
Densities, Matchings, and Fractional Edge-Colorings

Xujin Chena∗ Wenan Zangb† Qiulan Zhaoc‡

a Institute of Applied Mathematics, Chinese Academy of Sciences
Beijing 100190, China

b Department of Mathematics, The University of Hong Kong
Hong Kong, China

c Department of Mathematics, Nanjing University
Nanjing 210093, China

Abstract

Given a multigraph G = (V,E) with a positive rational weight w(e) on each edge e, the
weighted density problem (WDP) is to find a subset U of V , with |U | ≥ 3 and odd, that

maximizes 2w(U)
|U |−1 , where w(U) is the total weight of all edges with both ends in U , and the

weighted fractional edge-coloring problem can be formulated as the linear program

Minimize 1Tx
subject to Ax = w

x ≥ 0,

where A is the edge-matching incidence matrix of G. These two problems are closely related
to the celebrated Goldberg-Seymour conjecture on edge-colorings of multigraphs, and are
interesting in their own right. Even when w(e) = 1 for all edges e, determining whether
WDP can be solved in polynomial time was posed by Jensen and Toft [9] and by Stiebitz et
al. [22] as an open problem. In this paper we present strongly polynomial-time algorithms
for solving them exactly, and develop a novel matching removal technique for multigraph
edge-coloring.

MSC 2000 subject classification. Primary: 90C27, 68Q25.
OR/MS subject classification. Primary: Programming/graphs.
Key words. Multigraph, density, matching, fractional edge-coloring, algorithm.

∗Supported in part by NSF of China under Grant 11531014.
†Supported in part by the Research Grants Council of Hong Kong.
‡Corresponding author. E-mail: qiulanzhao@163.com.

1

1 Introduction

Multigraphs considered in this paper may have parallel edges but contain no loops. Given a
multigraph G = (V,E), the edge-coloring problem (ECP) is to color the edges of G with the
minimum number of colors so that no two adjacent edges have the same color, where two edges
are called adjacent if they are incident with a common vertex. The optimal value of ECP,
denoted by χ′(G), is called the chromatic index of G. Holyer [12] proved that ECP is NP -hard,
even when restricted to a simple cubic graph, so there is no efficient algorithm for solving it
exactly unless NP = P . Let ∆(G) be the maximum degree of G, and let the density of G be
defined as

Γ(G) = max
{2|E(U)|
|U | − 1

: U ⊆ V, |U | ≥ 3 and odd
}
,

where E(U) is the set of all edges of G with both ends in U . Clearly, χ′(G) ≥ max{∆(G), Γ(G)};
this lower bound, as shown by Seymour [21] using Edmonds’ matching polytope theorem [3],
is precisely the fractional chromatic index of G, which is the optimal value of the fractional
edge-coloring problem (FECP):

Minimize 1Tx
subject to Ax = 1

x ≥ 0,

where A is the edge-matching incidence matrix of G. In the 1970s, Goldberg [6] and Seymour
[21] independently made the following celebrated conjecture.

Conjecture 1.1. Every multigraph G satisfies χ′(G) ≤ max{∆(G) + 1, ⌈Γ(G)⌉}.

Its validity would imply that, first, for any multigraph its chromatic index differs from its
fractional chromatic index by at most one, so FECP enjoys a fascinating rounding property;
second, ECP can be approximated within one of the optimum, and hence is one of the “easiest”
NP -hard problems; third, an analogue to Vizing’s theorem [24] on edge-coloring simple graphs,
a fundamental result in graph theory, holds for multigraphs.

Over the past four decades, Conjecture 1.1 has been a subject of extensive research in the
fields of operations research, computer science, and graph theory, and has inspired a significant
body of work, with contributions from many researchers; see Stiebitz et al. [22] for a compre-
hensive account. Given its intimate connection with Conjecture 1.1, we study FECP in this
paper. For convenience, we shall actually investigate its weighted version (WFECP):

Minimize 1Tx
subject to Ax = w

x ≥ 0,

where w = (w(e) : e ∈ E) and w(e) is a positive rational weight (not necessarily integral)
associated with each edge e of G. Let χ∗

w(G) denote the optimal value of WFECP. For each
F ⊆ E, let w(F) =

∑
e∈F w(e). For each U ⊆ V , let w(U) = w(E(U)). For each v ∈ V , let

∂(v) ⊆ E denote the star centered at v and let dG,w(v) = w(∂(v)). Set ∆w(G) = maxv∈V dG,w(v)
and

Γw(G) = max
{ 2w(U)

|U | − 1
: U ⊆ V, |U | ≥ 3 and odd

}
.

2

We call dG,w(v), ∆w(G), and Γw(G) the weighted degree of v, the maximum weighted degree of
G, and the weighted density of G with respect to w, respectively. Throughout this paper, we
set Ω(G) = {v ∈ V : dG,w(v) = ∆w(G)}, and use n(G), m(G), and ℓ(G) to denote the number
of vertices, the number of edges, and the number of adjacent vertex pairs in G, respectively.
Observe that the equality m(G) = ℓ(G) holds only when G is a simple graph. For each U ⊆ V ,
let U = V \U . For any disjoint vertex subsets T and U of V , let [T,U] be the set of all edges
between T and U in G, and let w[T,U] =

∑
e∈[T,U]w(e). As usual, let Q be the set of rationals

and let Q+ be the set of nonnegative rationals. For any set Λ of numbers and any finite set K,
we use ΛK to denote the set of vectors x = (x(k) : k ∈ K) whose coordinates are members of
Λ.

It is routine to check that the aforementioned Seymour’s theorem [21] holds in the weighted
case as well.

Theorem 1.1 (Seymour [21]). Every multigraph G satisfies χ∗
w(G) = max{∆w(G),Γw(G)} for

all w ∈ QE(G)
+ .

Nemhauser and Park [17] observed that FECP can be solved in polynomial time by an
ellipsoid algorithm, because the separation problem of its LP dual is exactly the maximum-
weight matching problem (see also Schrijver [20], Theorem 28.6 on page 477). In his thesis
[14], Kennedy briefly sketched a combinatorial polynomial-time algorithm for FECP. However,
it does not seem to work; see the appendix for details.

One objective of this paper is to design a strongly polynomial-time algorithm for WFECP.

Theorem 1.2. Let G be a multigraph with a positive rational weight w(e) on each edge e. Then
the WFECP on G can be solved in time O(mn+ n5ℓ2 log(n2/ℓ)), where n = n(G), m = m(G),
and ℓ = ℓ(G).

Let us introduce some terminology and notions before proceeding. A subset U of V is called
an odd set of G if |U | ≥ 3 and is odd. An odd set U is called optimal if 2w(U)

|U |−1 = Γw(G). For

simplicity, we abbreviate optimal odd set as OoS. We reserve the symbol O(G) for the family
of all OoS’s of G throughout, and refer to the problem of finding an OoS of G as the weighted
density problem (WDP). From Theorem 1.1 it can be seen that this problem plays a crucial role
in the resolution of WFECP and even Conjecture 1.1. Clearly, it is interesting in its own right.
We point out that when Γ(G) ≥ ∆(G), the value of Γ(G) can be determined in polynomial
time by combining the Padberg-Rao separation algorithm for b-matching polyhedra [18] (see
also [16, 19]) with binary search. As remarked by Jensen and Toft [9] and by Stiebitz et al.
[22], it is not clear whether Γ(G) can be found in polynomial time in any case. In this paper we
demonstrate that actually WDP, a more general problem, admits a strongly polynomial-time
algorithm.

Theorem 1.3. Let G be a multigraph with a positive rational weight w(e) on each edge e. Then
an optimal odd set of G can be found in time O(m+n4ℓ log(n2/ℓ)), where n = n(G), m = m(G),
and ℓ = ℓ(G).

Recall that WFECP consists in finding matchings M1,M2, . . . ,Mt of G and nonnegative
numbers x(M1), x(M2), . . . , x(Mt), such that

∑
e∈Mi

x(Mi) = w(e) for each edge e and that

3

∑t
i=1 x(Mi) is as small as possible. To solve it, we shall focus our attention on some special

types of matchings.
Consider a matching M of G. We call M near-perfect if it covers all but one vertex of G

(so n(G) is odd). We say that M saturates an odd set U of G if |E(U) ∩M | = |U |−1
2 ; that is,

M restricts to a near-perfect matching on G[U], the subgraph of G induced by U . Let S be a
subset of V and let T be a family of odd sets of G. We also say that

• M is an S-matching if it covers all vertices in S;
• M is a T -matching if it saturates all odd sets in T ; and
• M is an {S, T }-matching if it is both an S-matching and a T -matching.

Caprara and Rizzi [2] proved that if ∆(G) ≥ Γ(G), then G contains a matching that covers
all vertices of maximum degree. The weighted version of this statement is given below.

Theorem 1.4 (Caprara and Rizzi [2]). Let G be a multigraph with a positive rational weight
w(e) on each edge e. If ∆w(G) ≥ Γw(G), then we can find an Ω(G)-matching of G in time
O(n1/2ℓ), where n = n(G) and ℓ = ℓ(G).

The following theorem guarantees the existence of some other types of matchings.

Theorem 1.5. Let G be a multigraph with a positive rational weight w(e) on each edge e. Then
we can find a matching M of G in time O(m+n5ℓ log(n2/ℓ)), where n = n(G), m = m(G), and
ℓ = ℓ(G), such that

(i) M is an O(G)-matching if ∆w(G) < Γw(G); and

(ii) M is an {Ω(G),O(G)}-matching if ∆w(G) = Γw(G).

Its constructive proof is perhaps of more interest than the assertion. So far the most powerful
and sophisticated technique for multigraph edge-coloring was invented by Tashkinov [23] in 2000,
which generalizes the earlier methods of Kempe chains, Vizing fans [24], and Kierstead paths
[15]. The crux of this technique is to capture the density Γ(G) required to prove Conjecture
1.1, by exploring a sufficiently large tree, the so-called Tashkinov tree. However, this target may
become unreachable when χ′(G) gets close to ∆(G), even if we allow for an unlimited number
of Kempe changes; such an example can be found in Asplund and McDonald [1]. Therefore it is
desirable to have some new approaches to multigraph edge-coloring. As we shall see, Theorem 1.5
together with Theorem 1.4 leads to a novel matching removal technique for this purpose, which
relies heavily on density analysis, and can obviously circumvent the difficulties encountered by
the method of Tashkinov trees. We believe that our proof technique can be further developed to
establish the following conjecture, which is an important endeavor towards a proof of Conjecture
1.1.

Conjecture 1.2. Let G be a multigraph with ∆(G) < Γ(G). Then G contains a matching
M such that Γ(G − M) ≤ ⌈Γ(G)⌉ − 1. Furthermore, there is a combinatorial polynomial-time
algorithm for finding such a matching.

The remainder of this paper is organized as follows. In Section 2, we recall some funda-
mental results from matching theory, and exhibit some properties enjoyed by optimal odd sets,
which will be used in our search for desired matchings. In Section 3, we present a strongly

4

polynomial-time algorithm for WDP, by using Isbell and Marlow’s method [13] for fractional
programming, Padberg and Rao’s algorithm [18] the minimum T -cut problem, and Goemans
and Ramakrishnan’s algorithm [4] for and the minimum s-t T -cut problem. In Section 4, we
give a combinatorial polynomial-time algorithm for finding the matching described in Theorem
1.5 based on density analysis. In Section 5, we devise a strongly polynomial-time algorithm for
WFECP using a matching removal technique.

2 Preliminaries

Let us make some preparations for the algorithms to be designed in subsequent sections.
Let G = (V,E) be a graph. For each U ⊆ V , let o(G\U) denote the number of odd

components of G\U ; and its deficiency, denoted by def(U), is defined to be o(G\U)− |U |. We
call U a Tutte set of G if def(U) > 0. The deficiency of G, denoted by def(G), is defined to be
maxU⊆V def(U). The following two lemmas are well known; see, for instance, Lemmas 2.1 and
2.2 in West [25].

Lemma 2.1 (Parity Lemma). Let U be a vertex subset of a graph G = (V,E). Then o(G\U)−
|U | ≡ |V | (mod 2). In particular, if U is a Tutte set and V is even, then o(G\U) ≥ |U |+ 2.

Lemma 2.2. Let U be a maximal vertex set of a graph G = (V,E) with def(U) = def(G).
Then all components of G\U are odd.

As stated before, we shall resolve WFECP by using a matching removal method. Our search
for the desired matchings is based on Lemmas 2.3-2.8 below, where we assume that G = (V,E)
is a multigraph with a positive rational weight w(e) on each edge e and with ∆w(G) ≤ Γw(G).
In their proofs, δ stands for ∆w(G) and γ stands for Γw(G).

Lemma 2.3. Let U be an OoS of G. Then the following statements hold:

(i) w[U,U] ≤ ∆w(G), with equality only when ∆w(G) = Γw(G) and U ⊆ Ω(G);

(ii) if ∆w(G) = Γw(G), then G[U] has a vertex v such that dG[U],w(v) < ∆w(G); and

(iii) Γw(H) ≤ Γw(G), where H arises from G by contracting U .

Proof. (i) By definition, 2w(U)
|U |−1 = γ. So 2w(U) = γ(|U | − 1). Since 2w(U) + w[U,U] =∑

v∈U dG,w(v) ≤ δ|U |, we have w[U,U] ≤ δ|U |−2w(U) = δ|U |−γ(|U |−1) ≤ δ|U |−δ(|U |−1) = δ.
Therefore, w[U,U] = δ iff all inequalities in this paragraph hold with equalities iff δ = γ and
dG,w(v) = δ for all v ∈ U .

(ii) Assume on the contrary that dG[U],w(v) = δ for all v ∈ U . Then 2w(U)/(|U | − 1) =
δ|U |/(|U | − 1) > δ = γ, a contradiction.

(iii) Assume on the contrary that 2w(S)
|S|−1 > γ for some set S ⊆ V (H) with |S| ≥ 3 and

odd. Then S contains the vertex v arising from contracting U . Let T be the vertex subset of G
obtained from S by replacing v with U . Then 2w(T) = 2w(S)+2w(U) > γ(|S|−1)+γ(|U |−1) =
γ(|S|+ |U | − 2) = γ(|T | − 1), a contradiction.

A graph H is called factor-critical if H\v has a perfect matching for each vertex v. Note
that every factor-critical graph has an odd number of vertices.

5

Lemma 2.4. Let U be an OoS of G. Then the following statements hold:

(i) if ∆w(G) < Γw(G), then G[U] is factor-critical;

(ii) if ∆w(G) = Γw(G), then G[U]\v has a perfect matching for any v ∈ U with dG[U],w(v) <
∆w(G).

Proof. Let v be an arbitrary vertex in U if ∆w(G) < Γw(G) and let v be as specified in
(ii) if ∆w(G) = Γw(G). Suppose on the contrary that G[U]\v has no perfect matching. Since
|U\{v}| is even, by Lemmas 2.1 and 2.2 (with G[U]\v in place of G), G[U]\v contains a vertex
subset S such that all components T1, T2,...,Tk of G[U]\(S ∪{v}) are odd, with k ≥ |S|+2. Let
X = S ∪ {v}, let Yi be the vertex set of Ti for each i, and let Y = ∪k

i=1Yi. Then
(a) k ≥ |X|+ 1 and w(U) = w(X) + w[X,Y] + w(Y). So
(b) 2w(U) = (2w(X) + w[X,Y]) + w[X,Y] +

∑k
i=1 2w(Yi).

Observe that
(c) (2w(X) + w[X,Y]) + w[X,Y] ≤ 2δ|X|, with equality only when w(X) = 0, X ⊆ Ω(G)

and w[X,Y] = δ|X|.
By (b) and (c), we have γ(|U |− 1) = 2w(U) ≤ 2δ|X|+∑k

i=1 γ(|Yi|− 1) = 2δ|X|+ γ|Y |− kγ.
As |U | = |X|+ |Y | and δ ≤ γ, we obtain γ(|U | − 1) ≤ 2γ|X|+ γ|Y | − kγ = γ(2|X|+ |Y | − k) ≤
γ(|X|+ |Y | − 1) = γ(|U | − 1), where the third inequality follows from (a). So all inequalities in
this paragraph hold with equalities, and hence k = |X| + 1, δ = γ, w(X) = 0, X ⊆ Ω(G) and
w[X,Y] = δ|X| by (a) and (c), which contradicts the hypothesis of (i) or (ii).

Corollary 2.5. Let U be an OoS of G. Then G[U] contains a near-perfect matching.

Proof. The statement follows instantly from Lemma 2.4 and Lemma 2.3(ii).

Lemma 2.6. Let U1 and U2 be two distinct OoS’s of G with U1 ⊂ U2, and let H be obtained
from G by contracting U1 into a single vertex v. Then the following statements hold:

(i) ∆w(H) ≤ ∆w(G) and Γw(H) = Γw(G);

(ii) (U2\U1) ∪ {v} is an OoS of H.

Proof. By Lemma 2.3(i), we have dH,w(v) = w[U1, U1] ≤ ∆w(G). So ∆w(H) ≤ ∆w(G).
Write S = (U2\U1)∪{v}. By Lemma 2.3(iii), Γw(H) ≤ Γw(G). To establish the equation in

(i) and the statement in (ii), it suffices to show that 2w(S)
|S|−1 = Γw(G); this equation holds because

2w(S) = 2w(U2)− 2w(U1) = γ(|U2| − 1)− γ(|U1| − 1) = γ(|U2| − |U1|) = γ(|S| − 1). It follows

that 2w(S)
|S|−1 = Γw(H) = Γw(G). Therefore, both (i) and (ii) hold.

Lemma 2.7. Let U1 and U2 be two OoS’s of G with |U1∩U2| odd and with U1\U2 ̸= ∅ ̸= U2\U1,
and let H1 = G[U1 ∩ U2] and H2 = G[U1] ∪G[U2]. Then the following statements hold:

(i) G has no edge between U1\U2 and U2\U1;

(ii) U1 ∪ U2 is an OoS, and so is U1 ∩ U2 if |U1 ∩ U2| ≥ 3; and

(iii) if a matching of G restricts to a near-perfect matching on both H1 and H2, then it also
restricts to a near-perfect matching on G[Ui] for i = 1, 2.

6

Proof. Let α = 0 if |U1 ∩ U2| = 1 and α = 2w(U1∩U2)
|U1∩U2|−1 otherwise. Then α ≤ γ. Observe that

w(U1 ∪ U2) = w(U1) + w(U2) − w(U1 ∩ U2) + w[U1\U2, U2\U1]. By definition, 2w(U1∪U2)
|U1∪U2|−1 ≤ γ.

So γ(|U1 ∪ U2| − 1) ≥ 2w(U1 ∪ U2) ≥ 2w(U1) + 2w(U2)− 2w(U1 ∩ U2) = γ(|U1| − 1) + γ(|U2| −
1)− α(|U1 ∩U2| − 1) ≥ γ(|U1|+ |U2| − |U1 ∩U2| − 1) = γ(|U1 ∪U2| − 1). Thus all the preceding
inequalities hold with equalities, and hence both (i) and (ii) hold.

It is a routine matter to check that if a matching restricts to a near-perfect matching on
both H1 and H2, then it also restricts to a near-perfect matching on G[Ui] for i = 1, 2. So (iii)
also holds.

Lemma 2.8. Let U1 and U2 be two OoS’s of G with |U1∩U2| > 0 and even, and let Ti = Ui\U3−i

for i = 1, 2. Then the following statements hold:
(i) ∆w(G) = Γw(G);

(ii) Ti is an OoS if |Ti| ≥ 3 for i = 1, 2;

(iii) U1 ∩ U2 ⊆ Ω(G) and no vertex in U1 ∩ U2 is adjacent to any vertex outside U1 ∪ U2 in G;
and

(iv) if a matching of G covers all vertices in U1∩U2 and restricts to a near-perfect matching on
both G[T1] and G[T2], then it also restricts to a near-perfect matching on G[Ui] for i = 1, 2.

Proof. For i = 1, 2, let αi = 0 if |Ti| = 1 and αi = 2w(Ti)
|Ti|−1 otherwise. Then αi ≤ γ.

Observe that w(U1) + w(U2) = w(T1) + w(T2) + 2w(U1 ∩ U2) + w[U1 ∩ U2, T1 ∪ T2]. Since
2w(U1 ∩U2) +w[U1 ∩U2, T1 ∪ T2] ≤ δ|U1 ∩U2|, we have 2w(U1) + 2w(U2) ≤ 2w(T1) + 2w(T2) +
2δ|U1 ∩ U2|. Hence γ(|U1| − 1) + γ(|U2| − 1) ≤ α1(|T1| − 1) + α2(|T2| − 1) + 2δ|U1 ∩ U2| ≤
γ(|T1|−1)+γ(|T2|−1)+2γ|U1∩U2| = γ(|U1|−1)+γ(|U2|−1); so all the preceding inequalities
hold with equalities. It follows that δ = γ, αi = γ if |Ti| ≥ 3, U1 ∩ U2 ⊆ Ω(G) and no vertex in
U1 ∩ U2 is adjacent to any vertex outside U1 ∪ U2. Therefore, (i)-(iii) are justified.

In view of (iii), it is easy to see that (iv) holds.

The lemma below will be used to estimate the computational complexities of the algorithms
to be designed in subsequent sections.

Lemma 2.9. Let G = (V,E) be a multigraph with a nonnegative integral weight c(e) on each

edge e. Then the smallest difference between the two different possible values of 2c(U)
|U |−1 is at least

2
(n−1)(n−2) , where U is an odd set of G and n = n(G).

Proof. Since
2c(U)

|U | − 1
∈

{ 2m′

n′ − 1
: 0 ≤ m′ ≤ m, 3 ≤ n′ ≤ n

}
,

where m =
∑

e∈E c(e), and both m′ and n′ are integers, the difference θ between two different

possible values of 2c(U)
|U |−1 is

θ =

∣∣∣∣ 2m1

n1 − 1
− 2m2

n2 − 1

∣∣∣∣ = 2|m1(n2 − 1)−m2(n1 − 1)|
(n1 − 1)(n2 − 1)

.

If n1 = n2, then θ = 2|m1−m2|
n1−1 ≥ 2

n1−1 ≥ 2
n−1 ≥ 2

(n−1)(n−2) . Otherwise, symmetry allows us to

assume that n1 > n2. Thus (n1 − 1)(n2 − 1) ≤ (n1 − 1)(n1 − 2) ≤ (n− 1)(n− 2). It follows that
θ ≥ 2

(n1−1)(n2−1) ≥
2

(n−1)(n−2) , as desired.

7

3 Densities

In this section we present a strongly polynomial-time algorithm for the weighted density problem
(WDP), whose output is an optimal odd set in the input multigraph.

Given a multigraph G = (V,E) with a weight w(e) on each edge e, the simplification of G
is the weighted simple graph G∗ = (V,E∗), such that two vertices are adjacent in G∗ iff they
are adjacent in G, and that the weight w∗(e) on each edge e in G∗ is

∑
f∈EG(e)w(f), where

EG(e) stands for the set of all edges between u and v in G for each edge e = uv of G∗. Clearly,
G∗ can be constructed in time O(m), where m = m(G). Note that for each U ⊆ V , we have
w∗(U) = w(U) and w[U,U] = w∗[U,U].

Replacing G by G∗ if necessary, we may assume that G is a simple graph throughout this
section, unless otherwise stated. As a consequence, we need to add O(m) to the computational
complexity of an algorithm in most cases, when we address the original multigraph G.

Since WDP has a fractional objective function, we shall appeal to a classical method for
fractional programming. Recall that a fractional programming problem is generally of the form

α(x∗) = max
x∈S

{
α(x) =

f(x)

g(x)

}
, (3.1)

where f(x) and g(x) are real-valued functions on a subset S of Rn, and g(x) > 0 for all x ∈ S.
Isbell and Marlow [13] observed that (3.1) is closely related to the following problem:

z(x∗, α) = max
x∈S

{z(x, α) = f(x)− αg(x)}, (3.2)

where α is a real constant, in the sense that x∗ solves (3.1) iff (x∗, α∗) solves (3.2) for α = α∗ =
α(x∗) giving the value z(x∗, α∗) = 0. They also proposed an iterative method for the case when
both f and g are linear, which generates a sequence of solutions to the latter problem until the
above optimality criterion is satisfied. When restricted to WDP, S is the family of all odd sets
of G, f(U) = 2w(U), and g(U) = |U | − 1 for each odd set U . Thus Isbell and Marlow’s method
[13] goes as follows.

Algorithm 3.1 for WDP

Step 0. Let U0 be an arbitrary odd set of G. Compute α0 =
2w(U0)
|U0|−1 and set k = 0.

Step 1. Solve the problem

z(Uk+1, αk) = max
U⊆V

|U |≥3, odd

{z(U,αk) = 2w(U)− αk(|U | − 1)}, (3.3)

obtaining a solution Uk+1.

Step 2. If z(Uk+1, αk) = 0, stop: U∗ = Uk+1 is an optimal solution. Else, set αk+1 =
2w(Uk+1)
|Uk+1|−1

and k = k + 1, return to Step 1.

Clearly, the technical part of this algorithm is to solve (3.3), which can be reduced to a
certain generalized minimum T -cut problem, as we shall prove.

Let H = (V,E) be a simple graph with a rational weight c(e) (possibly negative) on each
edge e, and let T ⊆ V with |T | even. As defined before, for each U ⊆ V , [U,U] is the set of all

8

edges of H with precisely one end in U ; we call [U,U] a cut and call c[U,U] =
∑

e∈[U,U] c(e) the

weight of [U,U]. This cut is referred to as a T -cut if |T ∩U | is odd, and as a minimum T -cut if it
is a T -cut with minimum weight. The generalized minimum T -cut problem is to find a minimum
T -cut; this problem is so named because it is a generalization of the classical minimum T -cut
problem, where c(e) ≥ 0 for all edges e. Note that if c(e) < 0 for each edge e and T = {s, t}, then
the generalized minimum T -cut problem is equivalent to finding a maximum s-t cut with respect
to H and −c. So this generalized version contains the maximum cut problem as a special case
(simply exhaust all possible pairs s, t of vertices), and hence is NP -hard in general.

Padberg and Rao [18] proposed a strongly polynomial-time algorithm for the (classical)
minimum T -cut problem, which runs in time O(n2m log(n2/m)), where n = |V | and m = |E|.
We define a few terms before describing their algorithm. Let s, t be two vertices of H and let
[U,U] be a cut. We say that [U,U] is an s-t cut if |{s, t} ∩ U | = 1. A Gomory-Hu tree for H
and c is a tree K = (V, F), such that for each edge e = st of K, [Ue, U e] is a minimum s-t cut
of H, where Ue is any of the two components of K − e; such a cut is called a fundamental cut
with respect to K. (Note that K is not required to be a subgraph of G.) Gomory and Hu [8]
showed that for each H and c, there indeed exists a Gomory-Hu tree, and that it can be found
in O(nτ) time, if for any s, t ∈ V a minimum s-t cut can be found in time τ (see also Schrijver
[20], Corollary 15.15a). In view of the complexity of the Goldberg-Tarjan algorithm [5] for the
maximum-flow problem, we obtain τ = O(nm log(n2/m)). Padberg and Rao [18] proved that
one of the fundamental cuts is a minimum T -cut of H (see also Schrijver [20], Theorem 29.6).
Thus their algorithm proceeds by first constructing a Gomory-Hu tree for H and c, and then
finding the fundamental cut that is a minimum T -cut.

Recall that the correctness of the Gomory-Hu tree argument is based on the submodular
inequality satisfied by the cut function, which is no longer valid in the presence of negative
weights. So the Padberg-Rao algorithm does not work for the generalized minimum T -cut
problem we consider. Fortunately, all edges with negative weights involved in our problem are
incident with a certain vertex; in this case, we can reduce our problem to a restricted version of
the minimum T -cut problem.

Let c be a nonnegative weight function on E, and let s, t be two distinct vertices in H. A T -
cut [U,U] of H is called an s-t T -cut if U contains s but not t. The minimum s-t T -cut problem
is to find an s-t T -cut with minimum weight. As pointed out by Grötschel, Lovász, and Schrijver
[11] (see page 191), this problem can be solved in polynomial time by using their characterization
and algorithm [10, 11] developed for minimizing submodular functions over families of sets.
Goemans and Ramakrishnan [4] (see page 507) gave a detailed description of this algorithm:
For each pair of vertices {a, b} with a ̸= t and b ̸= s in H, find a minimum {s, a}-{t, b} cut
[Sab, Sab] with Sab minimal, and then choose in the collection {Sab : a, b ∈ V, a ̸= t, b ̸= s} a set
S, such that |T ∩S| is odd and c[S, S] is minimum. Goemans and Ramakrishnan [4] proved that
(see Theorem 2 on page 502) such a set S exists and [S, S] is a minimum s-t T -cut. From this
description we see that the minimum s-t T -cut problem can be reduced to a sequence of O(n2)
minimum s-t cut problems, and hence is solvable in time O(n3m log(n2/m)).

Lemma 3.1. Let H = (V,E) be a simple graph with a rational weight c(e) (possibly negative) on
each edge e, and let T ⊆ V with |T | even. Suppose all edges with negative weights are incident
with a distinguished vertex s, if any. Then a minimum T -cut for H and c can be found in time

9

O(n2m log(n2/m)) if all weights are nonnegative and in time O(n3m log(n2/m)) otherwise.

Proof. If c(e) ≥ 0 for all edges e, then a minimum T -cut can be determined in time
O(nm log(n2/m)) by using the Padberg-Rao algorithm [18]. So we assume that c(e) < 0 for
some edges e. For convenience, we further assume that H is a complete graph, otherwise we can
add edges to H and assign 0 as their weights. Let Z = {v ∈ V : c(sv) < 0}. Then Z ̸= ∅. Let
a be a sufficiently large integer such that c(sv) + a ≥ 0 for all v ∈ Z. Let H ′ be obtained from
H by adding a new vertex t and adding an edge between t and each vertex of H with weight 0;
we still use c to denote this extension of c to H ′.

Let c′ be obtained from c by replacing c(sv) and c(vt) with c(sv)+a and c(vt)+a, respectively,
if v ∈ Z. Let [U,U] be a T -cut of H. Renaming U and U if necessary, we may assume
that s ∈ U . Then [U,U ∪ {t}] is an s-t T -cut in H ′, with c′[U,U ∪ {t}] = c[U,U] + a|Z|.
Conversely, let [U,U ∪ {t}] be an s-t T -cut of H ′. Then [U,U] is a T -cut in H, with c[U,U] =
c′[U,U ∪ {t}] − a|Z|. Since a|Z| is a fixed constant, a T -cut [U,U] with s ∈ U is minimum
in H with respect to c iff [U,U ∪ {t}] is a minimum s-t T -cut in H ′ with respect to c′. As a
minimum s-t T -cut in H ′ with respect to c′ can be determined in time O(n3m log(n2/m)) by
using Goemans and Ramakrishnan’s algorithm [4], a minimum T -cut for H and c can be found
in time O(n3m log(n2/m)).

Now we are ready to establish the correctness of Algorithm 3.1 and estimate its computational
complexity.

Lemma 3.2. If αk ≥ ∆w(G), then the optimal solution Uk+1 to problem (3.3) in Step 1 can
be found in time O(n2ℓ log(n2/ℓ)); otherwise, it can be found in time O(n3ℓ log(n2/ℓ)), where
n = n(G) and ℓ = ℓ(G).

Proof. The objective function of problem (3.3) is z(U,αk) = 2w(U) − αk(|U | − 1) =∑
v∈U dG,w(v)− w[U,U]− αk(|U | − 1). So
(1) z(U,αk) =

∑
v∈U (dG,w(v)− αk)− w[U,U] + αk.

Since αk is a fixed constant, from (1) we see that solving (3.3) is equivalent to solving:

min
U⊆V

|U |≥3, odd

w[U,U] +
∑
v∈U

(αk − dG,w(v)) (3.4)

Let us show that this problem is equivalent to a minimum T -cut problem. To justify this,
let G′ = (V ′, E′) be the weighted graph obtained from G = (V,E) by adding a dummy vertex r
and adding an edge between r and each vertex of G, such that

• for each edge e ∈ E, its weight in G′ is c(e) = w(e); and
• for each edge rv with v ∈ V , its weight in G′ is c(rv) = αk − dG,w(v).

This construction is due to Padberg and Rao [18].
Let T = V if |V | is even and T = V ∪ {r} otherwise. Note that every T -cut of G′ is of the

form [U,U ∪ {r}], where U ⊆ V with |U | odd and U = V \U . The capacity of such a T -cut is
(2) c[U,U ∪ {r}] = w[U,U] +

∑
v∈U (αk − dG,w(v)).

If αk ≥ ∆w(G), then c(e) ≥ 0 for all edges e, we can find a minimum T -cut [X,X ∪ {r}] for
G′ and c in time O(n2ℓ log(n2/ℓ)) by Padberg-Rao algorithm. Assume αk < ∆w(G). Since all
edges e with negative weights c(e), if any, are incident with r, we can find a minimum T -cut

10

[X,X ∪ {r}] for G′ and c in time O(n3ℓ log(n2/ℓ)) by Lemma 3.1, where X ⊆ V with |X| odd
and ℓ = ℓ(G) = |E∗|.

If |X| ≥ 3, then Uk+1 = X is an optimal solution to (3.4) and hence to (3.3).
If |X| = 1, letting X = {x}, then c[X,X ∪ {r}] = dG,w(x) + (αk − dG,w(x)) = αk by the

definition of c. Since for any U ⊆ V with |U | odd, c[X,X ∪ {r}] ≤ c[U,U ∪ {r}], it follows from
(2) that

(3) w[U,U] +
∑

v∈U (αk − dG,w(v)) ≥ αk.
Combining (1) and (3), we see that

(4) z(U,αk) ≤ 0 for any U ⊆ V with |U | odd.
Since z(Uk, αk) = 2w(Uk) − αk(|Uk| − 1) = 0 by the definition of αk and |Uk| ≥ 3, from (4) we
deduce that Uk+1 = Uk is an optimal solution to (3.3).

So the optimal solution Uk+1 in Step 1 can be found in time O(n2ℓ log(n2/ℓ)) if αk ≥ ∆w(G),
and in time O(n3ℓ log(n2/ℓ)) otherwise.

Lemma 3.3. Algorithm 3.1 terminates in n or fewer iterations, where n = n(G).

Proof. Recall that for each iteration k ≥ 0, if z(Uk+1, αk) = 0, then the algorithm terminates
with output U∗ = Uk+1; otherwise, z(Uk+1, αk) > 0, so 2w(Uk+1)− αk(|Uk+1| − 1) > 0. By the
definition of αk+1, we have

(1) αk+1 > αk for k ≥ 0.
Consider an iteration k ≥ 1 with z(Uk+1, αk) > 0. Clearly, z(Uk, αk−1) > 0 as well. Note

that

z(Uk+1, αk) = 2w(Uk+1)− αk(|Uk+1| − 1)

= [2w(Uk+1)− αk−1(|Uk+1| − 1)] + [αk−1(|Uk+1| − 1)− αk(|Uk+1| − 1)]

= [2w(Uk+1)− αk−1(|Uk+1| − 1)]− (αk − αk−1)(|Uk+1| − 1).

By the definitions of Uk and αk, we obtain

2w(Uk+1)− αk−1(|Uk+1| − 1)] ≤ 2w(Uk)− αk−1(|Uk| − 1) = (αk − αk−1)(|Uk| − 1).

So
(2) 0 < z(Uk+1, αk) ≤ (αk − αk−1)(|Uk| − |Uk+1|).

It follows from (1) that
(3) |Uk| > |Uk+1| for k ≥ 1.

As 3 ≤ |Uk| ≤ n for all k ≥ 1, we conclude from (3) that Algorithm 3.1 terminates within n
iterations.

Note that Theorem 1.3 follows instantly from Lemmas 3.2 and 3.3. If Γw(G) ≥ ∆w(G), then
the running time in Theorem 1.3 can be improved to O(m+ n3ℓ log(n2/ℓ)), as shown below.

Lemma 3.4. Let G be a multigraph with a positive rational weight w(e) on each edge e. Then
the following two statements hold:

(i) We can determine in time O(n2ℓ log(n2/ℓ)) whether Γw(G) ≥ ∆w(G).

(ii) If Γw(G) ≥ ∆w(G), then an optimal odd set of G can be found in time O(m+n3ℓ log(n2/ℓ)),
where n = n(G), m = m(G), and ℓ = ℓ(G).

11

Proof. (i) Let U be an optimal odd set. Since 2w(U) + w[U,U] =
∑

v∈U dG,w(v), we may
rewrite Γw(G) ≥ ∆w(G) in an equivalent form as follows:

w[U,U] +
∑
v∈U

(∆w(G)− dG,w(v)) ≤ ∆w(G). (3.5)

Let G′ = (V ′, E′) be the weighted graph obtained from G = (V,E) by adding a dummy
vertex r and adding an edge between r and each vertex of G, such that

• for each edge e ∈ E, its weight in G′ is c(e) = w(e); and
• for each edge rv with v ∈ V , its weight in G′ is c(rv) = ∆w(G)− dG,w(v).

This construction is also due to Padberg and Rao [18].
Let T = V if |V | is even and T = V ∪ {r} otherwise. Note that every T -cut of G′ is of the

form [U,U ∪ {r}], where U ⊆ V with |U | odd and U = V \U . The weight of such a T -cut is

c[U,U ∪ {r}] = w[U,U] +
∑
v∈U

(∆w(G)− dG,w(v)). (3.6)

Using (3.5) and (3.6), we deduce that Γw(G) ≥ ∆w(G) iff G′ has a T -cut [U,U ∪ {r}] with
weight c[U,U ∪ {r}] at most ∆w(G). Since we can find a minimum T -cut [X,X ∪ {r}] for G′

and c in time O(m+ n2ℓ log(n2/ℓ)), statement (i) is true.
(ii) Let [U0, U0 ∪ {r}] be a minimum T -cut for G′ and c returned by the Padberg-Rao

algorithm. Since Γw(G) ≥ ∆w(G), we have c[U0, U0 ∪ {r}] ≤ ∆w(G). It follows that 2w(U0)
|U0|−1 ≥

∆w(G). So we can choose U0 with α0 = 2w(U0)
|U0|−1 ≥ ∆w(G) in Step 0 of Algorithm 3.1. From

the proof of Lemma 3.3, we see that the sequence of values {αk} generated by Algorithm 3.1
is increasing. Thus αk ≥ α0 ≥ ∆w(G) for each iteration k and hence, by Lemma 3.2, the
optimal solution Uk to problem (3.3) in Step 1 can be found in time O(n2ℓ log(n2/ℓ)). Therefore
statement (ii) follows directly from Lemma 3.3.

4 Matchings

In this section we devise efficient algorithms for finding matchings as specified in Theorem 1.5.
Replacing G by its simplification G∗ if necessary, we again assume that G is a simple graph
throughout this section.

To facilitate a better understanding of Caprara and Rizzi’s theorem [2], we give a sketch of
their proof and construction below.

Proof sketch of Theorem 1.4. Recall that G is assumed to be a simple graph. Let
X = Ω(G). Caprara and Rizzi [2] observed that G does not contain an X-matching iff it
contains a vertex subset S, such that G\S contains strictly more than |S| odd components
containing only vertices in X (see Lemma 4 in [2]). Let T1, T2, . . . , Tp be components of G\S,
with p > |S|, |Ti| odd, and Ti ⊆ X for 1 ≤ i ≤ p. They then proved that

(1) 2w(Ti)/(|Ti| − 1) > ∆w(G) for some i,
for otherwise, 2w(Ti)/(|Ti| − 1) ≤ ∆w(G) for all i. As all vertices in each Ti have degree
∆w(G), we have ∆w(G)|Ti| = 2w(Ti) + w[Ti, T i], so w[Ti, T i] ≥ ∆w(G). Hence w[S, S] =

12

∑p
i=1 w[Ti, T i] ≥ p∆w(G) > |S|∆w(G); this contradiction establishes (1). Thus Γw(G) >

∆w(G), contradicting the hypothesis of this theorem.
To find the desired matching, Caprara and Rizzi [2] took two copies G1 = (V1, E1) and

G2 = (V2, E2) of G, and constructed a graph G̃ = (Ṽ , Ẽ), which arises from the disjoint union
of G1 and G2 by adding an edge v1v2 for each v ∈ V \X, where vi is the vertex corresponding to
v in Gi for i = 1, 2. Clearly, G contains an X-matching iff G̃ contains a perfect matching. Thus
an X-matching can be found in G in time O(

√
nℓ) (see Schrijver [20], page 423).

Lemma 4.1. Let G be a simple graph with a positive rational weight w(e) on each edge e, and
let M be a matching of G. Then we can find an OoS of G that is not saturated by M , if any, in
time O(n4ℓ log(n2/ℓ)), where n = n(G) and ℓ = ℓ(G).

Proof. For each edge e, write w(e) = p(e)
q(e) , where p(e) and q(e) are relatively prime integers.

Let ϵw(G) = 1
Πe∈E q(e) and let

Γ−
w(G) = max

{ 2w(U)

|U | − 1
: U is an odd set outside O(G)

}
.

We claim that

(1) Γ−
w(G) ≤ Γw(G)− 2ϵw(G)

(n−1)(n−2) .

To justify this, let c(f) = w(f) · Πe∈E q(e) for all f ∈ E. Then (1) is equivalent to saying
that

(2) Γ−
c (G) ≤ Γc(G)− 2

(n−1)(n−2) ,

which follows instantly from Lemma 2.9. So (1) holds.

Define w′(e) = w(e) − ϵw(G)
(n−1)(n−2) if e ∈ M and w′(e) = w(e) otherwise for each edge e.

Note that for each odd set U , if U is an OoS, then 2w′(U)
|U |−1 = Γw(G) − ϵw(G)

(n−1)(n−2) ·
2|E(U)∩M |

|U |−1 ≥
Γw(G) − ϵw(G)

(n−1)(n−2) ; otherwise,
2w′(U)
|U |−1 ≤ 2w(U)

|U |−1 ≤ Γ−
w(G) ≤ Γw(G) − 2ϵw(G)

(n−1)(n−2) , here the last

inequality follows from (1). Thus, we deduce that M restricts to a near-perfect matching on

G[U] for all OoS’s U iff Γw′(G) = Γw(G) − ϵw(G)
(n−1)(n−2) . By Theorem 1.3, an OoS U of G with

respect to w′ can be found in time O(n4ℓ log(n2/ℓ)). We thus conclude that

• if 2w′(U)
|U |−1 > Γw(G)− ϵw(G)

(n−1)(n−2) , then U is not saturated by M ;

• otherwise, all OoS’s of G are saturated by M .

Let V be a set and let X,Y be two subsets of V . We say that X and Y are crossing if the
sets X\Y , Y \X, and X ∩ Y are all nonempty. A family C of subsets of V is called laminar
if no two of them are crossing. It is well known that a laminar family C has a Venn-diagram
representation: the ith level consists of all sets X ∈ C, such that there are sets Y at the (i−1)th
level with X ⊂ Y . Thus each level consists of disjoint sets, and for each set X of level i + 1
there is a unique set of level i containing X. It follows that C has a rooted tree-representation
as well (see Schrijver [20], pages 214 and 215, for details).

The following lemma (see Schrijver [20], Theorem 3.5) gives an upper bound on the size of
a laminar family.

13

Lemma 4.2. If C is a laminar family and V ̸= ∅, then |C| ≤ 2|V |.

Laminar families will play an important role in our search for desired matchings.

Lemma 4.3. Let G be a simple graph with a positive rational weight w(e) on each edge e and
with ∆w(G) < Γw(G), and let O be a laminar family of OoS’s of G with a given Venn-diagram
representation. Then we can find an O-matching of G in time O(

√
nℓ), where n = n(G) and

ℓ = ℓ(G).

Proof. We aim to find anO-matchingM ofG in timeO(
√
nℓ) by using a recursive algorithm,

where n = n(G) and ℓ = ℓ(G).
Consider the case when |O| = 1. Let O = {X}. Then Lemma 2.4(i) guarantees the existence

of a near-perfect matching M in G[X], which can be found in time O(
√
pq) (see Schrijver [20],

page 423), where p (resp. q) is the number of vertices (resp. edges) in G[X].
Suppose |O| ≥ 2. Let X be a minimal (with respect to set inclusion) OoS in O, let H be

the multigraph obtained from G by contracting X into a single vertex x, and let H∗ be the
simplification of H. We use w∗(e) to denote the weight on each edge e of H∗. By Lemma 2.6(i),
we have ∆w∗(H∗) ≤ ∆w(G) and Γw∗(H∗) = Γw(G). Let O∗ be obtained from O by contracting
X; that is, for each Y in O with X ∩ Y = ∅, the set Y ∈ O∗; for each Y in O with X ⊂ Y and
X ̸= Y , the set (Y \X) ∪ {x} ∈ O∗. From the Venn-diagram representation of O, we see that
O∗ also admits such a representation. Hence, by Lemma 2.6(ii), O∗ is a laminar family of OoS’s
in H∗. Note that |O∗| = |O| − 1 and that ∆w∗(H∗) < Γw∗(H∗), because ∆w(G) < Γw(G).

Let M∗ be an O∗-matching in H∗ outputted by our recursive algorithm. Let u be the
vertex in X incident with an edge in M∗, if any, and an arbitrary vertex in X otherwise that has
degree less than ∆w(G) in G (see Lemma 2.3(i)). By Lemma 2.4(i), G[X] contains a near-perfect
matching N that is disjoint from u. Clearly, M = M∗ ∪N is an O-matching in G.

Let n1 (resp. n2) be the number of vertices H∗ (resp. G[X]), and let m1 (resp. m2) be the
number of edges of H∗ (resp. G[X]). Then M∗ (resp. N) can be found in time O(

√
n1m1) (resp.

O(
√
n2m2)). Therefore M can be found in time O(

√
n1m1)+O(

√
n2m2) = O(

√
n(m1+m2)) =

O(
√
nℓ).

Lemma 4.4. Let G be a simple graph with a positive rational weight w(e) on each edge e and
with ∆w(G) = Γw(G), and let O be a laminar family of OoS’s of G with a given Venn-diagram
representation. Then we can find an {Ω(G),O}-matching of G in time O(

√
nℓ), where n = n(G)

and ℓ = ℓ(G).

Proof. We aim to find an {Ω(G),O}-matching M in time O(
√
nℓ) by using a recursive

algorithm, which is a slight modification of the one employed in the proof of the preceding
lemma, where n = n(G) and ℓ = ℓ(G). At each iteration, we consider an intermediate graph H∗

and a laminar family O∗ of OoS’s in H∗, and aim to find an O∗-matching M∗ in H∗ that covers
all vertices of degree ∆w(G) (rather than ∆w∗(H∗)) in H∗, if any.

Consider the case when |O| = 1. Let O = {X}, let H be the multigraph obtained from G
by contracting X into a single vertex x, and let H∗ be the simplification of H. We use w∗(e) to
denote the weight on each edge e of H∗. If H∗ contains no vertex of degree ∆w(G), set M∗ = ∅;
otherwise, we have ∆w∗(H∗) = ∆w(G), and by Lemma 2.3(iii) Γw(G) ≥ Γw∗(H∗), so Theorem

14

1.4 guarantees the existence of a matching M∗ in H∗ that covers all vertices of degree ∆w(G).
Let u be the vertex in X incident with an edge in M∗, if any, and an arbitrary vertex in X
otherwise that has weighted degree less than ∆w(G) in G (see Lemma 2.3(i)). By Lemma 2.4,
G[X] contains a near-perfect matching N that is disjoint from u. Then M = M∗ ∪ N is an
{Ω(G),O}-matching in G, which can be found in time O(

√
nℓ).

Suppose |O| ≥ 2. Let X be a minimal (with respect to set inclusion) OoS in O, let H be
the multigraph obtained from G by contracting X into a single vertex x, and let H∗ be the
simplification of H. We again use w∗(e) to denote the weight on each edge e of H∗. By Lemma
2.6(i), we have ∆w∗(H∗) ≤ ∆w(G) and Γw∗(H∗) = Γw(G). As in the proof of the preceding
lemma, let O∗ be obtained from O by contracting X. Once again, by Lemma 2.6(i), O∗ is a
laminar family of OoS’s in H∗ with a Venn-diagram representation, and |O∗| = |O| − 1.

If H∗ contains no vertex of degree ∆w(G), then ∆w∗(H∗) < Γw∗(H∗); in this case, our re-
cursive algorithm returns an O∗-matching M∗ in H∗ (see also Lemma 4.3). If H∗ contains a
vertex of degree ∆w(G), then ∆w∗(H∗) = Γw∗(H∗); let M∗ be an O∗-matching that covers all
vertices of degree ∆w(G) in H∗ outputted by our recursive algorithm. Let u be the vertex in X
incident with an edge in M∗, if any, and a vertex in X that has degree less than ∆w(G) in G
(see Lemma 2.3(i)) otherwise. By Lemma 2.4(i), G[X] contains a near-perfect matching N that
is disjoint from u. Clearly, M = M∗ ∪ N is an {Ω(G),O}-matching in G, which can be found
in time O(

√
nℓ).

Let G = (V,E) be a multigraph with a positive rational weight w(e) on each edge e, and let
U1 and U2 be two OoS’s of G with |U1 ∩ U2| > 0 and with U1\U2 ̸= ∅ ̸= U2\U1.

If |U1∩U2| is odd, then the operation of replacing {U1, U2} with {U1∩U2, U1∪U2} (deleting
U1 ∩ U2 if its size is one) is our type-I uncrossing technique. By Lemma 2.7(iii), if a matching
of G restricts to a near-perfect matching on both G[U1 ∩ U2] and G[U1] ∪ G[U2], then it also
restricts to a near-perfect matching on G[Ui] for i = 1, 2.

If |U1 ∩ U2| is even, then the operation of replacing {U1, U2} with {U1\U2, U2\U1} (deleting
Ui\U3−i if its size is one for i = 1, 2) is our type-II uncrossing technique. By Lemma 2.8(iv), if
a matching of G covers all vertices in U1 ∩ U2 and restricts to a near-perfect matching on both
G[U1]\U2 and G[U1]\U2, then it also restricts to a near-perfect matching on G[Ui] for i = 1, 2.

Let O be a laminar family of OoS’s in G, let M be an O-matching in G that covers all
vertices of degree ∆w(G) if ∆w(G) = Γw(G), and let U be an OoS that is not saturated by M .
We apply the following algorithm to uncross the triple (O, U,M) and generate a larger laminar
family of OoS’s.

Algorithm 4.1 for uncrossing the triple (O, U,M)

Step 0. Set U0 = U and k = 0.

Step 1. If O contains no set S such that S and Uk are crossing, stop: O = O ∪ {Uk} is a
larger laminar family of OoS’s. Else, let S be such a set in O, go to Step 2 if |S ∩ Uk|
is odd, and go to Step 3 otherwise.

Step 2. Set Uk+1 = S∪Uk if |E(S∪Uk)∩M | < |S∪Uk|−1
2 and Uk+1 = S∩Uk if |E(S∪Uk)∩M | =

|S∪Uk|−1
2 otherwise. Set k = k + 1, return to Step 1.

Step 3. Set Uk+1 = S\Uk if |E(S\Uk) ∩M | < |S\Uk|−1
2 and Uk+1 = Uk\S if |E(S\Uk) ∩M | =

15

|S\Uk|−1
2 otherwise. Set k = k + 1, return to Step 1.

Let us make some remarks on this algorithm.
When |S ∩ Uk| is odd, by Lemma 2.7, S ∪ Uk is an OoS, and so is S ∩ Uk if |S ∩ Uk| ≥ 3.

Furthermore, one of the inequalities |E(S∪Uk)∩M | < |S∪Uk|−1
2 and |E(S∩Uk)∩M | < |S∩Uk|−1

2
holds, because Uk is not saturated by M . Thus a type-I uncrossing technique applies; that is,
we may replace {S,Uk} with {S ∪Uk, S ∩Uk}. For ease of implementation, at each iteration we
only replace Uk by S ∪ Uk if the first inequality holds and replace Uk by S ∩ Uk otherwise.

When |S ∩Uk| is even, by Lemma 2.8(i), we have ∆w(G) = Γw(G). So M covers all vertices
in Ω(G) by hypothesis on M . By Lemma 2.8(iii), S ∩ Uk ⊆ Ω(G) and no vertex in S ∩ Uk

is adjacent to any vertex outside S ∪ Uk. Thus M covers all vertices in S ∩ Uk. As Uk is not
saturated by M , one of the inequalities |E(S\Uk)∩M | < |S\Uk|−1

2 and |E(Uk\S)∩M | < |Uk\S|−1
2

holds. So a type-II uncrossing technique applies; we replace Uk by S\Uk in the former case and
replace Uk by Uk\S in the latter.

Lemma 4.5. Algorithm 4.1 correctly finds a larger laminar family of OoS’s of G than the
original O in time O(n3), where n = n(G).

Proof. From the algorithm, it is easy to see that the number of crossing pairs is decreased
by at least one at each iteration. So the total number of iterations is at most |O| (original
size), which is O(n) by Lemma 4.2. Since the resulting family O contains no crossing pairs, it
is laminar as well. Clearly, the running time of this uncrossing algorithm is O(n3).

Proof of Theorem 1.5. We start with a family O = {S}, where S is an arbitrary OoS
in G. Clearly, O is a laminar family with a trivial Venn-diagram representation. At a general
step, suppose we have had a laminar family O of OoS’s in G, with a given Venn-diagram
representation. By Lemmas 4.3 and 4.4, we can first find an O-matching M in G in time
O(

√
nℓ) that is also an Ω(G)-matching if ∆w(G) = Γw(G). By Lemma 4.1, we can then find an

OoS U of G that is not saturated by M , if any, in time O(n4ℓ log(n2/ℓ)). If there is no such U ,
then M is as desired. So we assume that U is available. Given the triple (O, U,M), Algorithm
4.1 enables us to generate a larger laminar family O in time O(n3). Note that, as a by-product,
we can also produce a Venn-diagram representation of the resulting O in time O(n3).

The process is repeated with this new O. By Lemma 4.2, |O| ≤ 2n, so the whole algorithm
terminates in O(n) iterations, and therefore runs in time O(n5ℓ log(n2/ℓ)).

5 Fractional Edge-Colorings

In this section we present a strongly polynomial-time algorithm for the weighted fractional
edge-coloring problem (WFECP).

Let G = (V,E) be a multigraph with a positive rational weight w(e) on each edge e, and
let M be a matching of G. We reserve the symbol b(M) for min{w(e) : e ∈ M}. For any
0 ≤ c ≤ b(M), we use G− cM to denote the weighted multigraph obtained from G by replacing
w(e) with w(e) − c for each e ∈ M (we delete all edges with zero weight in G − cM), and use
w − cM or w(c) to denote the weight function associated with G− cM .

Lemma 5.1. The following two statements are true:

16

(i) For any c with 0 ≤ c ≤ b(M), the inequality χ∗
w(c)(G− cM) ≥ χ∗

w(G)− c holds.

(ii) If χ∗
w(t)(G−tM) = χ∗

w(G)−t for some positive constant t, then χ∗
w(s)(G−sM) = χ∗

w(G)−s
for all constants s with 0 < s < t.

Proof. (i) For each vertex v ∈ Ω(G), if v is covered by M , then dG−cM,w(c)(v) = ∆w(G)− c;

otherwise, dG−cM,w(c)(v) = ∆w(G). For each OoS U , if |E(U) ∩ M | = |U |−1
2 , then 2w(c)(U)

|U |−1 =

Γw(G)− c; otherwise, 2w(c)(U)
|U |−1 = Γw(G)− 2c|E(U)∩M |

|U |−1 > Γw(G)− c. Therefore, χ∗
w(c)(G− cM) =

max{∆w(c)(G− cM),Γw(c)(G− cM)} ≥ max{∆w(G)− c,Γw(G)− c} = χ∗
w(G)− c, as desired.

(ii) Assume the contrary: χ∗
w(s)(G − sM) ̸= χ∗

w(G) − s for some s with 0 < s < t. From

(i) we deduce that χ∗
w(s)(G − sM) > χ∗

w(G) − s. By definition, there exists a vertex v such

that dG−sM,w(s)(v) = χ∗
w(s)(G − sM) or an odd set U such that 2w(s)(U)

|U |−1 = χ∗
w(s)(G − sM). If

the first case occurs, then v is not covered by M , and hence dG−tM,w(t)(v) = dG−sM,w(s)(v) >
χ∗
w(G)− s > χ∗

w(G)− t, a contradiction. If the second case occurs, then 2|E(U)∩M | < |U | − 1,

and hence s(1− 2|E(U)∩M |
|U |−1) > χ∗

w(G)− 2w(U)
|U |−1 . It follows that

t(1− 2|E(U) ∩M |
|U | − 1

) > s(1− 2|E(U) ∩M |
|U | − 1

) > χ∗
w(G)− 2w(U)

|U | − 1
,

which implies χ∗
w(t)(G − tM) ≥ 2w(t)(U)

|U |−1 = 2w(U)
|U |−1 − 2t|E(U)∩M |

|U |−1) > χ∗
w(G) − t, a contradiction

again.

Let r(M) denote the largest value of c satisfying χ∗
w(c)(G− cM) = χ∗

w(G)− c; we call r(M)

the residue of M in G. From Lemma 5.1 (ii), we see that this term is well defined. Also, it is
clear that 0 ≤ r(M) ≤ b(M).

We call M a feasible matching of (G,w) if M is
• an Ω(G)-matching when ∆w(G) > Γw(G),
• an {Ω(G),O(G)}-matching when ∆w(G) = Γw(G), and
• an O(G)-matching when ∆w(G) < Γw(G).
Let us now give a description of our algorithm.

Algorithm 5.1 for WFECP

Step 0. Set G1 = G, w1 = w, and k = 1.

Step 1. If χ∗
wk

(Gk) = 0, stop: {(Mi, ri) : 1 ≤ i ≤ k − 1} is an optimal solution. Else, find a
feasible matching Mk of (Gk,wk), and determine the residue rk of Mk in Gk.

Step 2. Set Gk+1 = Gk − rkMk, wk+1 = wk − rkMk, and k = k + 1, return to Step 1.

In the preceding section we have designed algorithms for finding feasible matchings. To
determine the residue r(M) of any given matching M in G, we propose the following algorithm,
where we assume that G−M is a simple graph, otherwise, replace G−M by its simplification.

Algorithm 5.2 for finding residue

Step 0. Set r1 = b(M), G0 = G, G1 = G− r1M , w0 = w, w1 = w − r1M , and k = 1.

17

Step 1. Compute ∆wk
(Gk) and Γwk

(Gk). If

χ∗
wk

(Gk) = max{∆wk
(Gk),Γwk

(Gk)} = χ∗
w(G)− rk,

stop: r(M) = rk.

Step 2. If ∆wk
(Gk) > Γwk

(Gk), set rk+1 = χ∗
w(G)−∆wk

(Gk). Else, find an OoS Uk in Gk with
respect to wk, and set rk+1 as the solution of the equation

2w(Uk)

|Uk| − 1
− 2r|E(Uk) ∩M |

|Uk| − 1
= χ∗

w(G)− r.

Step 3. Set Gk+1 = G− rk+1M , wk+1 = w − rk+1M , and k = k + 1, return to Step 1.

Lemma 5.2. The following statements hold for the above algorithm:

(i) rk > rk+1 ≥ 0 for all k ≥ 1.

(ii) If ∆wk
(Gk) > Γwk

(Gk) and ∆wk+1
(Gk+1) ≥ Γwk+1

(Gk+1), then Algorithm 5.2 terminates
at iteration k + 1, and r(M) = rk+1.

(iii) If ∆wk
(Gk) ≤ Γwk

(Gk), then ∆wk+1
(Gk+1) ≤ Γwk+1

(Gk+1). Furthermore, if Uk+1 is de-
fined in iteration k + 1, then

2|E(Uk+1) ∩M |
|Uk+1| − 1

>
2|E(Uk) ∩M |

|Uk| − 1
.

Proof. For simplicity, write γw(U) = 2w(U)
|U |−1 for each odd set U of G. Since rk+1 has been

defined in the algorithm, from Step 1 and Lemma 5.1(i), we see that
(1) χ∗

wk
(Gk) = max{∆wk

(Gk),Γwk
(Gk)} > χ∗

w(G)− rk.
(i) To prove that rk > rk+1 ≥ 0, consider Step 2. If ∆wk

(Gk) > Γwk
(Gk), then rk+1 =

χ∗
w(G)−∆wk

(Gk) < rk by (1). If ∆wk
(Gk) ≤ Γwk

(Gk), then
2w(Uk)
|Uk|−1 − 2rk+1|E(Uk)∩M |

|Uk|−1 = χ∗
w(G)−

rk+1 by definition. So rk+1 = (χ∗
w(G)−γw(Uk))(|Uk|−1)
|Uk|−1−2|E(Uk)∩M | ≥ 0. Since Uk is an OoS in Gk with

respect to wk, by (1), we have Γwk
(Gk) =

2w(Uk)
|Uk|−1 − 2rk|E(Uk)∩M |

|Uk|−1 > χ∗
w(G) − rk, which implies

rk > (χ∗
w(G)−γw(Uk))(|Uk|−1)
|Uk|−1−2|E(Uk)∩M | = rk+1.

(ii) Let v be a vertex of Gk with ∆wk
(Gk) = dGk,wk

(v). Observe that v is disjoint from
M , for otherwise, ∆wk

(Gk) = dG,w(v) − rk ≤ ∆w(G) − rk ≤ χ∗
w(G) − rk, contradicting (1). So

dGk+1,wk+1
(v) = dG,w(v) = dGk,wk

(v) = ∆wk
(Gk) = χ∗

w(G) − rk+1, where the last equality can
be seen from Step 2. For each vertex u covered by M , we have dGk+1,wk+1

(u) ≤ ∆w(G)− rk+1 ≤
χ∗
w(G) − rk+1. So ∆wk+1

(Gk+1) = dG,w(v) = ∆wk
(Gk) = χ∗

w(G) − rk+1. If ∆wk+1
(Gk+1) ≥

Γwk+1
(Gk+1), then

χ∗
wk+1

(Gk+1) = max{∆wk+1
(Gk+1),Γwk+1

(Gk+1)} = χ∗
w(G)− rk+1.

Thus from Step 1 we see that Algorithm 5.2 terminates at iteration k + 1 and returns r(M) =
rk+1.

(iii) By the definition of rk+1, we have

18

(2) Γwk+1
(Gk+1) ≥ 2wk+1(Uk)

|Uk|−1 = 2w(Uk)
|Uk|−1 − 2rk+1|E(Uk)∩M |

|Uk|−1 = χ∗
w(G)− rk+1,

which together with (i) implies

(3) χ∗
w(G)− rk+1 ≥ 2w(Uk)

|Uk|−1 − 2rk|E(Uk)∩M |
|Uk|−1 = Γwk

(Gk).
Let us show that
(4) ∆wk+1

(Gk+1) ≤ Γwk+1
(Gk+1).

Assume the contrary: ∆wk+1
(Gk+1) > Γwk+1

(Gk+1). Then ∆wk+1
(Gk+1) > χ∗

w(G) − rk+1

by (2). Let v be a vertex of maximum weighted degree in Gk+1. If v is covered by M , then
dGk+1,wk+1

(v) ≤ ∆w(G) − rk+1 ≤ χ∗
w(G) − rk+1, a contradiction. So v is disjoint from M , and

hence dGk+1,wk+1
(v) = dG,w(v). Therefore

(5) ∆wk
(Gk) ≥ dG,w(v) = ∆wk+1

(Gk+1) > χ∗
w(G)− rk+1.

Combining (3) and (5), we get ∆wk
(Gk) > Γwk

(Gk); this contradiction to the hypothesis estab-
lishes (4).

It remains to prove that

(6)
2|E(Uk+1)∩M |

|Uk+1|−1 > 2|E(Uk)∩M |
|Uk|−1 .

Indeed, since Uk+1 has been defined, by Step 1 and (4) we have
(7) Γwk+1

(Gk+1) = χ∗
wk+1

(Gk+1) > χ∗
w(G)− rk+1.

As Uk+1 is an OoS in Gk+1 with respect to wk+1, there holds Γwk+1
(Gk+1) =

2wk+1(Uk+1)
|Uk+1|−1 . From

(2) and (7) it follows that

(8) γw(Uk+1)− 2rk+1|E(Uk+1)∩M |
|Uk+1|−1 > γw(Uk)− 2rk+1|E(Uk)∩M |

|Uk|−1 .

Since Uk is an OoS in Gk with respect to wk, the inequality 2wk(Uk)
|Uk|−1 ≥ 2wk(Uk+1)

|Uk+1|−1 holds; that is,

(9) γw(Uk)− 2rk|E(Uk)∩M |
|Uk|−1 ≥ γw(Uk+1)− 2rk|E(Uk+1)∩M |

|Uk+1|−1 .

Combining (8) and (9), we obtain

(10) (rk − rk+1)
2|E(Uk+1)∩M |

|Uk+1|−1 > (rk − rk+1)
2|E(Uk)∩M |

|Uk|−1 .

Thus (6) follows from (i) and (10).

Lemma 5.3. Suppose G − M is a simple graph. Then Algorithm 5.2 correctly finds r(M) in
time O(n5ℓ log(n2/ℓ)), where n = n(G) and ℓ = ℓ(G).

Proof. By Lemma 5.2(ii) and (iii), we may assume that ∆wk
(Gk) ≤ Γwk

(Gk) for all k ≥ 2.

Thus the inequality
2|E(Uk+1)∩M |

|Uk+1|−1 > 2|E(Uk)∩M |
|Uk|−1 holds for all k ≥ 2. Let c be the weight function

defined on E such that c(e) = 1 if e ∈ M and 0 otherwise. Applying Lemma 2.9 to (G, c), we find

that
2|E(Uk+1)∩M |

|Uk+1|−1 − 2|E(Uk)∩M |
|Uk|−1 ≥ 2

(n−1)(n−2) for all k ≥ 1. Since 0 ≤ 2|E(U)∩M |
|U |−1 ≤ 1 for any odd

set U , Algorithm 5.2 terminates within O(n2) iterations. From the algorithm, we see that the
output is the largest constant r, with χ∗

w(r)(G− rM) = max{∆w(r)(G− rM),Γw(r)(G− rM)} =

χ∗
w(G)− r, where w(r) = w − rM , and hence it is the residue of M .
Since each of Step 1 and Step 2 takes time O(n3ℓ log(n2/ℓ)) by Lemma 3.4, the algorithm

runs in time O(n5ℓ log(n2/ℓ)).

The following two lemmas can be seen directly from the definition of residue, and the first
one can be proved easily by contradiction.

19

Lemma 5.4. Let M be a matching of G with 0 ≤ r(M) < b(M), let G′ = G− r(M)M , and let
w′ = w − r(M)M . Then one of the following statements holds:

(i) there exists a vertex v disjoint from M , such that ∆w′(G′) = dG′,w′(v) = χ∗
w(G)− r(M);

(ii) there exists an odd set U with |E(U)∩M | < |U |−1
2 , such that Γw′(G′) = 2w′(U)

|U |−1 = χ∗
w(G)−

r(M).

Proof. It suffices to show (ii) holds when (i) does not hold. Clearly, from the definition of
r(M), we have χ∗

w′(G′) = max{∆w′(G′),Γw′(G′)} = χ∗
w(G) − r(M). Since (i) does not hold,

for each vertex v disjoint from M , we see that dG,w(v) = dG′,w′(v) < χ∗
w(G) − r(M). Let t

be the largest value such that dG,w(v) + t ≤ χ∗
w(G) for each vertex v disjoint from M . Write

w(t) = w− tM . By the choice of t, we deduce that t > r(M) and ∆w(t)(G− tM) = χ∗
w(G)− t.

Assume the contrary that (ii) does not hold. Then for each odd set U with |E(U) ∩M | <
|U |−1

2 , we have 2w(U)
|U |−1 − r(M)2|E(U)∩M |

|U |−1 = 2w′(U)
|U |−1 < χ∗

w(G) − r(M). Let s be the largest value

such that 2w(U)
|U |−1 − s2|E(U)∩M |

|U |−1 ≤ χ∗
w(G)− s for each odd set U with |E(U) ∩M | < |U |−1

2 . Write

w(s) = w − sM . From the choice of s, we see that s > r(M) and Γw(s)(G− sM) = χ∗
w(G)− s.

Let λ = min{t, s} and w(λ) = w−λM . Then λ > r(M) and χ∗
w(λ)(G−λM) = max{∆w(λ)(G−

λM),Γw(λ)(G− λM)} = χ∗
w(G)− λ, which again contradicts the definition of r(M). Therefore,

when (i) does not hold, (ii) must hold.

Lemma 5.5. Let M be a feasible matching of G with residue r(M), let G′ = G− r(M)M , and
let w′ = w − r(M)M . Then the following statements hold:

(i) If ∆w(G) ≥ Γw(G), then ∆w′(G′) ≥ Γw′(G′).

(ii) If ∆w(G) = Γw(G), then ∆w′(G′) = Γw′(G′).

(iii) If ∆w(G) ≤ Γw(G), then ∆w′(G′) ≤ Γw′(G′).

Let us now analyze the computational complexity of our algorithm for WFECP.

Lemma 5.6. Algorithm 5.1 terminates in at most 2m + 5n iterations and hence runs in time
O(m2 + n5mℓ log(n2/ℓ)), where n = n(G), m = m(G), and ℓ = ℓ(G).

Proof. Recall that in the algorithm rk = r(Mk) for all k ≥ 1. We break the proof into some
simple observations.

(1) Suppose i and j are two subscripts such that ∆wk
(Gk) > Γwk

(Gk) for all k with i ≤ k ≤ j.
Then j − i+ 1 ≤ m+ n.

To justify this, note that, for each k with i ≤ k ≤ j − 1, if r(Mk) = b(Mk), then Gk+1 is
obtained from Gk by deleting at least one edge in Mk. If r(Mk) < b(Mk), then there exists a
vertex v disjoint from Mk, such that ∆wk+1

(Gk+1) = dGk+1,wk+1
(v) = χ∗

w(G)−rk by Lemma 5.4.
Thus the number of vertices with maximum weighted degree ∆wk+1

(Gk+1) in Gk+1 is strictly
greater than the number of vertices with maximum weighted degree ∆wk

(Gk) in Gk if k ≤ j−2.
Since each vertex with maximum weighted degree in Gk also has maximum weighted degree

in Gk′ for any pair {k, k′} with i ≤ k < k′ ≤ j − 1, and since G has m edges in total and each
Gk has at most n vertices with maximum weighted degree, we conclude that j − i+ 1 ≤ m+ n.

20

(2) Suppose i and j are two subscripts such that ∆wk
(Gk) < Γwk

(Gk) for all k with i ≤ k ≤ j.
Then j − i+ 1 ≤ m+ 2n.

To justify this, note that, for each k with i ≤ k ≤ j − 1, if r(Mk) = b(Mk), then Gk+1 is
obtained from Gk by deleting at least one edge in Mk. If r(Mk) < b(Mk), then there exists an

odd set U with |E(U) ∩Mk| < |U |−1
2 , such that Γwk+1

(Gk+1) =
2wk+1(U)
|U |−1 = χ∗

w(G) − r(Mk) by
Lemma 5.4. Let Ok be a laminar family of OoS’s in Gk with maximum size. Then each set in
Ok ∪{U} is an OoS in Gk+1. Thus we can apply Algorithm 4.1 to uncross the triple (Ok, U,M)
and generate a laminar family Ok+1 of OoS’s in Gk+1 with |Ok+1| > |Ok|. Let ak denote the
maximum size of a laminar family of OoS’s in Gk. Then ak+1 > ak.

Since each OoS in Gk is also an OoS in Gk′ for any pair {k, k′} with i ≤ k < k′ ≤ j − 1, and
since ak ≤ 2n by Lemma 4.2, we obtain j − i+ 1 ≤ m+ 2n.

(3) Suppose i and j are two subscripts such that ∆wk
(Gk) = Γwk

(Gk) for all k with i ≤ k ≤ j.
Then j − i+ 1 ≤ m+ 3n.

Using the same arguments as employed in the proofs of (2) and (3) and using Lemma 5.4, we
can prove that if r(Mk) < b(Mk), then the number of vertices with maximum weighted degree
∆wk+1

(Gk+1) in Gk+1 is strictly greater than the number of vertices with maximum weighted
degree ∆wk

(Gk) in Gk if k ≤ j − 2, or ak+1 > ak. So j − i+ 1 ≤ m+ 3n.
From (1)-(3) and Lemma 5.5, we conclude that the total number of iterations of Algorithm

5.1 is bounded above by the maximum possible value of j−i+1 in (1) or (2) plus that of j−i+1
in (3), which is at most 2m+ 5n.

To determine the residue rk of Mk in Gk contained in Step 1, we may replace G − M by
its simplification; or equivalently, we may assume that G − M is a simple graph. Thus, by
Lemma 5.3, at each iteration k the residue rk can be found in time O(m+n5ℓ log(n2/ℓ)), which
dominates the complexity of each iteration (see Theorems 1.4 and 1.5). Therefore Algorithm
5.1 runs in time O(m2 + n5mℓ log(n2/ℓ)).

It remains to prove that WFECP can actually be solved in a more efficient way by using a
two-phase algorithm.

Let G∗ = (V,E∗) be the simplification of G and let w∗(e) be the weight of each edge e of
G∗. In Phase I, we apply Algorithm 5.1 to WFECP on G∗ with respect to the weight function
w∗, obtaining an optimal solution {(Mi, ri) : 1 ≤ i ≤ t}. By Lemma 5.6, t = O(2ℓ+ 5n) = O(ℓ)
and the time taken by this phase is O(n5ℓ2 log(n2/ℓ)).

In Phase II, our objective is to express each Mi as the “sum” of some matchings in G; that
is, to find some matchings Mi,1,Mi,2, . . . ,Mi,s(i) in G, each of which projects into Mi in G∗,

and find some positive numbers x(Mi,1), x(Mi,2), . . . , x(Mi,s(i)), such that
∑s(i)

j=1 x(Mi,j) = ri for
1 ≤ i ≤ t and that

∑
e∈Mi,j

x(Mi,j) = w(e) for each edge e of G. The algorithm is described
below, where EG(e) stands for the set of all edges between u and v in G for each edge e = uv of
G∗.

21

Algorithm 5.3 for matching decomposition

Step 0. Set i = 1.

Step 1. If i > t, stop: {(Mi,j , x(Mi,j)) : 1 ≤ i ≤ t, j = 1, 2, . . .} is as desired. Else, set j = 1.

Step 2. If ri = 0, go to Step 4. Else, let e′ be an edge in EG(e) for each e ∈ Mi, set
Mi,j = {e′ : e ∈ Mi}, and set x(Mi,j) = min{ri, b(Mi,j)}.

Step 3. Replace G by G− x(Mi,j)Mi,j and replace w by w− x(Mi,j)Mi,j (remember to delete
edges with zero weight in the resulting G). Set ri = ri − x(Mi,j) and j = j + 1, return
to Step 2.

Step 4. Set i = i+ 1, return to Step 1.

We can establish the main result on fractional edge-colorings now.

Proof of Theorem 1.2. Let us look back at Algorithm 5.3. From the definition of x(Mi,j),
we see that at each iteration of generating Mi,j , either Mi becomes fully decomposed (which
corresponds to the case when ri = 0 in Step 2) or some edge in Mi,j gets deleted from G because
its weight becomes zero. So the total number of iterations of our algorithm (and hence the total
number of matchings Mi,j used) is O(t + m) = O(m). Therefore Algorithm 5.3 runs in time
O(mn). Combining the complexities of the two phases, we conclude that WFECP on G can be
solved in time O(mn+ n5ℓ2 log(n2/ℓ)).

References

[1] J. Asplund and J. McDonald, On a limit of the method of Tashkinov trees for edge-coloring,
Discrete Math. 339 (2016), 2231-2238.

[2] A. Caprara and R. Rizzi, Improving a family of approximation algorithms to edge color
multigraphs, Inform. Process. Lett. 68 (1998), 11-15.

[3] J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices, J. Res. Nat. Bur.
Standards Sect. B 69 (1965), 125-130.

[4] M. X. Goemans and V. S. Ramakrishnan, Minimizing submodular functions over families
of sets, Combinatorica 15 (1995), 499-513.

[5] A. Goldberg and R. Tarjan, A new approach to the maximum-flow problem, J. ACM 35
(1988), 921-940.

[6] M. Goldberg, On multigraphs of almost maximal chromatic class (Russian), Discret. Analiz.
23 (1973), 3-7.

[7] M. Goldberg, Edge-coloring of multigraphs: recoloring technique, J. Graph Theory 8 (1984),
123-137.

[8] R. Gomory and T.C. Hu, Multi-terminal network flows, J. Soc. Indust. Appl. Math. 9
(1961), 551-570.

[9] T. Jensen and B. Toft, Unsolved graph edge coloring problems, in: Topics in Chromatic
Graph Theory (L. Beineke and R. Wilson, eds.), pp. 327-357, Cambridge University Press,
2015.

22

[10] M. Grötschel, L. Lovász, A. Schrijver, “The ellipsoid method and its consequences in com-
binatorial optimization”, Combinatorica 1 (1981), 169-197.

[11] M. Grötschel, L. Lovász, A. Schrijver, Corrigendum to our paper: “The ellipsoid method
and its consequences in combinatorial optimization”, Combinatorica 4 (1984), 291-295.

[12] I. Holyer, The NP-completeness of edge-colorings, SIAM J. Comput. 10 (1981), 718-720.

[13] J. R. Isbell and H. Marlow, Attrition games, Naval Res. Logist. Quart. 2 (1956), 71-93.

[14] W. Kennedy, Fractional Edge and Total Coloring, Ph.D. Thesis, McGill University, 2011.

[15] H. Kierstead, On the chromatic index of multigraphs without large triangles, J. Combin.
Theory Ser. B 36 (1984), 156-160.

[16] A. Letchford, G. Reinelt, and D. Theis, Odd matching cut sets and b-matchings revisited,
SIAM J. Discrete Math. 22 (1987), 1480-1487.

[17] G. Nemhauser and S. Park, A polyhedral approach to edge coloring, Oper. Res. Lett. 10
(1991), 315-322.

[18] M. Padberg and R. Rao, Odd minimum cutsets and b-matchings, Math. Oper. Res. 7 (1982),
67-80.

[19] M. Padberg and L. Wolsey, Fractional covers for forests and matchings, Math. Programming
29 (1984), 1-14.

[20] A. Schrijver, Combinatorial Optimization – Polyhedra and Efficiency, Springer-Verlag,
Berlin, 2003.

[21] P. Seymour, On multi-colorings of cubic graphs, and conjectures of Fulkerson and Tutte,
Proc. London Math. Soc. 38 (1979), 423-460.

[22] M. Stiebitz, D. Scheide, B. Toft, and L. Favrholdt, Graph Edge Colouring: Vizing’s Theorem
and Goldberg’s Conjecture, John Wiley & Sons, 2012.

[23] V. Tashkinov, On an algorithm for the edge coloring of multigraphs (Russian), Diskretn.
Anal. Issled. Oper. Ser. 1 7 (2000), 72-85.

[24] V. Vizing, On an estimate of the chromatic class of a p-graph (Russian), Discret. Analiz. 3
(1964), 25-30.

[25] D. West, A short proof of the Berge-Tutte formula and the Gallai-Edmonds structure
theorem, European J. Combin. 32 (2011), 674-676.

23

6 Appendix: Comments on Kennedy’s Algorithm for FECP

The following is taken from Kennedy’s thesis [14] (see Section 8.4, pages 154 and 155).

8.4 A Combinatorial Algorithm for Fractional Edge Colouring

We remark that one can use an iterative approach to construct an optimal factional edge
coloring of any multigraph in polynomial time. (To the author’s knowledge, this algorithm
has not previously appeared in print, though Meagher notes in his M.Sc. thesis that such an
algorithm exists.) As in Kahn’s proof that the Goldberg-Seymour Conjecture is asymptoti-
cally true (see Theorem 3.2), this is more complicated than edge colouring bipartite graphs
since we need to worry about reducing both the maximum degree and the edge-density of
any odd overfull subgraph. We modify the simple iterative approach and apply the following
two reductions. We show that if there exists a subgraph H satisfying 1 < |H| < |G| and
2|E(H)|
|H|−1 = χ′

f (G), then we can reduce our problem to edge coloring H and G/H, the graph
obtained by contracting the vertices of H into a single vertex. In doing so, we exploit the
fact that |δ(H)| < ∆(G), from which it follows that χ′

f (G) = max{χ′
f (H), χ′

f (G/H)}. If no
such subgraph exists, then we can find a matching M and scalar ϵ > 0 such that when we
remove weight ϵ of M the fractional chromatic index drops by ϵ. We remove weight ϵ of M
and repeat the procedure on the reduced graph.

In the above description, χ′
f (G) is the fractional chromatic index of G, which is χ∗

w(G)
defined in our paper when w(e) = 1 for each edge e. The symbol |G| stands for the number of
vertices in G. Moreover, δ(H) is the set of all edges with precisely one end in H.

Comment 1. Following Kennedy’s algorithm, we need to first determine if there exists a
subgraph H of G satisfying 1 < |H| < |G|, 2|E(H)|

|H|−1 = χ′
f (G), and |δ(H)| < ∆(G). If yes, find

such a subgraph.
Suppose H is available. In this case, Γ(G) > ∆(G). Kennedy’s algorithm proceeds by

using the fact χ′
f (G) = max{χ′

f (H), χ′
f (G/H)}. Implicitly, it is assumed here that an optimal

fractional edge-coloring ϕ1 of H can be combined with an optimal fractional edge-coloring ϕ2 of
G/H to yield an optimal fractional edge-coloring of G.

Let U stand for the vertex set of H. To ensure that ϕ2 can be extended to an optimal
fractional edge-coloring of the whole multigraph G, what we need to combine with ϕ2 is an
optimal fractional edge-coloring ϕ3 of G/U (rather than ϕ1). However, the problem with this
approach is that the inequality Γ(G/U) ≤ Γ(G) may not hold. So the reduction employed here
does not seem to work.

Comment 2. When Γ(G) ≤ ∆(G), Kennedy’s algorithm proceeds by finding a matching M
and scalar ϵ > 0 such that when we remove weight ϵ of M the fractional chromatic index drops
by ϵ.

Consider the case when Γ(G) = ∆(G). To ensure that this approach works, M must cover
all vertices of maximum degree and saturate all optimal odd sets. However, there is no known
algorithm for finding such an M efficiently. (The reader is referred to Theorem 1.5 and its

24

proof in the current paper.) Even though such a matching M can be obtained in polynomial
time, to ensure that the whole algorithm runs in polynomial time, we have to carefully choose
the scalar ϵ involved in Kennedy’s algorithm, which is a very technical issue. Moreover, after
removing weights of matchings involved repeatedly, the original fractional edge-coloring problem
(FECP) may become the weighted fractional edge-coloring problem (WFECP) with diversified
edge weights.

We also wish to point out that the Padberg-Rao algorithm cannot be used directly to find a
subgraph H of G satisfying 1 < |H| < |G| and 2|E(H)|

|H|−1 = χ′
f (G) when Γ(G) = ∆(G).

So it does not seem that the problems with Kennedy’s algorithm can be fixed by using only
slight modifications.

25

