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Abstract 

Partial differential equations (PDEs) are among the most universal tools used 
in modelling problems in nature and man-made complex systems. Nearly all 
traditional approximation algorithms for PDEs in the literature suffer from the so-
called "curse of dimensionality" in the sense that the number of required 
computational operations of the approximation algorithm to achieve a given 
approximation accuracy grows exponentially in the dimension of the considered PDE. 
With such algorithms it is impossible to approximatively compute solutions of high-
dimensional PDEs even when the fastest currently available computers are used. In 
the case of linear parabolic PDEs and approximations at a fixed space-time point, the 
curse of dimensionality can be overcome by means of Monte Carlo approximation 
algorithms and the Feynman-Kac formula. In this talk we present an efficient machine 
learning algorithm to approximate solutions of high-dimensional PDE and we also 
prove that deep artificial neural network (ANNs) do indeed overcome the curse of 
dimensionality in the case of a general class of semilinear parabolic PDEs. In the final 
part of the talk we present some recent mathematical results on the training of neural 
networks. 
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