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Abstract

Building on the geometric theory of uniruled projective mani-
folds by Hwang-Mok, which relies on the study of varieties of min-
imal rational tangents (VMRTs) from both the algebro-geometric
and the differential-geometric perspectives, Mok, Hong-Mok and
Hong-Park have studied standard embeddings between rational
homogeneous spaces X = G/P of Picard number 1. Denoting by
S ⊂ X an arbitrary germ of complex submanifold which inher-
its from X a geometric structure defined by taking intersections
of VMRTs with tangent subspaces and modeled on some rational
homogeneous space X0 = G0/P0 of Picard number 1 embedded in
X = G/P as a linear section through a standard embedding, we
say that (X0, X) is rigid if there always exists some γ ∈ Aut(X)
such that S is an open subset of γ(X0). We prove that a pair
(X0, X) of sub-diagram type is rigid whenever X0 is nonlinear,
which in the Hermitian symmetric case recovers Schubert rigidity
for nonlinear smooth Schubert cycles, and which in the general
rational homogeneous case goes beyond earlier works dealing with
images of holomorphic maps. Our methods apply to uniruled pro-
jective manifolds (X,K), for which we introduce a general notion
of sub-VMRT structures ϖ : C (S) → S, proving that they are
rationally saturated under an auxiliary condition on the inter-
section C (S) := C (X) ∩ PT (S) and a nondegeneracy condition
for substructures expressed in terms of second fundamental forms
on VMRTs. Under the additional hypothesis that minimal ra-
tional curves are of degree 1 and that distributions spanned by
sub-VMRTs are bracket generating, we prove that S extends to
a subvariety Z ⊂ X. For its proof, starting with a “Thickening
Lemma ” which yields smooth collars around certain standard ra-
tional curves, we show that the germ of submanifold (S;x0) and
hence the associated germ of sub-VMRT structure on (S;x0) can
be propagated along chains of “thickening ” curves issuing from
x0, and construct by analytic continuation a projective family of
chains of rational curves compactifying the latter family, thereby
constructing the projective completion Z of S as its image under
the evaluation map.

1. Introduction, motivation and statements of main results

In a joint program starting with [HM98], Hwang and Mok have devel-
oped a geometric theory of uniruled projective manifolds. By Miyaoka-
Mori [MM86], all Fano manifolds are uniruled, noting that in the Picard
number 1 case any uniruled projective manifold is necessarily Fano. This
theory focuses on the variety of minimal rational tangents (VMRT),
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i.e., the projective subvariety consisting of tangents to minimal ratio-
nal curves passing through a general point (cf. Definition 2.1). Espe-
cially, Hwang-Mok established with very few exceptions the Cartan-
Fubini Extension Principle for germs of local biholomorphisms between
Fano manifolds of Picard number 1, according to which the germ of a
VMRT-preserving local biholomorphism extends necessarily to a global
biholomorphism provided that a certain nondegeneracy condition holds,
which is nothing other than the generic finiteness of the Gauss map on
the VMRT at a general point of the manifold (cf. [HM01]).

Cartan-Fubini extension lies at the heart of the theory of geometric
structures modeled on VMRTs. It led to a proof of Ochiai’s Theorem
[Oc70] by means of analytic continuation along minimal rational curves,
a proof which generalizes to Fano manifolds of Picard number 1 under
a very mild condition. Ochiai’s Theorem is essential in the proof of
rigidity under Kähler deformation of irreducible Hermitian symmetric
spaces of the compact type (Hwang-Mok [HM98]) and in the affirmative
solution of Lazarsfeld’s Problem ([HM99a]), and a solution of the latter
problem based on the Cartan-Fubini Extension Principle was given in
[HM04b]. Later on, Mok [Mk08a] and Hong-Mok [HoM10] generalized
Cartan-Fubini extension to holomorphic immersions between Fano man-
ifolds of Picard number 1 which are VMRT-respecting and which satisfy
a certain non-equidimensional nondegeneracy condition (cf. Section 2.1
in [HoM10]). Given rational homogeneous spaces X0 = G0/P0 and
X = G/P of Picard number 1, a connected open subset U ⊂ X0, and
a holomorphic immersion f : U → X, the mapping f is said to be
VMRT-respecting at x ∈ U if and only if [df ]

(
Cx(X0)

)
= Cf(x)(X) ∩

P(df(Tx(X0))), where Cx(X0) denotes the VMRT on X0 at the point x,
etc. Here and in what follows an injective linear map Λ : V → W be-
tween two finite-dimensional vector spaces we denote by [Λ] : PV → PW
the projectivization of Λ. (This applies analogously to linear homo-
morphisms between vector bundles.) Hong-Mok [HoM10] characterized
certain standard embeddings between rational homogeneous spaces of
Picard number 1 associated to long simple roots, as follows.

Theorem 1.1. (cf. Theorem 1.2 in Hong-Mok [HoM10]). Let X0 =
G0/P0 resp. X = G/P be rational homogeneous spaces associated to
long simple roots determined by marked Dynkin diagrams (D(G0), γ0)
resp. (D(G), γ). Suppose D(G0) is obtained from a sub-diagram of D(G)
with γ0 being identified with γ. If X0 is nonlinear and f : U → X is a
holomorphic embedding from a connected open subset U ⊂ X0 into X
which respects VMRTs at a general point x ∈ U , then f is the restriction
to U of a standard embedding of X0 into X.
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The pair (X0, X) as in the above theorem is called a pair of sub-
diagram type. The sub-diagram induces naturally a holomorphic em-
bedding i : X0 ↪→ X, and by a standard embedding we mean an embed-
ding φ ◦ i ◦ φ0 : X0 ↪→ X for any φ ∈ Aut(X) and any φ0 ∈ Aut(X0).
(If Aut(X0) is connected, i ◦ φ0 = ψ ◦ i for some ψ ∈ Aut(X), hence
φ◦ i◦φ0 = φψ ◦ i and thus φ0 may be dropped in the definition of stan-
dard embeddings.) Following [HoM10] but using projective geometry in
place of root space decompositions, Hong and Park obtained the same
result under the same assumptions as those in Theorem 1.1 when γ is
a short root.

Theorem 1.2. (cf. Theorem 1.2 in Hong-Park [HoP11]). The ana-
logue of Theorem 1.1 holds when the rational homogeneous space X =
G/P is associated to a short simple root determined by a marked Dynkin
diagram (D(G), γ), and X0 = G0/P0 ↪→ G/P = X is nonlinear and as-
sociated to a marked sub-diagram (D(G0), γ0) of (D(G), γ).

For the cases of maximal linear subspaces X0, Hong-Park [HoP11]
proved

Theorem 1.3. (cf. Theorem 1.3 in Hong-Park [HoP11]). Let X =
G/P be a rational homogeneous space associated to a simple root and
let X0 ⊂ X be a linear subspace. Let f : U → X be a holomorphic
embedding from a connected open subset U of X0 into X such that
P(df(Tx(X0))) is contained in Cf(x)(X) for any point x ∈ U . If there
is a maximal linear subspace Zmax of X of dimension equal to dim(U)
which is tangent to f(U) at some point f(x) ∈ f(U), then f(U) is con-
tained in Zmax, excepting when (Zmax, X) is given by (a) X is associated
to (Bℓ, αi), i ≤ ℓ− 1, and Zmax is Pℓ−i; (b) X is associated to (Cℓ, αℓ)
and Zmax is P1; or (c) X is associated to (F4, α1) and Zmax is P2. In
these cases the pairs (Zmax, X) are not rigid.

Here we identify a rational homogeneous space X = G/P of Picard
number 1 with a projective submanifold by means of the first canonical
embedding, i.e., ρ : X ↪→ P(Γ(X,O(1))∗) =: PN . For every point
x ∈ X a linear subspace in Cx(X) corresponds to a linear subspace in
X passing through x. We say that a linear subspace Zmax ⊂ X ⊂ PN

is maximal whenever there is no linear subspace Π ⊂ X such that
Zmax ( Π. Obviously the analogue of Theorem 1.3 fails for (X0, X) for
non-maximal linear subspaces X0 ( Zmax.

We define now admissible pairs of rational homogeneous spaces of
Picard number 1. Here the identity component of a complex Lie group
H is denoted by H0, and we write H0 =: Aut0(M) when H = Aut(M)
for some complex manifold M .

Definition 1.1. Let X0 and X be rational homogeneous spaces of Pi-
card number 1, and i : X0 ↪→ X be a holomorphic embedding equivariant
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with respect to a homomorphism of complex Lie groups Φ : Aut0(X0) →
Aut0(X). We say that (X0, X; i) is an admissible pair (of rational ho-
mogeneous spaces of Picard number 1) if and only if (a) i induces an

isomorphism i∗ : H2(X0,Z)
∼=−→ H2(X,Z), and (b) denoting by O(1)

the positive generator of Pic(X) and by ρ : X ↪→ P(Γ(X,O(1))∗) =: PN

the first canonical projective embedding of X, ρ ◦ i : X0 ↪→ PN embeds
X0 as a (smooth) linear section of ρ(X).

Assumption (b) rules out examples such as the Plücker embedding of
a Grassmannian of rank ≥ 2 into a projective space. As a consequence
of (b) we have the following immediate corollary on varieties of minimal
rational tangents which is important for the discussion in the current
article.

Corollary 1.1. Let (X0, X; i) be an admissible pair of rational ho-
mogeneous spaces of Picard number 1. Then, the equivariant holomor-
phic embedding i : X0 ↪→ X respects VMRTs, i.e., [di](Cx(X0)) =
Ci(x)(X) ∩ P(di(Tx(X0))) whenever x ∈ X0.

Remark Originally the VMRT-respecting property of i : X0 ↪→
X was used in place of (b) to define the notion of admissible pairs
(X0, X; i). Pairs (X0, X; i) of sub-diagram type are admissible in the
stronger sense as in Definition 1.1, and the global condition (b) is more
natural. Restricting to the cases where both X0 and X are irreducible
Hermitian symmetric spaces of the compact type, the two definitions of
admissible pairs lead to the same set of pairs (X0, X; i).

In the sequel we will denote the admissible pair simply by (X0, X),
the holomorphic equivariant embedding i : X0 ↪→ X being understood.
If the pair (X0, X) is of sub-diagram type as in Theorem 1.1, etc., it is
naturally admissible with i : X0 ↪→ X being induced by the canonical
identification of the nodes of their respective Dynkin diagrams. Pairs
of Grassmannians (G(p, q), G(r, s)); 1 ≤ p ≤ r, 1 ≤ q ≤ s; furnish pro-
totypes of admissible pairs of sub-diagram type. On the other hand,
for n ≥ 2, denoting by (V, σ) a 2n-dimensional complex vector space V
endowed with a symplectic form σ and by GIII(n, n) the Lagrangian
Grassmannian of n-dimensional isotropic vector subspaces (Lagrangian
vector subspaces), then (GIII(n, n), G(n, n)) is an admissible pair of ra-
tional homogeneous spaces which is not of sub-diagram type. In fact,
if X is any Grassmannian and (X0, X) is of sub-diagram type, then X0

must itself be a Grassmannian.
We consider complex submanifolds S ⊂ W of some connected open

subset W ⊂ X inheriting geometric substructures modeled on the pair
(X0, X) in some precise sense, as follows. Note that in this article a
manifold is taken to be connected; likewise a submanifold of a manifold
is taken to be connected. Here and in what follows, writing X = G/P ,
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X0 = G0/P0 ↪→ G/P = X and taking e ∈ P0 ⊂ P to be the identity
element of P and P0, we fix a reference point 0 = eP0 ∈ X0, which is
identified with eP ∈ X, i.e., 0 ∈ X0 ⊂ X.

Definition 1.2. Let (X0, X) be an admissible pair of rational ho-
mogeneous spaces of Picard number 1, W ⊂ X be a connected open
subset, and S ⊂ W be a complex submanifold. Consider the fibered
space π : C (X) → X of varieties of minimal rational tangents on X.
For every point x ∈ S define Cx(S) := Cx(X) ∩ PTx(S) and write
ϖ : C (S) → S for ϖ = π

∣∣
C (S)

, ϖ−1(x) := Cx(S) for x ∈ S. We say

that S ⊂W inherits a sub-VMRT structure modeled on (X0, X) if and
only if for every point x ∈ S there exists a neighborhood U of x on S
and a trivialization of the holomorphic projective bundle PT (X)|U given

by Φ : PT (X)|U
∼=−→ U×PT0(X) such that (1) Φ(C (X)|U ) = U×C0(X)

and (2) Φ(C (S)|U ) = U × C0(X0).

We also call ϖ : C (S) → S a sub-VMRT structure modeled on
(C0(X0),C0(X)). The holomorphic bundle map Φ in Definition 1.2 may
be referred to as a trivialization over U of the sub-VMRT structure mod-
eled on (X0, X). When the admissible pair (X0, X) is of sub-diagram
type, given a VMRT-respecting holomorphic embedding f : U → X
from a connected open subset U ⊂ X onto a complex submanifold
S := f(U) ⊂ W of some connected open subset W ⊂ X and writing
C (S) := C (X)∩PT (S), the canonical projection ϖ : C (S) → S defines
on S a sub-VMRT structure on S modeled on (X0, X) (cf. Lemma 1.2
below and Remark (c) after the proof of Main Theorem 1 in §4).

For i = 1, 2 let Vi be a finite-dimensional complex vector space, and
Ai ⊂ P(Vi) be a subvariety. We say that (A1 ⊂ P(V1)) is projectively
equivalent to (A2 ⊂ P(V2)) if and only if there exists a projective linear

isomorphism φ : P(V1)
∼=−→ P(V2) such that φ(A1) = A2. For subvari-

eties Ai ⊂ Bi ⊂ P(Vi); i = 1, 2; we say that (A1 ⊂ B1 ⊂ P(V1)) is projec-
tively equivalent to (A2 ⊂ B2 ⊂ P(V2)) if and only if there exists a pro-

jective linear isomorphism φ : P(V1)
∼=−→ P(V2) such that φ(A1) = A2

and φ(B1) = B2. If understood we may omit P(Vi); i = 1, 2.
For a finite-dimensional complex vector space E and for a subset A ⊂

P(E), we denote by Ã ⊂ E−{0} the affinization of A, i.e., Ã := λ−1(A)

for the canonical map λ : E−{0} → P(E). We also write A♯ := Ã∪{0}.
A♯ ⊂ E is invariant under multiplication by λ ∈ C. When A ⊂ P(E) is
a subvariety, A♯ ⊂ E is a subvariety which we call the cone over A.

Lemma 1.1. Let (X0, X) be an admissible pair of rational homoge-
neous spaces of Picard number 1, W ⊂ X be a connected open subset,
and S ⊂ W be a complex submanifold. Define C (S) := C (X) ∩ PT (S)
and write ϖ : C (S) → S for the canonical projection, ϖ−1(x) =: Cx(S)
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for any point x ∈ S. Suppose (Cx(S) ⊂ PTx(X)) is projectively equiva-
lent to (C0(X0) ⊂ PT0(X)) for any point x ∈ S. Then, ϖ : C (S) → S
is a holomorphic submersion.

Proof. Taking C (S) to be reduced, the general fiber of ϖ : C (S) → S
is reduced. Since reductions of the fibers are by hypothesis homologous
in PT (X), all fibers are reduced. Suppose x0 ∈ S and q ∈ Cx0(S). There
exist local holomorphic coordinates (z1, · · · , zm;w1, · · · , wn; t1, · · · , ts)
on some neighborhood O of q on C (X)|S such that (a) q corresponds
to (0, · · · , 0) and O corresponds to the unit polydisk ∆m+n+s; (b)
(t1, · · · , ts) are holomorphic coordinates on a neighborhood U of x0 on
S with respect to which x0 corresponds to (0, · · · , 0); (c) O ∩ Cx0(S)
corresponds to |zi| < 1 and w1 = · · · = wn = t1 = · · · = ts = 0;
(d) for x ∈ U with coordinates t = (t1, · · · , ts), Zx := Cx(S) ∩ O ⊂
Cx(X)∩O ∼= ∆m+n×{(t1, · · · , ts)} is a complex submanifold such that
the coordinate projection ρx from Zx into the z-polydisk ∆m is a surjec-
tive finite proper map. By fiberwise contour integration (as in the proof
of Weierstrass Preparation Theorem), the fibers of ρx consist of single
points since Cx0(S) is reduced, and ϖ

−1(U) =
∪

x∈U Zx is the graph of
a vector-valued holomorphic function on ∆m × U . Thus, ϖ is a holo-
morphic submersion at q. Since q ∈ Cx0(S) is arbitrary, ϖ : C (S) → S
is a holomorphic submersion. �

We have now the following pointwise characterization of sub-VMRT
structures modeled on an admissible pair (X0, X) of rational homoge-
neous spaces of Picard number 1.

Lemma 1.2. In the notation adopted in Lemma 1.1, S ⊂ W ⊂
X inherits a sub-VMRT structure modeled on (X0, X) if and only if
(Cx(S) ⊂ Cx(X)) is projectively equivalent to (C0(X0) ⊂ C0(X)) for any
point x ∈ S.

Proof. The “only if” part is obvious. For the “if” part let x0 ∈ S
and fix a holomorphic coordinate chart (V, zi) on some neighborhood V

of x0 on X, inducing a trivialization α : PT (X)|V
∼=−→ V ×PTx0(X). We

will prove that, shrinking V if necessary, there exist projective linear iso-

morphisms Γx : PTx(X)
∼=−→ PTx0(X) varying holomorphically in x ∈ V

such that Γx(Cx(X)) = Cx0(X) for any x ∈ V . To see this, shrinking V
if necessary, there exists γx ∈ G := Aut0(X) varying holomorphically
in x ∈ V such that γx0 = idX and such that γx(x) = x0 for every point
x ∈ V . (γ : V → G may be taken as a section of some P -principal
bundle F : G → X for the parabolic subgroup P ⊂ G at x0.) Since
π : C (X) → X is invariant under GC, we have [dγx](Cx(X)) = Cx0(X).
Thus, defining Γx([v]) := [dγx(v)]) and Γ(x, [v]) := (x,Γx([v])) ∈ Cx(X),
and identifying PT (X)|V with V×PTx0(X) by means of α we have a bun-

dle isomorphism Γ : PT (X)|V
∼=−→ V ×PTx0(X) such that Γ(C (X)|V ) =
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V × Cx0(X). Restricting Γ to U := V ∩ S we have Ψ : PT (X)|U
∼=−→

U × PTx0(X) such that Ψ(C (X)|U ) = U × Cx0(X). For x ∈ U define
Sx := Γx(Cx(S)) ⊂ Cx0(X). Note that Sx0 = Cx0(S) since γx0 = idX .

From now on, by means of the trivialization Ψ : PT (X)|U
∼=−→ U ×

PTx0(X) we identify C (X)|U with U × Cx0(X) and the fibers Cx(S)
of ϖ : C (S) → S with {x} × Sx. Denote by H ⊂ PGL(Tx0(X)) the
Lie subgroup of all projective linear transformations φ ∈ PGL(Tx0(X))
satisfying φ(Cx0(X)) = Cx0(X), and by J ⊂ H the Lie subgroup con-
sisting of φ ∈ H satisfying the further condition φ(Cx0(X0)) = Cx0(X0).
By hypothesis, for every point x ∈ U there exists θx ∈ PGL(Tx0(X))
such that θx(Cx0(X)) = Cx0(X) and such that θx(Sx) = Sx0 = Cx0(S).
Given one such isomorphism θ0x the set of all θx satisfying the same
requirements is given by Jx := J · θ0x. To show that ϖ : C (S) → S,
C (S) := C (X) ∩ PT (S), is indeed a sub-VMRT structure in the sense
of Definition 1.2, the problem is (†) to find Θx ∈ Jx such that Θx

varies holomorphically in x ∈ U , shrinking U if necessary. To this
end recall that Cx0(X)♯ resp.Cx0(X0)

♯ denotes the cone over Cx0(X)

resp.Cx0(X0). The affinization H̃ ⊂ GL(Tx0(X)) resp. J̃ ⊂ GL(Tx0(X))
of H ⊂ PGL(Tx0(X)) resp. J ⊂ PGL(Tx0(X)) is a linear subgroup,

J̃ ⊂ H̃. There is a positive integer m and a finite number of homoge-
neous polynomials Q1, · · · , QN on Tx0(X) of degree m whose common
zero set is precisely Cx0(S)

♯. Since ϖ : C (S) → S is a submersion, its

lifting ϖ̃ : C̃ (S) → S to the affinization is also a submersion. Hence,

for any v0 ∈ C̃x0(S), shrinking U if necessary, there exists a biholo-

morphism σ : U × ∆r
∼=−→ W, r = dim(C̃x0(S)), onto an open subset

W ⊂ C̃ (S) such that ϖ̃(σ(x, t)) = x. For each t ∈ ∆r, 1 ≤ k ≤ N , the

zero set of the holomorphic function Qk(T (σ(x, t)) in (x, T ) ∈ U × H̃ is

a subvariety Z̃(t, k) ⊂ U × H̃, which descends to Z(t, k) ⊂ U ×H. Con-
sider the intersection Z :=

∩{
Z(t, k) : t ∈ ∆r, 1 ≤ k ≤ N

}
and write

its fiber over x ∈ U as Zx = {x}×Z ′
x. Then Z ⊂ U ×H is a subvariety

and Z ′
x ⊂ H consists precisely of all projective linear transformations

h ∈ H satisfying h(Ox) ⊂ Sx0 for a certain given nonempty open sub-
set Ox ⊂ Sx. By the Identity Theorem for holomorphic functions it
follows that Z ′

x = Jx = J · θ0x for some θ0x ∈ H. Define N := J\H, then
Z ⊂ U ×H descends to a subvariety Z ⊂ U ×N . For x ∈ U the fibers
Zx = Z ∩ ({x} × N ) consists of a single point, hence Z is the graph
of a holomorphic map τ : U → N . Shrinking U if necessary, τ lifts to
a holomorphic map Θ : U → H and (†) is solved with Θx := Θ(x) for
x ∈ U . The proof of Lemma 1.2 is complete. �
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Remarks
(a) For the given proof of Lemma 1.2, in place of Lemma 1.1 it is suffi-

cient to know that ϖ : C (S) → S is a submersion at a general point
on any fiber Cx(S), x ∈ U .

(b) Assume that Ψ has been constructed. For h ∈ H write ν(h) := Jh ∈
J \H =: N . Consider S :=

{
(ν(h), w) : h ∈ H,w ∈ h−1(Sx0)

}
⊂

N × Cx0(X). The canonical projection β : S → N realizes S as
the total space of a locally trivial holomorphic fiber bundle. Denote
by Q the Chow component of Cx0(X) containing the reduced cycle
[S0] as a member and by N ⊂ Q the orbit of [S0] under H. Then,
there exists a universal family ρ : A → Q, A ⊂ Q × Cx0(X), over
Q and a classifying map f : U → Q such that f(U) ⊂ N and such
that ϖ|U : C (S)|U → U is isomorphic to f∗ρ : f∗A → U . Noting
that ρ|N : A |N → N is isomorphic as a holomorphic fiber bundle
to β : S → N we obtain local trivializations of ϖ : C (S) → S as
a sub-VMRT structure modeled on (X0, X). As the construction of
Ψ also follows from the same argument, we have a quick proof of
Lemma 1.2. However, in view of the elementary character of the
results we have chosen to give a self-contained proof of Lemma 1.2
using Lemma 1.1.

(c) For the prototype of Grassmannians, S ⊂ W ⊂ G(p, q) inherits
a sub-VMRT structure modeled on (G(r, s), G(p, q)) if and only if
φ : C (S) → S is a Grassmann structure on S modeled on G(r, s),
and the latter holds if and only if Cx(S) ∼= ζ(Pr−1 × Ps−1), ζ being
the Segre embedding.

In view of the rigidity results Theorem 1.1, Theorem 1.2 and The-
orem 1.3 for VMRT-respecting germs of holomorphic immersions f :
(X0;x0) → (X; f(x0)) when the admissible pair (X0, X) is of sub-
diagram type, we formulate the following notion of rigidity for sub-
VMRT structures modeled on admissible pairs (X0, X) of rational ho-
mogeneous spaces of Picard number 1. A manifold is taken to be con-
nected. Likewise a submanifold of a manifold is taken to be connected.

Definition 1.3. An admissible pair (X0, X) of rational homogeneous
spaces of Picard number 1 is said to be rigid if and only if for any con-
nected open subset W ⊂ X, any complex submanifold S ⊂W inheriting
a sub-VMRT structure modeled on (X0, X) must necessarily be an open
subset of γ(X0) ⊂ X for some γ ∈ Aut(X). We also say equivalently
that sub-VMRT structures modeled on (X0, X) are rigid.

We note that in Theorem 1.3 (from Hong-Park [HoP11]), where X0 ⊂
X is a linear subspace, the condition for f : U → X to be VMRT-
respecting (where U ⊂ X0 is a connected open subset), i.e., df(PT (U)) ⊂
C (X)|S , is actually a condition on S := f(U) ⊂ X, i.e., the condition

PT (S) ⊂ C (X)|S . Hence, any biholomorphism f : U
∼=−→ S ⊂ W is
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trivially VMRT-respecting. As such Theorem 1.3 is actually a result on
rigidity of sub-VMRT structures modeled on (X0, X) for the linear case.
For the nonlinear case there is a big difference between germs of VMRT-
respecting holomorphic immersions and sub-VMRT structures modeled
on admissible pairs. For instance, when X0 is Hermitian symmetric
the VMRT-respecting property implies that the image germ of complex
submanifold S is intrinsically flat, i.e., that a number of curvature-type
invariants are equal to 0 (cf. Guillemin [Gu65]).

The problem of rigidity of admissible pairs originated with the works
of Walters [Wa97] and Bryant [Br01] in connection with certain rigidity
problems in the Hermitian symmetric case concerning Schubert cycles.
This includes in particular the problem of Schur rigidity of a smooth
Schubert cycle X0 ⊂ X (corresponding necessarily to an admissible
pair (X0;X) of sub-diagram type), which asks whether an irreducible
algebraic cycle Z homologous to rX0, r being a positive integer, is
necessarily a sum γ1(X0) + · · · + γr(X0) of translates of X0 by γi ∈
Aut(X), 1 ≤ i ≤ r. The problem was converted to a question on
uniqueness of integral varieties of a certain differential system called
Schubert differential system, which is exactly the question of rigidity
of the pair (X0;X) in Definition 1.3. The latter problem was solved
by Hong [Ho07] using methods of Lie algebra cohomology. It appears
nonetheless a daunting task to generalize the same arguments to the
general case of rational homogeneous spacesX = G/P of Picard number
1.

[Mk08a], [HoM10] and [HoP11] rely on local differential geometry.
In Hong-Mok [HoM13] the methodology was further applied to rigidity
problems on (not necessarily homogeneous) smooth Schubert cycles. In
this article we further develop the differential-geometric approach of the
aforementioned articles to study rigidity of admissible pairs primarily
for the nonlinear case, and we prove the following Main Theorem 1
which gives sufficient conditions for the rigidity of (X0, X).

Main Theorem 1. Let (X0, X) be an admissible pair of sub-diagram
type of rational homogeneous spaces of Picard number 1 marked at a
simple root. Suppose X0 ⊂ X is nonlinear. Then, (X0, X) is rigid.

Combining Main Theorem 1 with Theorem 1.3 for the maximal lin-
ear case, the question on rigidity of geometric structures modeled on
admissible pairs (X0, X) of Picard number 1 is completely settled.

Corollary 1.2. An admissible pair (X0, X) of rational homogeneous
spaces of Picard number 1 of sub-diagram type is a rigid pair except-
ing when X0 ⊂ X is a non-maximal linear subspace, or X0 ⊂ X
is a maximal linear subspace Zmax given by (a) X is associated to
(Bℓ, αi), i ≤ ℓ − 1, and Zmax is Pℓ−i; (b) X is associated to (Cℓ, αℓ)
and Zmax is P1; or (c) X is associated to (F4, α1) and Zmax is P2.
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Results of [Mk08a], [HoM10] and [HoP11] for the characterization of
standard embeddings defined by marked Dynkin sub-diagrams subsume
under the more general phenomenon of rigidity of certain pairs of admis-
sible rational homogeneous spaces of Picard number 1 covered by Main
Theorem 1. Thus, Main Theorem 1 strengthens [Mk08a], [HoM10] and
[HoP11] by removing the assumption that the sub-VMRT structures
under consideration are images of VMRT-respecting maps.

On the rational homogeneous space X = G/P of Picard number 1
there is a rank one distribution F ⊂ T (C (X)) corresponding to the
tautological foliation F of leaf dimension 1 on C (X). Local leaves of
F are tautological liftings (cf. second paragraph after Theorem 5.1) to
C (X) of connected open subsets of minimal rational curves on X. Note
that the minimal rational curves on X are precisely the projective lines
lying on X when the latter is embedded as a projective submanifold
by the first canonical embedding. Crucial to our study is the question
whether F restricts to C (S) := C (X) ∩ PT (S) over S, i.e., whether
F |C (S) ⊂ T (C (S)), when S inherits a sub-VMRT structure modeled
on (X0, X). If the latter holds we say that S is linearly saturated.
Equivalently, S is linearly saturated if and only if any projective line ℓ
tangent to S at some point must necessarily lie on S. In §2 we develop
first of all a method which gives sufficient conditions for S to be lin-
early saturated. This method introduces a notion of nondegeneracy for
substructures for the pair (C0(X0) ⊂ C0(X)) which is a priori differ-
ent from the notion of nondegeneracy introduced in Mok [Mk08a] and
Hong-Mok [HoM10] for mappings when X0 is nonlinear. In §3 we com-
pare the two notions of nondegeneracy for admissible pairs of rational
homogeneous spaces of Picard number 1, proving their equivalence in
cases of sub-diagram type by means of root space decompositions and
Grothendieck splitting over minimal rational curves. In §4 we conclude
the proof of Main Theorem 1 in a formulation that incorporates both
the long-root and short-root cases. In §5 we consider uniruled projective
manifolds (X,K) endowed with minimal rational components. Denot-
ing by π : C (X) → X the accompanying VMRT structure of (X,K), we
introduce a general notion for sub-VMRT structures ϖ : C (S) → S of
π : C (X) → X defined by taking intersections of VMRTs with projec-
tivizations of tangent subspaces, and a general notion of nondegeneracy
for substructures to be given in Definition 5.3 for a proper pair (B,A)
of subvarieties (cf. Definition 5.2) of a projective space. Our methods,
combined with the method of analytic continuation developed in Hwang-
Mok [HM01], [HM04b], Mok [Mk08a] and Hong-Mok [HoM10], will yield
in §5 the following result giving sufficient conditions for a sub-VMRT
structure on a uniruled projective manifold (X,K) to be rationally satu-
rated. For its formulation we need a condition on the sub-VMRT struc-
ture ϖ : C (S) → S, called Condition (T), concerning the intersection
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C (S) = C (X) ∩ PT (S), to be given in Definition 5.4. For the precise
meaning of terms in the following result we refer the reader to §5. We
have

Theorem 1.4. Let (X,K) be an ordered pair consisting of a unir-
uled projective manifold X and a minimal rational component K on X
and denote by π : C (X) → X the VMRT structure on X associated to
(X,K). Assume that at a general point x ∈ X, the VMRT Cx(X) is
irreducible. Write B′ ⊂ X for the enhanced bad locus of (X,K). Let
W ⊂ X−B′ be a connected open subset, and S ⊂ W be a complex sub-
manifold such that, writing C (S) := C (X)|S ∩PT (S) and ϖ := π

∣∣
C (S)

,

ϖ : C (S) → S is a sub-VMRT structure satisfying Condition (T). Sup-
pose furthermore that for a general point x on S and for each of the ir-
reducible components Γk,x of Cx(S), 1 ≤ k ≤ m, the pair (Γk,x,Cx(X))
is nondegenerate for substructures. Then, S is rationally saturated with
respect to (X,K).

When X is of Picard number 1, by a line ℓ on X we mean a rational
curve ℓ such that c1(O(1)) · ℓ = 1, where O(1) denotes the positive
generator of Pic(X) ∼= Z. We say that (X,K) is a uniruling by lines
to mean that members of K are lines. For (X,K) uniruled by lines we
prove a sufficient condition for the algebraicity of germs of sub-VMRT
structures on them. For the formulation a holomorphic distribution D
on a complex manifoldM is said to be bracket generating if and only if,
defining inductively D1 = D, Dk+1 = Dk + [D,Dk], Dm|U = T (U) on a
neighborhood of U of a general point x ∈M for m sufficiently large. By
a distribution we will mean a coherent subsheaf of the tangent sheaf.

Main Theorem 2. In Theorem 1.4 suppose furthermore that (X,K)
is a projective manifold of Picard number 1 uniruled by lines and that the

distribution D on S defined by Dx := Span(C̃x(S)) is bracket generating.
Then, there exists an irreducible subvariety Z ⊂ X such that S ⊂ Z
and such that dim(Z) = dim(S).

Main Theorem 2 is proved by the process of adjoining rational curves.
Unlike the a priori algebraic reconstruction of a uniruled projective
manifold by the adjunction process, in the construction of a uniruled
projective subvariety starting with a germ of sub-VMRT structures ϖ :
C (S) → S, the basic issue is to prove algebraicity starting with a germ
of complex submanifold S. Under the assumption that minimal rational
curves are of degree 1 we resolve the problem by means of techniques
of analytic continuation. In §6 we prove the Thickening Lemma by
which we construct a collar (an immersed complex submanifold) around
a general standard rational curve ℓ issuing from S, allowing the sub-
VMRT structure to be propagated . In §7 we prove results on Hartogs
and Thullen extension to be applied to sub-VMRT structures. In §8 we
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devise an iterative scheme for the construction of a projective completion
of a germ of sub-VMRT structure, and give a proof of Main Theorem
2 using extension results of §6 and §7. Central to the arguments is
the construction of a certain projective “universal family” of chains of
rational curves emanating from a base point of S.

As applications of analytic continuation of sub-VMRT structures, we
study in §9 the Recognition Problem on sub-VMRT structures on am-
bient uniruled projective manifolds which are complete intersections on
rational homogeneous spaces of Picard number 1.

Main Theorem 1 in the long-root cases was established in the thesis of
Yunxin Zhang written under the supervision of Ngaiming Mok. At the
same time, Zhang [Zh14] has in his thesis given a complete classification
of admissible pairs of irreducible Hermitian symmetric spaces of the
compact type, furnishing in particular new examples for the general
theory.

Acknowledgement. The authors would like to thank Jaehyun Hong
and Sui-Chung Ng for having carefully read earlier versions of the article
and for their many helpful remarks. They would also like to thank the
referees for their critique and many suggestions for improvement which
have led to significant changes in the presentation of some arguments.
Especially, they wish to thank one of the referees for pointing out that
the proof of Main Theorem 1 was not sufficiently detailed in the original
manuscript, as a consequence of which the authors have added Lemma
4.1 and Scheme 4.1 (which serves at the same time as an introduction
to Scheme 8.1 used in the proof of Main Theorem 2).

2. Linearly saturated sub-VMRT structures on rational
homogeneous spaces of Picard number 1

We will be using some basic notions and terminology in the geometric
theory of uniruled projective manifolds modeled on VMRTs. General
references are Hwang-Mok [HM99b], Hwang [Hw01] and Mok [Mk08b],
but the relevant notions will be recalled in §5. Consider a uniruled
projective manifold X endowed with a minimal rational component K.
The VMRT structure on X is given by π : C (X) → X, C (X) ⊂ PT (X),
in which the fibers Cx(X) ⊂ PTx(X) are the VMRTs of (X,K). Here
Cx(X) is defined only for x lying on the Zariski open subset X−B of
X, where B ⊂ X is the bad locus of (X,K). Note that B = ∅ when X
is a rational homogeneous space of Picard number 1.

We introduced in [HoM10, Proposition 2.5] the notion of privileged
coordinate charts. Here we give a simplified but equivalent definition.

Definition 2.1. Let (X,K) be a uniruled projective manifold endowed
with a minimal rational component and denote by π : C (X) → X the
associated VMRT structure. Let (U, zi) be a holomorphic coordinate
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chart on X, where U is disjoint from the bad locus B of (X,K). (U, zi)
is said to be privileged if and only if for any minimal rational curve ℓ
passing through U , the set ℓ ∩ U described in terms of the coordinates
(zi) is an open subset of an affine line.

Remark Let (U, zi) be a holomorphic coordinate chart on X. Write
T (X)|U ∼= U×V for the trivialization of the holomorphic tangent bundle
T (X) over U in terms of a standard basis of T (X)|U consisting of

{
∂
∂zi

}
,

and identify hence Tx(U) for every point x ∈ U with the fixed complex
vector space V . In the definition of privileged coordinate charts in
[HoM10], an additional assumption was imposed, viz., that the VMRTs
of X along ℓ ∩ U are tangentially constant, i.e., there exists some fixed

complex vector subspace Pℓ ⊂ V such that Pαx := Tαx(C̃x(X)) ≡ Pℓ

for every point x ∈ ℓ ∩ U , Tx(ℓ) := Cαx. We observe here that the
latter condition is automatically satisfied. To see this, let (U, zi) be a
privileged coordinate chart in the sense of Definition 2.1, ℓ be a minimal
rational curve such that ℓ ∩ U ̸= ∅, x0 ∈ ℓ ∩ U , Tx0(ℓ) =: Cαx0 . In
terms of (zi) write F (s, t) = z(x0)+sα(t); s ∈ C, t ∈ ∆p; for an effective
holomorphic parametrization of affine lines passing through x0 such that
[α(t)] ∈ Cx0(X) for t ∈ ∆p and α(0) = α. Denote the image by Σ. Then,
for x ∈ ℓ∩U, x ̸= x0, we have Pαx = Tx(Σ) by the deformation theory of

rational curves (cf. §5). Hence, Pαx = Span
{
αx,

∂α
∂t1

∣∣
t=0

· · · , ∂α
∂tp

∣∣
t=0

}
=:

Pℓ for x ∈ ℓ−{x0}. Replacing the base point x0 ∈ ℓ ∩ U by x1 ∈
(ℓ ∩ U)−{x0} we conclude that Pαx0

= Pℓ too, i.e., Pαx is tangentially
constant as x travels along ℓ ∩ U .

Let X ⊂ PN be a projective manifold uniruled by projective lines,
and denote by K a minimal rational component consisting of projective
lines, by B ⊂ X the bad locus of (X,K). Then, for the VMRT structure
π : C (X) → X associated to (X,K), C (X) ⊂ PT (X−B) is nonsingular,
and π is a submersion (cf.Mok [Mk08b, Lemma 3]). For x ∈ X−B, us-
ing affine coordinate charts on PN and linear projections into Euclidean
spaces, a germ of open subset of a projective line passing through x is
projected to a germ of open subset on an affine line. Thus, privileged
coordinate charts always exist in such cases. In particular, this is the
case of a rational homogeneous space X = G/P embedded as a pro-
jective submanifold of P(Γ(X,O(1))∗), where O(1) denotes the positive
generator of the Picard group Pic(X) ∼= Z. The Harish-Chandra coordi-
nates on a compact Hermitian symmetric space, on which the minimal
rational curves appear as affine lines and the VMRTs form a constant
family, serve as a special case of privileged coordinates.

In terms of any holomorphic coordinate chart (U, zi) we have a holo-
morphic basis

{
∂
∂zi

: 1 ≤ i ≤ n
}

of T (U) dual to the holomorphic

basis
{
dzi : 1 ≤ i ≤ n

}
of T ∗(U). Correspondingly, we have coordinates
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(zi;wj) = (z1, · · · , zn; w1, · · · , wn) on T (U), where (zi;wj) denotes the
vector w1 ∂

∂z1
+ · · ·+ wn ∂

∂zn
at a point on U with coordinates (zi). For

any point x ∈ U we have T (U) ∼= U × Tx(U) ∼= U × Cn. With respect
to the described trivialization of T (U), we sometimes use the notation
η ∈ Tx(U) also for the vector (y, η) ∈ Ty(U) for y ∈ U . Wherever it
is necessary to make a reference to the base point we will write ηy for
(y, η), etc.

We proceed to consider the holomorphic tangent bundle T (T (U))
of T (U). In the coordinates (zi;wj) on T (U) we have a holomor-
phic basis

{
∂
∂zi
, ∂
∂wj

: 1 ≤ i, j ≤ n
}

of T (T (U)) dual to the basis{
dzi, dwj : 1 ≤ i, j ≤ n

}
of T ∗(T (U)). Depending on the context, ∂

∂zi
denotes either a certain tangent vector belonging to Tx(U) for some
x ∈ U , or a certain tangent vector at some (x, η) ∈ T (U). Write
Ťx,η(U) ⊂ Tx,η(T (U)) for the vector subspace of ‘horizontal’ vectors

spanned by ∂
∂zi

, 1 ≤ i ≤ n, and T̂x,η(U) ⊂ Tx,η(T (U)) for the vector sub-

space of (intrinsically defined) vertical tangent vectors spanned by ∂
∂wi

,

1 ≤ i ≤ n. There is a natural isomorphism φ̌x,η : Tx(U)
∼=−→ Ťx,η(U)

given by φ̌x,η

(
∂
∂zi

)
= ∂

∂zi
for 1 ≤ i ≤ n. (Here the notation ∂

∂zi
car-

ries two different meanings, as explained above.) At the same time,

there is a natural isomorphism φ̂x,η : Tx(U)
∼=−→ T̂x,η(U) given by

φ̂
(

∂
∂zi

)
= ∂

∂wi
for 1 ≤ i ≤ n. With these identifications, we have

Tx,η(T (U)) = Ťx,η(U) ⊕ T̂x,η(U). When η ∈ Tx(U) is understood we

also write Ťx(U) for Ťx,η(U) and T̂x(U) for T̂x,η(U). Moreover, for a
vector subspace E ⊂ Tx(U) and for η ∈ Tx(U) we have a vector sub-

space Ě ⊕ Ê ⊂ Tx,η(T (U)), where Ě = φ̌x,η(E) and Ê = φ̂x,η(E). We
also write φ̌x,η = φ̌ηx and φ̂x,η = φ̂ηx . We note that the isomorphism

φ̂x,η : Tx(U)
∼=−→ T̂x,η(U) is intrinsically defined while the image of

φ̌x,η : Tx(U)
∼=−→ Ťx,η(U) ⊂ Tx,η(T (U)) depends on (zi).

Denote by 0(X) ⊂ T (X) the zero section and by λ : T (X)− 0(X) →
PT (X) the canonical projection. For a distribution E on a smooth open

subset O ⊂ C (X) we have a distribution Ẽ on Õ = λ−1(O) given by

Ẽ := (dλ)−1(E ).
Let O ⊂ C (X) be a connected open subset such that π|O : O → X

is a submersion. There is a distribution P on O defined by assign-
ing to any [α] ∈ O, π([α]) =: x ∈ X−B, the vector subspace P[α] ⊂
T[α](C (X)) given by P[α] := (dπ)−1(Pα), where Pα ⊂ Tx(X) is defined

by P̂α := Tα(C̃x(X)). (For the original definition of Pα in terms of
Grothendieck splitting as in Hwang-Mok [HM04b, §3] we defer to §5,
paragraph preceding Lemma 5.2.) Assuming now the existence of priv-

ileged coordinates, the distribution P̃ on C̃ (X) can be identified, as
follows.
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Lemma 2.1. Let (X,K) be a uniruled projective manifold X of di-
mension n endowed with a minimal rational component K, and B ⊂ X
be the bad locus of (X,K), and assume that the associated VMRT struc-
ture π : C (X) → X is a regular family over X−B. Let (U, zi) be
a privileged coordinate chart on a connected open subset U ⊂ X−B.

Suppose x ∈ U and α ∈ C̃x(X). Then, in terms of the coordinates
(z1, · · · , zn;w1, · · · , wn) on T (U) = U × Tx(U) = U × Cn ⊂ Cn × Cn

arising from the privileged coordinates as described in the above, we have

P̃α = P̌α ⊕ P̂α.

Proof. Let ℓ be the line on Cn passing through x with Tx(ℓ) = Cα.
We may take U to be convex so that U ∩ ℓ is connected. Let y ∈ U ∩ ℓ
be distinct from x and consider a holomorphic pencil of lines {ℓ(t) :
|t| < ϵ}, ϵ > 0, where ℓ(t) are minimal rational curves on X passing
through y, ℓ(0) = ℓ. Replacing α by some proportional vector, we may
assume that x = y + α in the privileged coordinates, and that there
is a holomorphic map F : ∆(2) × ∆(ϵ) → U for some ϵ > 0 given by
F (s, t) = y+sα(t) such that α(0) = α, F (∆(2)×{t}) ⊂ ℓ(t)∩U for |t| < ϵ
and such that F is a holomorphic embedding on some neighborhood O
of {1}×∆(ϵ). Thus Σ := F (O) is a complex surface containing the germ
of ℓ at x. Now, it follows from α(t) = ∂F

∂s (1, t) that α(t) ∈ Tx(t)(ℓ(t)) at
x(t) = F (1, t). As t varies, χ(t) := (x(t), α(t)) ∈ U × Tx(U) describes

a holomorphic curve Γ lying on C̃ , χ(t) ∈ C̃x(t)(X). Writing ϖ(t) :=
∂χ
∂t (t) = (∂F∂t (1, t), α

′(t)), by definition ϖ(t) ∈ Tχ(t)(Γ) ⊂ Tχ(t)(C̃ ). We
have ϖ(t) = (α′(t), α′(t)). In particular, at t = 0 we have ϖ(0) =

(α′(0), α′(0)) ∈ Tα(C̃ ). Writing π̃ : C̃ (X) → X−B for the canonical

projection, we have P̃α = (dπ̃)−1(Pα). From α′(0) ∈ Tx(Σ) ⊂ Pα

and (α′(0), α′(0)) ∈ Tα(C̃ ) it follows that (α′(0), α′(0)) ∈ P̃α. Since

P̂α ⊂ P̃α, we have (0, α′(0)) ∈ P̃α. Since also (α′(0), α′(0)) ∈ P̃α,

it follows that (α′(0), 0) ∈ P̃α. Given that α′(0) ∈ Pα is arbitrary
excepting that α′(0) /∈ Cα (so that F is an immersion at (1, 0)), we

conclude that P̌α ⊂ P̃α, Hence, P̃α = P̌α ⊕ P̂α, as asserted. �
For a VMRT structure π : C (X) → X, Cx(X) ⊂ PTx(X) may be

linearly degenerate. In this case there is a meromorphic distribution D

on X where Dx is the linear span of C̃x(X) at a general point x on X.
For instance, when X is a non-symmetric rational homogeneous space
of Picard number 1 marked at a long simple root, D ( T (X) is the
minimal nonzero distribution invariant under Aut(X).

The main result in this section is Proposition 2.3, which gives a suf-
ficient condition for a sub-VMRT structure ϖ : C (S) → S modeled on
an admissible pair (X0, X) to be linearly saturated. In the proof here
we make use of the existence of privileged coordinate charts, and a gen-
eralization will be given in §5 where the latter assumption is dropped.
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For the proofs of Proposition 2.3 and its generalization in §5 we will
need the following result concerning the distribution D established in
Hwang-Mok [HM98]. For later references we state the general result
for a uniruled projective manifold X endowed with a minimal rational
component K.

Proposition 2.1. Let (X,K) be a uniruled projective manifold en-
dowed with a minimal rational component, and π : C (X) → X be the as-
sociated VMRT structure. Let B be the bad locus of (X,K) and assume
that the VMRTs Cx(X) are irreducible for x ∈ X−B. Let U ⊂ X−B be

a connected open subset and assume that the linear span Dx of C̃x(X)
is of dimension independent of x ∈ U , thus defining a holomorphic dis-
tribution D ⊂ T (U) over U . Let α̃ ∈ Γ(U, T (U)) be such that α̃(x) is

a smooth point of C̃x(X) for any point x ∈ U , and ξ̃ ∈ Γ(U, T (U)) be

such that ξ̃(x) ∈ Tα̃(x)
(
C̃x(X)

)
. Then, the Lie bracket [α̃, ξ̃] ∈ Γ(U,D).

Remark Proposition 2.1 results from the deformation theory of
rational curves, from which it follows that a surface Σ swiped out by a
pencil of minimal rational curves emanating from a point x ∈ U is an
integral surface of D.

Let (X0, X) be an admissible pair of rational homogeneous spaces of
Picard number 1. Recall that there is an implicitly understood equivari-
ant holomorphic embedding i : X0 ↪→ X. We identify X0 with i(X0),
hence as a complex submanifold of X. Writing π : C (X) → X for the
VMRT structure on X, and π0 : C (X0) → X0 for the VMRT struc-
ture on X0, from the definition of admissible pairs note that Cy(X0) =

Cy(X)∩ PTy(X0) for any point y ∈ X0, i.e., C̃y(X0) = C̃y(X)∩ Ty(X0).

Moreover, for α ∈ C̃y(X), we have (†) Tα(C̃y(X0)) = Tα(C̃y(X)) ∩
Ty(X0). The latter follows readily in the case of admissible pairs of sub-
diagram type in the long-root cases by interpreting the VMRTs Cy(X0)
and Cy(X) as orbits. This remains the case for admissible pairs in gen-
eral and in fact in a much more general setting, where we formulate in
Definition 5.4 a general condition called Condition (T) for generalized
sub-VMRT structures on uniruled projective manifolds. From now on
we assume known the fact that (†) holds for admissible pairs (X0, X)
and refer the reader to Lemma 5.5 for a proof in the general setting.

Let now S ⊂W be a complex submanifold of a connected open subset
W of X inheriting a sub-VMRT structure ϖ : C (S) → S modeled on
(X0, X). We will need to apply the condition (†) above on VMRTs
to ϖ : C (S) → S. For a fixed reference point 0 ∈ X0 and for any

α ∈ C̃0(X0), we have (†) Tα(C̃0(X0)) = Tα(C̃0(X)) ∩ T0(X0). For any
point x ∈ S, by definition

(
Cx(S) ⊂ Cx(X)

)
is projectively equivalent to(

C0(X0) ⊂ C0(X)
)
. The condition (†) translates into a condition for the
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pair (Cx(S),Cx(X)) which will bear the same name, viz., for any x ∈ S

and for any [α] ∈ Cx(S), we have (†) Tα(C̃x(S)) = Tα(C̃x(X)) ∩ Tx(S).
To examine linear saturation we need to consider the variation of

Cx(S) as x varies over S. For this purpose we need to consider certain
holomorphic vector fields adapted to the sub-VMRT structure, and the
following lemma furnishes the necessary starting point. For a neighbor-
hood U of 0 ∈ Cm and a vector-valued function f(z, t) on U × ∆(ϵ),
ϵ > 0, and for an integer k ≥ 0 we write f(z, t) = O(tk) to mean
that, shrinking U and ϵ if necessary, there exists a positive constant C
such that ∥f(z, t)∥ ≤ C|t|k on U × ∆(ϵ). In what follows recall that

for any point x ∈ X and for any tangent vector α ∈ C̃x(X), we have

Pα = Tα(C̃x(X)). (Pα consists of vertical vectors at α, and P̂α would
be a more precise notation as in previous paragraphs. We will however
refrain from such and similar notation whenever the meaning is clear
from the context.) We have

Lemma 2.2. Suppose x ∈ S, α ∈ C̃x(S), and ϵ > 0. Let {αt : |t| < ϵ}
be a holomorphic arc on C̃x(S) such that α0 = α. Then, shrinking ϵ if
necessary there exists a neighborhood U of x on X and a holomorphic

map A : U × ∆(ϵ) → C̃ (X) such that (a) A(x, t) = αt for t ∈ ∆(ϵ),

(b) A(z, t) ∈ C̃z(X) whenever z ∈ U and (c) A(z′, t) ∈ C̃z′(S) whenever
z′ ∈ U ∩ S. Hence, for t ∈ ∆(ϵ), α̃t(z) := A(z, t) defines a holomorphic

section of π̃ : C̃ (X) → X over U such that α̃t|U∩S is a section of

ϖ̃ : C̃ (S) → S over U ∩ S. We have α̃t = α̃ + tξ̃ + O(t2), where

α̃(z) := A(z, 0), ξ̃(z) ∈ Pα̃(z) for z ∈ U , and ξ̃(z′) ∈ Pα̃(z′) ∩ Tz′(S) for
z′ ∈ U ∩ S.

Proof. By hypothesis ϖ : C (S) → S is a sub-VMRT structure mod-
eled on (X0, X). Hence, by Definition 1.2, for every point x ∈ S there
exists a neighborhood U of x on S and a trivialization of the holomor-

phic projective bundle PT (X)|U given by Φ : PT (X)|U
∼=−→ PT0(X)×U

such that (1) Φ(C (X)|U ) = C0(X)×U and (2) Φ(C (S)|U ) = C0(X0)×U .
Shrinking U if necessary Φ can be lifted to a holomorphic bundle iso-

morphism Φ′ : T (X)|U
∼=−→ U × T0(X) such that (1) Φ′(C̃ (X)|U ) =

U × C̃0(X) and (2) Φ′(C̃ (S)|U ) = U × C̃0(X0). To extend A(x, t) := αt

to a holomorphic section A(z, t) of π̃|U×id∆(ϵ) : C̃ (X)×∆(ϵ) → U×∆(ϵ)

such that A(z′, t) ∈ C̃z′(S) whenever z′ ∈ U ∩ S and |t| < ϵ, we may
as an example define A(z, t) by setting Φ′(A(z, t)) = (z;A(x, t)). In
other words, for each t ∈ ∆(ϵ), we may take A(z, t) to be a “con-
stant” section in z over U with respect to the trivialization over U
of the affinized sub-VMRT structure modeled on (X0, X) given by Φ′.
For any choice of α̃t(z) := A(z, t) satisfying (a), (b) and (c), defining

ξ̃(z) := ∂
∂t

∣∣
t=0

A(z, t) we have ξ̃(z) ∈ Tα̃(z)(C̃ (X)) = Pα̃(z), and it follows
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that α̃t = α̃+tξ̃+O(t2). Finally, ξ̃|U∩S is a holomorphic section of T (S)

over U ∩ S, hence ξ̃(z′) ∈ Pα̃(z′) ∩ Tz′(S), proving Lemma 2.2. �
Our study of the geometry of VMRT structures and sub-VMRT struc-

tures will involve local differential geometry in terms of the flat connec-
tion on Euclidean spaces. Let V be a finite-dimensional complex vector
space and denote by ∇ the flat Euclidean connection on V . For a com-
plex submanifold A on some connected open subset of V we have the
second fundamental form σ := σA|V . For α ∈ A and ξ, η ∈ Tα(A)
we have σα(ξ, η) := ∇ξη̃ mod Tα(A), where η̃ is a holomorphic vec-
tor field defined on some open neighborhood U of α on A such that
η̃(α) = η. σα(ξ, η) thus defined is independent of the choice of holo-
morphic vector field η̃ extending η. Moreover σα(ξ, η) = σα(η, ξ) by the
torsion-freeness of the flat connection. Thus, we have the linear map
σα : S2Tα(A) → V/Tα(A) =: NA|V,α. For our study typically we have
a projective variety E ⊂ PV , and A ⊂ V − {0} is the smooth locus of

the affinization Ẽ of E. Then, A is invariant under multiplication by
nonzero complex numbers. In this case, any vector ξ ∈ Tα(A) extends

to a constant vector field ξ̃ (in terms of Euclidean coordinates) along the
punctured line Λα := Cα− {0}, and it follows that σα(α, ξ) = 0. Thus,
considered as a vector-valued symmetric bilinear form, the kernel of σα
always contains Cα. For [α] ∈ Reg(E), noting that T[α](E) = V/Cα,
σα descends to σ′[α] : S

2T[α](E) → V/Tα(A) ∼= (V/Cα)/(Tα(A)/Cα) =
T[α](PV )/T[α](E) =: NReg(E)|PV,[α], thus defining the projective second
fundamental form σ′ = σ′Reg(E)|PV on Reg(E).

Starting with Lemma 2.2, using the Euclidean flat connection on
privileged coordinate charts and applying Lemma 2.1 and Proposition
2.1, we obtain the following result on sub-VMRT structures expressed
in terms of second fundamental forms on affinizations of VMRTs.

Proposition 2.2. In the notation adopted in Lemma 2.2, define
βt := (∇α̃t

α̃t)(x), β := β0, where ∇ is the Euclidean flat connection
on a privileged coordinate chart U on X. Then, letting D be the distri-

bution on X spanned by C̃ (X), we have dβt

dt

∣∣
t=0

∈ Pα+(Dx∩Tx(S)). As
a consequence, denoting by να the canonical projection from Tx(X)/Pα

into Tx(X)/(Pα+(Dx ∩Tx(S))), and writing τα := να ◦σα, the tangent

vector β ∈ Tα(C̃x(X)) satisfies τα(β, ξ) := να(σα(β, ξ)) = 0 for every
ξ ∈ Pα ∩ Tx(S), where σα stands for the second fundamental form at α

of C̃x(X) in Tx(X) with respect to the Euclidean flat connection ∇ on
the vector space Tx(X).

Proof. By Lemma 2.2 we have a holomorphic family of sections

{α̃t : |t| < ϵ} of C̃ (X) over U , α̃t = α̃ + tξ̃ + O(t2). Write Γt =

{α̃t(z) : z ∈ U} ⊂ C̃ (X), so that Γt ⊂ C̃ (X) is a complex submanifold.

Hence, for |t| < ϵ, (αt, βt) = (αt,∇α̃t
α̃t(x)) ∈ Tαt(Γt) ⊂ Tαt(C̃ (X)).
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(Here αt denotes in (αt,∇α̃t
α̃t(x)) a tangent vector in Tx(X) while the

same notation denotes in Tαt(Γt) and Tαt(C̃ (X)) a point on C̃ (X) .)

Since αt ∈ Pαt , we have Tαt(Γt) ⊂ (dπ̃)−1(Pαt) = P̃αt . By Proposition

2.1, P̃αt = P̌αt ⊕ P̂αt , hence βt ∈ Pαt . Expanding in t we have

βt = ∇α̃t
α̃t(x) = ∇α̃α̃(x) + t(∇

ξ̃
α̃(x) +∇α̃ξ̃(x)) +O(t2).

Hence, dβt

dt

∣∣
t=0

= ∇
ξ̃
α̃(x) + ∇α̃ξ̃(x). From Γt ⊂ C̃ (X) it follows that

(ξ,∇
ξ̃
α̃(x)) ∈ Tα(C̃ (X)). Again, since ξ ∈ Pα and P̃α = P̌α ⊕ P̂α

we deduce that ∇
ξ̃
α̃(x) ∈ Pα. Now, by the torsion-freeness of the flat

connection ∇ on U we have

∇
ξ̃
α̃(x)−∇α̃ξ̃(x)− [α̃, ξ̃](x) = 0.

Since by construction α̃ is a holomorphic field of minimal rational tan-

gents on U and ξ̃ is a holomorphic vector field on U such that ξ̃(z) ∈
Pα̃(z) for z ∈ U , α̃ and ξ̃ satisfy the hypothesis in Proposition 2.1,

hence the Lie bracket [α̃, ξ̃] ∈ Γ(U,D). On the other hand, by defini-

tion both α̃|U∩S and ξ̃|U∩S are holomorphic vector fields on U ∩ S, so
that [α̃, ξ̃]

∣∣
U∩S ∈ Γ(U ∩ S, T (S)). Hence, [α̃, ξ̃](x) ∈ Dx ∩ Tx(S). As a

consequence, we have
dβt
dt

∣∣∣
t=0

= ∇
ξ̃
α̃(x) +∇α̃ξ̃(x) = 2∇

ξ̃
α̃(x)−

(
∇

ξ̃
α̃(x)−∇α̃ξ̃(x)

)
=

2∇
ξ̃
α̃(x)− [α̃, ξ̃](x) ∈ Pα + (Dx ∩ Tx(S)).

Finally, denoting by ∇′ the Euclidean flat connection on Tx(X), we may
interpret β(t) := βt as a holomorphic vector field along the holomorphic

arc {αt} ⊂ C̃x(S) and conclude that ∇′
ξβ(0) = dβt

dt

∣∣
t=0

∈ Pα + (Dx ∩
Tx(S)). We have hence τα(β, ξ) := να(σα(β, ξ)) = ∇′

ξβ(0) mod Pα +

(Dx∩Tx(S)) = 0. Since the holomorphic arc {αt} on C̃x(S) is arbitrary

except that α0 = α, ξ = d
dt

∣∣
t=0

αt ∈ Tα(C̃x(S)) is nonzero but otherwise

arbitrary. We have Tα(C̃0(X0)) = Pα ∩ T0(X) by the condition (†), and
Proposition 2.2 follows. �

By means of Proposition 2.2 we obtain a sufficient condition for a
sub-VMRT structure ϖ : C (S) → S modeled on (X0, X) to be linearly
saturated.

Proposition 2.3. Let (X0, X) be an admissible pair of rational ho-
mogeneous spaces of Picard number 1, and π : C (X) → X be the associ-
ated VMRT structure. Denote by D ⊂ T (X) the invariant distribution

spanned by C̃ (X), and by F ⊂ T (C (X)) the rank one distribution on
C (X) corresponding to the tautological foliation on C (X). At a refer-

ence point 0 ∈ X0, for α ∈ C̃0(X0) denote by σα : S2Pα → T0(X)/Pα,

Pα = Tα(C̃0(X)), the second fundamental form of C̃0(X) ⊂ T0(X) at
α, and by να the canonical projection να : T0(X)/Pα → T0(X)/(Pα +
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(D0 ∩ T0(X0))). Write τα := να ◦ σα. Suppose for a general point

α ∈ C̃0(X0), the following statement (♯) holds true: (♯) τα(η, ξ) = 0 for
all ξ ∈ Pα ∩ T0(X0) implies η ∈ Pα ∩ T0(X0). Let now S ⊂ W be a
complex submanifold of some connected open subset W of X inherit-
ing a sub-VMRT structure ϖ : C (S) → S modeled on (X0, X). Then,
ϖ : C (S) → S is linearly saturated, i.e., F

∣∣
C (S)

⊂ T (C (S)). As a con-

sequence, for any point x ∈ S, and any projective line ℓ passing through
x and tangent to S at x, the germ of ℓ at x must lie on S.

Proof. Let x ∈ S be an arbitrary point. For γ ∈ C̃x(X) denote

also by σγ the second fundamental form of C̃x(X) in Tx(X) at γ, and
by νγ : Tx(X)/Pγ → Tx(X)/(Pγ + (Dx ∩ Tx(S))) the canonical lin-

ear projection, where Pγ = Tγ(C̃x(X)) and Dx = Span(C̃x(X)). From
Definition 1.2 it follows readily that there exists a linear isomorphism

λ : T0(X)
∼=−→ Tx(X) such that λ(C̃0(X)) = C̃x(X) and λ(C̃0(X0)) =

C̃x(S). Since second fundamental forms on Euclidean spaces with re-
spect to the flat connection are obviously invariant under linear trans-

formations, and since λ(D0) = Span(λ(C̃0(X)) = Span(C̃x(X)) = Dx,

λ(Pα) = λ(Tα(C̃0(X))) = Tλ(α)(C̃x(X)) = Pλ(α), writing λ(θ) = θ′ ∈
T0(X) for θ ∈ Tx(X), for any α ∈ C̃0(X0) and any η, ξ ∈ Tα(C̃0(X)), we
have τα(η, ξ) = 0 if and only if τα′(η′, ξ′) = 0. It follows from the hy-
pothesis in the proposition on τα : S2Pα → T0(X)/(Pα+(D0∩T0(X0)))

that at x ∈ S, and for γ ∈ C̃x(S), δ ∈ Pγ , we also have (♯)′ τγ(δ, ϵ) = 0
for all ϵ ∈ Pγ ∩ Tx(S) implies δ ∈ Pγ ∩ Tx(S).

For local computations we make use of a privileged coordinate chart
(U, zi) at x and the Euclidean coordinates (zi;wj) = (z1, · · · , zn;
w1, · · · , wn) as used in Lemma 2.1 and explained in the paragraphs

preceding it. By Proposition 2.2, for α ∈ C̃x(S), βt := ∇α̃t
α̃t(x) de-

fined as in Lemma 2.2 and Proposition 2.2, and for β := β0 ∈ Pα, we

have τα(β, ξ) = 0 for ξ = d
dt

∣∣
t=0

αt ∈ Tα(C̃x(S)). Recall that {αt} is

an arbitrary holomorphic arc on C̃x(S) at α = α0. By the condition

(†) Tα(C̃x(S)) = Tα(C̃x(X)) ∩ Tx(S), ξ is an arbitrary nonzero vector
on Pα∩Tx(S), and it follows from (♯)′ that β ∈ Pα∩Tx(S) for a general

α ∈ C̃x(X).
We may assume that A(z, t) := α̃t(z) is defined on U×∆(ϵ0) for some

ϵ0 > 0, giving therefore a holomorphic map A : U×∆(ϵ0) → C (X)|U :=
π−1(U) which satisfies π(A(z, t)) = z. Let Σ ⊂ C (X)|U be the image of
U × {0} under A so that α = A(x, 0) ∈ Σ. The differential dπ induces

at α a linear isomorphism dπ(α) : Tα(Σ)
∼=−→ Tx(U). Let ϵ > 0 and

κ : ∆(ϵ) → X be a parametrized holomorphic curve on X such that
κ(0) = x and such that κ′(0) = α. (Here and henceforth κ′(0) means
dκ(0)

(
∂
∂s), etc., which is independent of local holomorphic coordinates
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at x ∈ X.) Let γ : ∆(ϵ) → C̃ (X) be given by γ(s) = (κ(s), α̃(κ(s))) in
terms of the Euclidean coordinates (zi;wj) in the above. We have Γ :=
γ(∆(ϵ)) ⊂ Σ. Furthermore, γ′(0) ∈ Tα(Σ) is the unique tangent vector
such that dπ(γ′(0)) = κ′(0). Hence, γ′(0) is independent of the choice of
(U, zi) and it is moreover independent of the choice of the holomorphic
curve κ : ∆(ϵ) → X satisfying κ′(0) = α. In the coordinates chosen we
have γ′(0) = (α,∇α̃α̃(0)). Since α ∈ Tx(S) we may choose κ with image

lying on S, so that Γ is a germ of smooth holomorphic curve on C̃ (S)

since α̃|U∩S takes values in C̃ (S)|U∩S := ϖ̃−1(U ∩S) by our choice of α̃

(as in the conclusion of Lemma 2.2) so that (α, β) ∈ Tα(Γ) ⊂ Tα(C̃ (S)).

Since β ∈ Pα∩Tx(S), by the condition (†) we have (0, β) ∈ Tα(C̃x(S)) ⊂
Tα(C̃ (S)). As a consequence (α, 0) = (α, β)− (0, β) ∈ Tα(C̃ (S)).

Let ℓ be the projective line on X passing through x such that Tx(ℓ) =
Cα and denote by ℓ♯ the tautological lifting of ℓ to C (X). Assume
without loss of generality that wn(α) ̸= 0 and write (u1, · · ·un−1) for

the inhomogeneous coordinates ui = wi

wn on a coordinate chart on P(V ).

Then, in terms of the Euclidean coordinates (z1, · · · , zn;u1, · · ·un−1)
at [α], we have T[α](ℓ

♯ ) = C(α, 0). From the last paragraph we have

(α, 0) ∈ Tα(C̃ (S)) (where 0 ∈ Cn), hence (α, 0) ∈ T[α](C (S)) (where

0 ∈ Cn−1). As a result ℓ♯ is tangent to C (S) at [α], and for the rank
one distribution F on C (X) corresponding to the tautological foliation
F we have F[α] = T[α](ℓ

♯ ) ⊂ T[α](C (S)), i.e., F |C (S) ⊂ T (C (S)). Thus,

the germ of ℓ♯ at [α], being the germ of an integral curve of F at [α],
must necessarily lie on C (S), and the germ of ℓ at x, which is the image
of ℓ♯ under the canonical projection ϖ : C (S) → S, must lie on S. The
proof of Proposition 2.3 is complete. �

3. Nondegeneracy conditions for pairs (X0, X) of rational
homogeneous spaces of Picard number 1

The study of admissible pairs of sub-diagram type started with Mok
[Mk08a] and [HoM10] in the context of germs of VMRT-respecting holo-
morphic immersions f : (X0;x0) → (X; f(x0)) (cf. §1, esp. Theorem
1.1), where a nondegeneracy condition was introduced for the study
of non-equidimensional Cartan-Fubini extension. We recall the notion
here and formulate it for admissible pairs (X0, X).

Definition 3.1. (cf. [HoM10]). Let (X0, X) be an admissible pair of
rational homogeneous spaces of Picard number 1. Let 0 ∈ X0 ⊂ X be a

reference point and α ∈ C̃0(X0) be arbitrary. Write Pα = Tα(C̃0(X)),
and denote by σα : S2Pα → T0(X)

/
Pα the second fundamental form of

C̃0(X) ⊂ T0(X)−{0} at α with respect to the flat connection on T0(X)
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as a Euclidean space. Define

Kerσα( · , Tα(C̃0(X0))) :=
{
η ∈ Tα(C̃0(X)) : σα(η, ξ) = 0

for every ξ ∈ Tα(C̃0(X0)) = Pα ∩ T0(X0).
}
.

We say that the pair of subvarieties (C0(X0),C0(X)) of PT0(X) is

nondegenerate if and only if Kerσα( · , Tα(C̃0(X0))) = Cα at a general

point α ∈ C̃0(X0). We also say that (X0, X) is nondegenerate to mean
that (C0(X0),C0(X)) is nondegenerate.

Remark In place of the pair (C̃0(X0), C̃0(X)) we may also refer
equivalently to the pair (C0(X0),C0(X)) in the definition of nonde-
generacy. Denoting by σ[α] the projective second fundamental form
at [α] of C0(X) ⊂ PT0(X) the analogous nondegeneracy condition is
Kerσ[α]( · , T[α](C0(X0))) = 0.

In view of Proposition 2.3 we introduce a new notion of nondegener-
acy for (X0, X), called nondegeneracy for substructures, formulated also
in terms of the second fundamental form for the pair (C0(X0),C0(X)).

Definition 3.2. In the notation adopted in Definition 3.1 denote
by να : T0(X)

/
Pα → T0(X)

/
(Pα + (D0 ∩ T0(X0))) the canonical pro-

jection. Writing τα := να ◦ σα, so that τα : S2Pα → T0(X)
/
(Pα +

(D0 ∩ T0(X0))), define Ker τα( · , Tα(C̃0(X0)) as in the definition of

Kerσα( · , Tα(C̃0(X0))) except that σα is replaced by τα. We say that
(C0(X0),C0(X)) is nondegenerate for substructures if and only if for a

general point α ∈ C̃0(X0) we have Ker τα( · , Tα(C̃0(X0))) = Tα(C̃0(X0)),
which is the same as Pα∩T0(X0). We also say that (X0, X) is nondegen-
erate for substructures to mean that (C0(X0),C0(X)) is nondegenerate
for substructures.

We note first of all the following relation between the two notions
of nondegeneracy in Definition 3.1 and Definition 3.2. To emphasize
the distinction between the two notions we will from now on refer to
the first notion of nondegeneracy in Definition 3.1 as nondegeneracy for
mappings. We have

Lemma 3.1. Let (X0, X) be an admissible pair of rational homoge-
neous spaces of Picard number 1. Suppose X0 ⊂ X is nonlinear and
(X0, X) is nondegenerate for substructures. Then, (X0, X) is also non-
degenerate for mappings.

Proof. We have Kerσα( · , Tα(C̃0(X0))) ⊂ Ker τα( · , Tα(C̃0(X0)))
since τα = να ◦σα. Since (X0, X) is nondegenerate for substructures, we

have Ker τα( · , Tα(C̃0(X0))) ⊂ Tα(C̃0(X0)), hence Kerσα( · , Tα(C̃0(X0)))
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⊂ Tα(C̃0(X0)) = Pα ∩ T0(X0). The VMRT of a projective submani-
fold uniruled by projective lines is always nonsingular (cf.Mok [Mk08b,
Lemma 3]). We observe that C0(X0) ⊂ PT0(X0) is nonlinear since
X0 ⊂ X is by assumption nonlinear. (Supposing otherwise the VMRTs
would span an integrable holomorphic distribution D on X0 of rank
s := (dimC0(X0)) + 1 < n := dim(X0), s ≥ 2, such that the maximal
integral submanifolds are ∼= Ps, so that X0 would be the total space
of a regular family of Ps over a projective manifold of dimension > 0,
contradicting the assumption that X0 is of Picard number 1.) It follows

that the second fundamental form of C̃0(X0) ⊂ T0(X0)−{0} is non-

degenerate at a general α ∈ C̃0(X0), i.e., Kerσα( · , Tα(C̃0(X0))) = Cα
(cf. Griffiths-Harris [GH79]). Hence (X0, X) is also nondegenerate for
mappings. �

For admissible pairs (X0, X) of rational homogeneous spaces of Picard
number 1, our focus is on those of sub-diagram type. These were stud-
ied for the rigidity problem for VMRT-respecting holomorphic maps in
[Mk08a], [HoM10] and [HoP11], where nondegeneracy was established
using root space decomposition in the long-root cases in [HoM10] and
using projective geometry in the short-root cases in [HoP11]. For sub-
VMRT structures we will show that for admissible pairs of sub-diagram
type the algebraic statement in terms of second fundamental forms on
nondegeneracy for mappings in the nonlinear case actually implies non-
degeneracy for substructures. To prove the latter we will give a uniform
formulation using root space decomposition incorporating both the long-
root and short-root cases.

Let G be a complex simple Lie group and denote by g its Lie algebra.
Let Φ be the set of all roots of G with respect to a Cartan subalgebra
h and let ∆ be a simple root system of G. For any root ρ ∈ Φ we write
ρ =

∑
δ∈∆ nδ(ρ)δ, nδ(ρ) ∈ Z being either all non-negative or all non-

positive. Each root space gρ is 1-dimensional and we write gρ = CEρ,
where, Eρ stands for any nonzero vector belonging to gρ. Denote by
Φ+ ⊂ Φ the subset of positive roots, and Φ− = −Φ+ the set of negative
roots. For the Lie algebra g of G we have the root space decomposition

g = h⊕
∑
ρ∈Φ+

gρ ⊕
∑
ρ∈Φ−

gρ .

To a simple root γ ∈ ∆ we associate a maximal parabolic subgroup
P ⊂ G such that the Lie algebra p ⊂ g of P is given by

p = h⊕
∑{

gρ : nγ(ρ) ≤ 0
}
.

X := G/P is a rational homogeneous space of Picard number 1. Let
Gc ⊂ G be a compact real form such that h = hR ⊗R C for some
real form hR of h lying on gc, the Lie algebra of Gc. We endow X
with a Kähler metric invariant under Gc. The pair (g, γ) is a graded
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Lie algebra when we define gk =
∑{

gρ : nγ(ρ) = k
}

for k ̸= 0 and

g0 = h ⊕
∑{

gρ : nγ(ρ) = 0
}
, noting that [gk, gℓ] ⊂ gk+ℓ for integers

k, ℓ. Define L ⊂ G by L :=
{
g ∈ G : Adg(g

k) ⊂ gk for all k
}
. Then,

L ⊂ G is a Levi subgroup preserving each gk, and the L-action on
gk is irreducible for k ̸= 0. There is a unique element H ∈ h such that
[H, ηk] = kηk for any ηk ∈ gk, and we callH ∈ h the element defining the
canonical structure of (g, γ) as a graded Lie algebra. (See Yamaguchi
[Ya93] concerning basic facts on (g, γ) as a graded Lie algebra.) For
k ∈ Z we denote by Φk ⊂ Φ the set of roots ρ such that gρ ⊂ gk. At

0 = eP ∈ G/P we have T0(X) =
∑{

gρ : nγ(ρ) > 0
}
=

∑
k≥1 g

k =: g+.

We say that X = G/P is of diagram type (D(g), γ) marked at a long
simple root γ, i.e., marked at the node corresponding to γ ∈ ∆ of the
Dynkin diagram D(g) of g, and also that X = G/P is of type (D(g), γ).
Let G0 be a simple complex Lie group, and denote by g0 the Lie algebra
of G0. Suppose G0 can be embedded and hence identified as a Lie
subgroup of G in such a way that the Dynkin diagram D(g0) is identified
with a Dynkin sub-diagram of D(g) containing the node γ0 which is
identified as γ in the inclusion D(g0) ⊂ D(g). Defining p0 := p ∩ g0
we have the parabolic subalgebra p0 ⊂ g0. Writing P0 ⊂ G0 for the
corresponding parabolic subgroup we have the rational homogeneous
space X0 := G0/P0 ↪→ G/P = X, and (X0, X) is an admissible pair of
rational homogeneous spaces of Picard number 1 of sub-diagram type
marked at (γ0, γ).

When X is of diagram type (D(g), γ) marked at a long simple root γ,
at 0 ∈ X0 ⊂ X the VMRT C0(X) ⊂ PT0(X) is the highest weight orbit
W0 ⊂ PD1

0, where D
1 ⊂ T (X) is the minimal nonzero Aut(X)-invariant

distribution on X. We have the identification D1
0 = g1, considered as an

irreducible L-representation space of the reductive Lie group L. For the
short-root cases, identifying rational homogeneous spaces which are bi-
holomorphic to each other, we only need to consider X of type (Cn, αk),
2 ≤ k < n, (F4, α3) and (F4, α4). To see this, other than those listed
there remain the cases of (Bn, αn), n ≥ 3, (Cn, α1), n ≥ 2 and (G2, α1).
For (Bn, αn), n ≥ 3, the underlying rational homogeneous space X is
biholomorphic to the orthogonal Grassmannian GII(n, n) of isotropic
subspaces of a 2n-dimensional complex vector space (V, q) equipped
with a non-degenerate complex symmetric bilinear form. Up to biholo-
morphism X is also the underlying space of the rational homogeneous
space of type (Dn, αn). Consider an admissible pair (X0, X) with X
of type (Bn, αn) and X0 of type (Bℓ, αℓ), 1 ≤ ℓ < n, corresponding to
the marked sub-diagram of (Bn, αn) by deleting the first n − ℓ nodes.
Likewise consider the admissible pair (X ′

0, X
′) defined by replacing Bn

by Dn, and Bℓ by Dℓ in the definition of (X0, X). Then, there is a

biholomorphism Φ : X
∼=−→ X ′ such that Φ′ : X0

∼=−→ X ′
0. Thus, the

problem of rigidity of (X0, X) reduces to that of (X ′
0, X

′), which is of
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sub-diagram type marked at a long root. The case of (Cn, α1), which is
that of an odd-dimensional projective space as a contact homogeneous
manifold, is irrelevant for our rigidity problem. The underlying space
of (G2, α1) is the 5-dimensional hyperquadric Q5, and the only sub-
diagram marked at α1 is (A1, α1) corresponding to a minimal rational
curve identified as P1, and the pair (P1, Q5) is obviously not a rigid pair
since P1 ⊂ Q5 is a non-maximal linear subspace.

In each of the cases (Cn, αk), 2 ≤ k < n, (F4, α3) and (F4, α4) the
VMRT C0(X) ⊂ PT0(X) is the Zariski closure of the orbit under P =
L·U of a highest weight vector η of the L-representation space g2 (cf. the
description of VMRTs in the short-root cases in Hwang-Mok [HM04a]
[HM05]).

Consider now an admissible pair (X0, X) of sub-diagram type, where
X0 = G0/P0 ↪→ G/P = X. Since (g0, g) is of sub-diagram type we have
a Cartan subalgebra h0 ⊂ g0 and a Cartan subalgebra h ⊂ g such that
h0 = h∩g0, and a root decomposition of g0 in the same way as that of g,
such that the roots (resp. the root vectors) of g0 are identified naturally
as roots (resp. root vectors) of g. ∆0 ⊂ ∆ will stand for the set of simple
roots of the Dynkin diagram of g0, and Φ0 ⊂ Φ for the set of roots of
g0, etc. Note that (g0, γ0) carries the structure of a graded Lie algebra,
where gk0 = gk ∩ g0 for k ∈ Z. From root space decompositions, we have
P0 = L0 ·U0 for the Levi decomposition of P0 with L0 ⊂ P0 being a Levi
factor, U0 ⊂ P0 being the unipotent radical, such that L0 = L∩G0 and
U0 = U ∩G0.

In the long-root cases at 0 ∈ X0 ⊂ X we have C̃0(X0) ⊂ Pg10, C̃0(X) ⊂
Pg1. To describe

(
C0(X0) ⊂ C0(X)

)
we choose α = Eµ for the lowest

weight µ = γ0 in g10 as an irreducible L0-representation space. Since
(g0, γ0) is a marked sub-diagram of (g, γ), with γ0 being identified with
γ, µ is also the lowest weight in g as an irreducible L-representation

space. C0(X0) is the orbit of [α] = [Eµ] under L0, and C̃0(X) is the orbit
of [α] under L, and they are the same as the respective highest weight
orbits. Since the unipotent radical U0 ⊂ P0 resp.U ⊂ P acts trivially
on T0(X0) resp.T0(X), for the description of VMRTs, C0(X0) ⊂ Pg10 is
equivalently the orbit of [α] under the parabolic subgroup P0 ⊂ G0, and

C̃0(X) ⊂ Pg1 is the orbit of [α] under the parabolic subgroup P ⊂ G.
In the short-root cases (whereX is of type g = Cn, n ≥ 3, or F4), there

are minimal rational curves ℓ ⊂ X, 0 ∈ ℓ, such that T0(ℓ) ⊂ T0(X) ∼= g+

are spanned by root vectors α = Eµ ∈ g2. In general it may happen that
g20 = 0. This is the case when X0 ⊂ X is a maximal linear subspace, or
when X = Sk,n is a symplectic Grassmannian, where 2 ≤ k < n, and
X0 = G(ℓ,m) is some Grassmannian of rank≥ 2 (cf. Proposition 4.2(a)).

When however g20 ̸= 0 we can deal with C̃0(X) in a way analogous to
the long-root cases.
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In the long-root cases a formula based on “the cubic expansion” in
Hwang-Mok [HM99b, 4.2] was used in Hong-Mok [HoM10] for the second

fundamental form σ on C̃0(X). Since details were lacking in [HM99b]
and we need a more general formula, for completeness we derive here a
formula for σ with a uniform formulation and proof for both the long-
root and short-root cases.

Lemma 3.2. Let X = G/P be a rational homogeneous space of Pi-
card number 1, 0 = eP and π : C (X) → X be the VMRT structure
on X. In the long-root cases let µ be the lowest weight in g1 (i.e., the
simple root γ). In the short-root cases assume g2 ̸= 0 and let µ be the
lowest weight in g2. Let Ψµ ⊂ Φ+ be the subset of all roots ν ∈ Φ+ such
that ν − µ =: κ ∈ Φ and Eκ ∈ p, and Θµ ⊂ Φ0 ∪Φ− be the subset of all

such roots κ. Then, for α = Eµ, Pα := Tα(C̃0(X)) is the linear span of
Cα and Hα := Span

{
Eν : ν ∈ Ψµ

}
, and the second fundamental form

σα : S2Pα → T0(X)/Pα of C̃0(X) ⊂ T0(X)−{0} at α is given by

σα(Eν , Eν′) = [Eκ, [Eκ′ , Eµ]] mod (Pα + p)

for ν = µ+ κ, ν ′ = µ+ κ′ ∈ Ψµ.

Proof. The affinized VMRT C̃0(X) is the P -orbit of α under the
isotropy representation of P on T0(X), which is induced by the restric-
tion to P of the adjoint action of G on g. Write p = Card(Θµ) =
Card(Ψµ). For χ ∈ p, exp(adχ) is a linear automorphism of g which
preserves p, and it descends to a linear automorphism of g/p ∼= T0(X)
which is the same as the Jacobian d(exp(χ))(0) at 0. From the Taylor
expansion of the adjoint action of G on g, the orbit P.α is of dimen-
sion 1 + p, and it contains as an open subset the image mod p of Eµ

under exp(adU) for a sufficiently small open neighborhood U of 0 in

p. We have Pα = Tα(C̃0(X)) = [p, Eµ]. Write Θµ = {κ1, · · · , κp}.
We have C[Eκi , Eµ] = CEνi for 1 ≤ i ≤ p, [h, Eµ] = CEµ, while
[Eρ, Eµ] = 0 whenever Eρ ⊂ p and ρ /∈ Θµ. Hence, Pα = Cα ⊕ Hα.
Write ξ = z0Eµ + z1Eν1 + · · · + zpEνp , νi := µ + κi. Let H ∈ h be
the element defining the canonical structure on (g, γ) as a graded Lie
algebra, and write χ = z0H + z1Eκ1 + · · · + zpEκp in the long-root
cases, χ = z0

2 H + z1Eκ1 + · · · + zpEκp in the short-root cases, so that
[χ,Eµ] = ξ. Again from the Taylor expansion of the adjoint action, P.α
contains as an open subset the image mod p of Eµ under exp(ad(U ′)),
where U ′ is some open neighborhood of 0 in Span

{
H,Eκ1 , · · · , Eκp

}
.

Writing c = 1 resp. 1
2 in the long-root resp. short-root cases, expanding
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exp(adχ)(Eµ) we have

exp(adχ)(Eµ) = Eµ +
(
z0Eµ + z1Eν1 + · · ·+ zpEνp

)
+

c

2

∑
1≤i≤p

z0zi
(
[H, [Eκi , Eµ]] + [Eκi , [H,Eµ]]

)
+

1

2

∑
1≤i,j≤p

zizj
(
[Eκi , [Eκj , Eµ]] + [Eκj , [Eκi , Eµ]]

)
+O(∥z∥3) .

Since [Eκi , Eµ] ∈ CEνi , [H,Eνi ] ∈ CEνi and [H,Eµ] ∈ CEµ, we deduce

exp(adχ)(Eµ) ≡
1

2

∑
1≤i,j≤p

zizj
(
[Eκi , [Eκj , Eµ]] +

[Eκj , [Eκi , Eµ]]
)
+ O(∥z∥3) modPα ,

where O(∥z∥3) is the tail of the Taylor expansion which is the sum of
terms of degree ≥ 3 in (z0, · · · , zp). To prove Lemma 3.2 it suffices to
show that

(♯) [Eκi , [Eκj , Eµ]] = [Eκj , [Eκi , Eµ]] mod p .

Obviously (♯) holds when µ+κi+κj /∈ Φ since both sides are 0, or when
µ+κi+κj ∈ Φ0∪Φ− (which is a priori possible in the short-root cases),
and it remains to consider the case where τ := µ + κi + κj ∈ Φ+. By
the Jacobi Identity, (♯) holds whenever [Eµ, [Eκi , Eκj ]] = 0. It remains
therefore to show that [Eκi , Eκj ] = 0, equivalently that κi+κj /∈ Φ. We
claim that the latter is indeed the case.

For the proof of the claim consider the projective line ℓ ⊂ X such
that T0(ℓ) = Cα = CEµ. By Grothendieck splitting we have T (X)|ℓ ∼=
O(2) ⊕ (O(1))p ⊕ Oq, where 1 + p + q = dim(X). Let g(µ) be the Lie
subalgebra isomorphic to sl(2,C) spanned by unit root vectors Eµ, E−µ

and Hµ := [Eµ, E−µ] and denote by G(µ) ⊂ G the corresponding Lie
subgroup isomorphic to PSL(2,C). For ν ∈ Ψµ, [E−µ, Eν ] ∈ p as can be
seen from [g−1, g1] ⊂ g0 in the long-root cases and from [g−2, g1 ⊕ g2] ⊂
g−1 ⊕ g0 in the short-root cases. It follows that for any point x ∈ ℓ,
dφ(Eν) are proportional vectors at x for any choice of φ ∈ G(µ) such
that φ(0) = x. Hence, the union of images of CEν under the action of
G(µ) gives a holomorphic line subbundle Λν ⊂ T (X)|ℓ. Observing that
the fiber of Λν at 0 is spanned by Eν ∈ Pα−Cα, by the invariance of
Λν under G(µ), Λν ⊂ T (X)|ℓ is transversal to Tℓ = O(2) and must lie
on the positive part O(2) ⊕ (O(1))p ⊂ T (X)|ℓ. Hence Λν

∼= O(1), and
T (ℓ)⊕ (Λν1 ⊕ · · · ⊕Λνp)

∼= O(2)⊕ (O(1))p is precisely the positive part
of T (X)|ℓ in the Grothendieck splitting. It follows that [Hµ, Eν ] = Eν ,
i.e., ν(Hµ) = 1. Note that µ(Hµ) = 2 since Eµ generates Tℓ ∼= O(2).
To prove the claim by contradiction assume that κi + κj ∈ Φ. Now for
κ ∈ Θµ we have κ = ν − µ for some ν ∈ Ψµ so that κ(Hµ) = ν(Hµ) −
µ(Hµ) = −1. Thus, for i, j ∈ {1, · · · , p} we have (κi + κj)(Hµ) = −2,
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hence τ(Hµ) = 0 for τ = µ + (κi + κj). But by assumption τ ∈ Φ+

while κi + κj ∈ Φ0 ∪ Φ−, so that τ ∈ Ψµ and hence τ(Hµ) = 1, a plain
contradiction, proving Lemma 3.2, as desired. �

In order to apply Lemma 3.2 we observe

Lemma 3.3. Let (X0, X) be an admissible pair of rational homoge-
neous spaces of Picard number 1 of sub-diagram type marked at a short
root, where X = G/P is of type g = Cn, n ≥ 3, or F4 associated to a
marked Dynkin diagram (g, γ), and X0 = G0/P0 is defined by a marked
Dynkin sub-diagram (g0, γ0). Assume that g20 ̸= 0. Then, taking α = Eµ

for the lowest weight µ in g20, at 0 = eP0, C0(X0) is the closure of the
orbit of [α] ∈ P(g10 + g20) under P0, while C0(X) is the closure of the
orbit of [α] ∈ P(g1 + g2) under P .

Proof. Since (g0, γ0) is a marked Dynkin sub-diagram of (g, γ), the
lowest weight µ in g20 is also the lowest weight of g2. By the descrip-
tion of VMRTs in Hwang-Mok [HM04a] [HM05b], C0(X) is the clo-
sure of the orbit of [α] in P(g1 + g2) under P . As for C0(X0), in the

notation adopted in Lemma 3.3 and its proof we have Tα(C̃0(X)) =
Span

{
Eµ, Eν1 , · · · , Eνp

}
. Enumerate νi in such a way that Ψµ,0 :=

Ψµ ∩ Φ0 = {ν1, · · · , νp0}, 1 ≤ p0 < p (assuming X0 ̸= X). By (†),
Tα(C̃0(X0)) = Tα(C̃0(X)) ∩ T0(X0). Since Eνi ⊥ T0(X0) whenever

i > p0, we have Tα(C̃0(X0)) = Span
{
Eµ, Eν1 , · · · , Eνp0

}
. Hence C0(X0)

agrees with the closure of the orbit P0.[α] of [α] under P0, completing
the proof of the lemma. �

Remark Lemma 3.3 also follows from Landsberg-Manivel [LM03,
§4].

In the long-root nonlinear cases (g0, g) of sub-diagram type, by Lemma
3.2 for these cases Hong-Mok [HoM10] gave a proof that these pairs are
nondegenerate for mappings. Using Lemma 3.2 and Lemma 3.3, by iden-
tical arguments as in [HoM10] one can show the same in the nonlinear
short-root cases satisfying the hypothesis of Lemma 3.3, giving a uni-
form proof of nondegeneracy for mappings and hence for substructures
in the sequel. Since a verification of the short-root cases has been given
in [HoP11] by projective geometry, we will not repeat the arguments of
[HoM10], and proceed to argue assuming [HoP11].

Lemma 3.4. Let (X0, X) be an admissible pair of rational homo-
geneous spaces of Picard number 1 of sub-diagram type. Assume that
C0(X0) contains a smooth point of the VMRT C0(X) at 0 ∈ X0. Then,
the admissible pair (X0, X) is degenerate for substructures if and only
if there exists some positive root ν ∈ Ψµ−Ψµ,0 such that τα(Eν , ξ) =

0 for every ξ ∈ Tα(C̃0(X0)), i.e., Eν ∈ Ker τα( · , T0(C̃0(X0)).
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Proof. By Lemma 3.3 we may take the general point of C0(X0) to be
[α] = [Eµ]. For the proof of Lemma 3.4 only the “only if” part requires
an argument. Suppose (X0, X) is degenerate for substructures. Then,
there exists a nonzero vector η ∈ Pα, η ⊥ Pα,0, such that τα(η, ξ) = 0

for every ξ ∈ Pα,0. (Here Pα = Tα(C̃0(X)), also Pα,0 := Tα(C̃0(X0)) =
Pα ∩ T0(X0).) Relabeling the roots νi ∈ Ψµ if necessary, write η =
a1Eν1 + · · · + asEνs , where for 1 ≤ i ≤ s, ai ̸= 0 , and νi are distinct
roots in Ψµ−Ψµ,0. For any λ ∈ Ψµ,0, we have

0 = τα(η,Eλ) = τα(a1Eν1 + · · ·+ asEνs , Eλ)

= a1τα(Eν1 , Eλ) + · · ·+ asτα(Eνs , Eλ).

Let Γ =
{
k : τα(Eνk , Eλ) ̸= 0

}
⊂ {1, ..., s}. Write ζk := νk+λ−µ ∈ Φ+

for k ∈ Γ. Since τα(Eνk , Eλ) ̸= 0, by Lemma 3.2 the mutually orthogonal
root vectors Eζk , k ∈ Γ, are orthogonal to Pα+(D0∩T0(X0)) and hence
τα(Eνk , Eλ), 1 ≤ k ≤ s, are linearly independent, i.e., Γ = ∅. Thus,
τα(Eνk , Eλ) = 0 for every k, 1 ≤ k ≤ s. As λ ∈ Ψµ,0 is arbitrary,
Eνk ∈ Ker τα( · , Pα,0) for 1 ≤ k ≤ s, proving the lemma. �

Lemma 3.5. Let (X0, X) be an admissible pair of rational homoge-
neous spaces of Picard number 1 of sub-diagram type, X0 = G0/P0 ↪→
G/P = X. Assume that C0(X0) intersects nontrivially with the unique
open P -orbit of C0(X) at 0 = eP (identified with eP0). Suppose (X0, X)
is nondegenerate for mappings. Then, it must necessarily be nondegen-
erate for substructures.

Proof. By assumption, choosing α = Eµ ∈ C̃0(X0), for every ν ∈ Ψµ

there exists ν0 ∈ Ψµ,0 such that σα(Eν , Eν0) ̸= 0, i.e., ζ := ν + ν0 −
µ ∈ Φ+, hence σα(Eν , Eν0) = cEζ , c ̸= 0. To prove that (X0, X) is
nondegenerate for substructures we have to show that Ker τα( · , Pα,0) =
Pα,0. By Lemma 3.4, it suffices to show that for any ν ∈ Ψµ − Ψµ,0,
Eν /∈ Ker τα( · , Pα,0). Suppose otherwise. Then, τα(Eν , Eν0) = 0, hence
Eζ ∈ Pα + (D0 ∩ T0(X0)). From ζ(Hµ) = ν(Hµ) + ν0(Hµ)−µ(Hµ) =
1 + 1 − 2 = 0 (cf. proof of Lemma 3.2) it follows that Eζ ⊥ Pα, hence
Eζ ∈ D0 ∩ T0(X0) ⊂ T0(X0), i.e., ζ ∈ Φ0. But then ν = ζ + µ − ν0 ∈
Φ0, a plain contradiction, proving that (X0, X) is nondegenerate for
substructures, as desired. �

4. Proof of Main Theorem 1

Let (X,K) be a rational homogeneous space of Picard number 1 en-
dowed with the uniruling by projective lines, and (X0, X) be an ad-
missible pair of sub-diagram type where X0 ⊂ X is nonlinear. Main
Theorem 1 asserts that (X0, X) is a rigid pair. For the proof we collect
here relevant results from Hong-Mok [HoM10] in the long-root cases,
from Hong-Park [HoP11] in the short-root cases, and from Hong-Mok
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[HoM13] on the parallel transport of VMRTs along minimal rational
curves applicable to both the long-root and the short-root cases. The
starting point is a proof of nondegeneracy for substructures of (X0, X),
which by §3 reduces to nondegeneracy for mappings. In the long-root
cases we have the following result by Hong-Mok [HoM10, Proposition
3.4].

Proposition 4.1. (Hong-Mok [HoM10]). Let (X0, X) be an admis-
sible pair of nonlinear rational homogeneous spaces of Picard number 1
and of sub-diagram type marked at a long root. Then, (X0, X) is nonde-
generate for mappings. Moreover, given any linear section B of C0(X)
such that

(
B ⊂ C0(X)

)
is projectively equivalent to

(
C0(X0) ⊂ C0(X)

)
,

there exists γ ∈ P such that B = γ(C0(X0)).

Identifying rational homogeneous spaces X biholomorphic to each
other, for the proof of Main Theorem 1 it suffices to consider the long-
root cases and the short-root cases pertaining to Cn, n ≥ 3, and F4

(cf. third paragraph after the proof of Lemma 3.1). For the case of
Cn the relevant short-root cases are (Cn, αk) where 2 ≤ k ≤ n − 1,
which corresponds to the symplectic Grassmannian Sk,n of isotropic
k-dimensional vector subspaces of a symplectic vector space (W,ω) of
dimension 2n. There are precisely two short-root cases of type F4, viz.,
the cases of (F4, α3) and (F4, α4). Here the convention in the labeling
of nodes of D(F4) is such that α3 and α4 are the short roots and the
longest root is 2α1+3α2+4α3+2α4. We have the following enumeration
of relevant short-root cases taken from [HoP11, Lemma 3.1 and Lemma
4.1].

Proposition 4.2. (Hong-Park [HoP11]). The following list enumer-
ates all admissible pairs (X0, X) of sub-diagram type of rational homo-
geneous spaces of Picard number 1 of type Cn or F4 marked at a short
root such that X0 ⊂ X is nonlinear.

(a) X = Sk,n (i.e., X is of type (Cn, αk)), 2 ≤ k ≤ n−1, X0 ⊂ X is given
by {[E] ∈ Sk,n : F1 ⊂ E ⊂ F2}, where F1 ⊂ F2 ⊂ W are isotropic
subspaces of the symplectic vector space (W,ω) of dimension 2n, and
0 < dim(F1) ≤ k − 2, dim(F2) ≥ k + 2. (X0 is of type (Am−1, αℓ),
where m = dimF2 − dimF1, ℓ = k − dimF1.)

(b) X = Sk,n, and X0 ⊂ X is given by {[E] ∈ Sk,n : F ⊂ E} where F
is an isotropic subspace of (W,ω) as in (a), and 0 < dimF ≤ k − 2.
(X0 is of type (Cm, αℓ), where m = n− dimF, ℓ = k − dimF.)

(c) X is of type (F4, α3) and X0 ⊂ X is of type (B3, α3), obtained by
deleting {α4} from D(F4).

(d) X is of type (F4, α3) and X0 ⊂ X is of type (C3, α2), obtained by
deleting {α1} from D(F4).

The following proposition is taken from [HoP11, Lemma 3.1, Lemma
4.1, Proposition 3.4 and Proposition 4.4].
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Proposition 4.3. (Hong-Park [HoP11]). For each short-root case
(X0, X) of sub-diagram type as listed in Proposition 4.2, the admissible
pair (X0, X) is nondegenerate for mappings. Moreover, for (X0, X)
belonging to classes (b), (c) or (d), given any linear section B of C0(X)
such that

(
B ⊂ C0(X)

)
is projectively equivalent to

(
C0(X0) ⊂ C0(X)

)
,

there exists γ ∈ P such that B = γ(C0(X0)).

Regarding the method of parallel transport of Mok [Mk08a] and
Hong-Mok [HoM11] [HoM13] the following general result applicable to
both the long-root and short-root cases was established in [HoM13,
Proposition 3.3] by complex-analytic methods using the theory of ex-
ceptional sets of Grauert [Gr65].

Proposition 4.4. (Hong-Mok [HoM13]). Let (X0, X) be an ad-
missible pair of rational homogeneous spaces of Picard number 1 of
sub-diagram type. Suppose C0(X0) ⊂ C0(X) contains a general point
[α] ∈ C0(X). Assume that there exists h ∈ P such that h([α]) = [α]
and such that h(C0(X0)) and C0(X0) are tangent to each other at [α].
Then, h(C0(X0)) = C0(X0).

For the proof of Main Theorem 1 we need finally a lemma regarding
varieties swept out by minimal rational curves in relation to a sub-
VMRT structure ϖ : C (S) → S modeled on an admissible pair of
rational homogeneous spaces (X0, X) of Picard number 1.

Lemma 4.1. Let (X0, X) be an admissible pair of rational homo-
geneous spaces of Picard number 1, and S ⊂ W , dim(S) =: s, be a
complex submanifold of some connected open subset W ⊂ X such that
ϖ : C (S) → S, C (S) := C (X) ∩ PT (S), defines a sub-VMRT structure
modeled on (X0, X). Suppose S ⊂ X is linearly saturated. Let x ∈ S
and denote by Π(x, S) ⊂ X the union of all minimal rational curves
ℓ of X emanating from x such that [Tx(ℓ)] ∈ Cx(S). Suppose now ℓ0
is a minimal rational curve on X such that [Tx(ℓ0)] ∈ Cx(S), and let
y ∈ ℓ0 ∩ S be distinct from x, so that Π(x, S) is smooth at y. Write

Ty(ℓ0) = Cαy. Then, Ty(Π(x, S)) = Tαy(C̃y(S)).

Remark Strictly speaking, Ty(Π(x, S)) ⊂ Ty(X), while Tαy(C̃y(S)) ⊂
Tαy(Ty(X)) ∼= Ty(X). The last isomorphism is canonical, and we make
use of it in the statement of Lemma 4.1 to identify vertical tangent
vectors at αy with tangent vectors of X at y (cf. paragraphs following
Lemma 2.1).

In the rest of §4 we will need to cite basic results from the geometric
theory of uniruled projective manifolds based on VMRTs stated in §5.
For the statements and proofs of such results we refer the reader to §5
and the references given there.
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Proof of Lemma 4.1. For any z ∈ X we write Kz ⊂ K for the
subset consisting of minimal rational curves passing through z, and
define V(z) :=

∪{
ℓ : [ℓ] ∈ Kz

}
. For x ∈ S as given in the lemma we

have Π(x, S) =
∪{

ℓ : [ℓ] ∈ Kx, [Tx(ℓ)] ∈ Cx(S)
}
⊂ V(x). Shrinking W

(and hence S) if necessary and takingW for instance to be a convex open
set in a privileged coordinate chart, we may assume for convenience that
any nonempty intersection of a minimal rational curve ℓ on X with W
is connected. By assumption S is linearly saturated. For any [ℓ] ∈ Kx

such that [Tx(ℓ)] ∈ Cx(S), the connected set ℓ ∩ W lies on S, hence
Π(x, S) ∩W ⊂ S.

Fix now [ℓ0] ∈ Kx such that [Tx(ℓ0)] ∈ Cx(S), and let y ∈ ℓ0∩W ⊂ S,
y ̸= x, Ty(ℓ0) =: Cαy. From the smoothness of Cx(S) it follows that
Π(x, S) is smooth at y and we have Ty(Π(x, S)) ⊂ Ty(S). On the
other hand (cf. Hwang-Mok [HM08]), we have (♯) Ty(V(x)) = Pℓ0,y,
recalling that Pℓ0 is the positive part of the Grothendieck decomposition
T (X)|ℓ0 ∼= O(2)⊕ (O(1))p⊕Oq. For completeness we include a proof of
(♯), as follows. There exists a holomorphic map F : P1 ×∆p → X such
that F (0, t) = x for any t ∈ ∆p, F (1, 0) = y, and such that, writing
ft(w) := F (w, t), ft : P1 → X is a biholomorphism onto a minimal
rational curve ℓ(t), ℓ(0) = ℓ0, in such a way that φ(t) := [ℓ(t)] defines
a biholomorphism of ∆p onto a neighborhood of [ℓ0] in Kx. We have
T[ℓ0](Kx) ∼= Γ(ℓ0, Nℓ0|X ⊗ mx), where mx stands for the maximal ideal

sheaf at x ∈ ℓ0. For 1 ≤ k ≤ p define σk = ∂F
∂tk

∈ Γ(P1, f∗0T (X) ⊗
m0) ∼= Γ(ℓ0, T (X) ⊗ mx), where m0 stands for the maximal ideal sheaf
at 0 ∈ P1, we have Span{σ1(y), · · · , σp(y), αy

}
= Ty(V(x)) ∼= Cp+1.

Hence, Ty(V(x)) = Pℓ0,y, proving (♯).
By (♯) we have Ty(Π(x, S)) ⊂ Ty(V(x)) = Pℓ0,y. Since also Ty(Π(x, S))

⊂ Ty(S), we have Ty(Π(x, S)) ⊂ Ty(V(x)) ∩ Ty(S) = Pℓ0,y ∩ Ty(S). By

Lemma 5.1, Pℓ0,y =: Pαy = Tαy(C̃y(X)), and it follows that Ty(Π(x, S))

⊂ Tαy(C̃y(X)) ∩ Ty(S) = Tαy(C̃y(S)), by the condition (†) stated in
the second paragraph after the proof of Proposition 2.1. Finally, from
dim(Ty(Π(x, S))) = dim(Cx(S))+1 = dim(Cy(S))+1 we conclude that

actually Ty(Π(x, S)) = Tαy(C̃y(S)), proving Lemma 4.1. �
Proof of Main Theorem 1. Let (X0, X) be an admissible pair of non-

linear rational homogeneous spaces of Picard number 1 of sub-diagram
type, W ⊂ X be a connected open subset and S ⊂ W be a complex
submanifold admitting a sub-VMRT structure modeled on (X0, X). By
Proposition 4.1 and Proposition 4.3, (X0, X) is always nondegenerate for
mappings. By Lemma 3.5, (X0, X) is also nondegenerate for substruc-
tures provided that, writing X = G/P and denoting by 0 = eP0 ∈ X0

a reference point (identified with 0 = eP ∈ X), C0(X0) intersects the
unique open P -orbit of C0(X) nontrivially. In the long-root cases the
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latter condition is always satisfied since the VMRT C0(X) is homo-
geneous. In the 4 classes of short-root cases enumerated as (a) - (d)
in Proposition 4.1, the latter condition is valid with the exception of
the class (a) consisting of Grassmannians of rank ≥ 2 in symplectic
Grassmannian. Thus, Lemma 3.5 applies excepting the short-root cases
of class (a). For the time being we exclude the short-root cases of
class (a) in the statement of Proposition 4.2. Start with a base point
x ∈ S. By definition,

(
Cx(S) ⊂ Cx(X)

)
is projectively equivalent to(

C0(X0) ⊂ C0(X)
)
. By Proposition 4.1 and Proposition 4.3, there ex-

ists some γ ∈ Aut(X) such that Cx(S) = Cx(γ(X0)).
Write Z := γ(X0). Any minimal rational curve ℓ on Z is nonsingular

and standard (cf. paragraph preceding Lemma 5.1) in the sense that
T (Z)|ℓ ∼= O(2)⊕(O(1))a⊕Ob for some integers a, b ≥ 0 (independent of
ℓ). Fix such a minimal rational curve ℓ on Z passing through x, Tx(ℓ) =:
Cαx. Denoting by Qℓ = O(2) ⊕ (O(1))a ⊂ T (Z)|ℓ the positive part of
T (Z)|ℓ, for any y ∈ ℓ, we have T[αy ](Cy(Z)) = Qℓ,y/Cαy, Ty(ℓ) =: Cαy

(cf. Lemma 5.1), where T (ℓ) ⊂ T (Z)|ℓ is the O(2) component, so that
Qℓ ⊃ T (ℓ). Let V(x, Z) ⊂ Z be the union of minimal rational curves ℓ on
Z emanating from x. V(x,Z) is nonsingular at any point y ∈ ℓ distinct
from x. By the deformation theory of rational curves Ty(V(x,Z)) ={
σ(y) : σ ∈ Γ(ℓ, T (Z)|ℓ) and σ(x) = 0

}
. Hence, Ty(V(x,Z)) = Qℓ,y.

As in the proof of Lemma 4.1 we may assume that for any minimal
rational curve ℓ on X, either ℓ ∩W = ∅, or ℓ ∩W is connected. By
Proposition 2.3, S is linearly saturated, so that V(x, Z)∩W ⊂ S. From
now on ℓ stands for a minimal rational curve on X such that x ∈ ℓ
and ℓ ∩W ⊂ S. By our choice of the rational homogeneous subspace
Z ⊂ X, we have Cx(S) = Cx(Z). Let now y ∈ ℓ ∩W,y ̸= x. We claim
that (††) C[αy ](S) and C[αy ](Z) are tangent to each other at [αy]. To

see this, writing Π(x, S) :=
∪{

ℓ : [ℓ] ∈ Kx, [Tx(ℓ)] ∈ Cx(S)
}
, we have

Π(x, S)∩W ⊂ S by linear saturation of S. For y ∈ ℓ∩W by Lemma 4.1

we have Ty(Π(x, S)) = Tαy(C̃y(S)). On the other hand, for the union of
minimal rational curves V(x,Z) on Z emanating from x, from Cx(S) =
Cx(Z) we have V(x, Z) = Π(x, S), hence V(x,Z)∩W = Π(x, S)∩W ⊂ S.

We also have Ty(V(x,Z)) = Tαy(C̃y(Z)) (which already follows from the
statement (♯) in the proof of Lemma 4.1, applied to Z). It follows that

Tαy(C̃y(S)) = Tαy(C̃y(Z)), implying that Cy(Z) and Cy(S) are tangent
to each other at [αy], proving the claim (††).

Recall that x ∈ ℓ ∩ S and ℓ ∩ W ⊂ S, and that Cx(S) = Cx(Z).
By the property (††), Cx(Z) and Cx(S) are tangent to each other at
any point y ∈ ℓ ∩ S. By Proposition 4.1, Proposition 4.3 and Propo-
sition 4.4, we know that in fact († † †) Cy(S) and Cy(Z) are identical
for y ∈ ℓ ∩ S. (Note that Proposition 4.4 fails in general for admissible
pairs not of sub-diagram type.) Thus, the methods of parallel transport
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along minimal rational curves and adjunction of minimal rational curves
of [Mk08a], [HoM10] and [HoM13] apply to conclude that S is an open
subset of Z = γ(X0). In part to make the proof of Main Theorem 1
self-contained and in part in anticipation of the more elaborate method
of constructing moduli spaces of chains of rational curves for general
sub-VMRT structures to be given in §8 we give below a schematization
of the procedure of adjoining minimal rational curves to recover Z and
hence to identify S as an open subset of Z. On the rational homoge-
neous space Z of Picard number 1 denote by Q the Chow component
of 1-cycles consisting of minimal rational curves on Z. Let ρ : U → Q
be the universal P1-bundle over Q. Since Q is isomorphic to the mini-
mal rational component of projective lines on the rational homogeneous
space Z, we treat ρ : U → Q as the universal family of a minimal ra-
tional component as in §5. Since Z is homogeneous and uniruled by

projective lines, the tangent map τ : U
∼=−→ C (Z) ⊂ PT (Z) is a bi-

holomorphism. From now on we write ρ : C (Z) → Q for the universal
P1-bundle overQ, identifying C (Z) with U via the inverse of the tangent
map. In what follows all bundles, sections and maps are understood to
be holomorphic.

Scheme 4.1. There exist projective manifolds Sj and Wj, 0 ≤ j ≤
m, constructed iteratively in the order S0,W0,S1,W1, · · · ,Sm,Wm,
starting with S0 := S := Cx(Z), κ0 : S0 → Q given by κ0 := ρ|Cx(Z),
such that
(a) for 0 ≤ j ≤ m,Sj is equipped with a classifying map κj : Sj → Q;
(b) for 0 ≤ j ≤ m, Wj is the total space of a P1-bundle γj : Wj → Sj,

obtained by pulling back the universal P1-bundle ρ : C (Z) → Q by
κj : Sj → Q, which is equipped with a tautological section sγj : Sj →
Wj and an accompanying evaluation map λj : Wj → X;

(c) for 0 ≤ j ≤ m − 1, Sj+1 is the total space of a fiber bundle δj+1 :
Sj+1 → Wj with fibers isomorphic to S obtained by pulling back the
VMRT-structure π : C (Z) → Z by λj : Wj → X, which is equipped
with a tautological section sδj+1

: Wj → Sj+1 (and with a classifying
map κj+1 : Sj+1 → Q as given in (a)); and

(d) λm(Wm) = Z.

Thus, sequentially S0 := S := Cx(Z), W0 is the underlying space
of a P1-bundle γ0 : W0 → S0, S1 is the underlying space of an S -
bundle δ1 : S1 → W0, · · · , iteratively until we obtain a P1-bundle
γm : Wm → Sm such that Wm covers Z under the evaluation map
λm : Wm → Z. The P1-bundle γ0 : W0 → S0 is the pull-back of the
universal P1-bundle ρ : C (Z) → Q by κ0 := ρ|Cx(Z). The P1-bundle
γ0 : W0 → S0 is equipped with a canonical section sγ0 : S0 → W0

where, for a minimal rational curve ℓ0 passing through x0 := x and
for ζ0 := [Tx(ℓ0)] ∈ Cx(Z) =: S0, sγ0(ζ0) is the point on ρ−1([ℓ0])
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corresponding to the point x0 ∈ ℓ0. (Here and henceforth we denote by
[ℓ] ∈ Q the minimal rational curve ℓ regarded as a member of the Chow
component Q.) The classifying map κj : Sj → Q and the evaluation
map λj : Wj → X are also defined inductively. For 0 ≤ j ≤ m, a point in
Wj corresponds to a chain of j+1 minimal rational curves ℓ0, · · · , ℓj and
a sequence of j+2 points x0, · · · , xj+1 onX, x0 = x, such that xi, xi+1 ∈
ℓi for 0 ≤ i ≤ j. Suppose wj ∈ Wj is associated to (x0, · · · , xj+1) and
(ℓ0, · · · , ℓj) this way, we define λj(wj) = xj+1. Then, the tautological
section sδj+1

: Wj → Sj+1 is defined by sδj+1
(wj) = [λ∗jTxj+1(ℓj)] ∈

λ∗jCxj+1(Z) =: Sj+1,wj , which sits over wj . Similarly for 1 ≤ j ≤ m and

for ζj a point in Sj , δj(ζj) := wj−1 ∈ Wj−1, corresponding to sequences
(x0, · · · , xj) and (ℓ0, · · · , ℓj−1) accompanied by [αj ] ∈ Cxj (Z), the latter
being identified with Sj,wj−1 as above. Since [αj ] determines uniquely a
line ℓj passing through xj such that Txj (ℓj) = Cαj , we may equivalently
think of ζj as being associated to (x0, · · · , xj) and (ℓ0, · · · , ℓj), and we
define κj : Sj → Q by κj(ζj) := [ℓj ] ∈ Q. There is a unique point vj ∈
Wj,ζj = κ∗j (ρ

−1([ℓj ]) corresponding to the point xj ∈ ℓj , and we define

the tautological section sγj : Sj → Wj by sγj (ζj) := vj . Identifying Sj

(resp.Wj) with the image of the tautological section sγj (resp. sδj+1
) we

may write S0 ⊂ W0 ⊂ S1 ⊂ W1 ⊂ · · · ⊂ Sj ⊂ Wj ⊂ · · · . Writing
Zj := λj(Wj), Z0 ⊂ Z1 ⊂ · · · ⊂ Zj ⊂ · · · . By the Proper Mapping
Theorem Zj ⊂ Z is an irreducible subvariety. By dimension count there
exists some m such that Zm = Zm+1 = · · · . By assumption, Z is of
Picard number 1, and it follows from Proposition 5.1 (cf. Hwang-Mok
[HM98]) that Zm = Z. This completes the description of the iterative
scheme for constructing Sj and Wj as total spaces of iterated fiber
bundles. For more details and explanation on the iterative scheme (in
the context of more general sub-VMRT structures) we refer the reader
to §8.

It remains to show S ⊂ Z. Recall that from († † †), starting with any
point x lying on S, for any minimal rational curve ℓ passing through x
such that ℓ ∩W ⊂ S, we have Cy(S) = Cy(Z) for y ∈ ℓ ∩ S. For 0 ≤
j ≤ m define the subset O♯

j ⊂ Wj encompassing every point wj ∈ Wj

associated to a sequence of points (x0, · · · , xj+1) on Z and a sequence
of minimal rational curves (ℓ0, · · · , ℓj) on Z satisfying the additional
requirements that ℓi ∩W ⊂ S for 0 ≤ i ≤ j − 1 and that xi ∈ S for

0 ≤ i ≤ j. From (†††) it follows that for wj ∈ O♯
j we also have ℓj ∩W ⊂

S. Define now Oj :=
{
wj ∈ O♯

j : xj+1 ∈ S
}
. Then, by induction

Oj ⊂ Wj is a nonempty open subset and we have λj(Oj) ⊂ S ∩ Z. In
particular, λm(Om) ⊂ S ∩ Z. Since λm : Wm → Z is surjective, it is
a submersion on Wm − E for some subvariety E ( Wm, hence there
exists wm ∈ Om − E such that λm is a submersion at wm. It follows
that Z contains a non-empty open subset of S and hence S ⊂ Z by the
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Identity Theorem for holomorphic functions, proving Main Theorem 1
with one class of exceptions given by (a) in Proposition 4.2.

For the remaining class (a), where (X0, X) = (G(ℓ,m), Sk,n), γ ∈
Aut(Sk,n) need not exist. By considering Sk,n as a submanifold of the
Grassmannian G(k, 2n) of all k-dimensional vector subspaces in W ∼=
C2n we have G(ℓ,m) ⊂ Sk,n ⊂ G(k, 2n) as in Hong-Park [HoP11], and
Main Theorem 1 for the admissible pair (G(ℓ,m), Sk,n) follows readily
from the rigidity statement for the admissible pair (G(ℓ,m), G(k, 2n)),
one of the long root cases, for which the rigidity result has been estab-
lished. The proof of Main Theorem 1 is complete. �

Remarks
(a) For the proof of Main Theorem 1 for (X0, X) = (G(ℓ,m), Sk,n), as

in [HoP11] it is necessary to make use of the embedding G(ℓ,m) ⊂
Sk,n ⊂ G(k, 2n) because the analogue of Proposition 4.3 fails, even
though it remains the case that (G(ℓ,m), Sk,n) is nondegenerate for
substructures.

(b) For the short-root cases (X0, X) other than those of class (a) one
can also check using Lemma 3.2 that (X0, X) is nondegenerate for
substructures.

(c) Consider all admissible pairs (X0, X) in Main Theorem 1 other than
the short-root cases (X0, X) = (G(ℓ,m), Sk,n), and let S ⊂ W be
a complex submanifold of some connected open subset W of X.
If we define C (S) as C (X) ∩ PT (S), ϖ := π|C (S), then, denot-

ing by Ex the linear span of C̃x(S) for x ∈ S and by D0 the lin-

ear span of C̃0(X0), the assumption that
(
Cx(S) ⊂ PEx

)
is pro-

jectively equivalent to
(
C0(X0) ⊂ PD0

)
for x ∈ S already implies

that ϖ : C (S) → S is a sub-VMRT structure modeled on (X0, X)
(cf. [HoM10, Proposition 3.4] and [HoP11, Proposition 2.2]). Even
when (X0, X) = (G(ℓ,m), Sk,n), the assumption that ϖ : C (S) → S
defines a G(ℓ,m)-structure also implies that ϖ : C (S) → S is
a sub-VMRT structure modeled on (G(ℓ,m), Sk,n), cf. Hwang-Mok
[HM05, Proposition 4.2.1]. Thus, Main Theorem 1 incorporates and
strengthens both Theorem 1.1 and Theorem 1.2.

(d) Zhang [Zh14] classified all admissible pairs (X0, X) in which both X0

and X are Hermitian symmetric spaces. New examples of nonrigid
pairs are found, but it is also found that there are admissible pairs
(X0, X) not of sub-diagram type such that (X0, X) are nondegener-
ate for substructures while the analogue of Proposition 4.4 fails so
that the method of parallel transport of VMRTs does not apply.
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5. Sub-VMRT structures satisfying Condition (T) and a
nondegeneracy condition on the second fundamental form

In this section we consider germs of complex submanifolds on unir-
uled projective manifolds. First of all, we are interested in finding suf-
ficient conditions to guarantee that a complex submanifold S on some
connected open subset W ⊂ X is rationally saturated with respect to
(X,K) (cf. paragraph after Proposition 5.2 here).

We recall here some basic notions and facts concerning minimal ra-
tional curves on uniruled projective manifolds and refer the reader to
Hwang-Mok [HM99b], Hwang [Hw01] and Mok [Mk08b] for overviews,
and to Kollár [Ko96] for a standard reference on rational curves. Let
X be a uniruled projective manifold, and L be an ample line bun-
dle on X. A rational curve f : P1 → X is said to be free if and
only if the holomorphic vector bundle f∗T (X) on P1 is semipositive,
i.e., f∗T (X) is a direct sum of line bundles O(ak) of degree ak ≥ 0.
(Given a rational curve f : P1 → X, we denote by [f ] the same map
regarded as a member of Hom(P1, X).) When [f ] ∈ Hom(P1, X) is a
free rational curve, Hom(P1, X) is nonsingular at [f ]. A tangent vector
σ ∈ T[f ](Hom(P1, X)) corresponds to the infinitesimal deformation at [f ]
of a one-parameter family of rational curves {ft} defined by a holomor-
phic map F : P1 ×∆(ϵ) → X for some ϵ > 0 such that ft(w) := F (w, t)
and f0 ≡ f , given by σ(w) = ∂

∂t

∣∣
t=0

F (w, t) ∈ Γ(P1, f∗T (X)). From the

freeness of [f ] there is no obstruction to lifting any σ ∈ Γ(P1, f∗T (X))
to a holomorphic one-parameter family given by some F as above, and
in fact T[f ](Hom(P1, X)) is naturally identified with the vector space

Γ(P1, f∗T (X)) of global holomorphic sections of f∗T (X) over P1.
There is a maximal Zariski open subsetH of an irreducible component

of Hom(P1, X) such that each [f ] ∈ H is a free rational curve on X, and
such that deg(f∗L) is minimal among all free rational curves on X.
By minimality each [f ] ∈ H is generically injective. H is smooth since
each [f ] ∈ H is free. Moreover, Aut(P1) acts effectively on H since
each [f ] ∈ H is generically injective, and K := H/Aut(P1) is quasi-
projective and nonsingular. We call K a minimal rational component
on X. Given [f ] ∈ H, ϵ > 0, and a holomorphic curve {γt : |t| <
ϵ} on Aut(P1) with γ(0) = idP1 , we have a holomorphic curve {[ft] :
|t| < ϵ} on H given by ft = f ◦ γt, thus infinitesimal deformations of
f : P1 → X induced by reparametrization correspond to the vector
subspace df(Γ(P1, T (P1))) ⊂ Γ(P1, f∗T (X)), where the differential df of
f : P1 → X is interpreted as a homomorphism df : T (P1) → f∗T (X).
Denoting by κ ∈ K the equivalence class of [f ] modulo the action of
Aut(P1), we have canonically Tκ(K) = Γ(P1, f∗T (X))/df(Γ(P1, T (P1))).
(Writing ℓ := f(P1) ⊂ X, we will also denote κ by [ℓ] ∈ K in the sequel.)
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We have a universal P1−bundle ρ : U → K called the universal family
of K. Denoting by Aut(P1; 0) the isotropy subgroup of Aut(P1) at 0 ∈
P1, we have U = H/Aut(P1; 0), and ρ : U → K = H/Aut(P1) is the
canonical projection realizing U as the total space of a holomorphic fiber
bundle with fibers isomorphic to Aut(P1)/Aut(P1; 0) ∼= P1. We have
canonically the evaluation map µ : U → X, and we write Ux := µ−1(x).
The minimal rational component K can be naturally identified with

a dense Zariski open subset of the normalization Q̂ of an irreducible
component Q of Chow(X), the Chow space of the projective manifold
X, where a general member of Q is the irreducible and reduced 1-
cycle corresponding to a free rational curve. There is a smallest variety
B ⊂ X, called the bad locus of (X,K), such that, for any x ∈ X−B,
any member of Q passing through x is the 1-cycle corresponding to a
free rational curve. For x ∈ X−B, Ux is a projective manifold.

At a general point x ∈ X we have a rational map τx : Ux 99K PTx(X)
called the tangent map, defined as follows. For u ∈ Ux corresponding to
f : P1 → X with a marking at x (i.e., f(0) = x) and immersed at 0, we
define τx(u) = [df(T0(P1))] ∈ PTx(X). Suppose x ∈ X−B and a general
point on each irreducible component of Ux is immersed at x. Then,
τx : Ux 99K PTx(X) is defined as a rational map, hence a morphism
on Ux − A for some nowhere dense subvariety A ⊂ Ux. The variety
Cx(X) := τx(Ux −A) ⊂ PTx(X) is called the variety of minimal rational
tangents (VMRT) of (X,K) at x. Collecting the VMRTs Cx(X) ⊂
PTx(X) where defined we have π : C (X) → X yielding what we call the
VMRT structure in this article.

In what follows for any holomorphic vector bundle γ : V → P1, the
positive part V ′ of V is defined to be the direct sum of summands of
degree > 0 in the Grothendieck decomposition of V into a direct sum of
holomorphic line subbundles, noting that V ′ ⊂ V is independent of the
particular choice of Grothendieck decomposition. A rational curve f :
P1 → X is said to be standard if and only if f∗T (X) ∼= O(2)⊕O(1)p⊕Oq

for some p, q ≥ 0, 1 + p + q = n := dim(X). When ℓ = f(P1) is
smooth, we have T (X)|ℓ ∼= O(2)⊕O(1)p⊕Oq, and the vector subbundle
Pℓ = O(2)⊕O(1)p ⊂ T (X)|ℓ is the positive part of T (X)|ℓ. For x ∈ ℓ,
writing Tx(ℓ) = Cα, we define Pα := Pℓ,x to be the fiber of Pℓ at x.
In general f : (P1, 0) → (X,x) is only immersed. When ℓ is smooth at
x, we still write Pα ⊂ Tx(X) for the vector subspace corresponding to
(O(2) ⊕ O(1)p)0 ⊂ f∗(Tx(X)). We have (cf.Mok [08b, esp. Lemma 1
and Lemma 2])

Lemma 5.1. Let (X,K) be a uniruled projective manifold endowed
with a minimal rational component. For a general point x ∈ X, a
general minimal rational curve passing through x is standard. Sup-
pose x ∈ X−B, and u ∈ Ux corresponds to a marked rational curve
f : (P1; 0) → (X;x) immersed at 0. Then, the tangent map τx :
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Ux 99K PTx(X) is a holomorphic immersion at u if and only if the
underlying minimal rational curve ρ(u) = [ℓ] is standard. Moreover,
when ℓ is smooth at x and Cx(X) is smooth at [α] = [Tx(ℓ)], we have
T[α](Cx(X)) ∼= Pα/Cα.

When X ⊂ Pn is uniruled by projective lines, τx is an isomorphism
at a general point x ∈ X (cf.Mok [Mk08b, Lemma 3]). For an arbi-
trary (X,K), at a general point x ∈ X the tangent map is known to
be birational under a nondegeneracy condition on the Gauss map by
Hwang-Mok [HM01] and holomorphic by Kebekus [Ke02]. Finally we
have

Theorem 5.1. (Hwang-Mok [HM04b, Corollary 1]). Let (X,K) be
a uniruled projective manifold endowed with a minimal rational compo-
nent, B be the bad locus of (X,K), and π : C (X) → X be the associated
VMRT structure. Then, at a general point x ∈ X−B, the tangent map
τx : Ux → PTx(X) is a birational finite morphism onto Cx(X), i.e.,
τx : Ux → Cx(X) is the normalization.

By Theorem 5.1 there exists a smallest subvariety B′ ( X of X such
that B′ ⊃ B and such that for any x ∈ X−B′, τx : Ux → Cx(X) ⊂
PTx(X) is a birational finite morphism. We call B′ ⊂ X the enhanced
bad locus of (X,K).

On the universal family ρ : U → K the relative tangent bundle Tρ
defines a rank one (holomorphic) distribution on U . By Theorem 5.1
there is a maximal dense Zariski open subset O ⊂ U|X−B′ such that the
tangent map τ |O : O → C (X)|X−B′ is a biregular morphism onto some
dense Zariski open subset W ⊂ C (X)|X−B′ . The rank one distribution
Tρ ⊂ T (U) translates via the tangent map to a rank one distribution
F on W, yielding the tautological foliation F on W whose leaves are
tautological liftings of Zariski open subsets of standard minimal rational
curves. By the tautological lifting of a nonsingular curve Γ ⊂ X to
PT (X) we mean the nonsingular curve Γ′ ⊂ PT (X) given by Γ′ ={
[Tx(Γ)] ∈ PTx(X) : x ∈ Γ

}
. For an irreducible curve Γ in general,

and for a dense Zariski open subset Γ0 ⊂ Γ consisting of smooth points,
we can still define the tautological lifting Γ′

0 of Γ0 in the same way. In
the situation under study, since we are only concerned with tautological
liftings of standard rational curves to C (X)|X−B′ , for such a curve ℓ ̸⊂
B′, ℓ∩(X−B′) is smooth, and the tautological lifting of ℓ to C (X)|X−B′

is taken to be ℓ̂ =
{
[Tx(ℓ)] ∈ PTx(X) : x ∈ ℓ−B′}.

Let P be the distribution on W where Pτ(u) ⊂ Tτ(u)(W) consists
of all η ∈ Tτ(u)(W), η = dτ(ξ), such that dµ(ξ) ∈ Pα (cf. Hwang-

Mok [HM04b, §3]). P translates via τ |O : O
∼=−→ W to a distribution

(dτ)−1P on O. Denote by Kst ⊂ K the dense Zariski open subset
consisting of standard rational curves, and write Pf ⊂ f∗T (X) for the
positive part O(2) ⊕ O(1)p ⊂ O(2) ⊕ O(1)p ⊕ Oq ∼= f∗T (X). We have
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df(Γ(P1, T (P1))) ⊂ Γ(P1, Pf ) ⊂ Γ(P1, f∗T (X)) ∼= T[f ](H). Defining now

D[ℓ] := Γ(P1, Pf )/df(Γ(P1, T (P1))) ⊂ Γ(P1, f∗T (X))/df(Γ(P1, T (P1))) ∼=
T[ℓ](K), and observing that dim(D[ℓ]) = dim(P1, (O(1))p ∼= C2p, we have
defined a holomorphic distribution D on Kst. Moreover, we have the
following result relating D to P.

Lemma 5.2. (Hwang-Mok [HM04b, Proposition 8]). Let D be the
distribution on Kst given by D[ℓ] = Γ(P1, Pf )/df(Γ(P1, T (P1))). Then,

over O we have (dτ)−1P = (dρ)−1D . As a consequence, τ∗(P/F )
∼= ρ∗D on O for the tautological foliation F .

In the ensuing discussion for simplicity we assume that for each u ∈ O,
ρ(u) = [ℓ] is a smooth standard rational curve, the general case where
ℓ is an immersed standard rational curve being similar with obvious
modifications. For a complex submanifold M in a complex manifold Y
we write NM |Y for the normal bundle of M in Y . For u ∈ O, T[ℓ](K) =
Γ(ℓ,Nℓ|X) where Nℓ|X ∼= O(1)p ⊕ Oq, and D[ℓ] := Γ(ℓ, Pℓ/T (ℓ)), where
Pℓ/T (ℓ) ∼= O(1)p ⊂ O(1)p⊕Oq is the positive part of the normal bundle
Nℓ|X . Thus, (τ∗P/F )u can be identified naturally with Γ(ℓ,O(1)p)

which is the direct sum of p copies of Γ(ℓ,O(1)) ∼= C2. In the case where
privileged coordinates exist, the decomposition P[α]/F[α] = P̌α/Cα̌ ⊕
P̂α/Cα̂ as implied by Lemma 2.1 gives a splitting at u of the short exact
sequence

(†) 0 −→ A −→ Γ(ℓ,O(1)p) ∼= C2p evx−→ (O(1)p)x ∼= Cp −→ 0 .

where evx : Γ(ℓ,O(1)p) → (O(1)p)x is the evaluation map evx(s) = s(x)
for s ∈ Γ(ℓ,O(1)p). Thus Ker(evx) = A is intrinsic and corresponds to

the vector space of vertical vectors P̂α/Cα̂ ∼= Cp, while the vector space

of horizontal vectors P̌α/Cα̌ ⊂ P[α]/F[α] is complementary to P̂α/Cα̂,
and its definition depends on the choice of privileged coordinates, and
cannot be made intrinsic, since the short exact sequence (†) restricted
to ℓ is a direct sum of p copies of the basic sequence 0 −→ O(−1) −→
O ⊕O −→ O(1) −→ 0 on P1, which does not split holomorphically.

The VMRTs on (X,K) can be used to reconstruct X in the follow-
ing way. For x ∈ X−B we denote by V(x) := V1(x) the union of
lines emanating from x. For k ≥ 0 we define inductively Vk+1(x) =∪{

V(y) : y ∈ Vk(x)−B
}
. The process stops after a finite number of

steps. In fact, writing dim(X) =: n we must have Vm(x) = Vn(x) :=
L(x) whenever m ≥ n. For y ∈ Vk(x), we have Vm−k(x) ⊂ Vm(y) ⊂
Vm+k(x) whenever m > k. Applying to m ≥ n + k we conclude that
L(y) = L(x), and we have defined a meromorphic foliation E on X such
that the leaf through a general point x ∈ X−B compactifies to a pro-
jective subvariety L(x) of X. By Hwang-Mok [HM98, Proposition 12]
a general minimal rational curve ℓ is disjoint from the locus of indeter-
minacies of E . In case the uniruled projective manifold X is of Picard
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number 1 we have from the proof of Hwang-Mok [HM98, Proposition
13] the following result.

Proposition 5.1. (Hwang-Mok [HM98]). Let x ∈ X−B be a gen-
eral point. Define V1(x) := V(x), and for k ≥ 1 define inductively

Vk+1(x) :=
∪{

V(y) : y ∈ Vk(x)−B
}
. Assume that X is of Picard num-

ber 1. Then, X = Vm(x) for m sufficiently large.

Returning to a uniruled projective manifold (X,K), we consider a
complex submanifold S ⊂ W of a connected open subset W ⊂ X−
B′, where B′ ⊂ X, B′ ⊃ B, is the enhanced bad locus of (X,K)
(cf. paragraph after Theorem 5.1). In the proof of Main Theorem 1
on the rigidity of certain admissible pairs (X0, X) of rational homoge-
neous spaces of Picard number 1, X0 was identified with a model Z ⊂ X
of Picard number 1, and S ⊂ W was reconstructed as an open subset
of Z by means of Proposition 5.1. In general, subject to conditions to
be imposed on a possibly variable “geometric substructure” inherited on
S ⊂ W from X, we are interested in proving that S is rationally satu-
rated and in reconstructing S as a subset of some irreducible projective
variety of the same dimension. Especially, we will prove an algebraicity
theorem given by Main Theorem 2 of the article.

Given a uniruled projective manifold (X,K) with enhanced bad lo-
cus B′ ⊂ X, a connected open subset W ⊂ X − B′ and a complex
submanifold S ⊂ W , for x ∈ S we define C (S) := Cx(X) ∩ PT (S),
Cx(S) := Cx(X) ∩ PTx(S). Write ϖ := π|C (S) : C (S) → S. We have

Definition 5.1. We say that ϖ := π|C (S) : C (S) → S is a sub-
VMRT structure on (X,K) if and only if

(a) the restriction of ϖ to each irreducible component of C (S) is surjec-
tive, and

(b) at a general point x ∈ S and for any irreducible component Γx of
Cx(S), we have Γx ̸⊂ Sing(Cx(X)).

By a general point on S we mean any point outside some complex-
analytic subvariety A ( S. Then, for a general point x ∈ S and for
some integer m ≥ 1

(c) the fiber Cx(S) of ϖ : C (S) → S has exactly m irreducible compo-
nents;

(d) for each irreducible component Γk,x of Cx(S), 1 ≤ k ≤ m, ϖ :
C (S) → S is a holomorphic submersion at a general point χk of
Γk,x.

After passing to normalizations, (c) follows from Stein factorization of
proper holomorphic maps (cf. Grauert-Remmert [GR84, pp.212-214]).
(Given a surjective proper holomorphic map α : X → B between irre-
ducible normal complex spaces, there exists an irreducible normal com-
plex space Z , a holomorphic map β : X → Z with connected fibers ,
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and a finite holomorphic map γ : Z → B such that α = γ ◦ β. For
a general point b ∈ B the number of irreducible components of α−1(b)
agrees with the sheeting number of γ.) For a surjective proper holo-
morphic map φ : X → B between complex manifolds, the locus where
dφ is of rank < dim(B) is a subvariety S ( X . When X is singular,
taking σ : X ♯ → X to be a desingularization, and S ♯ ⊂ X ♯ to be the
locus where d(φ◦σ) fails to be of maximal rank, then φ is a submersion
outside of ν(S ) ( X , implying (d).

In the study in §2 on sub-VMRT structures ϖ : C (S) → S modeled
on an admissible pair (X0, X) of rational homogeneous spaces of Picard

number 1, starting with a holomorphic arc {α̃t} on C̃x(S) at a base point
x ∈ S, Lemma 2.2 gives the existence of a holomorphic family of sections

α̃(z, t) of ϖ̃ : C̃ (X) → X at x which restricts over S to sections of C̃ (S).
Towards a generalization of Proposition 2.3 on linear saturation we will
need a generalization of the latter lemma to sub-VMRT structures in
the sense of Definition 5.1. We have

Lemma 5.3. Let ϖ : C (S) → S, C (S) := C (X) ∩ PT (S), be a sub-
VMRT structure on S ⊂ W ⊂ X−B′ as in Definition 5.1. Suppose

x ∈ S, α ∈ C̃x(S), and ϵ > 0. Let {αt : |t| < ϵ} =: Γ be a holomorphic

arc on C̃x(S) such that α0 = α, and such that ϖ : C (S) → S is a
submersion at α. Then, the conclusion analogous to that of Lemma 2.2
holds.

Proof. Since π̃ : C̃ (X) → X is a submersion at α ∈ C̃x(X), there
exists a coordinate neighborhood U of x on X, a neighborhood W of α

on C̃ (X), a domain Ω in some Euclidean space, and a biholomorphism

φ : W
∼=−→ U × Ω such that π̃ ◦ φ−1 : U × Ω → U is the canonical

projection. Write n := dim(X), s := dim(S), a := dim(C̃x(S)), b :=

dim(C̃x(X)), c := b−a. We may take U to be a coordinate neighborhood
identified with the unit polydisk ∆n, such that U ∩ S is identified with
∆s × {0} and x with 0, and we write z = (z′; z′′) for such holomorphic
coordinates, z′ := (z1, · · · , zs), z′′ := (zs+1, · · · , zn). We may take Ω
to be the unit polydisk ∆b in the Euclidean coordinates w = (w′;w′′),
w′ := (w1, · · · , wa), w

′′ := (wa+1, · · · , wb) such that, writing φ(ζ) =
(z;w), we have φ(α) = (0; 0).

Since ϖ̃ : C̃ (S) → S is a submersion at α, without loss of gen-

erality we may assume Tα(C̃ (S)) = Span
{

∂
∂z1

, · · · , ∂
∂zs

; ∂
∂w1

, · · · , ∂
∂wa

}
and Tα(C̃x(S)) = Span

{
∂

∂w1
, · · · , ∂

∂wa

}
. For 0 < δ ≤ 1 we write

W(δ) := φ−1(∆n+b(δ)). Thus, for δ > 0 sufficiently small W(δ) ∩ C̃ (S)
is given in the coordinates (z;w) as the graph of a vector-valued func-

tion h : ∆s+a → ∆c, i.e., φ−1((z′, 0;w′, w′′)) ∈ W(δ) ∩ C̃ (S) if and only
if (wa+1, · · · , wb) = (h1(z

′, w′), · · · , hc(z′, w′)). For 1 ≤ k ≤ c = b − a
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write fk(z, w) = wa+k − hk(z
′, w′). Then, W(δ) ∩ C̃ (S) is the com-

mon zero set of {zs+1, · · · , zn, f1, · · · , fc}. Modify now the fiber co-

ordinates for π̃ : C̃ (X) → X on W(δ) to ω = (ω1, · · · , ωb) by set-
ting ωi = wi for 1 ≤ i ≤ a and ωi = fi−a for a + 1 ≤ i ≤ b.
Then W(δ) ∩ C (S) is described by ωa+1 = 0, · · · , ωb = 0. Define
φ♯ : W(δ) → ∆n+a(δ) × Cc by φ♯(ζ) = (z1, · · · , zn;ω1, · · · , ωb) =

(z′, z′′;w′, w′′)−(0, 0; 0, h1(z
′, w′), · · · , hc(z′, w′)). For δ♭ > 0 sufficiently

small there exists a neighborhood W♭ b W(δ) of α such that, writing

ψ := φ♯|W♭ , ψ : W♭
∼=−→ U ♭ ×∆b(δ♭), U ♭ being a neighborhood of x on

S identified with ∆n(δ♭).
For the holomorphic arc {αt : |t| < ϵ} =: Γ given in the hypothesis of

the lemma, shrinking ϵ if necessary we may assume that Γ ⊂ W♭∩C̃x(S).

We have a holomorphic section A(z, t) of π̃ × id∆(ϵ) : C̃ (X) × ∆(ϵ) →
∆n(δ♭)×∆(ϵ) such that A(x, t) = αt for |t| < ϵ, and such that A(z′, t) ∈
C̃x(S) for z′ ∈ U ♭ ∩ S (identified with ∆s(δ♭) × {0}), e.g., for z ∈
∆n(δ♭) we may define A(z, t) by setting ψ(A(z, t)) = (z, ψ(A(x, t)) ∈
∆n+a(δ♭) × {0}. The rest of the proof is identical to that given in the
proof of Lemma 2.2. �

With an aim to generalizing Proposition 2.3 on linear saturation we
proceed to introduce a general notion of nondegeneracy for substruc-
tures. To start with we define the notion of proper pairs of projective
subvarieties.

Definition 5.2. Let V be a Euclidean space and A ⊂ P(V ) be an
irreducible subvariety. We say that (B,A) is a proper pair if and only
if B is a linear section of A and for each irreducible component Γ of B,
Γ ̸⊂ Sing(A).

For a uniruled projective manifold X and a complex submanifold
S ⊂W ⊂ X−B′ inheriting a sub-VMRT structure ϖ : C (S) → S as in
Definition 5.1, at a general point x ∈ S, (Cx(S),Cx(X)) is a proper pair
of subvarieties. Recall that for a complex vector space V and a subset

Z ⊂ PV , we denote by Z̃ the affinization of Z, i.e., Z = λ−1(Z) for the
canonical projection λ : V − {0} → PV .

Definition 5.3. Let V be a finite-dimensional vector space, E ( V
be a vector subspace and (B,A) be a proper pair of projective subvarieties
in P(V ), B := A ∩ P(E) ⊂ A ⊂ P(V ) . Assume that A is irreducible.

Let ξ ∈ B̃ be a smooth point of both Ã and B̃ , and let σ : S2Tξ(Ã) →
V/Tξ(Ã) be the second fundamental form of Ã in V with respect to the
Euclidean flat connection on V . Write V ′ ⊂ V for the linear span of

Ã and define E′ := E ∩ V ′. Let ν : V/Tξ(Ã) → V/(Tξ(Ã) + E′) be

the canonical projection and define τ : S2Tξ(Ã) → V/(Tξ(Ã) + E′) by
τ := ν ◦ σ . We say that (B,A;E) is nondegenerate for substructures
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if and only if for each irreducible component Γ of B and for a general
point χ ∈ Γ, we have{

η ∈ Tχ(Ã) : τ(η, ξ) = 0 for any ξ ∈ Tχ(B̃)
}
= Tχ(B̃) .

Remarks
(a) In case E′ = E ∩ V ′ is the same as the linear span of B̃ we will drop

the reference to E, with the understanding that the projection map

ν is defined by using the linear span of B̃ as E′.
(b) Definition 5.3 extends readily when A is allowed to be reducible.

Denoting by Ai the irreducible components of A, we still assume
that for each irreducible component Bk of B, Bk ̸⊂ Sing(A). In par-
ticular, Bk ⊂ Ai(k) for a unique i(k). To define nondegeneracy for
substructures one needs to introduce νi and hence τi for each Ai, i.e.,

in terms of the linear span V ′
i of each Ãi. We say that (B,A;E) is

nondegenerate for substructures if and only if for each irreducible
component Bk of B and for a general point χk ∈ Bk, we have{

η ∈ Tχk
(Ãi(k)) : τ(η, ξ) = 0 for any ξ ∈ Tχk

(B̃k)
}
= Tχk

(B̃k) .

For the proof of Theorem 1.4 one follows the same line of arguments
as that in the special case of Proposition 2.3 for rational homogeneous
spaces X = G/P and sub-VMRT structures ϖ : C (S) → S modeled on
admissible pairs (X0, X) of sub-diagram type of rational homogeneous
spaces of Picard number 1, which relies on Lemma 2.1, Lemma 2.2 and
Proposition 2.2. In Lemma 2.1, in terms of privileged coordinates we

have the decomposition P̃α = P̌α ⊕ P̂α for the distribution P̃ on C̃ (S)
(defined in the paragraph preceding Lemma 2.1). We proceed now to
generalize Lemma 2.1. Let (X,K) be a uniruled projective manifold
X of dimension n endowed with a minimal rational component K, π :
C (X) → X be the associated VMRT structure. Let [α] ∈ C (X) be a
smooth point, π(α) := x ∈ X−B′, where B′ is the enhanced bad locus

of (X,K). Recall that τ |O : O
∼=−→ W and recall the distribution P

on W as in the paragraph preceding Lemma 5.2. Since [α] ∈ C (X)
be a smooth point, by Theorem 5.1 there is a unique standard minimal
rational curve ℓ passing through x such that ℓ is smooth at x and Tx(ℓ) =
Cα. Let V be a neighborhood of x in X−B′ such that ℓ∩V is connected
and such that, denoting by ℓ♯ the tautological lifting of ℓ to PT (X), we
have ℓ♯ ∩ π−1(V ) ⊂ W. We have

Lemma 5.4. Let y ∈ ℓ ∩ V be distinct from x. Suppose (U, zi) is
a (holomorphic) coordinate chart on a neighborhood U of x, U b V ,
such that for any minimal rational curve ℓ′ passing through y suffi-
ciently close to ℓ, ℓ′ ∩ U is a connected open set on an affine line with
respect to the coordinates (zi). Then, in terms of Euclidean coordinates
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(z1, · · · , zn;w1, · · · , wn) on T (U) = U × Tx(U) = U × Cn ⊂ Cn × Cn

arising from (U, zi) in the standard way, we have P̃α = P̌α ⊕ P̂α.

Proof. The proof of Lemma 5.4 is the same as that of Lemma 2.1.
To see this, observe that in place of requiring (U, zi) to be a privileged
coordinate chart a weaker requirement is enough, viz., letting ℓ be the
minimal rational curve joining x to a nearby point y ̸= x, it suffices
that in the coordinate chart (U, zi) the intersection of U with any min-
imal rational curve ℓ′ emanating from y and sufficiently close to ℓ is a
connected open subset of an affine line. The full hypothesis in the defi-
nition of a privileged coordinate chart that all minimal rational curves
intersecting U nontrivially appear as portions of affine lines was never
used in the proof. �

We call (U, zi) in the proof above a coordinate chart at x adapted to
(y, ℓ). Note that it is not required that y ∈ U . The existence of such a
coordinate chart (U, zi) can be seen using “polar coordinates” at y as in
[HoM10], which we make more precise here, as follows. Let V be some
coordinate neighborhood of x so that all maps into V can be viewed as
a map into a complex Euclidean space. We also denote by ∆(a; r) the
open disk on C centered at a and of radius r > 0, write ∆(r) := ∆(0; r),
and write ∆m(r) for the Cartesian product of m copies of ∆(r).

Choose now y to be a point distinct from x and lying on the connected
component of ℓ ∩ V containing x, and let {αt}, t ∈ ∆p(ϵ), be a holo-

morphic family of minimal rational tangents αt ∈ C̃y(X), α0 ∈ Ty(ℓ)
such that φ(t) := [αt] ∈ Cy(X) is a biholomorphism of ∆p(ϵ) onto
a smooth open neighborhood O of [Ty(ℓ)] in Cy(X). If y is further
chosen to be sufficiently close to x, then, shrinking ϵ > 0 if neces-
sary, there exists a holomorphic map F : ∆(2) × ∆p(ϵ) → V such

that F (0, 0) = y, F (1, 0) = x, ∂F
∂s (0, t) = αt ∈ C̃y(X), F |∆(2)×{t} is

a biholomorphism onto an open subset of the minimal rational curve
ℓ′t passing through y, Ty(ℓ

′
t) = Cαt, and F |∆∗(2)×∆p(ϵ) is a holomor-

phic embedding onto an open subset Σ0 ⊂ V(y) − {y}, x ∈ Σ0. Let
Σ be F (∆(1; δ) × ∆p(ϵ)) for some δ > 0 sufficiently small, and define
Φ : Σ → Cn by Φ(F (s, t)) := sαt. Then, Φ extends to a biholomor-
phism of some neighborhood U of x in X onto a neighborhood D of
α in Cn, with Euclidean coordinates (z1, · · · , zn), giving a coordinate
chart (U, zi) adapted to (x, ℓ). In order to generalize Proposition 2.3
on rational saturation to the general setting of sub-VMRT structures
ϖ : C (S) → S, we introduce a condition called Condition (T) on such
structures, as follows.

Definition 5.4. Let ϖ : C (S) → S, C (S) := C (X) ∩ PT (S), be
a sub-VMRT structure on S ⊂ W ⊂ X −B′ as in Definition 5.1.
For a point x ∈ S, and [α] ∈ Reg(Cx(S)) ∩ Reg(Cx(X)), we say that

(Cx(S), [α]), or equivalently (C̃x(S), α), satisfies Condition (T) if and
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only if Tα(C̃x(S)) = Tα(C̃x(X))∩Tx(S). We say that ϖ : C (S) → S sat-

isfies Condition (T) at x if and only if (C̃x(S), [α]) satisfies Condition
(T) for a general point [α] of each irreducible component of Reg(Cx(S))∩
Reg(Cx(X)). We say that ϖ : C (S) → S satisfies Condition (T) if and
only if it satisfies the condition at a general point x ∈ S.

Condition (T) is hence a hypothesis imposed on tangent spaces of
VMRTs and their linear sections. In the study of rigidity of admissible
pairs of (X0, X) of rational homogeneous spaces of Picard number 1,
we may regard the VMRT structure π0 : C (X0) → X0 on X0 also as
a sub-VMRT structure of the VMRT structure π : C (X) → X of the
ambient manifold X. Regarding Condition (T) we have the following
general result applicable to (X0, X).

Lemma 5.5. Let (X,K), X ⊂ PN , be a uniruled projective mani-
fold endowed with a minimal rational component consisting of projec-
tive lines, and denote by π : C (X) → X the VMRT structure on X.
Let Z ⊂ X be a linear section of X such that Z is irreducible as a
variety and uniruled by projective lines belonging to K, and denote by
ϖ : C (Z) → Reg(Z), C (Z) = C (X) ∩ PT (Reg(Z)), the sub-VMRT
structure on Reg(Z). Assume that there exists a member of K lying on
Reg(Z) which is a free rational curve on Reg(Z). Then, for a general
point z ∈ Reg(Z) and a general smooth point [α] ∈ Cz(Z), (Cz(Z), [α])
satisfies Condition (T).

Proof. Write Z0 := Reg(Z). Denote by J ⊂ K the variety of
projective lines belonging to K and lying on Z. By assumption there
exists [ℓ0] ∈ J such that ℓ0 ⊂ Z0 is a free rational curve, i.e., T (Z0)|ℓ0 is
semipositive. Denote by H0 ⊂ J the irreducible component containing
[ℓ0] as a member, and let H ⊂ H0 be the Zariski open subset consisting
free rational curves on Z0. From the semipositivity of Nℓ|Z and from

Nℓ|Z ⊂ Nℓ|PN
∼= O(1)N−1 it follows that ℓ ⊂ Z0 is a standard rational

curve. We have T (Z0)|ℓ ∼= O(2) ⊕ O(1)a ⊕ Ob for some a, b ≥ 0, while
T (X)|ℓ ∼= O(2) ⊕ O(1)p ⊕ Oq for some p, q ≥ 0. Write Tz(ℓ) =: Cα,
Qℓ := O(1)a ⊕Ob for the positive part of T (Z0)|ℓ and recall that Pℓ =
O(1)p ⊕ Oq is the positive part of T (X)|ℓ. Denote by Qα ⊂ Tz(Z

0)
the fiber at z of Qℓ and recall that Pα is the fiber at z of Pℓ. We have

Tα(C̃z(Z)) = Qα while Tα(C̃z(X)) = Pα.
Consider the injective bundle homomorphism φ : T (Z0)|ℓ ↪→ T (X)|ℓ.

Noting that Γ(ℓ,Hom(O(a),O(b))) = 0 whenever a > b, φ must induce

an isomorphism φ|O(2) : O(2)
∼=−→ O(2), which induces a bundle homo-

morphism ψ : O(1)a⊕Ob → O(1)p⊕Oq. Since Γ(ℓ,Hom(O(1)p,Oq)) =
0, ψ descends to ψ : Ob → Oq. To prove that Qα = Pα ∩ Tz(Z

0) it
is equivalent to show that the homomorphism ψ : Ob → Oq is injec-
tive. By assumption Z = Π ∩ X for some projective linear subspace
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Π ⊂ PN , dim(Π) := s. Hence, NZ0|X |ℓ ⊂ NΠ|PN |ℓ ∼= O(1)N−s. On

the other hand, the normal bundle Nℓ|X = O(1)p ⊕Oq is semipositive,
and NZ0|X |ℓ = Nℓ|X/Nℓ|Z must be semipositive as a quotient bundle

of Nℓ|X . It follows that NZ0|X |ℓ ∼= O(1)c ⊕ Od for some c, d ≥ 0. If

ψ : Ob → Oq has a nontrivial kernel, there must be some trivial line
subbundle O ⊂ Ob such that ψ(O) ⊂ O(1)p, in which case the normal
bundle NZ0|X |ℓ ∼= O(1)c ⊕Od must contain a subbundle of degree ≥ 2,
a plain contradiction, proving the lemma. �

Remarks
(a) Suppose (X0, X) is an admissible pair of rational homogeneous spaces

of Picard number 1 and ϖ : C (S) → S, C (S) := C (X)∩PT (S), is a
sub-VMRT structure modeled on (X0, X). Then, by Definition 1.1
and Lemma 5.5, Condition (T) is satisfied at every point x ∈ S by
(Cx(S), [α]) for any point [α] ∈ Cx(S).

(b) Let X be an irreducible Hermitian symmetric space of the compact
type of rank ≥ 2 , x ∈ X, and denote by V(x) ⊂ X the union of pro-
jective lines emanating from x. Then, Z := V(x) is a linear section
of X with respect to the minimal embedding. Moreover, Z is smooth
except for an isolated singularity at the point x. On Z0 = Z − {x}
we have Cz(Z) := Cz(X) ∩ PTz(Z) for each z ∈ Z0. If X =
GIII(n, n), n ≥ 2, the Lagrangian Grassmannian of rank n (cf. second
last paragraph preceding Definition 1.2), then Cz(Z) = [αz], where
Tz(ℓ0) = Cαz for the unique projective line ℓ0 on Z joining z to x,

hence Tαz(C̃z(X))∩ Tz(Z) = Pαz ∩ Pαz = Pαz ) Cαz = Tαz(C̃z(Z)),
violating Condition (T). For X ̸= GIII(n, n), n ≥ 2, Cz(Z) is unir-
uled by projective lines. (Cz(Z) is irreducible except in the case
where X is a Grassmannian, in which case there are two irreducible
components.) Let Λ ⊂ Cz(X) be a projective line containing [αz].
Then, there exists a projective plane Π ⊂ Z containing x such that
PTz(Π) = Λ. Any projective line ℓ ⊂ Π avoiding x lies on Z0 and all
such projective lines ℓ are standard rational curves on Z0. By the
proof of Lemma 5.5, (Cz(Z), [Tz(ℓ)]) satisfies Condition (T).

Proposition 5.2. Let (X,K) be a uniruled projective manifold en-
dowed with a minimal rational component, B′ ⊂ X be its enhanced bad
locus. Let W ⊂ X−B′ be a connected open set, and S ⊂ W be a com-
plex submanifold inheriting a sub-VMRT structure ϖ : C (S) → S which
satisfies Condition (T), C (S) := C (X) ∩ PT (S). Suppose at a general
point x ∈ X, (Cx(S),Cx(X)) is nondegenerate for substructures. Then,
S is rationally saturated with respect to (X,K).

Here (S,C (S)) is rationally saturated with respect to (X,K) (cf.Mok
[Mk08a, Definition 5]) if and only if the statement (♯) below holds. (♯)
For any point x ∈ S and any minimal rational curve ℓ on X such that



RIGIDITY & ANALYTIC CONTINUATION OF SUB-VMRT STRUCTURES 49

x ∈ ℓ and Tx(ℓ) ⊂ Tx(S), the germ of holomorphic curve (ℓ;x) must lie
on S.

Proof of Proposition 5.2. Proposition 5.2 is a generalization of Propo-
sition 2.3. By Lemma 5.3 (which replaces Lemma 2.2) we obtain a
holomorphic family of special vector fields

{
α̃t(z)

}
on a neighborhood

of x. Given Lemma 5.4 (which replaces Lemma 2.1) and noting that
Condition (T) replaces the condition (†) in the proof of Proposition
2.2, the analogue of the latter proposition applies verbatim to the given
sub-VMRT structure ϖ : C (S) → S. By the proof of Proposition
2.3, to generalize the latter proposition to sub-VMRT structures it suf-
fices to prove tangential constancy of V(y) along ℓ ∩U for a coordinate
chart (U, zi) adapted to (x, ℓ), viz., denoting by Pαu the positive part
of T (X)|ℓ at u ∈ ℓ ∩ U , Pαu are constant on ℓ ∩ U in these coordinates.
But on (U, zi) the desired property follows readily when we parametrize
a neighborhood of x on V(y) by Φ(s, t) = sαt, t = (t1, · · · , tp), t ∈ ∆p,

from which one sees that Pαu is the linear span of α = α0 and ∂αt
∂ti

∣∣
t=0

,
1 ≤ i ≤ p , for any u ∈ ℓ ∩ U . Proposition 5.2 follows. �

Proof of Theorem 1.4. Theorem 1.4 follows from Proposition 5.2.
�

6. The Thickening Lemma for the propagation of sub-VMRT
structures

To prove Main Theorem 2, which gives a sufficient condition for
the algebraicity of germs of sub-VMRT structures, we need to have
a method of analytic continuation of ϖ : C (S) → S, where C (S) :=
C (X)|S∩PT (S). Unlike the proofs of Cartan-Fubini Extension Principle
in the equidimensional (Hwang-Mok [HM01]) and non-equidimensional
cases (Hong-Mok [HoM10]), which are results on the analytic continua-
tion of mappings, we need to tackle the more delicate issue of analytic
continuation of subvarieties.

We give now an outline of our strategy for constructing a projective
completion S ⊂ Z. Adjoining rational curves as in Proposition 5.1, we
consider chains of rational curves issuing from S. The process consists
of an iterative construction of fibered spaces of sub-VMRTs, followed by
P1-bundles over their normalizations, until we reach a point where the
total space Wk of a P1-bundle over an iterated fibered space Sk projects
onto a subvariety Z ⊂ X which is already saturated, giving a projective
subvariety which extends S. The prototype of such a construction in the
case of sub-VMRT structures modeled on an admissible pair (X0, X) of
sub-diagram type of rational homogeneous spaces of Picard number 1
was explained in the proof of Main Theorem 1 in §4.
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We will in fact construct a certain “universal family ” of chains of
rational curves belonging to a compactification Q of the minimal ratio-
nal component K. To initiate the process we prove using deformation
theory of rational curves that sub-VMRT structures can be propagated
along certain standard minimal rational curves. This allows us to do an-
alytic continuation on a dense open subset of some projective parameter
space Sk of members of Q. A priori a locally closed hypersurface over
which the sub-VMRT structure is undefined can be the source of essen-
tial singularities . We overcome the latter difficulty by using methods on
hulls of holomorphy in Several Complex Variables to prove Thullen-type
extension of sub-VMRT structures to further cut down the set of inad-
missible points on some of these divisors to subvarieties of codimension
≥ 2 in X, leaving behind divisors which are shown to be immaterial for
the problem of analytic continuation by means of Hartogs extension for
fibered spaces.

For the initial step of analytic continuation we have the following
“Thickening Lemma ” on certain standard rational curves arising from
C (S).

Proposition 6.1. Let (X,K) be a uniruled projective manifold en-
dowed with a minimal rational component, dim(X) =: n, and ϖ :
C (S) → S be a sub-VMRT structure as in Theorem 1.4, dim(S) =: s.
Let [α] ∈ C (S) be a smooth point of both C (S) and C (X) such that
ϖ : C (S) → S is a submersion at [α], ϖ([α]) =: x, and [ℓ] ∈ K be
the minimal rational curve (which is smooth at x) such that Tx(ℓ) =
Cα, and f : Pℓ → ℓ be the normalization of ℓ, Pℓ

∼= P1. Suppose
(Cx(S), [α]) satisfies Condition (T) in Definition 5.4. Then, there ex-
ists an s-dimensional complex manifold Eℓ, Pℓ ⊂ Eℓ, and a holomor-
phic immersion F : Eℓ → X such that F |Pℓ

≡ f and F (Eℓ) contains a
neighborhood of x on S.

For the proof of Proposition 6.1 and further discussion on VMRT
structures and sub-VMRT structures we slightly modify the set-up.
Recall that B′ ( X,B′ ⊃ B is the enhanced bad locus of (X,K)
(cf. paragraph after Theorem 5.1). In Definition 5.1, we assume that
S ⊂ X −B′ for a sub-VMRT structure ϖ : C (S) → S. By a tame sub-
VMRT structure ϖ : C (S) → S we will mean a sub-VMRT structure
satisfying the strengthened forms (b’), (c’) and (d’) of (b), (c) and (d)
in which the conditions are assumed to hold at every point x ∈ S (in
place of a general point on S), together with a further condition which
contains (a) in Definition 5.1, viz., (e) C (S) = C1(S) ∪ · · · ∪Cm(S),
where for 1 ≤ k ≤ m, ϖ|Ck(S) : Ck(S) → S is a surjective holomor-
phic map with irreducible fibers. Starting with a sub-VMRT structure
ϖ : C (S) → S and restricting to some nonempty connected open subset
S′ ⊂ S we obtain a tame sub-VMRT structure ϖ|C (S′) : C (S′) → S′ on
(X,K).
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Proof of Proposition 6.1. Without loss of generality we may assume
that ϖ : C (S) → S is a tame sub-VMRT structure of π : C (X) → X.
Recall that ρ : U → K, µ : U → X is the universal family, where ρ : U →
K is a P1-bundle and µ : U → X is the evaluation map. Let x ∈ S be an
arbitrary point. Since S ⊂ X−B′, the tangent map τx : Ux → Cx(X) is
a birational finite morphism. For each irreducible component Ck,x(S) of
Cx(S), 1 ≤ k ≤ m, we have Ck,x(S) ̸⊂ Sing(Cx(X)). Let χk ∈ Ck,x(S)
be a smooth point of both Cx(S) and Cx(X). By tameness of the sub-
VMRT structure, ϖ : C (S) → S is a submersion at χk. Now fix k and
write [α] := χk. Let u ∈ Ux be the unique point such that τx(u) = [α].
By the choice of [α] = χk, there is a unique minimal rational curve ℓ ⊂ X
belonging to K such that ℓ is smooth at x and such that Tx(ℓ) = Cα.
Since τx is a morphism and [α] is a smooth point of Cx(X), ℓ is in fact
an immersed standard rational curve and τx is a local biholomorphism
at u.

In what follows we will be treating X as a complex manifold, and
“open subsets” will be defined in terms of the complex topology unless
otherwise specified. There exists a nonempty connected smooth open
subset O ⊂ τ−1(C (S)) ⊂ U such that for every u ∈ O, ρ(u) ∈ K
is a standard rational curve and ϖ ◦ τ : O → S is a submersion at
u, and such that τ |O : O → C (S) is a biholomorphism onto an open
subset W ⊂ Reg(C (S)). Writing ρ♭ for the restriction of ρ : U → K to
O, consider the P1-bundle ξ : ρ∗♭U → O obtained by pulling back the

universal P1-bundle ρ : U → K by ρ♭. Hence, the fiber of ξ over u ∈ O
is a copy of P1 and it is naturally mapped onto ℓ(u) := µ(ρ−1(ρ(u)))
by ν := ξ∗µ for the evaluation map µ : U → X. (We also call ν :
ρ∗♭U → X the evaluation map.) Thus, any smooth point z on ℓ(u)
lifts to a unique point ζ ∈ (ρ∗♭U)u, z = ν(ζ). In particular, u ∈ Ux,

x := µ(u) ∈ ℓ(u) ⊂ X and it lifts to a unique point u♭ ∈ (ρ∗♭U)u.
Writing sξ(u) := u♭, sξ : O → ρ∗♭U defines a tautological holomorphic
section of ξ : ρ∗♭U → O. Since ρ(u) is a standard rational curve for every

u ∈ O, ν|ξ−1(u) : ξ
−1(u) → X, ξ−1(u) ∼= P1, is a holomorphic immersion.

It is the normalization f : Pℓ → ℓ of the immersed but possibly singular
standard rational curve ℓ.

Recall that s := dim(S). Let ak be the dimension of Cx(S) at
[α] := χk ∈ Reg(Ck,x(S)) ∩ Reg(Cx(X)), [α] = τ(u). By Theorem
1.4, ϖ : C (S) → S is rationally saturated, hence ν : ρ∗♭U → X maps

the germ (ρ∗♭U ;u
♭) into the germ of (S;x). We claim that (♯) ν is of

maximal rank everywhere on ρ∗♭U . Assuming the latter, by a standard
covering argument there exists a complex manifold Eℓ containing Pℓ, a
holomorphic submersion ω : ρ∗♭U → Eℓ and a holomorphic immersion
F : Eℓ → X such that F |Pℓ

≡ f and such that ν = F ◦ω. In particular,

F (Eℓ) must contain a neighborhood of x on S since rank(dν(u♭)) = s
by the claim (♯).
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To prove the Thickening Lemma (Proposition 6.1) it remains there-
fore to establish the claim (♯). It is straightforward that dν(ζ) is of

rank s at ζ = u♭ for u ∈ O. In fact, ϖ|W : W → S is a submer-
sion. For [α] ∈ W letting (S ; [α]) ⊂ (W; [α]) be a germ of complex
submanifold at [α] ∈ W transversal to the submersion ϖ|W : W → S,
the mapping ϖ|S : S → S is a local biholomorphism at [α]. Hence,

rank(dν(u♭)) = s for u ∈ O such that τ(u) = [α]. The main point of
Proposition 6.1 is to prove that the property rank(dν(ζ)) = s propagates

as ζ = u♭ travels along the tautological lifting ℓ†(u) := ξ−1(u) = (ρ∗♭U)u
of the standard rational curve ℓ(u). In what follows we will assume
for simplicity that all standard rational curves are embedded. The gen-
eral situation is very similar, and the necessary modification amounts
to considering local smooth branches of immersed standard rational
curves. Let now ℓ be a standard rational curve passing through a base
point x ∈ S such that Tx(ℓ) = Cα. Recall that for z ∈ X we define
V(z) :=

∪{
ℓ : [ℓ] ∈ Kz

}
. Let y ∈ ℓ ∩ S be distinct from x and con-

sider the cone of curves Π(y, S) ⊂ V(y) which is the union of minimal
rational curves ℓ′ passing through y whose germ at y lies on S. We
write u(ℓ′, y) for the point on Uy corresponding to the minimal rational
curve ℓ′ with a marking at y. Recall that [α] = χk ∈ Reg(Ck,x(S)),
dim(Ck,x(S)) =: ak. Denote by Σ(y, S) ⊂ Π(y, S) the set obtained by
requiring u(ℓ′, y) to lie on a sufficiently small neighborhood of u(ℓ, y),
so that Σ(y, S) is a germ of (ak + 1)-dimensional complex manifold at
z ∈ ℓ − {y}, in particular at the base point x. By an adaptation of

the proof of Lemma 4.1, we have Tx(Σ(y, S)) = Tα(C̃x(S)). Here in
the adaptation it suffices to replace the condition (†) for (X0, X) by the
hypothesis in Proposition 6.1 that (Cx(S), [α]) satisfies Condition (T),

i.e., Tα(C̃x(S)) = Tα(C̃x(X)) ∩ Tx(S).
Let now Z ⊂ U ∩ S be a complex submanifold of U ∩ S for some

sufficiently small open neighborhood U of x in X such that Tx(Z) ∩
Tx(Σ(y, S)) = 0 and Tx(Z) + Tx(Σ(y, S)) = Tx(S). Shrinking U and
hence Z if necessary there exists a holomorphic section α̃(z) of ϖ̃|Z :

C̃ (S)|Z → Z, C̃ (S)|Z := ϖ̃−1(Z), such that α̃(x) = α. Write Z :={
[α̃(z)] : z ∈ Z

}
, and D for a smooth neighborhood Z in C (S)|Z∩O. We

have dim(Z) = dim(Z) = s−(ak+1), and dim(D) = dim(Z)+ak = s−1.

Using the biholomorphism φ := τ |O : O
∼=−→ W we define Ẑ = φ−1(Z),

D̂ = φ−1(D), Ẑ ⊂ D̂. Write β := ρ|D̂. Pulling back the universal

P1-bundle ρ : U → K by the classifying map β : D̂ → K we obtain a P1-

bundle γ : β∗U → D̂ which is obtained from ξ : ρ∗♭U → O by restricting

the base to D̂ ⊂ O, dim(β∗U) = s. We write sγ : D̂ → β∗U for the
restriction sξ|D̂ of the tautological section sξ : O → ρ∗♭U . Consider the

restriction ν♯ := ν|β∗U of the evaluation map ν : ρ∗♭U → X to β∗U .
Recall that ℓ is the standard rational curve passing through x such that
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Tx(ℓ) = Cα. Denote by ℓ̂ the lifting of ℓ to U . Let z ∈ ℓ − {x} and

write ζ0 for the unique point in ℓ̂∩Uz. ζ0 corresponds to a unique point
ζ ∈ β∗U such that ν♯(ζ) = z and ζ belongs to the fiber of the P1-bundle

γ : β∗U → D̂ lying over the single point ℓ̂ ∩ Ux on D̂. We have

Lemma 6.1. The evaluation map ν♯ : β∗U → X is an immersion at
ζ.

Proof. Suppose for argument by contradiction that there exists a
nonzero vector η ∈ Ker(dν♯(ζ)). For w ∈ Z write Dw := D∩Cw(S), etc.

Identifying D̂x with its image sγ(D̂x) in Ex by the tautological section

sγ : D̂ → β∗U , the evaluation map ν♯
∣∣
Ex : Ex → X is a holomorphic im-

mersion outside sγ(D̂x), the latter being collapsed to the point x, giving
Σ(x, S) ⊂ Π(x, S) which is immersed outside of x, ℓ ⊂ Σ(x, S), such
that dν♯(Tζ(Ex)) = Tz(Σ(x, S)). (For z = y ∈ ℓ ∩ S sufficiently close to

x, Ty(Σ(x, S)) = Pαy ∩ Ty(S).) Write u ∈ D̂x for the point such that
τ(u) = [α]. Writing Hζ ⊂ Tζ(β

∗U) for the (ak + 1)-dimensional vector

subspaces defined by Hζ = (dγ)−1(Tu(D̂x)), from the above dν♯(ζ) is
injective on Hζ . The evaluation map µ : U → X is a holomorphic sub-

mersion at u, and Tu(D̂x) ⊂ Tu(D̂) consists of vertical tangent vectors,

i.e., dµ(Tu(D̂x)) = 0.
Suppose η ∈ Ker(dν♯(ζ)), η ̸= 0. (Note that ν♯(ζ) = ν(ζ) = z.) Let

h : ∆ → β∗U be an immersed holomorphic curve such that h(0) = ζ

and h′(0) = η. Then, for γ ◦ h : ∆ → D̂, we have (γ ◦ h)(0) = u

(where τx(u) = [α]) and (γ ◦h)′(0) /∈ Tu(D̂x) since dν
♯(ζ) is injective on

Hζ := (dγ)−1(Tu(D̂x)). Thus, dµ(dγ(η)) ̸= 0 (noting that µ(γ(ζ)) = x).

Now dµ(Tu(D̂)) = dµ(Tu(Z)) = Tx(Z). Thus, dµ(dγ(η)) ∈ Tx(S) is
tangent at x to Z, hence transversal to Pα ∩ Tx(S). In other words,
g(t) := µ(γ(h(t))) is a holomorphic curve on S such that g(0) = x
and g′(0) ∈ Tx(S) − Pα. Thus γ ◦ h is a holomorphic section of a
holomorphic 1-parameter family of standard rational curves {ℓt : t ∈ ∆}
such that ℓ0 = ℓ, g(t) ∈ ℓt and the lifting ℓ†t to ρ∗♭U lies on β∗U , i.e.,
the tautological lifting ℓ̂ ⊂ U passes through D̂. Since any holomorphic
P1-bundle over the unit disk is holomorphically trivial, the family {ℓt :
t ∈ ∆} of curves is parametrized by a holomorphic map F : P1 × ∆
such that, writing ft(w) := F (w, t) for w ∈ P1, we have ft(P1) = ℓt
and ft(0) = g(t) and ft(∞) = µ(h(t)). Defining σ(w) = ∂

∂t

∣∣
t=0

F (w, t),

we have σ ∈ Γ(P1, f∗0T (X)) such that σ(0) = g′(0) ∈ Tx(S)−Pα while
σ(∞) = dµ(h′(0)) = dν♯(η) = 0 by the assumption on η. Recall that on
the standard rational curve ℓ (assumed embedded for simplicity as in
the above) we have T (X)|ℓ ∼= O(2)⊕O(1)p⊕Oq, where p = dim(Cx(X))
and 1 + p+ q = n. Clearly any nonzero holomorphic section of T (X)|ℓ
over ℓ ∼= P1 which is 0 at some point must necessarily take values in the
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positive part Pℓ = O(2)⊕O(1)p. Hence σ(0) ∈ Pℓ,x = Pα, contradicting

with σ(0) = g′(0) ∈ Tx(S)−Pα, yielding Ker(dν♯(ζ)) = 0, as desired.
�

Proof of Proposition 6.1 cont. Since dim(β∗U) = s, it follows from
Lemma 6.1 that rank(dν(ζ)) = s. We can move the base point x in
Lemma 6.1 slightly to y ∈ (ℓ−{x})∩S and conclude that rank(dν(ζ ′)) =
s also at a corresponding point ζ ′ ∈ ρ∗♭U lying over x. As ρ♭ = ρ|O
and all fibers of ξ : ρ∗♭U → O correspond to standard rational curves
on X, Lemma 6.1 implies that rank(dν) = s everywhere, from which
Proposition 6.1 follows. �

From the proof of Proposition 6.1 we obtain

Corollary 6.1. Under the assumptions of Proposition 6.1 and in the
notation adopted there, Pℓ ⊂ Eℓ is a standard rational curve.

Proof. Since rank(dν) = s everywhere on ρ∗♭U , T (Eℓ)|Pℓ
is semipos-

itive. On the other hand, T (Eℓ)|Pℓ
⊂ F ∗T (X)|Pℓ

∼= O(2)⊕O(1)p ⊕Oq

for some p, q ≥ 0. Since O(2) ∼= T (Pℓ) ↪→ T (Eℓ)|Pℓ
⊂ F ∗T (X)|Pℓ

and
all Grothendieck direct summands of T (Eℓ)|Pℓ

are of degree ≥ 0, it fol-
lows that T (Eℓ)|Pℓ

∼= O(2)⊕O(1)a⊕Ob for some a, b ≥ 0, i.e., Pℓ ⊂ Eℓ

is a standard rational curve, as desired. �

7. Hartogs and Thullen extension for sub-VMRT structures

In this section we prove results for extending holomorphic objects
applicable to our problem of analytic continuation of sub-VMRT struc-
tures ϖ : C (S) → S with an aim to provide the analytic tools for
the proof of Main Theorem 2. We start with the following “Thullen
Extension Lemma ” for fibered spaces of projective subvarieties.

Lemma 7.1. Let B be an irreducible complex space, ν : P → B
be a holomorphic projective bundle. Let E ( B be a complex-analytic
subvariety, and Ei, 1 ≤ i ≤ m, be the irreducible components of E
of codimension 1 in B. Let W ⊂ B be an open subset such that W ⊃
B−E1−· · ·−Em and such that W∩Ei ̸= ∅ for 1 ≤ i ≤ m. Let A ⊂ ν−1(W)
be an irreducible subvariety such that ν(A) = W. Then, the topological
closure A ⊂ P of A in P is a complex-analytic subvariety. If B is a
projective variety, then A ⊂ P is projective.

Proof. The last statement follows readily from the rest of the lemma.
Let

{
Bα : α ∈ A

}
be an open covering of B. If the lemma excepting

the last statement holds for ν|Bα : P|Bα → Bα for each α ∈ A, it
also holds for ν : P → B. Thus, we may assume that the projective
bundle ν : P → B is holomorphically trivial, i.e., P = B × PN , and
ν : B × PN → B is the canonical projection, so that the fibers of
λ := ν|A : A → B as cycles are identified as elements in the Chow
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space of PN . Let Q ⊂ Chow(PN ) be the Chow component such that
[λ−1(w)] ∈ Q for a general point w ∈ W, and A ⊂ P|W corresponds
to a meromorphic map h : W 99K Q defined by h(w) := [λ−1(w)] ∈
Q. By Thullen extension (cf. Siu [Si74]), h extends meromorphically

to h♭ : B 99K Q. Equivalently, this means that there exists some
modification µ : B♯ → B and a holomorphic map h♯ : B♯ → Q such
that h♯ = h♭ ◦ µ. Let λ : U → Q be the restriction of the universal
family over Chow(PN ) to the Chow component Q. Write µ′ = (µ, idPN ).
We have (h♯)∗U ⊂ B♯ × PN , and Z := µ′((h♯)∗U ) ⊂ B × PN = P
gives an extension of A ⊂ W×PN . Obviously Z ⊂ P is the topological
closure A of A in P. �

Next we prove Thullen-type extension for germs of complex submani-
folds. Lemma 7.2 is a preparatory statement on domains of holomorphy.

Lemma 7.2. Let m, s ≥ 1 be integers. Write H := ∆m − ({0}×
∆m−1). Let Ω0 be a neighborhood of H×{0} in H×∆s, and consider
a domain Ω ⊂ ∆m+s given by Ω = Ω0 ∪∆m+s(ϵ) for some ϵ such that
0 < ϵ < 1. Then, there exists a neighborhood D of ∆m × {0} in ∆m+s

such that the germ at 0 of any holomorphic function f on Ω extends
holomorphically to D .

Proof. Let π : Ω̃ → Cm+s be the hull of holomorphy of Ω ⊂ ∆m+s.
Write Ω♭ for the connected component of π−1(Cm × {0}) containing

(H ∪ ∆m(ϵ)) × {0}. Consider the Riemann domain π♭ : Ω♭ → Cm,

π♭ := π|Ω♭ . Then, the complex submanifold Ω♭ ⊂ Ω̃ of the Riemann

domain of holomorphy Ω̃ must be Stein. Hence, π♭ : Ω♭ → Cm is
a Riemann domain of holomorphy. Since the hull of holomorphy of
H ∪ ∆m(ϵ) is precisely ∆m, the latter must embed into Ω♭, and we

identify its image as a subset ∆m×{0} ⊂ Ω̃. We claim that there exists

a neighborhood D of ∆m × {0} in Ω̃ such that π|D : D → Cm+s is an
open embedding. Assuming the claim and identifying D with π(D), the
lemma follows.

To prove the claim observe that for any x ∈ ∆m there exists a neigh-

borhood U(x; 3r(x)) of x in Ω♭ such that π♭|U(x;3r(x)) : U(x; 3r(x))
∼=−→

Bm+s(x; 3r(x)) is a biholomorphism and such that U(x; 3r(x))∩ (∆m×
{0}) b ∆m × {0}. Define now an open subset W ⊂ Ω♭ by W :=∪{

U(x; r(x)) : x ∈ ∆m × {0}
}
. We proceed to show that the local

biholomorphism π♭|W : W → Cm+s is injective, hence an open em-

bedding. Suppose a, b ∈ W are such that π♭(a) = π♭(b). By the defi-
nition of W there exist x, y ∈ ∆m × {0} such that a ∈ U(x; r(x)) and

b ∈ U(y; r(y)). We may assume that r(x) ≥ r(y). Then, π♭(a) = π♭(b) ∈
Bm+s(x; r(x)) ∩ Bm+s(y; r(y)), hence ∥x − y∥ < r(x) + r(y) ≤ 2r(x),
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so that U(x; r(x)) ∪ U(y; r(y)) ⊂ U(x; 3r(x)). Since π♭|U(x;3r(x)) is in-

jective, it follows from π♭(a) = π♭(b) that a = b, proving the claim and
hence Lemma 7.2. �

Lemma 7.3. Let m, s, n ≥ 1 be integers, 1 ≤ s ≤ n. Write H :=
∆m − ({0}×∆m−1). For 0 < r < 1 write H(r) := H ∪∆m(r). Suppose
0 < ϵ < 1 and let N ⊂ H(ϵ) × ∆n be an (m + s)-dimensional locally
closed complex submanifold such that N ⊃ H(ϵ)×{0} and such that the
canonical projection ϖ : N → H(ϵ) is a submersion. Then, there exists
a subvariety E ⊂ {0}×∆m−1 and an (m+ s)-dimensional locally closed
complex submanifold Z ⊂ (∆m − E)×∆n, Z ⊃ (∆m − E) × {0} such
that Z ⊃ N and the canonical projection pr1 : Z → ∆m − E is a
submersion.

Proof of Lemma 7.3. For x ∈ H(ϵ), write Nx = N ∩ ({x} × ∆n).
The assignment x 7→ T(x,0)(Nx) for x ∈ H(ϵ) defines a holomorphic map
Φ : H(ϵ) → Gr(s,Cn) into the Grassmannian of s-planes in Cn. By
Thullen extension Φ extends meromorphically to Φ♯ : ∆m 99K Gr(s,Cn).
Denote by A ⊂ ∆m the set of indeterminacies of Φ♯. Note that A ⊂ ∆m

is a subvariety of codimension ≥ 2 and A ∩ H(ϵ) = ∅ by assumption.
Hence, A ( {0} ×∆m−1 is a subvariety and A ∩ ({0} ×∆m−1(ϵ)) = ∅.

Assume that the following holds: (†) Lemma 7.3 can be established
in the special case where A = ∅ with the stronger conclusion that E = ∅.
We claim that the full lemma will have followed. To see this let y ∈
({0} × ∆m−1)−A be an arbitrary given point, y = (y1, · · · , ym), y1 =
0, y =: (0, y′). Consider the problem of analytic continuation of ϖ :
N → H(ϵ) along a continuous path γ joining 0 to y on ({0}×∆m−1)−A.
Let δ > 0 be sufficiently small (depending on y), and write ∆m(y; δ) :=
∆(y1; δ)×· · ·×∆(ym; δ), etc. Suppose there exists a parametrized family
σ : E → H(ϵ) ∪∆m(y; δ) of s-dimensional complex submanifolds, E ⊂
(H(ϵ)∪∆m(y; δ))×∆n such that E ⊃ (H(ϵ)∪∆m(y; δ))×{0} and such
that E ⊃ N . Then, by the Identity Theorem for holomorphic functions
and by the connectedness of ∆m(y; δ)−H, the germ Ey is uniquely
determined. Thus, to prove Lemma 7.3 it suffices to perform analytic
continuation of N to an arbitrary given point y on ({0} × ∆m−1)−A
along any continuous path γ joining 0 to y on ({0} ×∆m−1)−A. Now
given y ∈ ({0}×∆m−1)−A, for some ϵ′ satisfying 0 < ϵ′ ≤ ϵ there exists
a connected and simply connected open subset O on the complex plane
and a connected open subset U ⊂ ∆m−1 biholomorphic to ∆m−1 such
that y ∈ O×U , ∆m(ϵ′) ⊂ O×U ⊂ ∆m−A. Then, after mapping O×U
biholomorphically to ∆ ×∆m−1 as a Cartesian product, in which O is
mapped to ∆, U is mapped to ∆m−1 and ∆m(ϵ′) ⊂ O×U is mapped to
a neighborhood of 0 in ∆m, ϖ : N → H(ϵ) can be analytically continued
to σ : E → (H(ϵ) ∪ ∆m(y; δ)) for some δ > 0 by the assumption (†),
showing that Lemma 7.3 holds with E = A.
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To prove Lemma 7.3 it suffices therefore to establish (†). By assump-
tion we have the locally closed complex submanifold N ⊂ H(ϵ) × ∆n,
N ⊃ H(ϵ) × {0}, as a parametrized family of s-dimensional complex
submanifolds Nx ⊂ {x} × ∆n. For ϵ ≤ r ≤ 1 we write ϖr : N (r) →
H(r) for a parametrized family of s-dimensional complex submanifolds
Nx(r) := ϖ−1

r (x), x ∈ H(r), N (r) ⊂ H(r) × ∆n, N (r) ⊃ H(r) × {0},
such that N (r) ⊃ N . Note that when N (r) exists, the germ of N (r)
along H(r)× {0} is uniquely determined.

Let I ⊂ [ϵ, 1] be the set of all r, ϵ ≤ r ≤ 1, such that N (r) exists.
We are going to prove by the continuity method that I = [ϵ, 1], so that
ϖ1 : N (1) → H(1) = ∆m exists, completing the proof of Lemma 7.3.

Note that ϵ ∈ I. Moreover, r ∈ I implies [ϵ, r] ⊂ I. We proceed to
prove now the openness of I. Suppose ϵ ≤ r < 1 and ϖr : N (r) → H(r)
exists. Let y ∈ ({0} × ∂∆m−1(r)) × {0}, y = (y1, · · · , ym) = (0, y′; 0),
y1 = 0. Introduce Euclidean coordinates (w1, · · · , wn) on the Cartesian
factor ∆n such that Φ♯(y) = Span

{
∂

∂w1
, · · · , ∂

∂ws

}
. Write α : Cn → Cs

for the canonical projection given by α(w1, · · · , wn) = (w1, · · · , ws).
Let δ > 0 be sufficiently small so that α|Φ♯(z) : Φ♯(z) → Cs is a

linear isomorphism whenever |zi − yi| < δ for 1 ≤ i ≤ m. Define
H(r; y, δ) := H(r)∩∆m(y; δ). There exists a locally closed complex sub-
manifold M ⊂ N (r)|H(r;y,δ),M ⊃ H(r; y, δ)×{0}, such that the canoni-
cal projection β : M → Cm×Cs given by β(z;w) = (z;α(w)) is a biholo-
morphism onto a neighborhood G of H(r; y, δ)× {0} in H(r; y, δ)×∆s.
Thus, M can be considered as the graph of a vector-valued holomorphic
function F : G → Cn−s defined by F (z;w1, · · · , ws) = (ws+1, · · · , wn),
where (ws+1, · · · , wn) ∈ Cn−s is uniquely determined by requiring that
(z;w1, · · · , wn) lies on M. Choose a positive real number a < 1 such
that for u = ay, u =: (0, u′), we have y ∈ ∆m

(
u; δ

2

)
⊂ ∆m(y; δ

)
, so

that ∆m
(
u; δ

2

)
∩H(r) ⊃

(
∆m(u; δ

2

)
−
(
{0}×∆m−1

(
u′; δ

2

))
∪∆m(u; ε)

for some ε > 0. By Lemma 7.2, the germ of F at u extends holomor-
phically to some neighborhood G of ∆m

(
u; δ

2

)
× {0}, hence F is de-

fined on some neighborhood of y. Since the argument applies to any
y ∈ {0} × ∂∆m−1(r), by compactness we have obtained N (r′) for some
r′, r < r′ < 1, proving the openness of I ⊂ [ϵ, 1].

It remains to prove the closedness of I. Recall that H = ∆m− ({0}×
∆m−1), and H(ρ) = H ∪ ∆m(ρ) for 0 < ρ < 1. Let r1, · · · , rk, · · · be
an increasing sequence of of positive numbers in (ϵ, 1) converging to r ∈
(ϵ, 1] such that N (rk) exists for each k, 1 ≤ k <∞. N (rk) ⊂ H(rk)×∆n

is a locally closed complex submanifold, N (rk) ⊃ H(rk) × {0}, and
ϖrk : N (rk) → H(rk) is a holomorphic submersion. The assumptions
imply that there exists some neighborhood D(rk) of H(rk) × {0} in
H(rk)×∆n such that N (rk)∩D(rk) ⊂ D(rk) is a complex submanifold .
Let (r′k) be an increasing sequence, ϵ < r′k < rk, such that r′k also
converges to r. Restricting N (rk) to ∆m(r′k), there exists some εk > 0
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such that Sk := N (rk)∩ (∆m(r′k)×∆n(εk)) is a complex submanifold of
∆m(r′k)×∆n(εk) such that the canonical projection πk : Sk → ∆m(r′k)
is a holomorphic submersion with connected fibers. Write now S :=∪{

Sk : 1 ≤ k < ∞
}
, and π : S → ∆m(r) for the canonical projection.

Since ϖ : N → H(r) is already defined over H, taking the union of N|H
with S we obtain ϖr : N (r) → H(r), proving that I ⊂ [ϵ, 1] is closed.
The proof of Lemma 7.3 is complete. �

Remark When we analytically continue a germ of complex subman-
ifold along a continuous path γ on ({0} × ∆m−1) − E joining a point
x, where Nx is defined, to a point y, there is a priori the possibility of
dependence of Ny on the path γ. This does not occur when N is already
defined on (∆−{0})×∆m−1 because ∆m−E is simply connected since
E is of codimension ≥ 2 in ∆m.

We will also need a Hartogs-type extension theorem for meromorphic
functions over a fibered projective variety. We regard a meromorphic
function h on a complex space Y as a meromorphic map h : Y 99K
P1 and, denoting by Y0 ⊂ Y the Zariski open subset over which h is
holomorphic, we write Graph(h) to mean the subvariety Graph(h|Y 0) ⊂
Y × P1. ∆(h) denotes the locus of indeterminacies of h. We have

Lemma 7.4. Let B be an irreducible projective variety, and E ⊂ B
be a subvariety of codimension ≥ 2. Let X be an irreducible projective
variety and α : X → B be a surjective morphism. Let Ω ⊂ B be an
open subset in the complex topology and f be a meromorphic function
on X|Ω−E := α−1(Ω−E). Then, f extends to a meromorphic function
on X|Ω = α−1(Ω).

Proof. For t ∈ B, we write Xt := α−1(t). Write ft = f |Xt for t ∈ Ω−
E such that Xt ̸⊂ ∆(f). Then, the assignment Φ(t) :=

[
Graph(ft)

]
∈

Chow(Pm×P1) for a general point t ∈ Ω−E extends to a meromorphic
map Φ : Ω − E 99K Z, where Z ⊂ Chow(Pm × P1) is an irreducible
component. Identifying Z via Chow coordinates as a subvariety of some
PN , the extension of Φ : Ω−E 99K Z to a meromorphic map Φ♯ : Ω 99K
Z results from Hartogs extension of meromorphic functions. Finally, the
meromorphic extension f ♯ : X|Ω 99K P1 of the function f on X|Ω−E is
obtained by pulling back via Φ♯ the universal family U ⊂ Z×(Pm×P1)
over Z and by projecting to the P1-factor. �

8. Proof of Main Theorem 2

We refer the reader to the starting paragraphs in §6 for an overview
on our strategy for the proof of Main Theorem 2. Starting with the
rational saturation of ϖ : C (S) → S with respect to (X,K), by ad-
joining minimal rational curves it is standard from the bracket gen-
erating property that some nonempty open subset of S is “rationally
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connected ”, i.e., covered by chains of open subsets of minimal rational
curves. The key issue is to show that the adjunction process is algebraic ,
more precisely, that one can construct an irreducible subvariety Z ⊂ X
such that dim(Z) = dim(S) and S ⊂ Z. We will do this inductively
using the “Thickening Lemma” along certain standard rational curves,
Thullen extension and Hartogs-type extension as given in §6 and §7.

Let nowϖ : C (S) → S be the sub-VMRT structure on (X,K) in Main
Theorem 2. Without loss of generality we assume that the sub-VMRT
structure on S is tame (cf. the paragraph preceding Proof of Proposition
6.1). Recall that S ⊂ X−B′, where B′ ⊂ X is the enhanced bad locus of
(X,K), so that the tangent map τx : Ux → Cx(X) is a normalization for
every point x ∈ S. Moreover, writing C (S) = C1(S) ∪ · · · ∪ Cm(S) for
the decomposition into irreducible components, for 1 ≤ k ≤ m, the fiber
Ck,x(S) over every point x ∈ S is irreducible, Ck,x(S) ̸⊂ Sing(Cx(X)),
and ϖ|Ck(S) : Ck(S) → S is a submersion at a general point of Ck,x(S).
For a point x ∈ X−B, whereB ⊂ X is the bad locus of (X,K), recall that
V(x) is the union of minimal rational curves emanating from x (cf. §5,
paragraph preceding Proposition 5.1), and for x ∈ S, Π(x, S) ⊂ V(x)
is the union of minimal rational curves emanating from x whose germs
at x lie on S (cf. 4th paragraph in Proof of Proposition 6.1). We call
V(x) the C (X)-cone of minimal rational curves at x and Π(x, S) the
C (S)-cone of minimal rational curves at x.

By assumption ϖ : C (S) → S satisfies Condition (T) in Definition
5.4. Choose now x0 ∈ S such that Cx0(S) satisfies Condition (T),
and define V0(S) = {x0}, V1(S) = Π(x0, S). For x ∈ S define S0 :=

τ−1
x (Reg(Cx(S)) and and denote by ν0 : Š0 → S0 the normalization.

Consider the P1-bundle γ0 : W0 → Š0, where, writing κ0 : Š0
ν0−→

S0

ρ|S0−→ K, we have W0 := κ∗0(U), where U is regarded as the total
space of the universal P1-bundle ρ : U → K, γ0 := κ∗0(ρ) (cf. Remarks
preceding Proposition 8.1 below on the notation). Identifying W0 with{
(a, b) ∈ Š0 × U : κ0(a) = ρ(b)

}
, the evaluation map µ : U → X

induces λ0 : W0 → X, which we also call the evaluation map. We have
V1(S) = λ0(W0). By Chow’s Theorem, V1(S) ⊂ X is a subvariety. We
note that γ0 : W0 → Š0 admits a tautological section sγ0 : Š0 → W0

such that λ0(sγ0(Š0)) = {x0}.
We proceed to enlarge V1(S) by the process of adjunction of minimal

rational curves. We will do this inductively to obtain {x0} = V0(S) (
V1(S) ( V2(S) ( · · · ( Vr(S) = Vr+1(S) by the adjunction of minimal
rational curves such that Vr(S) ⊂ X is a subvariety of dimension s =
dim(S) which contains a nonempty open subset of S. Taking Z to be
an irreducible component of Vr(S) of dimension s containing S we will
have proven Main Theorem 2. The critical issue is to prove inductively
the projectivity of Vi(S) ⊂ X, 1 ≤ i ≤ r, constructed in a specific way
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by adjoining certain minimal rational curves. To inductively enlarge
Vi(S) we will need to adjoin subsets of C (X)-cones of minimal rational
curves at points y lying outside S, and here lies the first difficulty of the
problem. To prove projectivity of the constructed set in fact one has
even to adjoin cones of rational curves passing through points lying on
the bad locus B, and for this reason we need to compactify the universal
family ρ : U → K, µ : U → X, as follows.

On the uniruled projective manifold (X,K) denote by Q0 the Chow
component whose general member is a reduced irreducible 1-cycle which
is the image of a parametrized minimal rational curve f : P1 → X
belonging to H ⊂ Hom(P1, X), K = H/Aut(P1), and denote by ρ0 :
U0 → Q0 the universal family over Q0, U0 ⊂ Q0 ×X. We write Q for
the normalization of Q0, and ρ

′ : U ′ → Q for the normalized universal
family over Q. Since Q is normal and every fiber of ρ′ : U ′ → Q is an
irreducible reduced 1-cycle and the general fiber is a (smooth) rational
curve, ρ′ : U ′ → Q is in fact a holomorphic P1-bundle (cf. Kollár [Ko96,
Theorem 2.8]). The complex manifold K will be naturally identified
as the Zariski open subset of Q consisting of minimal rational curves
(which are by definition free rational curves), and ρ′ : U ′ → Q is a
compactification of ρ : U → K. Composing the normalization η : U ′ →
U0 with the canonical projection of U0 ⊂ Q × X into X we obtain
the evaluation map µ′ : U ′ → X, which extends the evaluation map
µ : U → X. Recall that C (X) ⊂ PT (X−B′), where B′ ⊂ X is the
enhanced bad locus of (X,K). Compactifying K by the normalized
Chow component Q and extending the tangent map to a rational map
on the extended universal family ρ′ : U ′ → Q it follows readily that the
topological closure C ′(X) ⊂ PT (X) of C (X) is a subvariety, and we
have the dominant proper map π′ : C ′(X) → X.

The starting point of our method for the analytic continuation of
sub-VMRT structures is the Thickening Lemma given by Proposition
6.1. Some of the problems and their solutions will appear in the next
step in the construction, viz., that of V2(S), as follows. We have the
P1-bundle γ0 : W0 → Š0 accompanied by the evaluation map λ0 :
W0 → X, V1(S) = λ0(W0). Recall that W0 = κ∗0(U), γ0 = κ∗0(ρ),

where κ0 : Š0
ν0−→ S0

ρ|S0−→ K. Consider µ′ : U ′ → X as a holomorphic
fibration. Define E0 = λ∗0(U ′). There is naturally a holomorphic map
χ0 : E0 → W0, χ0 = λ∗0(µ

′), and a tautological holomorphic section sχ0 :
W0 → E0. E0 also comes equipped with a tautological map σ0 : E0 → Q
where σ0 := λ∗0(ρ

′). Thus, for each point w ∈ W0 we attach U ′
λ0(w) to

u = sχ0(w). For x ∈ S, τx : Ux → Cx(X) is a normalization. To relate to
the sub-VMRT structure ϖ : C (S) → S, when x := λ0(w) ∈ S we will
attach Ux(S) ⊂ Ux = U ′

x to w, where Ux(S) := Ux,1(S) ∪ · · · ∪ Ux,m(S),

and Uk,x(S) := τ−1
x (Reg(Ck,x(S))) for 1 ≤ k ≤ m. Denote by Ǔk,x(S)
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the normalization of Uk,x(S). Then Š0 is the disjoint union of Ǔk,x0(S),

1 ≤ k ≤ m. Identifying Š0 as a subvariety of W0 by means of the
tautological section sγ0 : Š0 → W0, for 1 ≤ k ≤ m let D0,k be a

neighborhood of Ǔk,x0(S) in W0 such that λ0(D0,k) ⊂ S, and write

D0 := D0,1∪· · ·∪D0,m. This defines a subvariety S ♭
1 ⊂ χ−1

0 (D0) = E0|D0

such that S ♭
1 ∩ E0,w = λ∗0(Uλ0(w)(S)) for w ∈ D0. The problem is to

extend S ♭
1 to a subvariety S1 ⊂ E0.

Remarks
(a) Note that κ∗0(ρ), λ

∗
0(µ

′) etc. signify the pull-backs of canonical pro-
jections of fibered spaces, and they serve as canonical projections
of pulled back fibered spaces. Such constructions will be carried out
repeatedly. Typically, there is a holomorphic map α : Z → U ′, where
Z is some complex space. U ′ is the total space of a double fibration
ρ′ : U ′ → K, µ′ : U ′ → X, and new fibered spaces are P1-bundles ob-
tained by pulling back by ρ′ ◦α or fibered spaces obtained by pulling
back by µ′ ◦ α.

(b) Strictly speaking, one should write for instance κ∗0(Uρ) for W0 =
κ∗0(U), where Uρ means U equipped with the map ρ : U → K. We
refrain from such notation, noting that this is implicit since κ0 :
Š0 → K maps to the base of Uρ.

(c) The constructed fibered space comes equipped with a tautological
holomorphic section. In fact, for z ∈ Z, α(z) serves both as a point
in U ′ and as the parameter for a fiber of either ρ′ : U ′ → X or
µ′ : U ′ → K. For instance, when we pull back ρ′ : U ′ → Q as a
P1-bundle by ρ′ ◦ α, the mapping which associates z ∈ Z to α(z) ∈
ρ′−1(ρ′(α(z))) defines such a section.

For the construction of S1 we have

Proposition 8.1. There exists a subvariety S1 ⊂ E0 such that S ♭
1 =

S1 ∩ χ−1
0 (D0) and such that each irreducible component of S1 projects

under χ0 onto a connected component of the normal projective variety
W0. As a consequence, writing ν1 : Š1 → S1 for the normalization, Š1

is the total space of the fibered space δ1 : Š1
ν1−→ S1

χ0|S1−→ W0. Moreover,
defining κ1 : Š1 → Q by κ1 = ν∗1(σ0), writing γ1 : W1 → Š1 for the
pull-back of the P1-bundle ρ′ : U ′ → Q by κ1, and defining λ1 : W1 → X
by λ1 = (σ0 ◦ ν1)∗µ, V2(S) := λ1(W1) ⊂ X is a subvariety containing
V1(S) and all C (S)-cones of minimal rational curves Π(x, S) emanating
from points x lying on λ0(D0) ⊂ S for the open subset D0 ⊂ W.

Proof. For x ∈ S ⊂ X−B′ recall that Ux(S) := τ−1
x (Reg(Cx(S)). De-

fine S †
0 ⊂ Ux0(S) = S0 to be the Zariski open subset consisting of points

u ∈ Reg(Ux0(S)) such that τx0 is immersive at u, i.e., dτx0 : Tu(Ux0) →
Tτx0(u)(PTx0(X)) is injective, equivalently that ρ(u) ∈ K is a standard

rational curve, such that the canonical projection ψ : U(S) → S is a
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submersion at u, and such that (Cx0(S), τx0(u)) satisfies Condition (T).

Define W†
0 := (ν0 ◦γ0)−1(S †

0 ) ⊂ W0. Let ℓ be a standard rational curve

passing through x0 such that [ℓ] ∈ S †
0 . By the proof of Proposition

6.1 (cf. Remarks below) and in the notation used there, there exists an
s-dimensional complex manifold Eℓ ⊃ Pℓ and a holomorphic immersion
F : Eℓ → X such that F |Pℓ

: Pℓ → ℓ is the normalization of ℓ, and
Nℓ = F (Eℓ) contains the germ of S at x0. Thus, Nℓ may be regarded
as an analytic continuation of S along ℓ. We call Nℓ a C (S)-thickening
of ℓ. For brevity we will also call Nℓ a “collar ” around ℓ.

Consider φ : W0 → W0 ×X defined by φ(w) := (w, λ0(w)) and the

map W0
γ0−→ Š0

ν0−→ S0. By Proposition 6.1 and its proof, there exists

a complex submanifold N0 on some open subset of W†
0×X such that N0

contains φ(W†
0) = Graph

(
λ0|W†

0

)
and such that for any marked standard

rational curve ℓ at x0 belonging to S †
0 , any w ∈ ℓ̂, the tautological lifting

of ℓ to W0 (cf. Remarks below), N0∩({w}×X) contains a neighborhood
of φ(w) = (w, λ0(w)) in {w} × Nℓ for some C (S)-thickening Nℓ of ℓ.
For the fibered space χ0 : E0 → W0, E0 = λ∗0(U ′), χ0 = λ∗0(µ

′), arising
from λ0 : W0 → X, we have a tautological holomorphic section sχ0 :
W0 → E0. Identifying W0 with sχ0(W0) ⊂ E0, we have W0 ⊂ E0 =

λ∗0(U ′). Using N0 ⊃ W†
0 , which may be regarded as a parametrized

C (S)-thickening over certain standard rational curves whose germs at

x0 lie on S, we obtain an extension of S ♭
1 ⊂ χ−1

0 (D0) ⊂ E0 to S ♯
1 ⊂

χ−1
0 (W†

0 ∪ D0) ⊂ E0, as follows. Write pr1 : W0 × X → W0 for the
canonical projection onto the first factor. From the description of N0 ⊃
φ(W†

0) there is a holomorphic vector bundle V ⊂ (λ0 ◦ pr1)
∗T (X) on

φ(W†
0) ⊂ W0 ×X such that V |

φ(ℓ̂)
is naturally identified with T (Nℓ)|ℓ

for [ℓ] ∈ ρ(S †
0 ). Let Z ⊂ W0 be the dense Zariski open subset of points

w such that τx : Ux → Cx(X) is a normalization at x = λ0(w). For

w ∈ (W†
0∪D)∩Z corresponding to a standard rational curve ℓ emanating

from x0 and passing through x, write Cx(S; ℓ) := PTx(Nℓ)∩Cx(X), and

define Ux(S; ℓ) := τ−1
x (Cx(S; ℓ)), Θw := χ∗

0(Ux(S; ℓ)) ⊂ E0,w. Define Θ

to be the topological closure of
∪{

Θx : x ∈ (W†
0 ∪D)∩Z

}
in E0|W†

0∪D
.

By the rationality of the tangent map, Θ ⊂ E0|W†
0∪D

= χ−1
0 (W†

0 ∪D) is

a subvariety. Over W†
0 ∩ D0, Θ agrees with S ♭

1 .
For any irreducible component Ψ of Θ ⊂ E0|W†

0∪D
, by the Proper

Mapping Theorem χ0(Ψ) ⊂ W†
0 ∪ D is a subvariety. Let S ♯

1 ⊂ Θ be
the union of the finitely many irreducible components Ψ of Θ such that

χ0(Ψ) = W†
0 ∪ D . For the subvariety I := W0−W†

0 ⊂ W0 let I =
I1 ∪ · · · ∪ IN be the decomposition of I into irreducible components.
Each Ik, 1 ≤ k ≤ N , is the union of a variety of minimal rational curves
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emanating from x0, hence I ∩χ−1
0 (D0) contains a nonempty open subset

of each irreducible component Ik. As a consequence, Thullen extension

as in Lemma 7.1 applies to give a subvariety S1 = S ♯
1 ⊂ E0 = λ∗0(U ′).

We have thus obtained a subvariety S1 ⊂ E0 such that each irreducible
component of S1 dominates W0, from which the rest of the proposition
follows, noting that V2(S) := λ1(W1) ⊂ X is a subvariety, by Chow’s
Theorem. �

Remarks
(a) In Proposition 6.1 for convenience we assume [α] ∈ Reg(Cx0(S)) ∩

Reg(Cx0(X)), and that (Cx0(S), [α]) satisfies Condition (T), and con-
struct a collar around the unique standard minimal rational curve ℓ
emanating from x0 such that Tx0(ℓ) = Cα. For the first assumption,
from the proof it is clear we need only that [α] ∈ Cx0(S) belongs to
a smooth local irreducible branch at [α] of both Cx0(S) and Cx0(X),
equivalently that ℓ is a standard rational curve. When this occurs,
we can replace the second assumption by a corresponding general-
ized Condition (T) on (Cx0(S), [α]) adapted to the local branches in
question.

(b) For a rational curve ℓ on X belonging to Q we write ℓ̂ for its tauto-
logical lifting to U ′, or to α∗(U ′) for a holomorphic map α : Z → Q,
where Z is some complex space, when such a map is understood in

the given context. Here for the notation ℓ̂ in the proof, the classify-

ing map α : S †
0 → Q is given by the inclusion S †

0 ⊂ Ux
ρ|Ux−→ K ⊂ Q,

and α∗U agrees with a Zariski open subset of W0.
(c) Note that the P1-bundle γ1 : W1 → Š1 also comes equipped with a

tautological section sγ1 : Š1 → W1.

The procedure in constructing V1(S) and V2(S) can be iterated, but
the arguments of Thullen-type extension of sub-VMRT structures have
to be reinforced. For the proof of Main Theorem 2 we will implement
the following iterative scheme, cf. a simpler version in Scheme 4.1 in the
case of sub-VMRT structures modeled on an admissible pair (X0, X) of
rational homogeneous spaces of Picard number 1. In what follows all
bundles, sections and maps are understood to be holomorphic.

Scheme 8.1. Starting with a tame sub-VMRT structure ϖ : C (S) →
S satisfying the hypothesis of Main Theorem 2, we will construct itera-
tively for j ≥ 0
(a) a projective variety Sj, its normalization νj : Šj → Sj, together

with a classifying map κj : Šj → Q;

(b) a P1-bundle γj : Wj → Šj such that the general fiber corresponds
to a standard rational curve on X belonging to K, together with a
tautological section sγj : Šj → Wj, and an accompanying evaluation
map λj : Wj → X;
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(c) a projective fibered space χj : Ej → Wj, Ej := λ∗j (U ′), and a tauto-
logical section sχj : Wj → Ej ;

(d) a projective fibered subspace χj |Sj+1
: Sj+1 → Wj of χj : Ej →

Wj, where for each connected component Wj,q of Wj there exists a
nonempty open subset Dj,q ⊂ Wj,q satisfying λj(Dj,q) ⊂ S such that
Sj+1,w = λ∗j (Uλj(w)(S)) for w ∈ Dj,q.

Reduction in the implementation of the scheme. Write (♯)j for
Scheme 8.1 for a specific value of the integer j ≥ 0, and (♯(a))j for
Part (a) of (♯)j , etc. We have defined sequentially (1) S0 = Ux0(S) =

τ−1
x0 (Reg(Cx0(S))) together with the classifying map κ0 : S0 → K ⊂ Q;
(2) the P1-bundle γ0 : W0 → Š0 obtained by pulling back the universal
family ρ′ : U ′ → Q by κ0, accompanied by the evaluation map λ0 : W0 →
X and the tautological section sγ0 : Š0 → W0; (3) E0 = λ∗0(U ′) with
canonical projection χ0 : E0 → W0, χ0 = λ∗0(µ

′), accompanied by the
tautological section sχ0 : W0 → E0; (4) S1 ⊂ E0 with fibers λ∗0(Ux(S)),
where x = λ0(w) ∈ S, for w belonging to some open subset D0 ⊂ W0

having a nonempty intersection with each connected component of W0,
and (5) the normalization δ1 : Š1 → W0 of χ0|S0 : S1 → W0. This
gives (♯)0.

To proceed inductively for the construction of the objects in (a) –
(d), assume (♯)j−1 has been implemented. Then χj−1|Sj

: Sj → Wj−1

has been constructed. We have the normalization νj : Šj → Sj . From
χj−1 : Ej−1 → Wj−1, where Ej−1 = λ∗j−1(U ′) and χj−1 = λ∗j−1(µ

′), we

have a canonical map αj−1 : Ej−1 = λ∗j−1(U ′) ⊂ Wj−1 ×U ′ → U ′, where

λ∗j−1(U ′) is identified with
{
(w, u) ∈ Wj−1×U ′ : λj−1(w) = ρ′(u)

}
. The

universal family ρ′ : U ′ → Q defines canonically a classifying map σj−1 :
Ej−1 → Q where σj−1 = ρ′ ◦ αj−1, and we denote the normalization

of σj−1|Sj
by κj : Šj → Q, κj = σj−1 ◦ νj . This gives (♯(a))j . Given

this, we write γj : Wj → Šj for the P1-bundle κ∗j (ρ
′) : κ∗j (U ′) →

Šj . For ζ ∈ Sj , αj−1(ζ) ∈ ρ′−1(σj−1(ζ)) ⊂ U ′, and for η ∈ Šj ,

sγj (η) := κ∗j (αj−1(νj(η))) ∈ κ∗j (σj−1(νj(η)) defines sγj : Šj → Wj =

κ∗j (U ′). Moreover, the evaluation map µ′ : U ′ → X leads trivially to the

evaluation map κ∗j (µ
′) : κ∗j (U ′) → X, giving λj : Wj → X, completing

(♯(b))j . For (♯(c))j , it remains only to define sχj : Wj → Ej , which we

omit as it is very similar to the existence of sγj : Šj → Wj .
Given (♯)j−1, from preceding arguments we obtain (♯)j by an algebraic

procedure excepting (♯(d))j , where difficulties lie. We note here only
that any χj |Sj+1

: Sj+1 → Wj of χj : Ej → Wj is uniquely determined
by the requirement that Sj+1,w = λ∗j (Uλj(w)(S)) for w ∈ Dj , Dj ⊂ Wj

being some open subset intersecting each connected component of Wj

and λj(Dj) ⊂ S. �
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For any j ≥ 0, once (♯(d))j is established, we define by normalization

δj+1 : Šj+1 → Wj , which is equipped again with a tautological section

sδj+1
: Wj → Šj+1 arising from sχj : Wj → Ej . We give here a brief

description and preliminary remarks on the implementation of (♯(d))j
in the inductive scheme.
(1) Starting with x0 ∈ S, (S;x0) equipped with a sub-VMRT struc-

ture can be analytically continued along a chain of standard rational
curves for which the “Thickening Lemma” applies. We call such
curves thickening curves.

(2) When collars are available, the sub-VMRT structure ϖ : C (S) → S
is analytically continued along a chain of thickening curves by taking
intersections of C (X) with tangent spaces of collars surrounding such
curves.

(3) For other rational curves belonging to Q, analytic continuation of
the subvarieties Cx(S) ⊂ PTx(S) is still possible (as in the case of
the construction of S1 ⊂ E1) by Thullen extension along a chain of
rational curves ℓ0, · · · , ℓj where all but the last leg ℓj are thickening
curves.

(4) A new problem arises in going further with (3). We need stronger
results on Thullen extension (Lemma 7.3) to analytically continue
the germ of complex manifold (S;x) along more general chains of
rational curves.

(5) The existence of χ|Sj+1
: Sj+1 → Wj relies on extension across

subvarieties of Wj over which the fibration is not a priori defined.
For a hypersurface in Wj arising from points on Wj−1 not covered by
(3), we resort to Hartogs extension for fibered spaces (Lemma 7.4).

(6) Since Cx(S) need not be irreducible, we have to work with all irre-
ducible components of each Wi, 0 ≤ i ≤ j, at the same time.

As will be seen, the fibered space γj : Wj → Šj may be understood as
a compactification of a “universal family” of rational curves belonging to
Q which are the last legs of chains of length j+1 of members ofQ issuing
from a fixed base point x0 ∈ S and lying on germs of s-dimensional
complex submanifolds of X obtained from S by analytic continuation.
For j ≥ 0 we say that Wj has been constructed to mean that (♯)i has
been implemented for 0 ≤ i ≤ j−1, and (♯(a))j , (♯(b))j and (♯(c))j have
been implemented according to Scheme 8.1 and the “Reduction of the
implementation of the scheme” immediately following it.

Definition 8.1. Let j ≥ 1 and suppose the projective fibered space
γj : Wj → Šj has been constructed. For a point w = wj ∈ Wj and for

0 ≤ i ≤ j define inductively (with decreasing indices) ζi := γi(wi) ∈ Ši,
wi−1 := δi(ζi), [ℓi] := κi(ζi), and xi+1 := λi(wi). We call (ℓ0, · · · , ℓj)
the chain of rational curves subordinate to w ∈ Wj, and (x0, · · · , xj+1)
the sequence of marked points subordinate to w ∈ Wj, where x0 ∈ S
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stands for the base point we started with in defining W0. We say that
(ℓ0, · · · , ℓj) is a chain of rational curves linking (x0, · · · , xj+1).

Remark Given ℓi there are finitely many possible choices of ζi ∈
Ši,xi such that κi(ζi) = [ℓi]; it is implicit above that such choices of ζi
have been made when we talk of a chain of rational curves (ℓ0, · · · , ℓj)
linking (x0, · · · , xj+1).

Here the unparametrized rational curves ℓ we encounter are images
of f : P1 → X which are only generically injective. By a marked point
x on ℓ we mean a point x on ℓ together with a specification of one
of the finitely many local irreducible branches of ℓ passing through x,
equivalently the specification of one of the points in the finite set f−1(x).
To avoid clumsy expressions the markings are implicit and will not be
indicated. To say that (x0, · · · , xj+1) is a sequence of marked points
subordinate to w ∈ Wj we mean that for 1 ≤ i ≤ j, xi is regarded
both as a marked point on ℓi−1 and as a marked point on ℓi, while
x0 ∈ Reg(ℓ0) is equipped with the unique marking, and xj+1 is a marked
point of ℓj .

We introduce the notion of analytic continuation of the sub-VMRT
structure ϖ : C (S) → S along a minimal rational curve emanating from
x0 ∈ S.

Definition 8.2. Let ℓ0 be a minimal rational curve passing through

x0 ∈ S, x0 = λ0(v0), x1 = λ0(w0), v0, w0 ∈ ℓ̂0. Defining φ0 : W0 →
W0 × X by φ0(w) = (w, λ0(w)), we say that the sub-VMRT structure
ϖ : C (S) → S can be analytically continued from v0 to w0, (resp. from

the marked point x0 to the marked point x1), along ℓ̂0 (resp. along ℓ0) if

and only if there exists a domain O0 on ℓ̂0, and an (s+ 1)-dimensional
locally closed complex submanifold N0 ⊂ O0×X, N0 ⊃ φ0(O0) such that
the canonical projection from N0 to O0 is a submersion and such that

for u belonging to the connected component of ℓ̂0 ∩ λ−1
0 (S) containing

v0, y := λ0(u), writing N0,φ0(u) := {φ0(u)} × Dy, Dy ∩ S contains a
neighborhood of y on S.

Let j ≥ 1 and suppose the projective fibered space γj : Wj → Šj

has been constructed. Let w = wj ∈ Wj and denote by (ℓ0, · · · , ℓj)
(resp. (x0, · · · , xj+1)) the chain of rational curves (resp. the sequence of
marked points) subordinate to w ∈ Wj . For 0 ≤ i ≤ j write vi =
sγi(ζi) ∈ Wi, xi+1 := λi(wi), noting that λi(vi) = xi and define φi :
Wi → X by φi(w) = (w, λi(x)). For the notion of analytic continuation
of sub-VMRT structures along a chain of rational curves belonging to
Q we break it up into two parts, as follows.

Definition 8.3(a). We say that ϖ : C (S) → S can be analyt-
ically continued as a sub-VMRT structure along (ℓ0, · · · , ℓj) through
(x0, · · · , xj+1) if and only if for any i, 0 ≤ i ≤ j, there is a domain
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Oi ⊂ ℓ̂i containing both vi and wi, an (s+1)-dimensional locally closed
complex submanifold Ni ⊂ Oi×X, Ni ⊃ φi(Oi) such that the canonical
projection from Ni to Oi is a submersion and such that (a) for u be-

longing to the connected component of ℓ̂0∩λ−1(S) containing v0, writing
N0,φ0(u) := {φ0(u)} × Dy, where y = λ0(u), Dy ∩ S contains a neigh-
borhood of y on S, and (b) for 1 ≤ i ≤ j each pair (Ni−1,Ni) satisfies
a further condition (†)i as given below in Definition 8.3(b).

For 1 ≤ i ≤ j, define Si := pr2(Ni−1,φi−1(wi−1)) ⊂ X, pr2(φi−1(wi−1))
= λi−1(wi−1) = xi, where pr2 : Wi×X → X is the canonical projection.

Definition 8.3(b). For 1 ≤ i ≤ j we say that the pair (Ni−1,Ni)
satisfies the condition (†)i if and only if for u belonging to the connected

component of ℓ̂i∩λ−1
i (S) containing vi, writing Ni,φi(u) := {φi(u)}×Dy,

where y = λi(u), Dy ∩ Si contains a neighborhood of y on Si.
The condition (†)i means consistency on overlaps of neighborhoods of

the pair of consecutive rational curves (ℓi−1, ℓi). It means equivalently
that the germs of complex submanifolds (Dy; y) and (Si; y) at y ∈ X
agree with each other. Associated to Definition 8.3 we have the notion
of accessible points on Wj , as follows.

Definition 8.4. Let j ≥ 0 and suppose Wj has been constructed. Let
w = wj ∈ Wj be any point. Write (ℓ0, · · · , ℓj) for the chain of rational
curves and (x0, · · · , xj+1) for the sequence of marked points subordinate
to w ∈ Wj. We say that w ∈ Wj is an accessible point if and only if the
sub-VMRT structure ϖ : C (S) → S can be analytically continued along
(ℓ0, · · · , ℓj) through (x0, · · · , xj+1).

Adopting the terminology and notation of Definition 8.1 and Defi-
nition 8.3, we introduce the following notions of thickening curves and
perfect points of Wj .

Definition 8.5. Let j ≥ 1 and suppose Wj has been constructed. Let
w = wj be any accessible point on Wj, (ℓ0, · · · , ℓj) resp. (x0, · · · , xj+1)
be the chain of rational curves resp. the sequence of marked points sub-

ordinate to w, and write ℓ := ℓj. We say that ℓ̂ is a thickening curve if
and only if, writing f : Pℓ

∼= P1 → ℓ for the normalization, f(0) = xj
(as a marked point), there exists a complex manifold Eℓ ⊃ Pℓ and a
holomorphic immersion F : Eℓ → X such that (a) F |Pℓ

≡ f ; (b)
(Nj−1,φj−1(wj−1);φj−1(wj−1)) is naturally isomorphic to the image of the

germ (Eℓ; 0) under F ; and (c) Pℓ ⊂ Eℓ is a standard rational curve.

By abuse of language we will also say that ℓ = ℓj is a thickening curve
at xj , when ℓj is understood in the context as the last leg of a chain of
rational curves (ℓ0, · · · , ℓj) subordinate to some point w = wj ∈ Wj .

For j ≥ 1 recall that (Nj−1,φj−1(wj−1);φj−1(wj−1))) is canonically
isomorphic, via the projection pr2 : Wj−1 × X → X, to a germ of
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s-dimensional complex submanifold (Sj ;xj), where xj = λj−1(wj−1).
Nℓ := F (Eℓ) ⊃ ℓ is a collar around ℓ. When F : Eℓ → X is an
embedding, then Nℓ ⊂ X is a locally closed submanifold containing
the germ of ℓj−1 at the marked point xj , and the requirement (b) in
Definition 8.5 amounts to saying that the germs (Sj ;xj) and (Nℓj ;xj)
agree.

When we perform analytic continuation of the tame sub-VMRT struc-
ture ϖ : C (S) → S along a chain of rational curves to arrive at a germ
of s-dimensional complex manifold (S′;x′), it is no longer possible to as-
certain that S′ ⊂ X−B′. In fact a free rational curve ℓ may already pass
over the enhanced bad locus B′. To take care of this recall that C ′(X)
is the topological closure of C (X) in PT (X) and that π′ : C ′(X) → X is
the canonical projection realizing C ′(X) as a projective fibered space.
Consider now the more general situation of a locally closed complex
submanifold S ⊂ X such that S ̸⊂ B′. Define C ′(S) := C ′(X)∩PT (S).
Denote by ϖ′ : C ′(S) → S the canonical projection, which is a proper
map. We introduce

Definition 8.6. Assume that ϖ′(C ′(S)) = S and let C ♭(S) be the
union of irreducible components of C ′(S) which dominate S. By a gen-
eralized sub-VMRT structure over S ̸⊂ B′ we mean the holomorphically
fibered space ϖ♭ : C ♭(S) → S given by the restriction of ϖ′ to C ♭(S),

with fibers C ♭
x(S) := ϖ♭−1(x), x ∈ S.

In the inductive construction of δj+1 : Šj+1 → Wj a key point is to
do analytic continuation of S along thickening curves and along rational
curves emanating from accessible points outside a subset of codimension
≥ 2 in the ambient space. First of all we introduce a notion of perfect
points (for analytic continuation) on Wj . In what follows, for 1 ≤ i ≤ j,
the germ of complex submanifold (S;x0) is analytically continued along
(ℓ0, · · · , ℓi) to (Si;xi).

Definition 8.7. Suppose j ≥ 1 and γj : Wj → Šj has been con-
structed. A point wj ∈ Wj is called a perfect point on Wj if and only if,
writing (ℓ0, · · · , ℓj) for the sequence of standard rational curves subordi-

nate to wj and vi ∈ ℓ̂i, 0 ≤ i ≤ j, for the unique point such that λi(vi)
is the marked point xi on ℓi, for 0 ≤ i ≤ j we have (a) xi ∈ X−B′; (b)

writing Txi(ℓi) := Cαi, [αi] is a smooth point of both C ♭(Si) and C ′(X);

(c) ϖ♭
i : C ♭(Si) → Si is a submersion at [αi]; and (d); (C ♭

xi
(Si), [αi])

satisfies Condition (T).

By Proposition 6.1, each ℓ̂i, 0 ≤ i ≤ j, is a thickening curve on Wi

(cf. Definition 8.5). A point wj ∈ Wj on a thickening curve issuing from
vj ∈ Sj and lying over a perfect point wj−1 ∈ Sj−1 may fail to be
perfect. To remedy for this we introduce the set of excellent points,
which contains all perfect points, as follows.
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Definition 8.8. In the notation above, wj ∈ Wj is called an excellent
point if and only if (a) for 0 ≤ i ≤ j, writing ℓ0i for the local irreducible

branch of ℓi corresponding to the marking at xi given by vi ∈ ℓ̂i, λi(vi) =

xi, where ℓ̂i is the lifting of ℓi to Wi given by ℓ̂i := γ−1
i (ζi), ζi ∈ Ši,xi,

defining Txi(ℓ
0
i ) := Cαi, and denoting by C 0(Si) resp.C 0(X) the local

irreducible branch of C ♭(Si) resp.C ′(X) at [αi] corresponding to the
choice of ζi such that κi(ζi) = [ℓi] and to the given marking on ℓi at xi,

[αi] is a smooth point of both C 0(Si) and C 0(X) ; and (b) ϖ♭
i |C 0(Si) :

C 0(Si) → Si is a submersion at [αi]; and (c) (C ♭
xi
(Si), [αi]) satisfies

Condition (T).

It will be established in Lemma 8.1 below that the property of being
an excellent point propagates along thickening curves.

For the propagation of sub-VMRT structures, for 0 ≤ i ≤ j we may
think of each connected component of Wi, dim(Wi,q) =: di,q, as the an-
alytic continuation of a germ of complex manifold (Ωi,q; bi,q), as follows.
Let w ∈ Wi be an arbitrary point and let (ℓ0, · · · , ℓi) resp. (x0, · · · , xi+1)
be the sequence of rational curves resp. the sequence of marked points
subordinate to w. For 1 ≤ k ≤ m, choose [αk] ∈ Reg(Ck,x0(S)) such
that ϖ : C (S) → S is a submersion at [αk]. For 1 ≤ q ≤ mi+1,
where q corresponds to a choice of (k(0), · · · , k(i)) ∈ {1, · · · ,m}i+1,
pick bi,q ∈ Wi as a base point corresponding to the chain of rational
curves (ℓ0, · · · , ℓi) linking the (i + 2)-tuple (x0, · · · , x0) and satisfying
[Tx0(ℓc)] = [αk(c)] for 0 ≤ c ≤ i. Let Ωi,q ⊂ Wi be the largest connected
open subset containing bi,q and consisting of points corresponding to
chains of rational curves (ℓ0, · · · , ℓi) linking (x0, · · · , xi+1) subject to
the requirement xc ∈ S for 0 ≤ c ≤ i + 1. For 1 ≤ q ≤ mi+1, let Wi,q

be the connected component of Wi containing Ωi,q, noting that either
Wi,q′ = Wi,q′′ or Wi,q′ ∩ Wi,q′′ = ∅ whenever 1 ≤ q′, q′′ ≤ mi+1. Thus
Wi = Wi,1 ∪ · · · ∪ Wi,mi+1 is a decomposition with possible repetitions
of Wi into connected components.

For 0 ≤ i ≤ j denote by W♮
i ⊂ Wi the set of perfect points of

Wi, W†
i ⊂ Wi the set of excellent points, and W♯

i ⊂ W the set of

accessible points. We have W♮
i ⊂ W†

i ⊂ W♯
i . For 1 ≤ q ≤ mi+1 write

W♮
i,q := W♮

i ∩Wi,q, W†
i,q := W†

i ∩Wi,q, and W♯
i,q := W♯

i ∩Wi,q.
Fix a nonnegative integer i such that 1 ≤ i ≤ j. Recall the holo-

morphic P1-bundle γi : Wi → Ši and the holomorphic fibered space
δi : Ši → Wi−1. Define ϵi : Wi → Wi−1 by ϵi = δi ◦ γi. For an ir-
reducible component Wi,q of Wi, 1 ≤ q ≤ mi+1, write ϵi,q := ϵi|Wi,q .
For 0 ≤ c ≤ i define q(c) inductively (with decreasing indices c) by
ϵc,q(c)(Wc,q(c)) = Wc−1,q(c−1), q(i) := q. For 0 ≤ c ≤ i define ωi,c =
ωi,c;q := ϵc,q(c) ◦ · · · ◦ ϵi,q(i), giving ωi,c : Wi,q → Wc,q(c). We have
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Proposition 8.2. Let j ≥ 0 and suppose Wj has been constructed.
Then, the following holds true :

(a) for 0 ≤ i ≤ j and for 1 ≤ q ≤ mi+1, Ωi,q ⊂ W♮
i,q ⊂ W†

i,q ⊂ W♯
i,q are

all open subsets of Wi,q in the complex topology ;

(b) there exists an open subset Gi,q ⊂ W†
i,q in the complex topology such

that Ωi,q ⊂ Gi,q ⊂ W†
i,q and such that, writing Ai,q := Wi,q − Gi,q,

we have Ai,q = A
(0)
i,q ∪ · · · ∪ A

(i)
i,q , where for 0 ≤ c ≤ i, A

(c)
i,q ⊂

Wi,q −
(
A

(0)
i,q ∪ · · · ∪ A

(c−1)
i,q

)
is a complex-analytic subvariety, and,

for 0 ≤ c ≤ i, we have A
(c)
i,q := ω−1

i,c

(
A

(c)
c,q(c)

)
;

(c) there exists a subvariety Bi,q ( Wi,q such that Bi,q ⊂ Ai,q∪Sing(Wi,q)

and Bi,q = B′
i,q∪Sing(Wi,q)∪

(
ϵ−1
i,q (Bi−1,q(i−1))

)
for some subvariety

B′
i,q ⊂ Wi,q of codimension ≥ 2, and such that W♯

i,q ⊃ Wi,q − Bi,q.

Remark The superscript (c) in the notation A
(c)
i,q signifies that the

set lies in Wi,q but arises from Wc,q(c).

We will make use of the following lemma on excellent points show-
ing that the property of being an excellent point is propagated along
thickening curves.

Lemma 8.1. Suppose j ≥ 1, Wj has been constructed, and 0 ≤ i < j.

Let wi ∈ Wi be an excellent point, ζi+1 ∈ Ši+1,wi. Write κi+1(ζi+1) =:

[ℓi+1]. Assume that ℓ̂i+1 ⊂ Wi+1 is a thickening curve. Then, any point

wi+1 on ℓ̂i+1 is an excellent point of Wi+1, i.e., ℓ̂i+1 ⊂ W†
i+1,q(i+1).

Proof. Suppose 0 ≤ i < j and let ℓ̂ ⊂ Wi be a thickening curve in the
sense of Definition 8.5. Let now f : Pℓ → ℓ be the normalization of ℓ.
By Proposition 6.1, there exists a holomorphic immersion F : Eℓ → X
of an s-dimensional complex manifold Eℓ ⊃ Pℓ onto a collar Nℓ of ℓ on
X. By Corollary 6.1, Pℓ ⊂ Eℓ is a standard rational curve.

Even though Eℓ is an open manifold, we can still define a germ of
universal family of rational curves on Eℓ obtained from deforming Pℓ

inside Eℓ. There exists thus a complex manifold Kℓ containing [Pℓ], and
a universal P1-bundle ρℓ : U ℓ → Kℓ parametrizing rational curves on Eℓ

obtained from small deformations of Pℓ, accompanied by an evaluation
map µℓ : U ℓ → Eℓ, where U ℓ is only determined as a germ of complex
submanifold along Pℓ and likewise ρℓ : U ℓ → Kℓ is determined only as
a germ of holomorphic P1-bundle around the base point [Pℓ]. Thus,
we may assume that all points on Kℓ correspond to standard rational
curves on Eℓ.

Let now C (Eℓ) ⊂ P(µ∗T (X)) be the image of U ℓ under the tangent
map τ ℓ : U ℓ → PT (Eℓ), which is an immersion as all curves belonging

to Kℓ are standard rational curves. Define C ♭(Nℓ) ⊂ C ′(X)|Nℓ
by an
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obvious modification of that of C ♭(Si) as in Definition 8.6 on gener-
alized sub-VMRT structures. As germs along Pℓ, U ℓ and C (Eℓ), and

their fibers over z ∈ Pℓ are irreducible. Then, C (Eℓ) ⊂ F ∗(C ♭(Nℓ))
is an irreducible component. Since F : Eℓ → X, F (Eℓ) = Nℓ, is
an immersion, to prove Lemma 8.1, it suffices to check at each point
z ∈ Pℓ, that (i) [α(z)] := [Tz(Pℓ)] is a smooth point of both C 0

z (Eℓ)
and F ∗C 0

f(z)(X) ⊂ P(f∗Tf(z)(X)), where C 0
z (Eℓ) refers to the local ir-

reducible branch of Cz(Eℓ) at [α(z)] being considered, etc., and, (ii)
taking U to be a sufficiently small neighborhood of z in Eℓ and writing
C 0(U) for the local irreducible branch of C (Eℓ) at [α(z)] being con-
sidered, ϖ0 : C 0(U) → U for the restriction of ϖℓ : C 0(Eℓ) → Eℓ to
C 0(U), ϖ0 : C 0(U) → U is a submersion.

Since Kℓ consists of standard rational curves, the tangent map τ ℓ :
U ℓ → PT (Eℓ) is an immersion, hence [α(z)] is a smooth point of C 0

z (Eℓ).
Since ℓ is a standard rational curve on X, writing x := f(z), and ℓ0 for
the local irreducible branch of ℓ at x being considered, the tangent
map τx : Ux → C ′

x(X) is an immersion on a neighborhood of u ∈ Ux

corresponding to ℓ with the given marking at x, so that [Tx(ℓ
0)] is a

smooth point of C 0
x (X), hence [α(z)] is a smooth point of F ∗C 0

x (X),
proving (i). Since every Kℓ-curve on Eℓ is a fortiori a free rational curve,
µℓ : U ℓ → Eℓ is a submersion (cf. Hwang-Mok [HM98, Proposition 4]),
hence ϖ0 : C 0(U) → U must be a submersion given that τ ℓ : U ℓ →
PT (Eℓ) is an immersion, proving (ii) and hence Lemma 8.1, as desired.
�

Proof of Proposition 8.2. Statement (a) is obvious. For (b) and

(c) we construct the sets A
(c)
i,q and Bi,q inductively. Although part of

the proof for i = 0 is in the proof of Proposition 8.1, we will recall
relevant parts in order to set up the inductive scheme. Recall that
ϖ : C (S) → S is the tame sub-VMRT we started with and x0 ∈ S is the
base point. Let O ⊂ Cx0(S) be the dense Zariski open subset consisting
of all [α] ∈ Cx0(S) such that [α] is a smooth point of both Cx0(S) and
Cx0(X), the projection map ϖ : C (S) → S is a submersion at [α] and
(Cx0(S), [α]) satisfies Condition (T). Let S0 = S0,1 ∪ · · · ∪S0,m be the
decomposition of S0 into irreducible components. Consider the tangent
map τx0 : Ux0 −→ Cx0(S) and the normalization ν0 : Š0 → S0. For 1 ≤
p ≤ m define E0,p := Š0,p − ν−1

0 (τ−1
x0

(O)). E0,p ( Š0,p is a subvariety

containing Sing(Š0,p). By Proposition 6.1, for any [α] ∈ Š0,p − E0,p

the unique minimal rational curve ℓ passing through x0 and satisfying
Tx0(ℓ) = Cα is a thickening curve. Identifying Š0,p as a subvariety of

W0,p by means of sγ0 : W0 → Š0, Š0,p −E0,p consists of perfect points.

For 0 ≤ i ≤ j and for 1 ≤ q ≤ mi+1 we write γi,q : Wi,q → Ši,q for
γi,q := γi|Wi,q , and the same convention will be applied to other maps

in Scheme 8.1. For 1 ≤ p ≤ m, consider γ0,p : W0,p → Š0,p. Define the
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subvariety A0,p ⊂ W0,p by A0,p := γ−1
0,p(E0,p), and define G0,p := W0,p−

A0,p. By Lemma 8.1, any thickening curve ℓ̂ lying over ζ0 ∈ Š0,p−E0,p

is an excellent point, i.e., G0,p ⊂ W†
0,p. Writing A

(0)
0,p := A0,p, we have

established (b) for i = 0. Since γ0,p : W0,p → Š0,p is a holomorphic

P1-bundle, Sing(W0,p) = γ−1
0,p(Sing(Š0,p)), hence A0,p ⊃ Sing(W0,p).

For i = 0 it remains to prove (c). For 1 ≤ p ≤ m, G0,p = W0,p−A0,p =

γ−1
0,p(Š0,p−E0,p) is a union of thickening curves. By a parametrized ver-

sion of Proposition 6.1, writing φ0,p : W0,p → W0,p ×X for φ0,p(w) :=

(w, λ0,p(w)), there exists a complex submanifold N0,p on W†
0,p × X

such that N0,p contains φ0,p(W†
0,p) = Graph

(
λ0|W†

0,p

)
and such that for

w ∈ W†
0,p, [ℓ] := κ0(γ0,p(w)),N0,p ∩ ({w} ×X) contains a neighborhood

of φ0,p(w) on an appropriate local irreducible component at λ0,p(w) of a
collar Nℓ of ℓ. Writing pr1 : W0,p ×X → W0,p for the canonical projec-

tion, from the description of N0,p ⊃ φ0,p(W†
0,p) there is a holomorphic

vector subbundle V ⊂ (λ0,p ◦ pr1)∗T (X) on φ0,p(W†
0,p) ⊂ W0 ×X such

that Vφ0,p(w) projects canonically to Tλ0,p(w)(Nℓ) at a smooth point of

ℓ. We have N0,p ⊃ φ0,p(G0,p), G0,p = W0,p − A0,p ⊂ W†
0,p being Zariski

open in W0,p.

Note that λ0,p(sγ0(Š0,p)) = x0. Let D0,p be the connected component

of λ−1
0,p(S) containing sγ0(Š0,p) ⊂ W0,p. Then, the holomorphic vector

subbundle V ⊂ (λ0,p ◦ pr1)
∗T (X) is defined on φ0,p((W0,p − A0,p) ∪

D0,p), where each irreducible component of A0,p = γ−1
0,p(E0,p) intersects

D0,p nontrivially. By Thullen extension (cf. Proof of Proposition 8.1),
O(V ) extends to a unique saturated coherent subsheaf F0,p ⊂ O((λ0,p ◦
pr1)

∗T (X)). (A coherent subsheaf of a locally free sheaf is saturated
whenever the quotient sheaf is torsion-free.)

We now strengthen the result on Thullen extension of V (which al-
ready implied the existence of S1) by using Thullen extension for sub-
VMRT structures to be deduced from Lemma 7.3. Define B0,p :=
Sing(F0,p) ∪ Sing(W0,p) ⊂ W0,p. Then, B0,p ⊂ W0,p is a subvariety
of codimension ≥ 2.

Consider the complex manifold (W0,p−A0,p)∪D0,p. Let v be a smooth

point of E0,p such that E0,p is of codimension 1 in Š0,p at v. Let U be

a neighborhood of v on Š0,p such that the restriction of the P1-bundle

γ0,p : W0,p → Š0,p to U is holomorphically trivial, and such that there

exists a biholomorphism f : U
∼=−→ ∆d0,p−1, f(U ∩E0,p) = {0}×∆d0,p−2.

Choose a trivialization Φ : γ−1
0,p(U)

∼=−→ U × P1 such that Φ(sγ0(U)) =

U × {0} (f,id)−→ ∆d0,p−1 × {0}. Shrinking U if necessarily there exists ϵ,
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0 < ϵ < 1, such that Φ(γ−1
0,p(U) ∩ D0,p) ⊃ ∆d0,p−1 ×∆(ϵ) ⊃ ∆d0,p(ϵ). In

the sequel we identify U with ∆d0,p−1, and γ−1
0,p(U) with U × P1.

We are now in a position to apply Lemma 7.3. Set r := d0,p, H :=
∆r − ({0} × ∆r−1) and H(ρ) := H ∪ ∆r(ρ) for 0 < ρ < 1. Recall

that N0,p ⊂ W0,p × X, N0,p ⊃ φp,0(W†
0,p) is a parametrized family of

s-dimensional complex submanifolds so that for v ∈ W†
0,p, κ0(γ0,p(v)) =

[ℓ] ∈ K, the canonical projection of N0,p;v := N0,p ∩ ({v} × X) into X
agrees as a germ at x := λ0,p(v) of s-dimensional complex submanifold
of X with the germ at x of the local irreducible component of the collar
Nℓ being considered. Let now N be the restriction of the fibered space
pr1 : N0,p→W0,p to H(ϵ) ⊂ U ×∆ ⊂ W0,p. Then, by Lemma 7.3 there
exists a complex-analytic subvariety A ⊂ {0} × ∆r−1 and an (r + s)-
dimensional locally closed complex submanifold Z ⊂ (∆r − A)×∆n,
Z ⊃ (∆r−A)×{0} such that the canonical projection pr1 : Z → ∆r−A
is a submersion and such that Z ⊃ N . From the proof of Lemma 7.3,
A ⊂ ∆r is precisely the locus of indeterminacies of the meromorphic
extension from H(ϵ) to ∆r of the holomorphic mapping Φ : H(ϵ) →
Gr(s,Cn) into a Grassmannian defined by Φ(x) := [T(x,0)(Nx)]. Noting

the identification ∆r = U × ∆ ⊂ γ−1
0,p(U) = U × P1, we have A =

(U ×∆)∩ Sing(F0,p) ⊂ γ−1
0,p(U)∩ Sing(F0,p). Covering P1 by the union

D′∪D′′ of two open disks such that 0 ∈ D′∩D′′ and using holomorphic

coordinate charts ψ′ : D′ ∼=−→ ∆ and ψ′′ : D′′ ∼=−→ ∆ such that ψ′(0) =
ψ′′(0) = 0, Lemma 7.3 still applies to U × P1 ∼= γ−1

0,p(U) to show that

all points on γ−1
0,p(U) are accessible excepting those lying on Sing(F0,p),

i.e., γ−1
0,p(U)−W♯

0,p = γ−1
0,p(U)∩Sing(F0,p). Since F0,p is already defined

on Reg(W0,p) the same proof of analytic extension for parametrized
germs of submanifolds in Lemma 7.3 holds outside of Sing(F0,p) even

over points v ∈ Sing(E0,p) ⊂ Š0,p to show that Reg(W0,p) − W♯
0,p =

Sing(F0,p)∩Reg(W0,p). Hence, W0,p−W♯
0,p ⊂ Sing(F0,p)∪Sing(W0,p) =

B0,p, i.e., W♯
0,p ⊃ W0,p − B0,p, proving Proposition 8.2 for i = 0.

Suppose 0 ≤ i ≤ j, and 1 ≤ q ≤ mi+1. We define a subset
Gi,q ⊂ Wi,q, as follows. Let (ℓ0, · · · , ℓi) be a chain of rational curves
belonging to Q linking (x0, · · · , xi+1) through the sequence of pairs

((v0, w0), (v1, w1), · · · , (vi, wi)) where vc, wc ∈ ℓ̂c for 0 ≤ c ≤ i. We

defined G0,p to be the subset where v0 ∈ W♮
0,p and ℓ̂0 ⊂ W0,p is a thick-

ening curve, and noted that ℓ̂0 ⊂ W†
0,p by Lemma 8.1. For 1 ≤ c ≤ i

by means of the tautological sections sϵc : Wc−1,q(c−1) → Wc,q we
identify Wc−1,q(c−1) as a subvariety of Wc,q(c) to obtain an ascend-
ing chain of varieties W0,q(0) ⊂ W1,q(1) ⊂ · · · ⊂ Wi,q(i) = Wi,q. Let
now Gc,q(c) ⊂ Wc,q(c) be the open subset with respect to the complex
topology consisting of points wc in the notation above such that for
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0 ≤ e ≤ c, ve ∈ W♮
e,q(e) and ℓ̂e ⊂ We,q(e) is a thickening curve. By

Lemma 8.1, Ge,q(e) ⊂ W†
e,q(e), and (b) follows when we define inductively

A
(c)
c,q(c) := Wc,q(c) − Gc,q(c) −

(
ω−1
c,0

(
A

(0)
0,q(0)) ∪ · · · ∪ ω−1

c,c−1

(
A

(c−1)
c−1,q(c−1)

))
.

In other words A
(c)
c,q(c) ⊂ Wc,q(c) is the locally closed complex-analytic

subvariety corresponding to a chain of Q-curves (ℓ0, · · · , ℓc) linking

(x0, · · · , xc+1) such that (ℓ̂0, · · · , ℓ̂c−1) is a chain of thickening curves

ℓ̂e on We,q(e), 0 ≤ e ≤ c− 1, emanating from perfect points ve ∈ We,q(e)

and such that vc ∈ Wc,q(c) is not a perfect point. For the proof of
(c) we formulate the following lemma on the inductive construction of
parametrized families of sub-VMRT structures.

Lemma 8.2. Suppose 0 ≤ i ≤ j and 1 ≤ q ≤ mi+1. Writing φi,q :
Wi,q → Wi,q ×X for the holomorphic map φi,q(w) := (w, λi,q(w)) and
denoting by pr1 : Wi,q × X → Wi,q the canonical projection onto the
first factor, the holomorphic vector bundle V := (λi,q ◦ pr1)

∗T (S) ⊂
(λi,q ◦ pr1)∗T (X) admits an extension as a saturated coherent subsheaf
to Fi,q defined on Wi,q. Moreover, writing Bi,q ( Wi,q for the subvariety

given recursively by Bi,q = Sing(Fi,q) ∪ Sing(Wi,q) ∪ ϵ−1
i,q (Bi−1,q(i−1)),

B0,q(0) := Sing(F0,q(0)) ∪ Sing(W0,q(0)) as already been defined, there
is a (di,q + s)-dimensional locally closed complex submanifold Ni,q ⊂
(Wi,q − Bi,q)×X such that :
(a) the canonical projection ϖi,q : Ni,q → Wi,q − Bi,q is a submersion;
(b) Ni,q ⊃ φi,q(Wi,q − Bi,q);
(c) Ni,q contains the germ of (Ωi,q × S; (bi,q, x0)) for the base points

bi,q ∈ Wi,q and x0 ∈ S corresponding to a lifting of the germ of the
s-dimensional complex submanifold (S;x0) of (X;x0).

Proof. A point wi ∈ Wi,q can equivalently be described as fol-
lows. Let (ℓ0, · · · , ℓi) be a chain of rational curves belonging to Q link-
ing (x0, · · · , xi+1) through a sequence ((v0, w0), (v1, w1), · · · , (vi, wi)) of

pairs of points where vc, wc ∈ ℓ̂c for 0 ≤ c ≤ i, vc ∈ sγc(Šc,q(c)) ⊂ Wc,q(c)

and wc ∈ Wc,q(c). The point wi ∈ Wi,q is an accessible point, i.e.,

wi ∈ W♯
i,q, if and only if vc, wc /∈ Sing(Fc,q(c)) for 0 ≤ c ≤ i.

We will prove Lemma 8.2 by induction. The case of i = 0 has been
established. For 1 ≤ i ≤ j and for 1 ≤ q ≤ mi+1 assume that Lemma 8.2
has been established when (i, q) is replaced by (c, q(c)) for 0 ≤ c ≤ i−1.
The main issue is the existence of Fi,q. Granted this, the existence
of a (di,q + s)-dimensional locally closed complex submanifold Ni,q ⊂
(Wi,q − Bi,q) × X satisfying the requirements (a) − (c) follows from
an application of Lemma 7.3 exactly as in the proof of Lemma 8.2 for
i = 0.

It remains therefore to prove that, under the inductive hypothesis
above, for the holomorphic vector bundle V = (λi,q ◦ pr1)

∗T (S) ⊂
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(λi,q ◦ pr1)∗T (X) := Ti,q of rank s defined on Ωi,q, the locally free sheaf
O(V ) admits an extension as a saturated coherent subsheaf Fi,q ⊂
Ti,q := O(Ti,q), noting that Ti,q is a holomorphic vector bundle de-
fined on Wi,q. First of all, by the parametrized version of Proposition
6.1 (the Thickening Lemma), for 0 ≤ c ≤ i, V ⊂ Ti,q admits an ex-

tension as a holomorphic vector bundle to the open subset W♯
c,q(c) ⊂

Wc,q(c) consisting of accessible points. By the induction hypothesis

we have W♯
i−1,q(i−1) ⊃ Wi−1,q(i−1) − Bi−1,q(i−1), where Bi−1,q(i−1) =

Sing(Fi−1,q(i−1)) ∪ Sing(Wi−1,q(i−1)) ∪ ϵ−1
i−1,q(i−1)(Bi−2,q(i−2)). Recall

that a point wi ∈ Wi,q corresponds to a chain of length i + 1 of Q-
curves (ℓ0, · · · , ℓi) linking the chain of i+ 2 points (x0, · · · , xi+1) on X
through an ordered (i+1)-tuple of pairs of points ((v0, w0), · · · , (vi, wi))

such that for 0 ≤ c ≤ i, vc, wc ∈ ℓ̂c ⊂ Wc,q(c), vc ∈ ℓ̂c ∩ sγc(Šc,q(c)).

For 0 ≤ c ≤ i and 1 ≤ t ≤ mc+1 write Hc,t := Wc,t − Bc,t. Con-

sider the dense Zariski open subset Oi,q := ϵ−1
i,q (Hi−1,q(i−1)) ⊂ Wi,q.

Let Ji,q ( Oi,q be the complex-analytic subvariety defined by requir-

ing that vc /∈ W♮
i,q, i.e., vc ∈ Wi,q is not a perfect point, so that

W♯
i,q ⊃ Oi,q − Ji,q by the Thickening Lemma. From the definition

Ji,q = γ−1
i,q (Li,q) for some complex-analytic subvariety Li,q ⊂ Ši,q. Let

Li,q;s, 1 ≤ s ≤ N(i, q), where 0 ≤ N(i, q) ≤ +∞, be an enumeration of

all irreducible components of Li,q, and write Ji,q;s := γ−1
i,q (Li,q;s). We

have Oi,q = γ−1
i,q (δ

−1
i,q (Hi−1,q(i−1))). Since Zi,q := sγi(δ

−1
i,q (Hi−1,q(i−1)))

consists of accessible points, and the condition for accessibility is an open
condition in the complex topology, there exists a neighborhood Di,q of

Zi,q in Oi,q such that Di,q ⊂ W♯
i,q. In particular, for 1 ≤ s ≤ N(i, q),

Ji,q;s ∩ Di,q ̸= ∅. By Thullen extension for meromorphic functions as
explained in the case of i = 0, the locally free subsheaf O(V ) ⊂ Ti,q|W†

i,q

defined on W†
i,q extends to a saturated coherent subsheaf F 0

i,q ⊂ Ti,q|Oi,q

defined on Oi,q.
To complete the proof of Lemma 8.2 it remains to prove that F 0

i,q

extends to a saturated coherent subsheaf Fi,q ⊂ Ti,q on Wi,q. Embed-
ding the total space of the Grassmann bundle of π : Gr(s, Ti,q) → Wi,q

into a projective space the problem is reduced to showing that any
meromorphic function on Oi,q extends meromorphically to Wi,q. Now

Wi,q −Oi,q = Wi,q − ϵ−1
i,q (Hi−1,q(i−1)) := ϵ−1

i,q (Bi−1,q(i−1)). By the recur-

sive definition of Bc,q(c) for 0 ≤ c ≤ i − 1, we have ϵ−1
i,q (Bi−1,q(i−1)) =

ω−1
i,0 (B

′
0,q(0)) ∪ · · · ∪ ω−1

i,i−1(B
′
i−1,q(i−1)), where B′

0,q(0) := B0,q(0) and

B′
c,q(c) = Bc,q(c) − ϵ−1

c,q(c)(Bc−1,q(c−1)) for 1 ≤ c ≤ i − 1. For 0 ≤ c ≤ i,

write O
(c)
i,q := Wi,q −

(
ω−1
i,0 (B

′
0,q(0))∪ · · · ∪ ω−1

i,c−1(B
′
c−1,q(c−1))

)
. We have



76 NGAIMING MOK AND YUNXIN ZHANG

Oi,q = O
(i)
i,q ⊂ O

(i−1)
i,q ⊂ · · · ⊂ O

(0)
i,q = Wi,q, giving an increasing sequence

of Zariski open subsets. Writing B0
c,q(c) := Bc,q(c) − ϵ−1

c,q(c)(Bc−1,q(c−1)),

we also have O
(c)
i,q = Oi,q ∪ω−1

i,i−1(B
0
i−1,q(i−1))∪ · · · ∪ω−1

i,c (B
0
c,q(c)), where

the union is disjoint.

We claim that for 0 ≤ c ≤ i−1, any meromorphic function f on O
(c+1)
i,q

extends meromorphically to O
(c)
i,q . We have O

(c)
i,q = O

(c+1)
i,q ∪ω−1

i,c (B
0
c,q(c)),

O
(c+1)
i,q = O

(c)
i,q − ω−1

i,c (B
0
c,q(c)). While Bc,q(c) is of codimension ≥ 2 in

Wc,q(c), the dimension of fibers of ωi,c : Wi,q → Wc,q(c) may jump, and

some irreducible components of ω−1
i,c (B

0
c−1,q(c−1)) may be of codimen-

sion 1, for which reason Hartogs extension does not apply immediately.
To prove meromorphic extension of f we resort to Lemma 7.4, which
is a Hartogs extension theorem across “relatively exceptional ” divisors
for surjective morphisms between projective varieties. In the notation
adopted in the latter lemma, let π : X → B be ωi,c : Wi,q → Wc,q(c),

Ω be the Zariski open subset Wc,q(c) − ϵ−1
c,q(c)(Bc−1,q(c−1)) ⊂ Wc,q(c)

and the subvariety E ⊂ Ω be B0
c,q(c) = Bc,q(c) − ϵ−1

c,q(c)(Bc−1,q(c−1)) ⊂
Wc,q(c) − ϵ−1

c,q(c)(Bc−1,q(c−1)) = Ω. Lemma 7.4 applies to prove that f

extends meromorphically from O
(c+1)
i,q to O

(c)
i,q , hence by induction f

extends meromorphically from O
(i)
i,q = Oi,q to O

(0)
i,q = Wi,q. As a conse-

quence the locally free subsheaf F 0
0,q ⊂ T0,q|W†

i,q
extends to a saturated

coherent subsheaf Fi,q ⊂ Ti,q on φi,q(Wi,q), proving Lemma 8.2. �
Proof of Proposition 8.2 cont. Proposition 8.2 follows readily from

Lemma 8.2. For the only missing statement Bi,q ⊂ Ai,q ∪ Sing(Wi,q),
it suffices to observe that in the definition of Bi,q, at a smooth point
w ∈ Wi,q, the analytic continuation of the sub-VMRT structure on
S through a chain of Q-curves fails at w precisely when the subsheaf
Fi,q ⊂ Ti,q fails to be locally free at w. In particular, w cannot lie on a
thickening curve, hence Bi,q ⊂ Ai,q ∪ Sing(Wi,q), as desired. �

Proof of Main Theorem 2. By Lemma 8.2 and in the notation there,
for 1 ≤ q ≤ mj+1 we have constructed a (dj,q + s)-dimensional lo-
cally closed complex submanifold Nj,q ⊂ (Wj,q − Bj,q) × X such that
conditions (a) − (c) in Lemma 8.2 hold when (i, q) is replaced by (j, q).
Recall the holomorphic map φj,q : Wj,q×X → Wj,q defined by φj,q(w) =
(w, λj,q(w)), and denote by pr1 : Wj,q ×X → Wj,q the canonical projec-
tion. For w ∈ Wj,q − Bj,q define Sj,q;w := PTw(Nj,q;w) ∩ λ∗j,q(U ′

w).
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On Wj,q − Sing(Fj,q) we have F |Wj,q−Sing(Fj,q) = O(V ) for a cer-

tain holomorphic vector subbundle V ⊂ Tj,q|Wj,q−Sing(Fj,q). The ex-
istence of Fj,q ⊂ Tj,q is equivalent to the statement that there ex-
ists an irreducible fibered subspace Z ⊂ P(λ∗j,q(T (X))) with canoni-

cal projection ν : Z → Wj,p such that pr∗1(Zw) = PVw at a point
w ∈ Wj,q − Sing(Fj,q). It follows that, denoting by R0 := Z ∩λ∗j,q(U ′),

and by R ⊂ R0 the union of irreducible components of R0 which dom-
inate Wj,q, we have defined the fibered subspace χj,q|R : R → Wj,q.
There are m indices t, 1 ≤ t ≤ mj+2, satisfying the requirement that
Ωj+1,t sits over Ωj,q. The fibered space χj,q|R : R → Wj,q decom-
poses into irreducible components giving m fibered spaces, with possi-
ble repetitions, to be denoted by δj+1,t : Šj+1,t → Wj,q. (The same

convention applies in the notation γj+1,t : Wj+1,t → Šj+1,t, etc.) Here
Wj+1,t are the m possibly repeated irreducible components of Wj+1

where ϵj+1(Wj+1,t) = Wj,q, noting that Wj+1,t contains Ωj+1,t as an
open subset.

Define now Vj+1(S) := λj(Wj). Then, we have V0(S) ⊂ V1(S) ⊂ · · · .
Under the assumption in Main Theorem 2 that the distribution D on

S spanned at a general point x ∈ S by C̃x(S) is bracket generating, we
claim that dim(Vj+1(S)) = s for some j ≥ 0. For i ≥ 0, 1 ≤ q ≤ mi+1,
write Vi+1,q = λi(Wi,q). Suppose the maximal dimension of all Vi+1,p,
0 ≤ i <∞, is equal to d < s. Let (j, q) be such that dim(λj,q(Wj,q)) = d.
Then, Vj+1,t = Vj,q whenever ϵj+1(Wj+1,t) = Wj,q. In other words, for
1 ≤ k ≤ m the adjunction of rational curves belonging to Ck,x(S),
x ∈ S, does not enlarge Vj,q. Note that x0 ∈ Vj,q ∩S. Denote by Ek the

distribution on Reg(Vj,q ∩ S) spanned at a general point x by C̃k,x(S).
Then, Ek,x ⊂ Tx(Vj,q) and so Dx = E1,x + · · · + Em,x ⊂ Tx(Vj,q). Since
the tangent bundle T := O(T (Reg(Vj,q))) is integrable, we must have

[D,D] ⊂ T and hence inductively Dℓ + [D,Dℓ] ⊂ T ( O(T (S)) for
ℓ ≥ 0, so that D is not bracket generating, a plain contradiction. We
conclude that dim(Vj,q) = s for some j ≥ 0, 1 ≤ q ≤ mj+1. From the
construction of Wj,q it follows that Z := Vj,q contains a nonempty open
subset of S, hence Z ⊃ S, proving Main Theorem 2. �

Remarks
(a) Fixing (j, q) as in the last paragraph in the above, for any i ≥ 0

and for 1 ≤ r ≤ mi+1 we have from the construction clearly Vi,r ⊂
Vj+i+1,t for some Wj+i+1,t lying over Wj,q, hence Vi,r ⊂ Vj,q = Z.

(b) For a uniruled projective manifold (X,K), Cx(X) ⊂ PTx(X) at a
general point may be reducible. There are straightforward general-
izations of Theorem 1.4 and Main Theorem 2 to take care of this,
where we assume (Cx(S),Cx(X)) is a proper pair in the sense of
Remark (b) after Definition 5.3.
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9. On the recognition of uniruled projective spaces by
sub-VMRT structures on complete intersections of

rational homogeneous spaces

We proceed to examine examples of sub-VMRT structures where the
ambient manifold is a smooth complete intersection of a rational ho-
mogeneous space of Picard number 1 which remains to be uniruled by
projective lines. For this purpose we introduce a quantitative measure of
the extent to which nondegeneracy for substructures holds. We adhere
to the notation used in Definition 5.2.

Definition 9.1. Let (B,A), B = A ∩ P(E), be a proper pair of pro-

jective subvarieties, and α be a smooth point of both B̃ and Ã. For

η ∈ Tα(Ã) write δα(η;B,A;E) := dim
(
τα(Cη ⊗ Tα(B̃))

)
and define

ℓ(α) to be the minimum of δα(η;B,A;E) among all η ∈ Tα(Ã)−E. Let
B = B1∪· · ·∪Bm be the decomposition of B into irreducible components.
Let ℓk be the value of ℓ(χk) at a general smooth point χk of Bk. The
minimum ℓ = ℓ(B,A;E) of all ℓk, 1 ≤ k ≤ m, is called the index of non-
degeneracy for substructures of (A,B;E). For p ≥ 1, (B,A;E) is said
to be p-nondegenerate for substructures if and only if ℓ(B,A;E) ≥ p.

Note that (B,A;E) is 1-nondegenerate for substructures if and only
if is nondegenerate for substructures. We have

Definition 9.2. For an admissible pair (X0, X) of rational homoge-
neous spaces of Picard number 1, we denote by ℓ(X0, X) the nonnegative
integer ℓ(C0(X0),C0(X);T0(X0)) at the reference point 0 ∈ X0 and call
it the index of nondegeneracy of (X0, X).

Noting that sub-VMRTs are obtained as linear sections of VMRTs,
the following result gives sufficient conditions guaranteeing nondegen-
eracy for substructures.

Proposition 9.1. Let (B,A) be a proper pair of projective subvari-
eties, A ⊂ P(V ), B := A∩P(E), E ( V , B ( A, and suppose (B,A;E)
is p-nondegenerate for substructures, p ≥ 1. Let D ⊂ P(V ) be a subva-
riety of codimension ≤ r and suppose (B ∩ D,A ∩ D) is a proper pair
of projective subvarieties. If 0 ≤ r ≤ p − 1, then (B ∩ D,A ∩ D) is
(p − r)-nondegenerate for substructures, p − r ≥ 1. In particular, it is
nondegenerate for substructures.

Proof. Let Γ ̸⊂ Sing(A) be any one of the irreducible components

Bk of B, 1 ≤ k ≤ m. For a general point γ ∈ Γ̃, we have dim
(
τγ(Cη ⊗

Tγ(B̃))
)
≥ p. Let χ be a general smooth point of B ∩ D such that χ is

also a smooth point of A ∩ D. Since D ⊂ P(V ) is of codimension r, we
have dim(Tχ(B ∩ D)) ≥ dim(Tχ(B))− r. Hence, for any η ∈ Tχ(B ∩D)
we have dim

(
τχ(Cη ⊗ Tχ(B ∩ D))

)
≥ p − r ≥ 1 by assumption, and

Proposition 9.1 follows. �
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For the prototypical case of the Grassmannian we have the following
lemma resulting from a straightforward computation.

Lemma 9.1. Suppose 1 ≤ p′ ≤ p, 1 ≤ q′ ≤ q, (p′, q′) ̸= (p, q). For
the admissible pair (G(p′, q′), G(p, q)) we have ℓ((G(p′, q′), G(p, q)) =
min(p′ − 1, q′ − 1) if p′ < p and q′ < q. Moreover ℓ((G(p, q′), G(p, q)) =
p− 1 for q′ < q.

In what follows we examine cases where Theorem 1.4 and Main Theo-
rem 2 apply to yield structural results on germs of submanifolds inherit-
ing sub-VMRT structures on certain complete intersections on rational
homogeneous spaces. For a rational homogeneous space X of Picard
number 1, we denote by δ the positive generator of H2(X,Z) ∼= Z. De-
noting by O(1) the positive generator of Pic(X) ∼= Z, c1(O(1)) = δ, for
a minimal rational curve ℓ on X we have T (X)|ℓ ∼= O(2)⊕(O(1))p⊕Oq,
thus we have c1(X) = (2 + p)δ, noting that p = dim(C0(X) for any ref-
erence point 0 ∈ X (cf. Lemma 5.1 and the reference there.) We will
identify H2(X,Z) with Z and write c1(X) = 2 + p, etc. X will be
identified as a projective submanifold by means of the first canonical
embedding µ : X ↪→ P(Γ(X,O(1))∗) := P(V ). Let k ≥ 1, Hi ⊂ P(V ),
1 ≤ i ≤ m, be hypersurfaces of degree ki, k := k1 + · · ·+ km, such that
Z := X ∩ (H1 ∩ · · · ∩Hm) ⊂ X is smooth and of codimension m. We
have the following lemma concerning VMRTs on Z (cf. Kollár [Ko96,
Chapter 5, §4, esp. Exercises 4.6, p.270]).

Lemma 9.2. Suppose c1(X)−k ≥ 2. Then, Z ⊂ X ⊂ P(V ) is unir-
uled by projective lines. Moreover, denoting by H the minimal rational
component of projective lines on Z, writing E ⊂ Z for the bad locus of
(Z,H), and πZ : C (Z) → Z for the VMRT structure defined by (Z,H),
for x ∈ Z−E, Cx(Z) is smooth and given by Cx(Z) = Cx(X) ∩ Jx for
some projective subvariety Jx ⊂ PTx(X) of codimension k.

Proof. For 1 ≤ i ≤ m denote by Fi a defining homogeneous polyno-
mial of degree ki of the reduced hypersurface Hi. Let x ∈ Z ⊂ X.
In terms of homogeneous coordinates [z0, · · · , zN ] on P(V ), writing
x = [a] =: [a0, · · · , aN ], η = (η0, · · · , ηN ) ∈ V for a nonzero vector,
let ℓ = ℓ(x, η) ⊂ P(V ) be the projective line given by ℓ :=

{
[a0 +

tη0, aN + tηN ] : t ∈ C
}
∪
{
[η0, · · · , ηN ]

}
. Then, ℓ ⊂ Z if and only if

[η] ∈ Cx(X) ⊂ PTx(PV ) = V/Ca and Fi(a0+tη0, aN+tηN ) = 0 for every
i, 1 ≤ i ≤ m, and for every complex number t. For each i, expanding in t
we have Fi(a0+tη0, aN+tηN ) = Fi(a0, · · · , aN )+tF 1

i (η0, · · · , ηN )+· · ·+
tkiF ki

i (η0, · · · , ηN ), where F j
i is a homogeneous polynomial of degree

ki−j for 1 ≤ j ≤ ki,. Since x = [a] ∈ Z, we have Fi(a0, · · · , aN ) = 0, and

ℓ ⊂ Z if and only if [η] ∈ Cx(X) and F j
i (η0, · · · , ηN ) = 0 for 1 ≤ i ≤ m

and for 1 ≤ j ≤ ki. Hence dim(Cx(Z)) ≥ dim(Cx(X))−(k1+· · ·+km) =
c1(X) − 2 − k ≥ 0 by the hypothesis of the lemma. Define now Jx ⊂
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PTx(X) to be the common zero set of the k homogeneous polynomials{
F 1
1 , · · · , F

k1
1 ; · · · ;F 1

m, · · · , F km
m

}
. Then, dim(Cx(Z)) ≥ c1(X)−2−k ≥

0, hence Z is uniruled by projective lines. Now the normal bundle NZ|X
is isomorphic to the direct sum O(k1) ⊕ · · · ⊕ O(kn) on Z, and by the
adjunction formula we have c1(Z) = c1(X)− (k1 + · · · km) = c1(X)− k.
For a point x ∈ Z−E, every projective line ℓ on Z passing through x is a
free rational curve, hence a standard rational curve (since Nℓ|Z is semi-

positive and Nℓ|Z ⊂ Nℓ|PV ∼= O(1)N−1). It follows that the tangent map
τx : Ux → Cx(Z) ⊂ PTx(Z) is an immersion (cf. Lemma 5.1) and hence
a biholomorphism since no two distinct projective lines passing through
x can share the same tangent space at x, hence Cx(Z) is smooth for
x ∈ Z−E. We have T (X)|ℓ ∼= O(2)⊕O(1)a⊕Ob, c1(Z) = 2+a, so that
each component of Cx(Z) is of dimension a = c1(Z)−2 = c1(X)−k−2
and hence Jx must be of codimension k. The proof of Lemma 9.2 is
complete. �

Remark Since τx : Ux
∼=−→ Cx(Z), for x ∈ Z −E, the enhanced bad

locus E′ ⊂ Z of Z is the same as the bad locus E ⊂ Z.

When an admissible pair (X0, X) of rational homogeneous spaces of
Picard number 1 is nondegenerate for substructures with ℓ(X0, X) ≥
2, Proposition 9.1 says that the results in §5 on rational saturation
and algebraicity of germs of sub-VMRT structures still hold when one
replaces

(
C0(X0) ⊂ C0(X)

)
by smooth slices by projective subvarieties

of sufficiently small degrees.
We restrict now to a nonlinear admissible pair (X0, X) of sub-diagram

type marked at a long simple root so that C0(X0) ⊂ C0(X) ⊂ PT0(X)
are homogeneous submanifolds, and the index of nondegeneracy for sub-
structures ℓ(X0, X) ≥ 1 can be computed at a single point [α] ∈ C0(X0).
Let Z := X∩(H1∩· · ·∩Hm) ⊂ X be a smooth complete intersection ofX
with hypersurfaces H1, · · · ,Hm of degree k1, · · · , km, k1+ · · ·+km := k.
Since X0 ⊂ X ⊂ P(V ) is a linear section, for general hypersurfaces Hi

of degrees ki, the intersectionM = Z∩X0 is uniruled by projective lines
when k ≤ c1(X0)−2. In this case, at a general point x ∈M ,

(
Cx(M) ⊂

Cx(Z)
)
is projectively equivalent to

(
C0(X0) ∩ J (x) ⊂ C0(X) ∩ J (x)

)
for some projective subvariety J (x) ⊂ PT (X) of codimension k. For a
sub-VMRT structure on a locally closed complex submanifold S ⊂ Z−E
with

(
Cx(S) ⊂ Cx(Z)

)
modeled on the latter pairs, we prove

Theorem 9.1. Let S be a complex submanifold of some connected
open subset W ⊂ Z−E such that at a general point x of S, writing
Cx(S) := Cx(Z) ∩ PT0(S),

(
Cx(S) ⊂ Cx(Z)

)
is projectively equivalent

to
(
C0(X0) ∩ J (x) ⊂ C0(X) ∩ J (x)

)
for some projective subvariety

Jx ⊂ C0(X) of pure codimension k. Assume that ϖ : C (S) → S sat-
isfies Condition (T) and ℓ(X0, X) ≥ k + 1. Then, S ⊂ Z is linearly
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saturated with respect to (Z,H). If Cx(S) ⊂ PTx(S) is moreover lin-
early nondegenerate at a general point, then there exists an irreducible
subvariety Y ⊂ Z such that Y ⊃ S and dim(Y ) = dim(S).

Proof. By Proposition 9.1, the pair (C0(X0) ∩ J (x),C0(X) ∩ J (x))
is p-nondegenerate for substructures with p = ℓ(X0, X) − k ≥ 1. By
Theorem 1.4, S is rationally saturated with respect to (Z,H). When
Cx(S) ⊂ PTx(Z) is linearly nondegenerate at a general point, the bracket
generating property of the distribution D spanned by C (S) is automatic,
and Main Theorem 2 applies to give an irreducible subvariety Y ⊃ S
such that dim(Y ) = dim(S). �

Remark In some cases, under dimension restrictions it is possible to
adapt the method of parallel transport of VMRTs of Hong-Mok [HoM11]
to “recognize” Y as γ(X0)∩Z for some γ ∈ Aut(X). For a formulation of
the “Recognition Problem” for uniruled projective subvarieties, cf.Mok
[Mk16].

Theorem 1.4 leads to a characterization of maximal linear subspaces
for a general smooth linear section Z of X of sufficiently small codi-
mension, depending on the index of nondegeneracy for substructures,
as follows. By a maximal linear subspace Π on a projective subvariety
A ⊂ Pm we mean a maximal element of the partially ordered set of
linear subspaces of Pm lying on A. We use this notion for linear sub-
spaces containing a smooth point of A, for Z ⊂ PN , Cx(Z) ⊂ PTx(Z)
and Cx(S) ⊂ PTx(S). On a rational homogeneous space X of Picard
number 1 the maximal linear subspaces break up into a finite number of
equivalence classes modulo the action of Aut(X), cf. Landsberg-Manivel
[LM03]. We have

Theorem 9.2. Let X ⊂ P(Γ(X,O(1))∗) be a rational homogeneous
space of Picard number 1. Let Xi ⊂ X, 1 ≤ i ≤ h, be an enumer-
ation of representatives of equivalence classes of maximal linear sub-
spaces modulo the action of Aut(X), exactly one from each equivalence
class, and let ℓi be the index of nondegeneracy of (Xi, X). Suppose
1 ≤ k < ℓ := min{ℓi, 1 ≤ i ≤ h}. Let (Z,H) be a smooth linear sec-
tion of codimension k endowed with a uniruling by projective lines, and
E ⊂ Z be its bad locus. Let W ⊂ Z−E be a connected open subset
and let S ⊂W be a complex submanifold such that PT (S) ⊂ C (Z) and
PT (S) ∩ Reg(C (Z)|S) ̸= ∅. Suppose PTx(S) ⊂ Cx(Z) is a maximal lin-
ear subspace for a general point x ∈ S. Then, S ⊂ Z is an open subset
of a maximal linear subspace.

As an illustration we have the following special case for Grassmanni-
ans.
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Corollary 9.1. When X = G(p, q), 0 ≤ 3 ≤ p ≤ q, Theorem 9.2
holds for a general smooth linear section Z ⊂ G(p, q) of codimension
k ≤ p− 2.

Proof of Theorem 9.2. Let x ∈ S be a general point, and Π ⊂ X be
a maximal linear subspace passing through x such that Tx(S) ⊂ Tx(Π).
There exists γ ∈ Aut(X) and a maximal linear subspace Xi ⊂ X,
1 ≤ i ≤ h, such that Π = γ(Xi). Let r be the codimension of PTx(S)
in PTx(Π). We have 0 ≤ r ≤ k. By Proposition 9.1, (PTx(S),Cx(Z))
is (ℓi−r)-nondegenerate for substructures, where ℓi−r ≥ ℓi−k ≥ 1
by hypothesis, hence nondegenerate for substructures. Since C (S) :=
C (Z)∩PT (S) = PT (S), C (S) trivially satisfies Condition (T). By The-
orem 1.4, the tautological foliation on C (Z) restricts to PT (S), hence
S ⊂ Z must be a maximal linear subspace, as desired. �
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