alternatively, we have
by direct calculation and smoothing the following lemma on log-plurisubharmonic functions
(cf. Mok [Mo6, (2.2), Lemma 2]).

Lemma 3. Let U ⊂ Cn be an open subset, and a, b ∈ R; a < b. Let u : [a, b] × U → R be
a continuous function such that for any t ∈ [a, b], writing ut(z) := u(t, z), ut : U → R is
plurisubharmonic. Define ϕ : U → R by ϕ(z) := log

∫ b

a
eut(z)dt. Then, ϕ is plurisubharmonic.

Moreover, eϕ
√−1∂∂ϕ ≥ ∫ b

a
eut
√−1∂∂utdt in the sense of currents.

As revealed in the proof of the Finsler metric rigidity sketched in (1.3) here (cf. Mok
[Mo6, (2.1), p.215ff.] for more details), the proof of Finsler metric rigidity is valid provided
that we have a continuous Hermitian metric h defined on the tautological line bundle πk :
LM → Mk such that h is of nonpositive curvature in a generalized sense when restricted
to leaves of the foliation Nk which in the universal covering spaces correspond precisely to
the direct factors D′ in the preceding paragraph, provided that we can justify integration by
parts. For this, it suffices to assume that, for h = euĝ, du is square-integrable. But in our
case the function u is even uniformly Lipschitz from Cauchy estimates, if we take h = ĝ+e(F)
and we conclude that the analogue of Finsler metric rigidity [(1.1), Theorem 1] holds true for
e(F). We record the version of Finsler metric rigidity we have used in the form of a theorem,
as follows.

Theorem 1’. In the notations of [(1.1), Theorem 1] (Finsler metric rigidity), but assuming
now that h is a continuous Hermitian metric defined only on the restrictions πk : L →Mk

of the tautological line bundle L on X to minimal characteristic subbundles Mk, and that,
writing h = euĝ, where g is the canonical Kähler-Einstein metric on X = Ω/Γ, and ĝ is the
induced Hermitian metric on the tautological line bundle, du is square-integrable with respect
to a canonical volume form on Mk. In particular, this holds true if u is uniformly Lipschitz.
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Now we come to the proof of Proposition 2, i.e., that for the e(F)-extremal function s

adapted to some minimal characteristic vector η = ∂
∂z1

in terms of Euclidean coordinates on
a maximal polydisk P ∼= ∆r, we have s(z1, z2, · · · , zr) = s(z1). Note that P = ∆ ×∆r−1 ⊂
∆×D. Let δ > 0 be such that ∂B(0, ε) = {(δeiθ; 0) : θ ∈ R}. It suffices to consider the fiber
P ′ of ρ1 : P → ∆ over 0. Then, for y ∈ P ′ ⊂ D′, y = (0, z′), and for a suitable normalizing
constant c > 0 we have

‖η(y)‖e(F) ≥ ‖η(y)‖ε
s = c

∫ 2π

0

‖ds(δeiθ; z′)‖Poindθ = c

∫ 2π

0

|ds(δeiθ, z′)|
1− |s(δeiθ, z′)|2 dθ := eϕ(z′) ,

‖η(0)‖e(F) = c

∫ 2π

0

|ds(δeiθ, o)|
1− |s(δeiθ, o)|2 dθ = eϕ(o) .

By Theorem 1’, ‖η(y)‖e(F) is constant on P ′, so that ϕ(z′) attains its maximum on P ′ at
0. By Lemma 3, ϕ(z′) is plurisubharmonic in z′ ∈ P ′, and it follows from the Maximum
Principle that ϕ is constant on P ′. Write euθ(z′) for the integrand in the definition of eϕ(z′),
which is plurisubharmonic in z′. Again by Lemma 3,

eϕ
√−1∂∂ϕ ≥ c

∫ 2π

0

euθ
√−1∂∂uθ dθ ≥ 0

in the sense of currents. It follows that for almost all θ ∈ [0, 2π], uθ is pluriharmonic.
However,

√−1∂∂uθ is the pull-back of the Kähler form of (∆, ds2
Poin) by σ

θ
: P ′ → ∆, where

σ
θ
(y′) = s(δeiθ; y′). Thus σ

θ
must be constant for almost all θ ∈ [0, 2π], hence for all θ by

continuity. Thus, the e(F)-extremal function s must be of the form s(z1; z2, · · · , zr) = s(z1)
when restricted to the polydisk P , as asserted in Proposition 2.

Finally the last hurdle to proving the Embedding Theorem is the justification of Propo-
sition 3, which as mentioned requires an averaging argument using Moore’s Ergodicity The-
orem. Starting with a maximal polydisk P ⊂ Ω and an e(F)-extremal function on Ω which
restricts to s(z1; z2, · · · , zr) = s(z1) on P , a priori the function s(z1) may still be rather
arbitrary. Given any holomorphic function t on the unit disk, η ∈ R, define tθ(z) = t(eiθz).
Using Taylor expansions the average of e−iθtθ over θ ∈ [0, 2π] gives the linear function t′(0)z.
If we could apply this to the extremal function s, regarded as a function in z1, we would be
done since by the extremality of s we can assure that s′(0) 6= 0, at least when we choose ε

sufficiently small.

The trouble with the averaging argument lies in the fact that rotation in the variable z1

does not come from an element γ ∈ Γ, whereas by the definition of F = F ∗H(Ñ) we can only
produce new functions in F by composing with γ ∈ Γ. To overcome this difficulty we resort
once again to Ergodic Theory. Fix a maximal polydisk P ⊂ Ω. There is a noncompact closed
subgroup H ⊂ P of a of automorphisms which fix P as a set and also preserves the canonical
projection ρ : P → ∆. If we take an element µ ∈ H, then s ◦ µ ≡ s for the e(F)-extremal
function s. Rotation in the z1 variable extends to some τθ ∈ G. The averaging argument will
still work if we can approximate τθ by γi ∈ Γ modulo H, more precisely we have the following
lemma which can be deduced from Cauchy estimates (Mok [Mo6, (2.2), Lemma 3]).
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Lemma 4. Suppose γi ∈ Γ are such that γiH converges to τθH in G/H. Then s ◦ γ−1
i

converges to s ◦ τ−θ on P , i.e. s
(
γ−1

i (z; z′)
)

converges to s(e−iθz; z′) uniformly on compact
subsets of P .

In order to have the approximating sequence (γi), γ ∈ Γ as given by Lemma 4 we resort
to Moore’s Ergodicity Theorem, which yields the following lemma in conjunction with a
standard density result for ergodic actions on metric spaces (cf. Zimmer [Zi, Proposition
2.1.7]).

Lemma 5. Let G be a connected real Lie group and Γ ⊂ G be an irreducible lattice, and
H ⊂ G be a noncompact closed subgroup. Then there exists a null subset E ⊂ G/H such that
for any point gH ∈ G/H −E, the orbit Γ(gH) is dense in G/H, when the latter is endowed
the metric topology defined by its canonical smooth structure.

¿From Lemma 5 there remains a difficulty in the proof of the Embedding Theorem, in
the averaging argument for the proof of Proposition 3 there is an exceptional set E ⊂ G/H.
For instance, this may occur in the following way. G/H parametrizes the space of maximal
polydisks equipped with a projection ρ1 : P → ∆. For certain polydisks, it can happen that
the subgroup Γ0 of Γ preserving P restricts to a lattice of P , even a reducible one such that
the quotient P/Γ0 is a product ∆/Γ1 × P ′/Γ′. Equipping P with a projection ρ1 : P → ∆,
we define a point p ∈ G/H, and the orbit of the point p under Γ is then discrete, and ΓH is
not dense in G/H. Thus, some subtlety is involved in the application of Lemma 5, by which
we know that ΓgH is dense in G/H for almost every g ∈ G. Noting that this means precisely
that ΓHg is dense in G/Hg for Hg := gHg−1, we can apply Lemma 4 with H = Hg for
almost every g ∈ G. For each such g we can find σ ∈ F such that, restricted to the polydisk
gP we have σ(z1, · · · , zr) = λgz1 for some constant λg. Now a lower bound of λg independent
of g for gH ∈ G/H−E can be found by applying Theorem 1’ on Finsler metric rigidity. Since
E ⊂ G/H is a null subset, G/H −E is dense in G/H and for any point p = gH ∈ E we can
find a special function σ adapted to p by passing to limits, and we are done.

As an application of the Embedding Theorem we have

Theorem 4. Let Ω be a bounded symmetric domain of rank ≥ 2 and Γ ⊂ Aut(Ω) be any
torsion-free irreducible lattice. Let Z be a normal complex space and f : X → Z be a proper
holomorphic mapping onto Z. Then, either f : X → Z is an unramified covering map, or
π1(Z) is finite.

For the proof of Theorem 4 the crux of the argument goes as follows. By Margulis [Ma,
Ch.VIII, Thm.A] any normal subgroup of Γ is either finite or of finite index, and Theorem
4 readily reduces to showing that, when the lifting F : Ω → Z̃ to universal covers is a finite
proper map, then F must be a biholomorphism. From bounded holomorphic functions on
Ω and summing up over fibers of F ; Ω → Z̃, by the normality assumption on Z we obtain
plenty of nontrivial bounded holomorphic functions on Z̃ to show that (X,Z; f) satisfies
condition (]). In the event that Z is nonsingular then Theorem 1’ implies that F : Ω → Z̃ is
a biholomorphism. The proof of Theorem 1’ actually applies in general without assuming a
priori that Z is nonsingular (cf. Mok [M6, (4.1), Lemma 6]).
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§2 Extending the inverse of a holomorphic embedding by means of boundary
values of bounded holomorphic functions and ergodicity

(2.1) In [(1.2), Theorem 3’] we stated the general form of the Embedding Theorem which
shows that for a quotient X of a bounded symmetric domain Ω by a torsion-free irreducible
lattice, any holomorphic map f : X → N into a complex manifold satisfying the non-
degeneracy condition (]) must necessarily be a holomorphic embedding into N . The non-
degeneracy condition (]) on (X,N ; f) was formulated in terms of the existence of a number
of bounded holomorphic functions F ∗hk, F : Ω → Ñ the lifting of f : X → N to universal
covering spaces, which are sufficiently ‘independent’, and it is always satisfied for a noncon-
stant holomorphic map whenever N is uniformized by a bounded domain. In general, we note
that in the case when Ω is itself irreducible, the condition (]) simply requires the existence
of a single bounded holomorphic function h on Ñ such that F ∗h is nonconstant on Ω.

In the Embedding Theorem, F : Ω → Ñ embeds the bounded symmetric domain Ω into
Ñ , thus giving a bijection between Ω and the image F (Ω) ⊂ Ñ . We strengthen this theorem
by considering the inverse F−1, and proving that it extends to a bounded holomorphic map
R : Ñ → Cn. We call this a solution of the Extension Problem, and apply it to the situation
where f : X → N induces an isomorphism on fundamental groups, in which case f : X → N is
necessarily a holomorphic embedding. We deduce from our solution of the Extension Theorem
two consequences on the structure of such holomorphic embeddings. On the one hand, under
the assumption that N is compact or more generally quasi-compact in the sense that it is
a dense Zariski-open subset of a compact complex manifold we deduce from R : N → Cn a
holomorphic projection ρ : N → X, which may be interpreted as a holomorphic retraction
if we identify X with its image f(X) ⊂ N . We call this the Fibration Theorem. On the
other hand, under the assumption that N is uniformized by a bounded domain D on a Stein
manifold, and that it is of finite volume with respect to the Kobayashi-Royden volume form,
we show that f : X → N is a biholomorphism. The first application solves a problem which in
the special case where N is compact and Kähler follows from the method of harmonic maps;
the second application introduces a use of the canonical complete Kähler-Einstein metric by
passing from the uniformizing domain D to its hull of holomorphy D̂. To start with we have

Theorem 5. Let Ω b Cn be a bounded symmetric domain of rank ≥ 2 in its Harish-Chandra
realization, Ω = Ω1 × · · · × Ωm its decomposition into irreducible factors. Let Γ ⊂ Aut(Ω)
be a torsion-free irreducible lattice, X := Ω/Γ. Let N be a complex manifold and denote
by τ : Ñ → N its universal cover. Let f : X → N be a holomorphic map and write
F : Ω → Ñ for the lifting of f to universal covering spaces. Suppose (X,N ; f) satisfies the
non-degeneracy condition (]). Then, there exists a bounded holomorphic map R : Ñ → Cn

such that R ◦ F = idΩ.

For the proof of Theorem 5 in [Mo9] we study boundary values of bounded holomorpic
functions on Ω using tools from Harmonic Analysis. In the Harmonic Analysis on the unit
disk applied to the special case of bounded holomorphic functions we have the standard
Fatou’s Lemma (cf. Rudin [Ru]).

Fatou’s Lemma (for radial limits). Let f be a bounded holomorphic function on the unit
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disk ∆. Then, for almost every θ ∈ [0, 2π], limr→1 f(reiθ) exists, to be denoted by f∗(eiθ),
and we have the Cauchy integral formula representing f in terms of an integral on the unit
circle ∂∆ oriented in the anti-clockwise sense, given for any z ∈ ∆ by

f(z) =
1

2πi

∫

∂∆

f∗(ζ)dζ

ζ − z
.

The existence almost everywhere of radial limits in Fatou’s Lemma on the unit disk
is more generally valid for bounded harmonic functions u, for which the Cauchy integral of
boundary values is replaced by the Poisson integral of boundary values u∗, but in what follows
we restrict our discussion to bounded holomorphic functions. The convergence to boundary
values in Fatou’s Lemma is actually valid in a stronger form which we will need. In the
notations above, the statement about radial limits f∗(eiθ) can be strengthened by replacing
it by non-tangential limits. Here, we say that a sequence of points zk ∈ ∆ converges to a point
ζ = eiθ ∈ ∂∆ non-tangentially if and only if there exists rk, 0 ≤ rk < 1, and a positive number
A such that dPoin

(
zk, rkeiθ

)
< A, where dPoin(·, ·) denotes the distance function with respect

to the Poincaré metric on ∆. Then, we say that f has a non-tangential limit at ζ if and only if
f(zk) is always convergent whenever the sequence (zk) converges non-tangentially to ζ. From
now on we will mean by f∗(ζ) instead the common limit of f(zk) at ζ for all sequences (zk)
converging non-tangentially to ζ, and refer to the latter as the non-tangential limit of f at
ζ ∈ ∂∆. Then, a strengthened form of Fatou’s Lemma says that, for a bounded holomorphic
function f : ∆ → C, the non-tangential limit f∗(eiθ) exists for almost every θ ∈ [0, 2π],
and that, a fortiori, the representation of a bounded holomorphic function as the Cauchy
integral of boundary values remains valid for f∗(ζ) meaning instead the non-tangential limit
at ζ ∈ ∂∆.

Denote by H0 = {ψ ∈ Aut(∆) : ψ(z) = z+t
1+tz for some t, −1 < t < 1} a 1-parameter

group of transvections on ∆. Writing ψt for ψ ∈ H0 corresponding to t,−1 < t < 1,
for any x ∈ (−1, 1), ψt(x) converges radially to 1 as t → 1. In general, for any z ∈ ∆,
dPoin(ψt(z), ψt(0)) = dPoin(z, 0) is fixed, and ψt(z) converges non-tangentially to 1 as t →
1. Let Q ⊂ Aut(∆) be a compact subset. Then, from any sequence of automorphisms
χk ∈ Q, any sequence of real numbers tk ∈ (−1, 1) converging to 1, and any point z ∈ ∆,
(ψtk

◦ χk)(z) = ψtk

(
χk(z)

)
converges non-tangentially to 1. Note that if we interchange the

order of composition and consider χk ◦ ψtk
instead, then the sequence χk

(
ψtk

(z)
)

does not
necessarily converge non-tangentially to 1, since even for a fixed χ ∈ Q, dPoin(χ(w), w) may
diverge to infinity as w converges to 1.

In order to prove Theorem 5 we consider non-tangential boundary values on Ω of certain
holomorphic functions s on Ω of the form s = F ∗h for some bounded holomorphic func-
tion h on Ñ . In order to obtain non-tangential limits to start with we have the following
lemma which results readily from Moore’s Ergodicity Theorem and the density result in [(1.5),
Lemma 5].

Lemma 6. Let Ω be a bounded symmetric domain of rank r ≥ 2, and Γ ⊂ Aut0(Ω) be a
torsion-free irreducible lattice, X := Ω/Γ. Let P ∼= ∆r, P ⊂ Ω be a maximal polydisk in
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Ω, which gives canonically the embedding Aut(∆)r ↪→ Aut0(Ω). Let H0 ⊂ Aut(∆) be the
1-parameter group of transvections given by H0 = {ψ ∈ Aut(∆) : ψ(z) = z+t

1+tz for some
t, −1 < t < 1}, and H = {id∆} × diag(Hr−1

0 ), H ⊂ Aut(∆)r ↪→ Aut0(Ω). For θ ∈ R,
−1 < t < 1, denote by ϕt,θ ∈ S1×diag(Hr−1

0 ) the element given by (eiθ, ψt, . . . , ψt). Suppose
ΓH := {γH : γ ∈ Γ} ⊂ G/H is dense in G/H. Then, excepting for ζ = eiθ, θ ∈ [0, 2π]
belonging to an at most countable subset E ⊂ ∂∆, there always exists a discrete sequence
(γk), γk ∈ Γ, such that γk = ϕtk,θδk for some δk ∈ Aut0(Ω) converging to the identity and
for some tk ∈ (−1, 1) such that |tk| → 1.

¿From γk = ϕtk,θδk, taking inverses and re-labeling γ−1
k as γk, etc., we can also find γk

represented as a product δkϕtk,θ in the opposite order. As explained in the example of the
unit disk, to be able to apply Fatou-type Lemmas one has to use the decompostion in the
order as given in Lemma.

To explain the idea of the proof of Theorem 5 we consider the special case of irreducible
lattices of the polydisk ∆n, n ≥ 2. Here in order to extend the inverse of F : ∆n → Ñ it
suffices to find n holomorphic functions h1, · · · , hn on Ñ and non-zero constants λ1, · · · , λn

such that F ∗hk = λkzk for 1 ≤ k ≤ n on the polydisk ∆n with the usual Euclidean coordinates
(z1, · · · , zk). The Extension Problem is then solved by setting R =

(
1
λ1

h1, · · · , 1
λn

hn

)
on

Ω, which is a bounded holomorphic map into Cn satisfying R ◦ F = idΩ.

With some oversimplification the argument goes as follows. In the notations in Lemma
6, by the density result [(1.5), Lemma 5] that for almost every g ∈ G, ΓHg is dense in G/Hg

for Hg := gHg−1, without loss of generality we may assume that ΓH is dense in G/H.
Consider as in (1.4) the space F of holomorphic functions t, |t| < 1, on Ω of the form F ∗h for
some bounded holomorphic function h on Ñ . Recall that for any γ ∈ Γ and any s ∈ F , we
have γ∗s ∈ F , and that furthermore F is closed under taking nonconstant limits of functions
converging uniformly on compact subsets. Given this, starting with any holomorphic function
s ∈ F such that s is not independent of z1, which exists by the non-degeneracy assumption
(]) on (X, N ; f), for any ζ = eiθ ∈ ∂∆ − E there exists a discrete sequence (γk), γk ∈ Γ,
such that γk = ϕtk,θδk for some δk ∈ Aut0(Ω) converging to the identity and for some
tk ∈ (−1, 1) such that |tk| → 1. Consider now γ∗ks ∈ F . For any z = (z1, · · · , zn) ∈ ∆n

we have γ∗ks(z1, · · · , zn) = s
(
ϕtk,θ(δk(z))

)
. With a notion of non-tangential limits on 1-

dimensional faces in the case of a polydisk we have s
(
ϕtk,θ(δk(z))

)
= s∗(eiθz1, 1, · · · , 1) or

s∗(eiθz1,−1, · · · ,−1) for the non-tangential boundary values s∗ on boundary disks. Such
non-tangential boundary values on 1-dimensional faces exist for almost all such faces, and
without loss of generality we may assume that they exist for the two such faces ∆× (1, · · · , 1)
and ∆ × (−1, · · · ,−1) involved. If we assume again without loss of generality that such
boundary values have non-zero derivatives at the centres (0, 1, · · · , 1) and (0,−1, · · · ,−1),
then a modification of the averaging argument as in (1.2) will produce a limiting function of
γ∗ks which is of the form λkzk for some nonzero constant λk.

The boundary values s∗(eiθz1, 1, · · · , 1), etc. on a boundary face can be understood in
the following more general context. In the general case of a bounded symmetric domain Ω, for
a bounded function u on Ω harmonic with respect to the Laplacian of the Bergman metric,
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the non-tangential boundary values u∗ exists almost everywhere on the Shilov boundary
Sh(Ω). For almost every face Φ of the same isomorphism type of the bounded symmetric
domain Ω, at almost every point ζ on the Shilov boundary Sh(Φ) the boundary value u∗(ζ)
is defined, and we obtain a bounded harmonic function on Φ as the Poisson integral of
u∗|∂Φ. In the special case considered, the Shilov boundary of the polydisk ∆n is the torus
∂∆ × · · · × ∂∆ (n times) = (S1)n, the face Φ = ∆ × {(1, · · · , 1)}. Suppose the boundary
point (1, · · · , 1) ∈ (S1)n−1 is such that the non-tangential limit s∗(ζ, 1, · · · , 1), ζ ∈ S1, exists
for almost every ζ ∈ S1, then s∗(eiθz1, 1, · · · , 1) is the Poisson integral of the function s∗θ
on S1 ×{(1, · · · , 1)} given by s∗θ(ζ, 1, · · · , 1) := s∗(eiθζ, 1, · · · , 1), or equivalently the Cauchy
integral of s∗θ as we are dealing with bounded holomorphic functions. A general discussion
in the Riemannian symmetric setting on non-tangential limits and Poisson integrals on the
Shilov boundary can be found in Korányi [Ko1]. For the notion of admissible convergence on
positive dimensional faces in the Riemannian symmetric setting, which applies in particular
to faces of bounded symmetric domains in their Harish-Chandra realizations, we refer the
reader to Korányi [Ko2].

Finally, we sketch how the Extension Problem is solved in the case where Ω is an irre-
ducible bounded symmetric domain of rank ≥ 2 in analogy to the special case of the polydisk.
A positive-dimensional face on ∂Ω of minimum dimension is of rank-1, and for simplicity we
assume that it is a disk. (This is the case if and only if Ω is biholomorphic to a tube domain.)
Fix such a face Φ and insert a maximal polydisk P in Ω passing through 0 and containing Φ
on its boundary. We apply Lemma 6 to this polydisk. By choosing an appropriate bounded
holomorphic function s = F ∗h ∈ F and composing with a suitable sequence of γk ∈ Γ we
obtain γ∗ks which converges to s∗Φ◦ΛΦ◦cΦ, where s∗Φ is the non-tangential limit of s on Φ in an
appropriate sense, cΦ is some partial Cayley transform, and ΛΦ is a canonical projection map
from a partial Cayley transoform of Ω to the 1-dimensional face Φ of Ω. Write ρΦ := ΛΦ ◦ cΦ.
By the averaging argument as in the case of the polydisk we obtain from s∗Φ ◦ρΦ the bounded
holomorphic map λΦρΦ for some λΦ depending on the choice of sΦ. Suppose there is a fixed
real constant a > 0 such that for almost every 1-dimensional face Φ we can choose sΦ such
that λΦ > a > 0. Then, each component of the vector-valued holomorphic map ρΦ is of the
form F ∗µΦ for some bounded holomorphic function µΦ uniformly bounded independent of Φ.
Writing Ω = G/K as usual with K ⊂ G being the isotropy subgroup at 0, K acts transitively
on the set of rank-1 faces Φ on ∂Ω, and the average of ρΦ over Φ, integrated against the
Haar measure on the compact group K, yields a K-equivariant linear map which is nothing
other than a non-zero multiple of the identity map. Thus, idΩ = (F ∗h1, · · · , F ∗hn) for some
bounded holomorphic functions h1, · · · , hn ∈ F . In other words, idΩ = F ∗R = R ◦ F for
the bounded holomorphic map R : Ñ → Cn, yielding Theorem 5. Finally, we note that the
existence for almost all faces Φ of bounded holomorphic functions sΦ ∈ F for which there is
a uniform positive lower bound for λΦ follows readily from the Finsler metric rigidity [(1.1),
Theorem 1] applied to the pull-back of the Carathéodory metric, although much less is needed
for the bound to exist.

(2.2) Our solution of the Extension Problem [(2.1), Theorem 5] relies on some control of
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the pull-back of the Carathéodory pseudometric. This control is certainly guaranteed by
the Finsler metric rigidity as given by [(1.1), Theorem 1], but what is needed is actually an
inequality ‖η‖h ≥ ck‖η‖g in the notations there for h denoting the pulled-back Carathéodory
pseudometric defined by the mapping F : Ω → Ñ in Theorems 3 and 3’. In any event
the approach as sketched in (2.1) to solving the Extension Problem is independent of the
harder part of [Mo5] which consists of the use of extremal functions. As the existence of the
bounded map R : Ñ → Cn such that R ◦ F = idΩ implies that F : Ω → Ñ is a holomorphic
embedding, we may think of the Embedding Theorem as a first application of Theorem 5,
assuming Finsler metric rigidity.

It is interesting to contrast the two proofs of the Embedding Theorem given by [Mo5]
and [Mo9]. Both rely on the use of bounded holomorphic functions in conjunction with
ergodicity in the form of Moore’s Ergodicity Theorem, but differ in that we make use of the
behavior of special pulled-back bounded holomorphic functions in the interor of Ω in [Mo5],
more precisely extremal functions with respect to Carathéodory-like pseudometrics, while in
[Mo9] we make use of the boundary behavior of pulled-back bounded holomorphic functions
by taking non-tangential boundary values.

A second application of Theorem 5 (on the Extension Problem) is to give, in the notations
of [(1.2), Theorem 3’], a structure on holomorphic maps f : X → N such that (X,N ; f)
satisfies the non-degeneracy assumption (]), under the additional assumption that f induces
an isomorphism f∗ : Γ → Γ′ on fundamental groups. A first result in this direction is the
following theorem which gives the structure of N as a space holomorphically fibered over X

when N is compact or more generally quasi-compact in the sense that it is a dense Zariski-
open subset of some compact complex manifold.

Theorem 6 (The Fibration Theorem). Let Ω be a bounded symmetric domain of rank
≥ 2 and Γ ⊂ Aut(Ω) be a torsion-free irreducible lattice, X := Ω/Γ. Let N be a Zariski-
open subset of some compact complex manifold and denote by τ : Ñ → N its universal
covering space. Let f : X → N be a nonconstant holomorphic mapping into N , and denote
by F : Ω → Ñ the lifting to universal covering spaces. Suppose (X,N ; f) satisfies the non-
degeneracy condition (]). Then, f : X → N is a holomorphic embedding, and there exists a
holomorphic fibration ρ : N → X such that ρ ◦ f = idX .

The solution of the Extension Problem gives a bounded holomorphic map R : Ñ → Cn

such that R ◦ F = idΩ. By abuse of notations, this gives R|F (Ω) = F−1, where by F−1 we
mean the inverse of the bijection F : Ω → F (Ω). To prove the Fibration Theorem, we show
first of all that R(Ñ) ⊂ Ω, under the additional assumption that f∗ : Γ ∼= Γ′. The bounded
symmetric domain Ω can be identified as the unit ball with respect to some norm. Thus,
there exists a convex nonnegative function ν on Cn such that Ω = {x ∈ Cn : ν(x) < 1}.
Given any bounded holomorphic map Θ : Ñ → Cn on Ñ , we can construct a bounded
plurisubharmonic function ψ̃Θ on N defined to be the supremum of ν ◦ Θ on orbits under
covering transformations of τ : Ñ → N . ψ̃Θ is continuous by Cauchy estimates, and it
descends to a bounded plurisubharmonic function ψΘ on N . The assumption f∗ : Γ ∼= Γ′

forces the orbit of any ỹ ∈ F̃ (Ω) to remain in F (Ω). ¿From this crucial fact, in the case
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of Θ = R it follows that ψR ≡ 1 on f(X). On the other hand, the assumption that N is
quasi-compact forces the continuous bounded plurisubharmonic function ψΘ to be a constant,
implying that ψR ≡ 1 on N , and thus that R(Ñ) ⊂ Ω. In fact, we must have R(Ñ) ⊂ Ω since
R(p) ∈ Ω for any p ∈ F (Ω). We have thus obtained a holomorphic projection R from Ñ to Ω.
To establish the Fibration Theorem, it remains to deduce from there a projection map from N

to X, i.e., to prove the equivariance of R. For this it suffices to consider Θ := R◦γ−f∗(γ)◦R

and to prove Θ ≡ 0 by considering ψΘ in the same way.

We note that in the case where X = Ω/Γ is compact, and the target manifold N

is compact and Kähler, from the assumption f∗ : Γ ∼= Γ′ it follows that there exists a
continuous mapping h : N → X inducing an isomorphism on fundamental groups. In this
case the Fibration Theorem follows from the method of Strong Rigidity for harmonic maps
on compact Kähler manifolds of Siu [Si]. Without the Kähler condition on N Theorem 4 is
however not susceptible to the method of harmonic maps even when N is compact.

(2.3) Another application of the solution of the Extension Problem to the study of holomor-
phic maps from an irreducible finite volume quotient of a bounded symmetric domain of rank
≥ 2 into a quotient of a bounded Riemann domain spread over a Stein manifold, under the
assumption that such holomorphic maps induce isomorphisms on fundamental groups and
that the target manifold is of finite volume with respect to the Kobayashi-Royden volume
form. We call this the Isomorphism Theorem, as follows.

Theorem 7 (The Isomorphism Theorem (Mok [Mo8])). Let Ω be a bounded symmetric
domain of rank ≥ 2 and Γ ⊂ Aut(Ω) be a torsion-free irreducible lattice, X := Ω/Γ. Let D be a
bounded domain on a Stein manifold, Γ′ be a torsion-free discrete group of automorphisms on
D, N := D/Γ′. Suppose N is of finite volume with respect to the Kobayashi-Royden volume
form, and f : X → N is a holomorphic map which induces an isomorphism f∗ : Γ ∼= Γ′.
Then, f : X → N is a biholomorphic map.

We choose to formulate the Isomorphism Theorem with the finite volume condition
imposed on the Kobayashi-Royden volume form since the latter is an intrinsic and universal
pseudovolume. However, in order to apply the solution of the Extension Problem along the
line of the Fibration Theorem, we have to replace the assumption of quasi-compactness of N

by the use of complete Kähler metrics of finite volume. For this purpose we have to make use
of canonical Kähler-Einstein metrics constructed by Cheng-Yau [CY], which are known to be
complete on bounded Riemann domains of holomorphy spread over Stein manifolds (Mok-Yau
[MY]). Given any bounded domain U on a Stein manifold M , we have its hull of holomorphy
π : Û → M which is in general a Riemann domain spread over M , i.e., Û is a complex
manifold equipped with a local biholomorphism π into M . Every holomorphic function on
U extends holomorphically to Û ; every automorphism of U extends to an automorphism
of Û . Under the hypothesis of the Isomorphism Theorem, by general arguments in Several
Complex Variables we can complete a quotient N to a quotient of the hull of holomorphy
D̂. Since the Kobayashi-Royden volume form dominates the Kähler-Einstein volume form up
to a scalar multiple, the completion N̂ will be of finite volume with respect to the complete
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Kähler-Einstein metric on N̂ , provided that the portion N̂ −N added to N is negligible, viz.,
of zero Lebesgue measure. We solved this problem in [Mo8] with elementary estimates which
are of independent interest for the study of the Kobayashi-Royden volume form.

Proposition 4. Let U b Cn be a bounded domain, and denote by ρ = ρU the Kobyashi-
Royden volume form on U . For z ∈ U denote by δ(z) the Euclidean distance of z from the
boundary ∂U . Write dV for the Euclidean volume form on Cn. Then, there exists a positive
constant c depending only on n and on the diameter of U such that

ρ(z) >
c

δ(z)
.

We remark that in case n = 1, the Kobayashi-Royden volume form is the same as the
Kobayashi metric, which agrees with the Poincaré metric, by the Uniformization Theorem.
It follows by comparing to the Poincaré metric on a punctured disk that for δ(z) sufficiently
small, we have the sharper estimate ρ(z) > c

δ2(z)(logδ(z))2 for some constant c depending
only on the diameter of U . This estimate depends however on the Uniformation Theorem
and does not generalize to higher dimensions. (On the other hand, by Mok-Yau [MY] the
Kähler-Einstein volume form satisfies the analogous estimate in higher dimension for bounded
domains of holomorphy, which is the source of the completeness of the Kähler-Einstein metrics
on such domains.) The weaker estimate in higher dimensions for the Kobayashi-Royden
volume form given below in Proposition is elementary. Its proof is based on Cauchy estimates.

Proposition 5. Let π : U → Z be a bounded Riemann domain spread over a Stein manifold
Z, and W ⊂ U be an open subset. Let x ∈ U − W and B ⊂ U be an open coordinate
neighborhood of x in U , which we will identify as a Euclidean open set, endowed with the
Lebesgue measure λ. Suppose Vol(B ∩W,ρB∩W ) < ∞. Then, the closed subset B −W ⊂ B

is of zero Lesbesgue measure.

Proposition 5 follows from Proposition 4 on the lower bound of the Kobayshi-Royden
volume form, the non-integrability of 1

δ on the nonempty intersection of any line segment `

with W such that ` ∩ (B −W ) 6= ∅) and from Fubini’s Theorem.

To pass from N to its ‘completion’ we have

Proposition 6. Let D ⊂ Z be an a bounded domain on a Stein manifold Z, Γ′ ⊂ Aut(D) be
a torsion-free discrete group of automorphisms of D such that N = D/Γ′ is of finite volume
with respect to ρD. Let π : D̂ → Z be the hull of holomorphy of D. Then, Γ′ extends to a
torsion-free discrete group of automorphisms Γ̂′ of D̂ such that, writing N̂ := D̂/Γ̂′, N̂ is of
finite volume with respect to ρ

N̂
.

The group Γ̂′ is the same as Γ′ as an abstract group and must therefore be torsion-free. If
Γ̂′ is not discrete, then there is some point x ∈ D̂ and a infinite sequence of distinct elements
µi ∈ Γ̂′ such that µi(x) converges to some point in D̂. But this forces some subsequence
of µi to converge to an automorphism of µ of D̂. ¿From standard general arguments µ still
preserves D, contradicting with the assumption of discreteness of Γ′ on D. The essential part
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of Proposition 6 is therefore the finiteness of volume of N̂ with respect to the Kobayashi-
Royden volume form, which follows from Proposition 5.

Proposition allows us to do Kähler geometry on the ‘completion’ N̂ of N , which is now
endowed with a complete Kähler-Einstein metric of finite volume. To prove the Isomorphism
Theorem we imitate the Fibration Theorem to get a holomorphic projection from N̂ to X.
To this end the main thing is to justify the constancy of certain bounded plurisubharmonic
functions when the compactness condition is replaced by the existence of a complete Kähler-
Einstein metric of finite volume on N̂ . This requires a justification by integration by parts
on the complete Kähler-Einstein manifold, and the argument is captured by the following
general formulation obtained in Mok [Mo8].

Lemma 7. Let (Z, ω) be an n-dimensional complete Kähler manifold of finite volume, and
u be a uniformly Lipschitz bounded plurisubharmonic function on Z. Then, u is a constant
function.

To apply Lemma 7 we do integration by parts on the hypothetical positive-dimensional
fibers of the holomorphic projection ρ : N̂ → X. To show that almost every fiber is of finite
volume we resort to standard comparison theorems on Kähler-Einstein metrics obtained from
the Ahlfors-Schwarz Lemma.

§3 Boundary values of proper holomorphic maps and geometric structures
(3.1) There is another context in the Function Theory on bounded symmetric domains for
which boundary values of bounded holomorphic functions (or mappings) play an important
role. This concerns proper holomorphic maps. To start with, for an irreducible bounded
symmetric domain of rank ≥ 2, Mok-Tsai ([MT], 1992) characterized the Harish-Chandra
realization Ω as the unique bounded convex realization up to affine linear transformations.
There an essential element is to consider boundary values of the biholomorphic map on
faces of the ∂Ω. An accompanying result, posed first as a conjecture in Mok ([Mo2], 1989)
and resolved by Tsai ([Ts], 1993) in the affirmative, asserts that any proper holomorphic
mapping f : Ω → Ω′ from an irreducible bounded symmetric domain Ω of rank ≥ 2 into a
bounded symmetric domain Ω′ must necessarily be a totally geodesic embedding, provided
that rank(Ω′) ≤ rank(Ω) (in which case equality on the ranks must hold). By revealing
some of the key elements in the proofs of these results we will illustrate the roles played
by Harmonic Analysis and by the theory of geometric structures, and the interplay between
them. Here Harmonic Analysis enters in ascertaining the existence of non-tangential limits of
bounded holomorphic functions and representing the latter by means of integrals of boundary
values, viz., in the form of Fatou’s Lemma, whereas the geometric structures concerned are
G-structures arising from compact duals of irreducible bounded symmetric domains of rank
≥ 2. Taking the compact duals such as Grassmann manifolds as model Fano manifolds of
Picard number 1, the relevant discussion on geometric structures can be incorporated into the
framework of the geometric theory on uniruled projective manifolds as developed by Jun-Muk
Hwang and the author. In fact, the larger context gives rise to geometric problems which
relates the study of proper holomorphic maps to varieties of minimal rational tangents.
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We start with the general notion of a (holomorphic) G-structure. Let n be a positive
integer. In what follows all bundles are understood to be holomorphic. Fix an n-dimensional
complex vector space V and let M be any n-dimensional complex manifold. The frame bundle
F(M) is a principal GL(V )-bundle with the fiber at x defined as F(M)x = Isom(V, Tx(M)),
the set of linear isomorphisms from V to the holomorphic tangent space at x.

Definition (G-structures). Let G ⊂ GL(V ) be any complex Lie subgroup. A holomorphic
G-structure is a G-principal subbundle G(M) of F(M). An element of Gx(M) will be called
a G-frame at x. For G 6= GL(V ) we say that G(M) defines a holomorphic reduction of the
tangent bundle to G.

On an m-dimensional smooth manifold M , a Riemannian metric g on M gives a reduction
of the structure group of the (real) tangent bundle from the general linear group GL(m,R)
to the orthogonal group O(m), which gives a smooth O(m)-structures. (M, g) is locally
isometric to the Euclidean space if and only if there exists on M an atlas of coordinate charts
{(Uα, ϕα)}α∈A, ϕα : Uα → Rm, on which the frames given by the coordinate vectors are
transformed to each other under the change of coordinates. In other words, we have a smooth
O(m) structure by taking the frames consisting of coordinate vectors to be an orthonormal
basis. We say in this case that the the smooth O(m)-structure is flat. On complex manifolds
we have analogously the following notion of flat holomorphic G-structures.

Definition (flat G-structures). Let M be a complex manifold and {(Uα, ϕα)}α∈A be any
atlas of holomorphic coordinate charts on M . In terms of Euclidean coordinates we identify
F(Uα) with the product GL(V )×Uα. We say that a holomorphic G-structure G(M) on M is
flat if and only if there exists an atlas of holomorphic coordinate charts {ϕα : Uα → V } such
that the restriction G(Uα) of G(M) to Uα is the product G× Uα ⊂ GL(V )× Uα.

Let (S, gc) be an irreducible Hermitian symmetric space of the compact type and of rank
≥ 2. Let Gc = Aut0(S, gc) and write K ⊂ Gc for the isotropy subgroup at an arbitrary
base point 0 ∈ S. For x ∈ S write Kx ⊂ Gc for the isotropy subgroup at x ∈ S, so
that K0 = K. Denote by Wx ⊂ PTx(S) the variety of highest weight tangents of Kx on
Tx(S). Let Lx ⊂ GL(Tx(S)) be the identity component of the linear subgroup consisting of
linear isomorphisms preserving Wx. Lx is isomorphic to KC

x , where γ ∈ KC
x corresponds to

dγ(x) ∈ Lx. By an S-structure we mean a G-structure with G = L0 ⊂ GL(T0(S)). We also
call an S-structure a KC-structure by identifying L0 with KC.

As an example consider S = G(p, q), the Grassmann manifold of p-planes in a (p + q)-
dimensional complex vector space W . Assume p, q ≥ 2 so that S is of rank ≥ 2. From the
definition of Grassman manifolds it is well-known that TG(p,q)

∼= U ⊗ V for universal vector
bundles U resp. V of rank p resp. q. The tensor product decomposition of the holomorphic
tangent bundle implies the reduction of the holomorphic frame bundle. In fact, it allows one
to identify tangent vectors Wx at a point as a vector space of p-by-q matrices, arising from
the tensor product of a vector space Ux of column vectors of rank p and a vector space Vx

of row vectors of rank q. We have then a reduction of the holomorphic frame bundle from
GL(n,C) to G, where G is the linear group consisting of left and right multiplication on the
pq-dimensional vector space M(p, q) of p-by-q matrices. This G-structure agrees with the
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S-structure defined in the above for the case of Grassman manifolds. The usual covering of
a Grassmann manifold consists of a finite number of Euclidean cells, identified with vectors
spaces of p-by-q matrices, such that the changes of coordinates are given by fractional linear
transformations of the form Φ(Z) = (AZ + B)(CZ + D)−1. A straightforward computation
shows that dΦ(Z)(X) = P (Z)XQ(Z) for square matrices P (Z) resp. Q(Z) of order p resp. q.
Thus, the Jacobians of holomorphic change of coordinates take values in the linear subgroup
G ⊂ GL(pq,C). In other words, we have not only a holomorphic reduction of the frame
bundle, but actually one arising from holomorphic coordinates on G(p, q). In other words,
G(p, q) carries a flat Grassmann structure. For further discussion on S-structures especially
for Grassmann structures we refer the reader to Hwang-Mok [HM1] and Mok [Mo3, 7].

In general, one can check using Harish-Chandra coordinates that the S-structure defined
above on S is flat for any irreducible Hermitian symmetric manifold S of the compact type
and of rank ≥ 2. We have a covering of S by coordinate charts consisting of complex Eu-
clidean spaces arising from Harish-Chandra decompositions. In these coordinates, Euclidean
translations Tx(z) = z + x extend holomorphically to biholomorphic automorphisms of S. In
particular, the holomorphic reduction of the frame bundle FS to GS as in the definition of a
G-structure is realized over each coordinate chart by a constant subbundle.

The following basic result of Ochiai [Oc] in the theory of G-structures will allow us to
characterize S among complex manifolds carrying S-structures.

Theorem (Ochiai [Oc]). Let S be an irreducible Hermitian symmetric space of the compact
type and of rank ≥ 2. Denote by π : W → S the bundle of varieties of highest weight tangents.
Let U , V ⊂ S be two connected open sets and f : U → V be a biholomorphism such that
f∗W|U = W|V . Then, f extends to a biholomorphic automorphism of S.

¿From Ochiai’s result we have the characterization of the model spaces S in terms of flat
S-structures, which follows by using Ochiai’s Theorem and the notion of developing maps.

Corollary. Let S be an irreducible Hermitian symmetric space of the compact type and of
rank ≥ 2. A simply connected complex manifold M carrying a flat S-structure must be
biholomorphically isomorphic to a Riemann domain spread over S. If M is compact, the M

is biholomorphically isomorphic to S.

(3.2) For irreducible Hermitian symmeric manifolds of the noncompact type E. Cartan identi-
fied explicit realizations of the four infinite series as bounded domains. The general canonical
representations were given by Harish-Chandra, and they agree with those given by E. Cartan
for the classical series. Putting the Harish-Chandra realization and the Borel embedding
together we have Ω b Cn ⊂ S, where S is the compact dual of Ω, and Ω inherits a flat S-
structure. By Hermann’s convexity theorem [He], the Harish-Chandra realizations Ω can be
identified with the unit ball in a vector space with respect to a norm defined in terms of Lie
algebras, and as such Ω is a convex domain. In the opposite direction Mok-Tsai [MT] charac-
terized the Harish-Chandra realizations the case of rank ≥ 2 as the unique bounded convex
realizations up to affine transformations. The methods of proof involve studying boundary
values of proper holomorphic and also the use of geometric structures. We have
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Theorem 8 (Mok-Tsai [MT]). Let X0 be an irreducible Hermitian symmetric space of
the noncompact type and of rank ≥ 2, and denote by H : X0 → Cn the Harish-Chandra
realization. Let F : X0 → Cn be a biholomorphism of X0 onto some bounded convex domain
D b Cn. Then, there exists an affine linear transformation Λ on Cn such that F = Λ ◦H.

We give highlights on the scheme of the proof of the theorem. The starting point is the
idea of taking boundary values of the bounded holomorphic map. If there is a reasonable way
of defining boundary values F ∗(b) for a boundary point b ∈ ∂Ω, then F ∗(b) ∈ ∂D since F is
a biholomorphism, in particular a proper map onto D. For the bounded symmetric domain
Ω of rank ≥ 2, we have product domains ∆×Ω′ embedded in a canonical way in Ω, where Ω′

is an irreducible bounded symmetric domain of rank r − 1. Restricting F to ∆× Ω′ we can
take radial limits of F (z; z′), z ∈ ∆, z′ ∈ Ω′, by fixing z′ and letting z approach a boundary
point ζ ∈ ∂∆. For a boundary point ζ ∈ ∂∆ outside a set of measure zero we can define
boundary values on the face Φζ := {ζ} × Ω′, thus defining a holomorphic map Fζ from Φζ

into Cn taking values in ∂D. We write F ∗(ζ, z′) = Fζ(z′) and we have by Fatou’s Lemma

F (z, z′) =
1

2πi

∫

∂∆

F ∗(ζ, z′)
ζ − z

dζ

In what follows we will identify X0 with the domain Ω := H(Ω) given by the Harish-
Chandra realization and write F : Ω → D. ¿From the convexity of D it follows that Fζ(Φζ)
must lie on some proper affine linear subspace in Cn. The latter property can be expressed
in terms of the vanishing of some determinants of partial derivatives defined on the section
∆× {0} of ∆× Ω′ taken in the directions of Ω′. Such minors are in fact boundary values of
some bounded holomorphic functions on ∆. From Fatou’s Lemma, which recovers a bounded
holomorphic function on the unit disk from its non-tangential (in particular radial) limits on
the boundary circle, we conclude that the same property holds true in the interior, in the
sense that F ({z} ×Ω′) must lie in some proper affine linear subspace in Cn for every z ∈ ∆.
Consider all embeddings of product domains equivalent to the embedding of ∆×Ω′ into the
fixed domain Ω. The image of a direct factor {z}×Ω′ is what we call a maximal characteristic
subspace.

As an illustration in the case where Ω is a classical domain of type I, denoted by D(p, q),
min(p, q) ≥ 2, consisting of all p-by-q complex matrices Z such that I − Z

t
Z > 0. The

compact dual of D(p, q) is G(p, q) consisting of the set of p-planes in Cp+q. On G(p, q) there
are Grassmann submanifolds isomorphic to G(p − 1, q − 1) embedded in a standard way,
and the moduli space of such Grassmannians is itself a rational homogeneous space M, in
particular a projective manifold. Identifying D(p, q) as a domain in G(p, q) by the Borel
embedding, the maximal characteristic subspaces Φ are precisely intersections M ∩Ω, where
[M ] ∈ M. Write now U for the set of all maximal characteristic subspaces Φ. Then U can
be identified as an open subset of M. ¿From the bounded convex realization F : Ω → D

we have induced a meromorphic map F ] : U → G into some Grassmannian G of affine linear
subspaces of Cn. Here the dimension d(Φ) of the affine linear span of F (Φ) may vary as the
characteristic subspace Φ varies. However, there is a maximal dimension m, and we take G
to be the moduli space of m-planes in Cn. Then F ] is a holomorphic map in a neighborhood
of the point [Φ] ∈ U when d(Φ) = m, and it extends to a meromorphic map on all of U .
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The arguments above apply to the general case of an irreducible bounded symmetric
domain of rank ≥ 2. We have thus brought in a second element in the proof, that of the
use of moduli spaces of special submanifolds, which is an argument reminiscent of the use of
duality in projective geometry. Here one analogy is that on S, every point is the intersection
of the relevant maximal characteristic subspaces (defined similarly) containing it. The use
of “duality” allows us to extend the biholomorphic map F : Ω → D to a rational map, as
follows. First of all we have a meromorphic map F ] : U → G. There are a number of different
ways to extend the meromorphic map from U to M. In a nutshell, U ⊂M is a pseudoconcave
open subset, and any meromorphic function on U extends meromorphically to M. The same
holds true for meromorphic maps into G since G is projective. To extend f meromorphically
from Ω to S one candidate of the extension is to define f(x) to be the intersection of F ](Φ)
as Φ ranges over the relevant characteristic subspaces on S passing through x. To justify
this we showed that the intersection of

{
F ](Φ) : Φ passes through x

}
reduces to a point. We

showed this by proving the stronger statement that f maps maximal characteristic subspaces
into affine linear spaces of the same dimension. The crux of the argument is to consider
images Ψ of maximal faces on ∂Ω under the boundary maps defined by radial limits, and
to show that, if the affine linear spans of Ψ were of strictly bigger dimension, there would
be a real 1-parameter family of maximal faces mapped to the same “maximal face” of ∂D.
Complexifying the family yields some maximal characteristic subspace mapped under F to
∂D, a plain contradiction.

After extending f rationally, we bring in a third element of the proof, which is to use
dilatation as suggested by the rescaling argument of Frankel [Fr] for automorphisms on a
convex domain. Here we have a situation where the map is already rational, and the rescaling
argument at a good boundary point transports Cayley transforms from Ω to D. The end
result gives a 1-parameter groups of automorphisms on some partial Cayley transforms of D.
Such a real parameter group consists of translations along a real line on the boundary. When
the S-structure on Ω is transported to D and then to its partial Cayley transforms, it says that
the S-structure is constant along the orbit of the 1-dimensional group of translations in the
coordinate system obtained from that of D by partial Cayley transforms. The S-structure
is equivalently given by the variety of highest weight tangents. In [MT] it is shown that
the constancy along 1-dimensional translates in new coordinate systems forces constraints
in the variations of varieties of highest weight tangents Wx in the coordinate system of
D. We showed that such constraints are sufficient to force the constancy of W on D. By
Ochiai’s Theorem we can identify D as a bounded domain in S such that the biholomorphism
F : Ω → D extends to an automorphism Φ of S. We conclude finally that Φ is affine linear
by making further use of the convexity of D.

(3.3) For an irreducible Hermitian symmetric space of the compact type and of rank ≥ 2 there
is an algebro-geometric interpretation of the S-structure, as follows. A nonzero tangent vector
at x ∈ S is a highest weight vector if and only if it is tangent to a projective line on S. Here S is
to be identified with a projective submanifold by means of the first canonical embedding, i.e.,
by the linear system defined by O(1), the positive generator of the Picard group. An example
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of such an embedding is the Plücker embedding of a Grassmann manifold. A projective line
on S is then precisely a rational curve of degree 1 with respect to O(1), and the collection of
all projective lines on S gives all rational curves of degree 1 on S. From this perspective the
study of S-structures can be incorporated into the geometric theory of uniruled projective
manifolds as developed by Jun-Muk Hwang and the author (cf. [HM2,3,4]).

By a uniruled projective manifold we mean a projective manifold that can be covered
by rational curves. A projective manifold X is uniruled if and only if there exists a free
rational curve, i.e., there exists a nonconstant holomorphic map f : P1 → X such that
f∗TX is a nonnegative holomorphic vector bundle on P1 (i.e., all the direct summands of
the Grothendieck decompositions are of degree ≥ 0.) Any free rational curve on X can be
deformed to give a family of free rational curves covering at least a nonempty Zariski-open
subset of X. By a minimal rational curve we mean a free rational curve of minimal degree
with respect to a fixed polarization. So far our theory revolves around uniruled projective
manifolds of Picard number 1, which are necessarily Fano. Because the Picard number is 1,
these manifolds are not susceptible to further reduction such as contractions of extremal rays.
We consider such manifolds as manifolds carrying (variable) geometric structures, defined by
their varieties of minimal rational tangents (VMRTs), which at a general point is the closure of
the collection of tangents to minimal rational curves passing through it. In the symmetric case
the variety of highest weight tangents Wx agrees with the VMRT Cx. We have now obtained
a vast generalization of the underlying extension principle in Ochiai’s theorem, which we call
the Cartan-Fubini Extension Principle, by showing that with very few exceptions any local
VMRT-preserving biholomorphism between Fano manifolds of Picard number 1 must extend
to a biholomorphism ([HM4, 2004]).

Theorem 9 (Hwang-Mok [HM4]). Let X be a Fano manifold of Picard number 1. Sup-
pose there exists a minimal rational component K such that for a general point x ∈ X the
variety of minimal rational tangents Cx ⊂ PTx(X) is not a finite union of projective linear
subspaces. Then, Cartan-Fubini extension holds for (X,K). Namely, for any choice of Fano
manifold X ′ of Picard number 1, any minimal rational component K′ with C′ ⊂ PT (X ′) and
any connected open subsets U ⊂ X and U ′ ⊂ X ′, the following holds true. If there exists a
biholomorphic map f : U → U ′ satisfying f∗(Cx) = C′f(x) for all generic x ∈ U , then there
exists a biholomorphic map Φ : X → X ′ such that f is the restriction of F to U .

The first general result on the Cartan-Fubini Extension Principle was established in
Hwang-Mok ([HM3], 2001), where the VMRT Cx ⊂ PTx(X) at a general point is of dimension
p ≥ 1 satisfying the additional condition (†) that the Gauss map is generically finite. The
condition (†) is equivalently the requirement that at a general smooth point of [α] ∈ Cx, the
kernel of the projective second fundamental form σ[α] is trivial. This special case covers in
fact all known cases of Fano manifolds of Picard number 1 for which the VMRT at a general
point is of dimension p ≥ 1.

The total spaces of VMRTs are equipped with tautological (multi-)foliations whose leaves
are tautological liftings of minimal rational curves C to the projectivized tangent bundle,
obtained by assigning to each smooth point x ∈ C the tangent direction [Tx(C)] ∈ Cx.
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The first step in the proof of Cartan-Fubini Extension under the assumption (†) is to show
that the tautological foliation is preserved under df . This was obtained by identifying the
1-dimensional distribution of a local piece V of C as precisely the Cauchy characteristic of
some distribution P on V defined from the VMRTs. The proof implies the univalence of the
tautological foliation at a general point of C. After this we have an induced map f ] on some
open subset U ⊂ K. In the case of model spaces such as irreducible Hermitian symmetric
manifolds of the compact type (and of rank ≥ 2) the open subset U ⊂ K can be shown to
be pseudoconcave, which forces analytic continuation of f ] by Hartogs extension from U to
the projective manifold K. This is the situation in (3.1) and (3.2) in the study of convex
realizations and proper holomorphic maps on bounded symmetric domains of rank ≥ 2. In
the situation of Fano manifolds of Picard number 1 under consideration, an analogous proof
along this line of argument has not been established. In its place we have devised a method
of parametrized analytic continuation along minimal rational curves in [HM3]. Here the main
difficulty is that of proving univalence, which is overcome by making use of the deformation
theory of rational curves.

The condition that X is of Picard number 1 is used to show that the map obtained
by analytic continuation along minimal rational curves does not have essential singularities
along a divisor D. When the Picard number is 1, any such divisor D is ample, and a minimal
rational curve C passing through a point x ∈ X−D must intersect D, thus allowing analytic
continuation across some nonempty open subset of each irreducible component of D, implying
meromorphic extension by Thullen extension. From the Picard number 1 condition on both
domain and target manifolds, meromorphic extension gives an extended map F : X 99K X ′

which is birational, and deformation theory of rational curves shows that the map is bireg-
ular outside sets of codimension 2 on both spaces, which allows pluri-anticanonical forms to
be pulled back both by F and its inverse F−1. In particular, F induces isomorphisms on
pluri-anticanonical sections of the same degree. Finally the Fano property implies that the
isomorphism on pluri-anticanonical sections of a sufficiently high degree induces a biholomor-
phism F : X → X ′. It suffices to choose a degree ` large enough so that both K−`

X and K−`
X′

define holomorphic embeddings, which is possible by the Fano assumption.

(3.4) Hermitian metric rigidity as included in §1 implies rigidity theorems for holomorphic
mappings from quotients of irreducible bounded symmetric domains of rank ≥ 2 into Kähler
manifolds of nonpositive bisectional curvature. In the case where the target manifold is also
a quotient of a bounded symmetric domain and the holomorphic map f : X → N induces
an injective homomorphism on fundamental groups, the lifiting F : Ω → Ω′ to universal
covering spaces isomorphic to bounded symmetric domains is a proper holomorphic map. In
the absence of lattices the problem of rigidity for proper holomorphic maps is an interesting
topic in its own right belonging to the Function Theory of bounded symmetric domains
(cf. Henkin-Novikov [HN] and Tumanov [Tum]). In this direction the author conjectured in
Mok ([Mo2], 1989) a general rigidity phenomenon for proper holomorphic maps under some
restriction on ranks, and the conjecture was resolved in the affirmative by Tsai ([Ts], 1993),
as follows.
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Theorem (Tsai [Ts]). Let f : Ω → Ω′ be a proper holomorphic map between two bounded
symmetric domains such that Ω is irreducible and of rank ≥ 2, and such that rank(Ω′) ≤
rank (Ω). Then, rank(Ω′) = rank(Ω), and f : Ω → Ω′ is a totally geodesic embedding.

We illustrate the starting point of the proof which consists of considering boundary
values of the proper holomorphic map in analogy to the proof of the theorem of Mok-Tsai’s
on the characterization of Harish-Chandra realizations as given in (3.2). As opposed to [MT],
the boundary structure of the target domain is known, as follows. The formulation involves
some technical terms for which the reader may consult Wolf [Wo]. Write Ω = G/K as usual.
From the root space decomposition there is a maximal strongly orthogonal set of noncompact
positive roots Π of cardinality r = rank(Ω). The root vectors pertaining to such roots define
a maximal polydisk P ⊂ Ω of dimension r. For 1 ≤ s ≤ r all s-dimensional polydisks Q in P

passing through 0 = eK are equivalent to each other under K. Each Q corresponds to a choice
of a subset Λ ⊂ Π of cardinality s, which determines a totally geodesic complex submanifold
ΩΛ ⊂ Ω containing Q as a maximal polydisk. We have partial Cayley transforms cΠ−Λ which
maps ΩΛ biholomorphically onto a boundary component in ∂Ω of rank s. Regarding the
stratification of ∂Ω we have

Boundary Component Theorem. (cf. Wolf [Wo]) Let Ω be an irreducible bounded sym-
metric in its Harish-Chandra realization. Write G = Aut0(Ω) and K ⊂ G for the isotropy
subgroup at the origin 0, so that Ω = G/K. The boundary components of Ω are precisely
the sets k · cΠ−Λ(ΩΛ) with Λ & Π, k ∈ K. They are Hermitian symmetric spaces of the
non-compact type of rank |Λ|. The action of K is transitive on the set of boundary compo-
nents of the some rank, while G acts transitively on the union of boundary components of
the same rank. ∂Ω is therefore the (disjoint) union of boundary orbits under the action of G.
Moreover, each boundary component is flat, i.e., it is contained in some complex affine space
of the same dimension.

¿From the knowledge of the structure of the boundary of a bounded symmetric domain
and taking radial limits as in (3.2) one concludes that, in the notations there, radial limits
on ∆ × Ω′ give holomorphic maps ϕβ : Φβ → ∂Ω whose image must lie in some boundary
component of rank ≤ r − 1, where r = rank(Ω). By the integral representation of boundary
values in Fatou’s Lemma, we conclude as in (3.2) that for each γ(ΩΛ), γ ∈ G, which is
precisely what we call a characteristic subspace, its transform must lie inside a characteristic
subspace of Ω′ of rank ≤ r − 1. The restriction of F to γ(ΩΛ), γ ∈ G, defines a proper
holomorphic map into a bounded symmetric domain of rank ≤ r − 1, and by induction we
conclude that for F to exist we must have in fact rank(Ω′) = rank(Ω) = r. In this case F

must transform tangents of minimal disks on Ω to tangents of minimal disks on Ω. Minimal
disks on a bounded symmetric domain can be completed to minimal rational curves on the
compact dual. At the same time, from properness it follows readily that F is an immersion
at a general point x ∈ Ω, and we have shown that dF must embed the VMRT Cx(Ω) into the
VMRT Cf(x)(Ω′). We note that this latter property is in general not sufficient to guarantee
total geodesy, even in the case of bounded symmetric domains of type I, i.e., the noncompact
duals D(p, q) of Grassmann manifolds G(p, q). In this case we have to rule out the possibility
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of infinitesimal ‘linear degeneracy’ in the form of a germ of holomorphic immersion which
is tangent to a projective linear subspace of the Grassmannian at each general point. In
this case it can be established that the germ of map must be actually ‘linearly degenerate’
in the sense that the image of the germ of map must actually lie on a projective linear
subspace, which is not possible for a proper holomorphic map since all boundary components
of intersection of a projective linear subspace with Ω′, which is isomorphic to the unit ball,
must be 0-dimensional.

Tsai [Ts] made use of methods of Kähler geometry and Lie theory to prove that minimal
disks on Ω are in fact mapped isometrically onto minimal disks on Ω′. It is conceptually
desirable to give a proof within the context of holomorphic geometry by avoiding the use of
Kähler metrics. Moreover, in the same vein that geometric structures on Hermitian symmet-
ric spaces of the compact type and of rank ≥ 2 generalize to a geometric theory on uniruled
projective manifolds, rigidity results on proper holomorphic maps between bounded symmet-
ric domains should generalize to the context of proper holomorphic maps between bounded
domains carrying some form of geometric structure, including at least some non-symmetric
bounded homogeneous domains as constructed by Pyatetski-Shapiro [P-S] such as the quasi-
symmetric domains. As an illustration of a general principle we have given in [Mo7] a proof
in the realm of the geometric theory of VMRTs for germ of holomorphic immersions between
germs of Grassmann manifolds.

Theorem 10. Let X be a Grassmann manifold, CX ⊂ PTX its total space of varieties of
minimal rational tangents, and S ⊂ X be a germ of complex submanifold such that E :=
TS ∩ CX defines canonically a flat Grassmann structure of rank ≥ 2. Then, S is an open
subset of a Grassmann submanifold M ⊂ X.

Theorem 10 and an obvious modification gives a new proof of a result of Neretin’s
formulated in terms of matrices.

Theorem (from [Ne, Thm. 2.3]). Let p, q, r, s be integers such that 2 ≤ p ≤ r and
2 ≤ q ≤ s. Let U ⊂ M(p, q) be an open connected subset containing 0, and Ψ : U → M(r, s)
be a holomorphic immersion such that at every Z ∈ U and for every X ∈ TZ(U) ∼= M(p, q),
we have

dΨ(Z)(X) = P (Z) ·X ·Q(Z)

for some matrices P (Z) ∈ M(r, p) of rank r and Q(Z) ∈ M(q, s) of rank q. Then, there
exists K ∈ M(r, s), L ∈ M(r, p), N ∈ M(q, p), and M ∈ M(q, s) such that L is of rank p

and M is of rank q, and such that Ψ(Z) = K + LZ(I −NZ)−1M . In particular, Ψ is of the
form Ψ = µ ◦Θ ◦ γ, where γ lies in the parabolic subgroup P ⊂ Aut0(G(p, q)) at 0 ∈ G(p, q),
γ ∈ Aut0(G(r, s)) and Θ : G(p, q) → G(r, s) is a standard embedding.

It should be noted that a result stronger than Theorem 10 had actually been established
by Hong [Ho] in which the flatness assumption of the induced Grassmann structure on S is
dropped. It would be interesting to recover Hong’s result by proving that flatness is automatic.
The point of Theorem 10 lies therefore in the method of proof. Among other things it has
led in Hong-Mok ([HoM]) to analogous theorems for certain pairs of rational homogeneous
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manifolds apparently neither accessible by the methods of Neretin [Ne] nor by the methods
of Hong [Ho]. In what follows we will explore the general principles leading to our proof of
Theorem 10.

(3.5) For the proof of [(3.4), Theorem 10] we have the following relative version of the Cartan-
Fubini Extension Principle for non-equidimensional germs of holomorphic which respect VM-
RTs in some precise sense.

Theorem 11 (Hong-Mok [HoM]). Let X resp. Z be two polarized uniruled projective
manifolds each equipped with a minimal rational component such that the variety of minimal
rational tangents at a general point is positive-dimensional. Suppose furthermore that Z is of
Picard number 1 (and hence Fano). Denote by C(X) resp. C(Z) the total space of varieties
of minimal rational tangents on X resp. Z. Let U ⊂ Z be a connected open subset and
f : U → X be a holomorphic immersion such that dfz

(C̃z(Z)
) ⊂ C̃f(z)(X) for every z ∈ U .

For any x ∈ X, β ∈ C̃x(X), write

σβ : Tβ

(C̃0(X)
)× Tβ

(C̃0(X)
) → Tβ

(
Tx(X)

)
/Tβ

(C̃0(X)
)

for the second fundamental form with respect to the Euclidean flat connection on Tx(X). For
any subspace V ⊂ Tβ

(C̃0(X)
)
, define

Ker σβ(V, ·) :=
{
δ ∈ Tβ

(C̃0(Ω2)
)

: σβ(γ, δ) = 0 , ∀ γ ∈ V
}

.

Denote by E ⊂ X the smallest subvariety such that every minimal rational curve passing
through a point x ∈ X − E must be free. Suppose f(U) does not lie on E; and suppose
furthermore that at a general point z ∈ U and a general smooth point α ∈ C̃z(Z), df(α) is a
smooth point of C̃f(z)(X) such that

Kerσdf(α)

(
Tdf(α)

(
df(C̃x(Ω1))

)
, ·) = Cdf(α) .

Then, f : U → X extends to a rational map F : Z → X.

After the proof of the Cartan-Fubini Extension ([HM2,3,4]) in the non-equidimensional
case the main problem is to prove that under the assumption on the second fundamental
form, connected open pieces of minimal rational curves of Z on U are mapped into minimal
rational curves on X. For the ensuing discussion we identify a non-degeneracy condition (††)
on linear sections of projective subvarieties which is a generalization of the condition (†) on
Gauss map on a VMRT, to the situation of a VMRT together with a linear section. We have

Definition. Let m ≥ 2, A ⊂ Pm, be a projective subvariety of pure dimension a ≥ 1. Let
Π ⊂ Pm be a projective linear subspace, and B := Π∩A be a non-empty projective subvariety
of pure dimension b ≥ 1. We say that the pair (B,A) satisfies the non-degeneracy condition
(††) if and only if for every general smooth point [β] ∈ B, [β] is also a smooth point of A and
Kerσ[β]

(
T[β](B), ·) = 0.
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Given two uniruled projective manifolds (X,K) and (Z,H) equipped with minimal ra-
tional components, a connected open subset U ⊂ Z, and a holomorphic map f : U → X, we
will say that f satsifies the condition (††) if and only if all of the following are satisfied.
(a) Writing E ⊂ X for the smallest subvariety such that every minimal rational curve not

contained in E must be free, f(U) 6⊂ E.
(b) For a general point z ∈ Z, [df ](Cz(Z)) ⊂ Cf(z)(X).
(c) For a general point z ∈ U , the pair

(
[df ](Cz(Z)), Cf(z)(X)

)
satisfies the (††) condition.

In view of the proof of Cartan-Fubini Extension ([HM2,3,4]), to establish Theorem 11 the
main difficulty is to prove that under the condition (††) on f : U → X, the holomorphic map
f transforms open pieces of H-curves into open pieces of K-curves. Given this, the method
of parametrized analytic continuation as developed in [HM3] suffices to give the rational
extension F : X 99K Z. Recall that the condition that Z is of Picard number 1 is used to
show that the map obtained by analytic continuation along minimal rational curves does not
have essential singularities along a divisor D. The proof that the extended map is everywhere
holomorphic no longer works in the non-equidimensional case even if we impose the Picard
number 1 condition on the target manifold.

In the equidimensional case for the Cartan-Fubini Extension Principle ([3.3, Theorem 9]),
the proof that a local VMRT-preserving biholomorphism must also preserve the tautological
(multi-)foliation relies on the use of distributions defined on the total space of VMRTs. This
proof no longer works in the non-equidimensional case. In its place Mok [Mo3] gives a proof in
the Hermitian symmetric case by exploiting the Harish-Chandra coordinates, with respect to
which the VMRTs form a constant family. There the projective second fundamental comes up
from elementary computations using the Euclidean flat connection. The foliation-preserving
property in the Hermitian symmetric case was used by Tu [Tu] to establish examples of
rigidity of proper holomorphic maps for certain pairs of bounded symmetric domains whose
ranks differ by 1. In Hong-Mok [HoM] we generalize the argument first of all to the case
where the uniruled projective manifolds admit local holomorphic coordinates with respect
to which open pieces of minimal rational curves are mapped to to open pieces of affine
lines. With such privileged coordinate systems we generalize the arguments of [Mo3] to
prove the foliation-preserving property. While in such coordinate systems the VMRTs are
not necessarily constant, we observe that the tangent spaces of the family of VMRTs along a
minimal rational curve are constant with respect to a privileged coordinate system, and this
was the essential point which makes the generalization possible. In the general case, we do
not know whether privileged coordinate systems exist, and the proof is more involved. The
basic geometric property about minimal rational curves which make the argument possible
can be described as follows. Let the VMRT be of dimension p ≥ 1 at a general point. On a
general minimal rational curve we consider the union of the family of minimal rational curves
C emanating from a general point q ∈ C, which sweeps out a (p + 1)-dimensional subvariety
Σq smooth along C at a general point of C. The geometric property that we use in the proof
is captured by the fact that for different base points q, q′ ∈ C, Σq and Σq′ are tangent to each
other along C at a general point of C.

We note that privileged coordinate systems exist for rational homogeneous spaces of
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Picard number 1 and for Fano hypersurfaces in Pn of degree d ≤ n−1 since such manifolds are
uniruled by projective lines. The geometric properties either with or without the assumption
of existence of privileged coordinate system result from the deformation theory of rational
curves. They stem from the following simple but important facts. Fixing a minimal rational
component K on an n-dimensional uniruled projective manifold X, a general member of K
is given by a standard rational curve, i.e., given by some f : P1 → X such that f∗TX =
O(2) ⊕ [O(1)]p ⊕ Oq, 1 + p + q = n. Denote by P := O(2) ⊕ [O(1)]p the positive part
of the Grothendieck decomposition, which is uniquely defined independent of the choice
of direct summands in the decomposition. At a general point x ∈ C := f(P1) and for
[α] = [Tx(C)], we have T[α](Cx) = Pα/Cα, where Pα = Px/Cα for any general point x ∈ C.
The preceding description of tangent spaces to a VMRT results from the fundamental fact
that for a free rational curve C, the deformation of C marked at a point is unobstructed since
H1(P1,O(a)) = 0 for any a ≥ −1.

(3.6) Finally, Theorem 10 on the characterization of Grassmann submanifolds on a Grass-
mannian G(r, s) can be deduced from the symmetric case of Theorem 11 (cf. [Mo7]). For
this purpose we rewrite the hypothesis of Theorem 10 in terms of maps, as follows. We
have two Grassmannians G(p, q) and G(r, s) both of rank ≥ 2 and a holomorphic embedding
f : U → G(r, s) on some connected open subset U ⊂ G(r, s), such that the Grassmann struc-
ture on G(r, s) induces a Grassmann structure on V0 := f(U) agreeing with the Grassmann
structure transported from U by the map f : U → G(r, s). Given the hypothesis, we compute
the projective second fundamental form to show that the condition (††) is satisfied. Theorem
11 then allows us to analytically continue the local holomorphic map f : U → G(r, s) to a
rational map, and the problem is to show that the image agrees with a Grassmann submani-
fold. The proof contains two geometric ingredients: rational connectivity by minimal rational
curves, and a method of transport of VMRTs along a minimal rational curve on Grassmann
manifolds.

Start with a point of reference x0 ∈ V0 ⊂ X. The hypothesis of Theorem 10 implies
that there is a Grassmann submanifold M ⊂ G(r, s) of the same dimension pq as V0 such
that M and V0 are tangent to each other at x0. Consider the collection K0 of lines (i.e.,
minimal rational curves) on M emanating from x0. Then, for [`] ∈ K0 from Theorem 11
it follows that the germ of ` at x0 must lie on V0. To prove that V0 lies on M we exploit
the rational connectivity of M by lines. Let Σ0 ⊂ X be the union of all lines ` belonging
to K0. Let V1 be an enlargement of V0 which includes a neighborhood of Σ0 such that V1

is obtained from analytic continuation along lines on G(p, q) emanating from U ⊂ G(r, s).
Equip V1 with the structure of lines transported from G(p, q) by an extension of the germ of
map f : U → G(p, q). By Theorem 11 we know that the lines transported from G(p, q) and
the lines on V1 from G(r, s) agree with each other because of the foliation-preserving property.
Thus, there is no risk of confusion when we talk about lines on V1. By our choice of M , M and
V1 share the same family of lines K0 emanating from x0, so that Σ0 ⊂ V1, Σ0 ⊂ M . From the
deformation theory of rational curves for the VMRT Cx1(V1) of V1 at x1, T[α](Cx1(V1)) agrees
with Tx1(Σ0)/Cα, where Tx1(`) = Cα. The same applies to M in place of V1 and we conclude
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that Cx1(V1) and Cx1(M) are tangent to each other at [α] ∈ Cx1(V1) ∩ Cx1(M). In general,
this only gives infinitesimal information on VMRTs. However, in the case of the Grassmann
manifolds, VMRTs are given by Segre embeddings of a product of two projective spaces,
and it is easy to check directly that the tangency condition is enough to imply that Cx1(V1)
and Cx1(M) are actually identical. Knowing this we can repeat the process of adjunction
of lines. Starting from Σ0 we can adjoin lines to any point x1 ∈ ` for any [`] ∈ K0. This
gives an enlarged subvariety Σ1 together with some neighborhood V2, such that Σ1 lies on
M . Repeating a finite number of times we recover all of M = Σk for some k from rational
connectivity of M by lines, and we have identified V0 = f(U) as an open subset of M , giving
the Theorem.

To put it in a nutshell, the fundamental argument which proves Theorem 10 is a method
of transport of the VMRT along a minimal rational curve. Once this is done, then Theorem
10 is completed by recovering a Grassmann submanifold from a process of adjunction of lines.
The rational connectivity of at least a dense Zariski-open subset by minimal rational curves
is a general property of Fano manifolds of Picard number 1 equipped with a minimal rational
component (cf. [HM2]). On the other hand, the argument of transport of VMRTs appears
special, as it is checked using the explicit structure of VMRTs. The process of transporting
VMRTs along a minimal rational curve can be recaptured as follow. Start with a pair of
Grassmann manifolds (Z, X) of rank ≥ 2 with Z ⊂ X embedded in a standard way. Take
a point of reference x0 ∈ Z. Take a line `0 on Z. The totality of lines ` on Z emanating
from x0 wiped out a subvariety Σ0, and the VMRT of Z at a point x1 ∈ `0 is completely
determined by the tangent space Tx1(Σ0). While this phenomenon is special, it is however a
property of many pairs of Hermitian symmetric manifolds of rank ≥ 2 and even of pairs of
rational homogeneous spaces of Picard number 1 (Hong-Mok [HoM]).
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