# Midterm Exam 1 <br> Math 1013/1804 (2013-2014, Semester 2) 

Lecture Section 2D
Dr. Benjamin Kane

Problem 1. (5 Points)
What is the limit

$$
\lim _{x \rightarrow 0}\left(x \cos ^{2}\left(\frac{1}{x}\right)\right) ?
$$

A: $\infty$
B: 0
C: 1
D: Does not exist

Answer:

## Solution.

The answer is B by the Squeeze Theorem. Here we use $|x|$ and $-|x|$ above and below $f(x):=$ $x \cos ^{2}\left(\frac{1}{x}\right)$. The relevant bound is

$$
\left|\cos ^{2}\left(\frac{1}{x}\right)\right| \leq 1
$$

Problem 2. (5 Points)
Suppose that

$$
\begin{aligned}
& f(a)=b, \\
& f(b)=c, \\
& f(c)=b-c, \\
& f(d)=b+c,
\end{aligned}
$$

and for every $r \in \mathbb{R}$ and every $s \in \mathbb{R}$ we have

$$
f(r c+s d)=r f(c)+s f(d)
$$

If $f$ has an inverse, $c \neq d$ and $d \neq-2 c$, then which of the following is $f(c-3 d)$ ?
Hint: Compute $f\left(\frac{d-c}{2}\right)$.
A: $\quad-d-3 c$
B: $c+d$
C: $-4 c$
D: None of the above

Answer: $\qquad$

## Solution.

The answer is A. Since $f$ has an inverse, it is also injective. However,

$$
f\left(\frac{d-c}{2}\right)=\frac{1}{2} f(d)-\frac{1}{2} f(c)=\frac{b+c}{2}-\frac{b-c}{2}=c
$$

Since $f(b)=c$, we must therefore have

$$
b=\frac{d-c}{2}
$$

Therefore

$$
f(c)=b-c=\frac{d-c}{2}-c=\frac{d-3 c}{2}
$$

and

$$
f(d)=b+c=\frac{d-c}{2}+c=\frac{d+c}{2} .
$$

It follows that

$$
f(c-3 d)=f(c)-3 f(d)=\frac{d-3 c}{2}-\frac{3 d+3 c}{2}=-d-3 c
$$

This means that $A$ is correct. Since $c \neq d,-d-3 c \neq-4 c$, so C is not correct. Since $d \neq-2 c$, $B$ is also not correct.

Problem 3. (5 Points)
Which of the following is/are true?
A: If a function is not continuous at $x=a$, then it is not differentiable at $x=a$.
B: All functions which are continuous at $x=a$ are also differentiable at $x=a$.
C: All functions which are differentiable at $x=a$ are also continuous at $x=a$.
D : If a function is not differentiable at $x=a$, then it is not continuous at $x=a$.
Answer: $\qquad$

## Solution.

The answer is A and C (this was given as a theorem stated in the form of A , but it was also explained in lecture that this equivalent to $\mathbf{C}$ ). For B and D , think about $f(x)=|x|$. This function is continuous at $x=0$, but it is not differentiable at $x=0$. Therefore neither B nor D is satisfied.

## Problem 4. (5 Points)

Which of the following is

$$
\frac{d}{d x}\left(\sqrt{\frac{2 x^{3}-5}{4 x^{2}-1}}\right) ?
$$

A: $\frac{8 x^{4}-6 x^{2}-40 x}{2 \sqrt{2 x^{3}-5}\left(4 x^{2}-1\right)^{\frac{3}{2}}}$
B: $\quad-\frac{\sqrt{4 x^{2}-1}}{2 \sqrt{2 x^{3}-5}}\left(\frac{8 x^{4}-6 x^{2}+40 x}{\left(4 x^{2}-1\right)^{2}}\right)$
C: $\frac{\sqrt{4 x^{2}-1}}{2 \sqrt{2 x^{3}-5}}\left(\frac{8 x^{4}-6 x^{2}+40 x}{\left(4 x^{2}-1\right)^{2}}\right)$
D: $\frac{\left(8 x^{4}-6 x^{2}+40 x\right)\left(2 x^{3}-5\right)^{-\frac{1}{2}}}{2\left(4 x^{2}-1\right)^{\frac{3}{2}}}$

Answer: $\qquad$

## Solution.

The answer is C and D . One gets C directly from the chain rule and then the quotient rule (after simplifying). By rewriting

$$
\frac{1}{\sqrt{x^{3}-4}}=\frac{1}{\left(x^{3}-4\right)^{\frac{1}{2}}}=\left(x^{3}-4\right)^{-\frac{1}{2}}
$$

this is the same as D .
Note that B would be obtained if the quotient rule is used backwards (the minus sign is in the wrong place). For A, there is a minus sign incorrect next to $16 x$.

## Problem 5. (5 Points)

What is

$$
\lim _{x \rightarrow 0} \sin ^{2}\left(\frac{1}{x}\right) ?
$$

A: 1
B: $\infty$
C: 0
D: Does not exist.

Answer:

## Solution.

The answer is D. The function $f(x):=\sin ^{2}\left(\frac{1}{x}\right)$ alternates between 0 and 1 infinitely often as $x$ gets close to 0 . It therefore does not get "closer and closer" to a given value, so the limit doesn't exist.
To see this slightly more formally, suppose that the limit existed. Let's call the limit

$$
L:=\lim _{x \rightarrow 0} \sin ^{2}\left(\frac{1}{x}\right)
$$

Since $\sin ^{2}\left(\frac{1}{x}\right)=0$ whenever $\frac{1}{x}=\pi n$ with $n \in \mathbb{Z}$, for

$$
x_{n}=\frac{1}{\frac{\pi}{2}}
$$

we have

$$
\sin ^{2}\left(\frac{1}{x_{n}}\right)=0
$$

Since $x_{n}$ gets smaller and smaller (closer and closer to 0 ) as $n$ gets bigger, $\sin ^{2}\left(\frac{1}{x_{n}}\right)$ must get closer and closer to $L$ (by the definition of the limit).
However, for $y_{n}=\frac{1}{\frac{\pi}{2}+2 \pi n}$ (for every $n \in \mathbb{Z}$ ), we have

$$
\sin ^{2}\left(\frac{1}{y_{n}}\right)=1
$$

Since $y_{n}$ gets smaller and smaller as $n$ gets bigger and bigger, $\sin ^{2}\left(\frac{1}{y_{n}}\right)$ must also get closer and closer to $L$. But now both 0 and 1 must be close to $L$, which is impossible. It follows that our original assumption that the limit exists must be incorrect/wrong/faulty. Therefore, the limit does not exist.

Problem 6. (5 Points)
Which of the following statements is/are true?

A The vertical line test determines whether a graph is the graph of a function or not.
B The horizontal line test determines whether a function has an inverse.
C The vertical line test determines whether a function is injective.
D The horizontal line test determines whether a graph is the graph of a function or not.
Answer: $\qquad$

## Solution.

The answer is A and B. Part A is correct because the vertical line test makes sure that there is a unique (i.e., exactly one) output for each input. The answer B is correct because the horizontal line test checks whether a function is injective, and we saw in lecture that this is equivalent to a function having an inverse.
Part C is incorrect. For example $f(x):=x^{2}$ passes the vertical line test, but is not injective (for example, $f(1)=f(-1))$.
Part D is incorrect. It is the vertical line test that checks whether a function is the graph of a function or not.

Problem 7. (5 Points)
Suppose that

$$
f(x):=\left(\sqrt{x^{4}+24 x+4}\right)\left(2 x^{7}+(r-3) x+3\right) .
$$

For which of the following values of $r \in \mathbb{R}$ is

$$
f^{\prime}(0)=0 ?
$$

A: 2
B: 3
C: -6
D: 12

Answer: $\qquad$

## Solution.

The correct answer is C. By the product rule, we have

$$
f^{\prime}(x)=\left(\sqrt{x^{4}+24 x+4}\right)\left(14 x^{6}+r-3\right)+\frac{4 x^{3}+24}{2 \sqrt{x^{4}+4}}\left(2 x^{7}+(r-3) x+3\right) .
$$

Therefore

$$
f^{\prime}(0)=\sqrt{4}(r-3)+\frac{24}{2 \sqrt{4}}(3)=2 r+12 .
$$

Therefore $f^{\prime}(0)=0$ if and only if $r=-6$.
The answer B is what you would get if you incorrectly thought that the product rule was

$$
\frac{d}{d x}(g(x) h(x))=g^{\prime}(x) h^{\prime}(x) .
$$

The answer A is what you would get if you incorrectly thought that the product rule was

$$
\frac{d}{d x}(g(x) h(x))=g(x) h(x)+g^{\prime}(x) h^{\prime}(x)
$$

The answer D is what you would get if you incorrectly thought that the product rule was

$$
\frac{d}{d x}(g(x) h(x))=g(x) h^{\prime}(x)-h(x) g^{\prime}(x)
$$

## Problem 8. (5 Points)

Which of the following graphs is the graph of a function? The entire graph is what you can see (lines do NOT continue forever, for example)!


Answer: $\qquad$

## Solution.

By the vertical line test, we see that both C and D are graphs of functions, while A and B are not.

Problem 9. (10 Points)
Show that there exists at least one $x \in \mathbb{R}$ for which

$$
x=1-\sin (x) .
$$

## Solution.

Consider the function $f(x)=x-1+\sin (x)$. Since $x-1$ and $\sin (x)$ are both continuous, $f(x)$ is also continuous (for all $x \in \mathbb{R}$ ). Furthermore,

$$
f(0)=0-1+\sin (0)=-1
$$

and

$$
f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}-1+\sin \left(\frac{\pi}{2}\right)=\frac{\pi}{2}-1+1=\frac{\pi}{2}
$$

Therefore $f(0)<0$ and $f\left(\frac{\pi}{2}\right)>0$. By the Intermediate Value Theorem, we conclude that there exists at least one $c \in\left(0, \frac{\pi}{2}\right)$ for which $f(c)=0$. However, if $f(c)=0$, then

$$
0=c-1+\sin (c) \Longrightarrow c=1-\sin (c)
$$

Therefore, this $c$ satifies the conditions required.

Problem 10. (10 Points)
Suppose that $y$ is a function of $x$ which satisfies

$$
x y-\cos (x) \sin (y)=0
$$

(a) Solve for $\frac{d y}{d x}$ as a function of $x$ and $y$ (that is to say, you should give a function so that if someone gives you $x$ and $y$, you can tell them $\frac{d y}{d x}$ ).
(b) Find $\frac{d y}{d x}$ at the point where $x=0$ and $y=0$.

## Solution.

(a) We use implicit differentiation. By the product rule, we have

$$
x \frac{d y}{d x}+y+\sin (y) \sin (x)-\left(\cos (y) \frac{d y}{d x}\right) \cos (x)=0
$$

We now solve for $\frac{d y}{d x}$. Combining the terms with $\frac{d y}{d x}$ yields

$$
\frac{d y}{d x}(x-\cos (y) \cos (x))=-y-\sin (y) \sin (x)
$$

Therefore

$$
\frac{d y}{d x}=\frac{-y-\sin (y) \sin (x)}{x-\cos (y) \cos (x)}
$$

(b) For $x=0$ and $y=0$, we have

$$
\frac{d y}{d x}=\frac{-0-0}{0-1 \cdot 1}=0
$$

