HKU Mathematics Rambling in Maths The Mathematical Key to unlocking the mysteries of Cryptography

Dr. Ben Kane

24 March, 2018

A Problem

- You want to do a **BIG** calculation, e.g. with (LOTS of) DNA data (數據)
- Looking for patterns (can save lives!)
- Your computer is **slow**...
- Share the work?
- Problem: Is it **ethical** to send?

Cloud Computing: Basic idea

• Send the data to the "cloud" 🧠

Cloud does some calculations

Answers come back; combine answers centrally

A Concern

Privacy issues (can you trust others?)

• Proposal: Can we find a way to have them do the calculations, but **never see** the data?

• We could "**mess**" with the data

• Can they still do calculations?

Another Problem

An authority (bank) keeps track of/protects money.

• Online cryptocurrency (e.g. Bitcoin): Shared protection, decentralized.

Bitcoin and Blockchain

- Transaction made
- Collectively agree
- Added to "chain"
- Cannot be reverted

Credit: Amir Rosic, Blockgeeks.com

Important that it is secure (cryptography)

Encryption

- Problems:
 - 1. Can we send data safely? (我們可以安全發送數據馬?)
 - a) Is someone listening?
 - b) Is the receiver trusted?
 - 2. If the data is safely sent ...
 - a) Can they do calculations? Is it accurate? (計算可以做嗎?)
 - b) Can they figure out/guess the original data?
 - 3. When the data comes back... (當數據發送回來...)
 - ^{a)} Can we get back the answer and/or original info?
 - b) Is it the same as if we did it ourselves? Is it really faster?

Fundamental Rule of Encryption

- Can we scramble it?
- Idea of (modern) Encryption (加密的想法):
- Find problem
 - That is hard to solve,
 - easy to check.
 - We'll see some examples later.

Back to the beginning...

• Goal: Send an important message

• Problem: Trust your courier? Man in the middle?

A long time ago...

Caesar's solution

• Caesar Cipher: Every letter gets a number

А	В	С	D	Е	F	G	Н	I	J	Κ	L	М
1	2	3	4	5	6	7	8	9	10	11	12	13

 N
 O
 P
 Q
 R
 S
 T
 U
 V
 W
 X
 Y
 Z

 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26

• Shift with modular (clock) arithmetic:

Modular arithmetic

- On a clock, the times 3am and 3pm agree.
- Some call it 03:00 and 15:00.
- So we "pretend" that 3 and 15 are the same.
- Our day is a 24 hour repeating clock.
- Repeating after 26?

Modular arithmetic

• Example:

- Let's consider a clock with 8 hours.
- If you start a class at 7 o'clock and it runs for 2 hours, what time will it say on the clock at the end? Try yourself...
- 7+2=9, so …
- It says **1 o'clock**.
- We write $7 + 2 \equiv 1 \pmod{8}$.

Modular arithmetic

- Another example:
- Every non-leap year has 365 days.
- If your birthday was on Wednesday last year, what day will it be this year (not a leap year)?
- Day of week repeats every 7 days ("7-day clock")
- $364 = 52 \times 7$ ("clock rotates" 52 times)
- Remainder 1, so ...
- Thursday

Some exercises

1. Find $0 \le x < 2$ if $12 \equiv x \pmod{2}$.

2. Find $0 \le x < 11$ if $46 \equiv x \pmod{11}$.

3.Find $0 \le x < 7$ if $82 \equiv 2x \pmod{7}$.

Caesar's solution

- Example: Shift by 10 (spaces removed?):
 - Secret message: attack at midnight
 - Number code: 1(20)(20)13(11) 1(20) (13)93(14)978(20)
 - Caesar sends: kddkmu kd wsnxsqrd
- Unscrambled at other end:

Caesar's solution

- Example: Shift by 20
 - Secret message: Hi
 - Number code: 89
 - Add 20: (28)(29)
 - You send (try yourself): ... ("Clock" has 26 hours)
 - You send: bc

Exercise

4.Break Caesar's code to find the secret message! The encrypted message is "clxmwtyr ty xlesd".

Luckily, as a loyal attendee, you get the secret decoder information! Thanks for coming!

The shift is 11.

Problem

- What if someone figures out the code?
 - Someone steals: lddlnu ld wsnxsqrd
 - Simple to reverse.
 - Look for patterns/ make guesses: (many 'd' in code, 't' and 'e' common in English)
- Other options: Instead of shift, maybe just replace?
 - Still many letters are common. Hmm...
 - Is there a better code?

Another try

- Maybe try randomly sending {a,...,z}to{a,...,z}?
- Spartan army:

• Common letters still a problem.

A whole new world / alphabet

NO 12	PQR	S.I.S	1 X I	72085
811 238 21	4-97 5-16 -	355 340 14	3 205 Sta	279 820 448
702 359 33	8 595 233	527 618 24	4 436 63.	615 813
genera l.uæ	1) lien x	108 OB.	19 pre	rque sent, dre, tion. 30
get 575	35 lime	728 objet 1.	ion	texte
gla	55 le Prince, de	e 201 absorver, 121 observer,	ation 129 pri	rcipaliua 52 romator. r 132
gli olo vre	25 le Marquis d	e 111 obtenir . 898 oc canon	249 pro	bain. 2.2
gna sls.	75 le Sieur de . 35 loin	19 00up er.	1 V 1000	fic, or
gnu gno	15 Lon	119 affice, Ler,	4	pos, ition. s. 382 vision, s
gowern, er, ment	16 tuy 618	239 dient.	499 pro 529 pru	up
grand	15 mo	\$. 298 our 9 . 939 aut		liver, c 512 1, sance 572
gro gro	65 meo	279 at	2300	v
gua gue	135 magasin, s.	519 one,		ite
gui de . s	95 maina - 159	- 529 ap pose, 10		nd
Pap.	16 mal, ade, r je 56 mand er	1. by ordonn er		rence
60	136 maniere, s.	739 OF	100 que	561. 1
baut	200 marche	. 169 ou r.	- 36+ que	caon
pape, t, le, tane	56 marceba f.c.	102 . 829 011017.	240 gui	U
aler	796 meilleur	. 179 La.	270 guo	R. 100 163

Non-unique replacement

- Maybeatral wandometral sending {ti,?...,z} to {a,...,z}?
- Replace 'a' with multiple choices
 - 'a' → 'b', 'c', 'd'
 - 'b' → 'b', 'e', 'f'
- Example: Great Cipher/Grand Chiffre
 - Replace syllables with similar-sounding choices
 - Unbroken for long time

Non-unique replacement

- Why is it better?
 - A lot more choices
 - Frequency counting harder ('e' common in French)
- Problems?
 - Need to figure out how/when to switch
 - Indicator of switch might make it less secure
 - Example: Capital letters for language switch
 - Regular switching also can be detected

Polycipher

- Example: Take different shifts.
 - Shift 3, then 11, then 5, then 3, then 11, then 5, then ...
- Input: "Here is a message"
 - Take out spaces/capitals: "hereisamessage"
 - Shift: 'h'+3 = 'k', 'e'+11='p', 'r'+5 = 'w'...:
- Output: "kpwhtxdxjvdfjp"
- Can still find patterns of repeated strings:
 - "the" appears a lot if you have many phrases.

A new challenge...

Non-unique replacement, large numbers

- Try to increase **number** of choices? (增加選擇)
- Example: Enigma machine

Rotates, so 'aaaa' can become 'rfgw'
 (轉子旋轉了→不同的字母出來了)

Enigma

- Plugboard: Fixed matching ('a' to 't')
- First rotor ('a' to 'x'), second rotor ('x' to 'r'), third rotor ('r' to 'd').
- Reflector ('d' to 'l'),
- Rotors ('l' to 'z' to 'b' to 'm')
- Output is 'm'.
- Right rotator turns (add with carry)

Enigma Decryption

- Process reverses itself:
 - If rotor sends 'd' to 'x', then it sends 'x' to 'd'.
 - Gives extra symmetry (like a mirror)
- Key observation: If reflector sends 'd' to 'd', then message comes back unchanged.
 - Designed never to send 'a' to 'a'
 - Reduces total number of possibilities (a lot)

Downfall of Enigma

- Number of permutations (reorderings) of 26 letters: $26! \approx 4.0 \times 10^{26}$
- Number of permutations of 26 letters, none repeated:
 - 25 choices for 'a', 24 choices for 'b', ..., overall: $25! \approx 1.5 \times 10^{25}$
- Other symmetries help, too. (a matched to b is b matched to a, etc.)
- Common signals helped.

A big jump forward...

Computer age

- Computer search not expected (沒預料到電腦)
- Computers search differently
- Naïve search still often not enough
- Algorithm designs, search for weakenesses
- Beginnings/foundations of computer science
- Eventually split off of math departments
- Something new needed for cryptography

One-Way Functions

- Idea: What if there is an operation which is easy to do, but hard to reverse?做簡單, 顛倒計算很難
- Doing the operation is encryption, and reversing it is decryption.
- Authorized people know a secret that allows reversal.
- Example:
 - Multiply 3571 and 6997 to get 24986287.
 - Given 24986287, can you find 3571 and 6997?

Prime Factorization and RSA

- Question: Given an integer, can you find all of its factors (those integers which divide it equally)?
- Prime numbers are those whose only factors are 1 and themselves. (素數)
- Break a number up into primes (try to divide by 2, then 3, then 5, ...): Prime factorization.
- RSA core idea: Multiplying primes is fast/easy, prime factoring is slow/hard.
 - Can you even find all possible primes?

Prime numbers

• Sieve of Eratosthenes (Greece, c. 276BC – 195BC):

	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

"Sieve of Eratosthenes animation". Licensed under CC BY-SA 3.0 via Wikimedia Commons

Prime Factorization

- Example: Consider 144
- Even: Divide by 2: now 2×72 .
- Even: Divide by 2: now $2^2 \times 36$.
- Even: Divide by 2: ...

• Eventually get: $2^4 \times 9 = 2^4 \times 3^2.$

Prime Factorization

- Example: Consider 481
- Not Even: ... Try 3
- 481 ÷ 3: Remainder 1. No. Try 5
- 481 ÷ 5: Remainder 1. No. Try 7
- 481 ÷ 7: Remainder 5. No. Try 11
- 481 ÷ 11: Remainder 8. No. Try 13
- $481 \div 13 = 37$:

 $481 = 13 \times 37$

Prime Factorization

- What about bigger numbers?
- Try 132523411?
- Not 2, not 3, not 5, not 7, ...,
- ..., 1039 divides!

$132523411 = 1039 \times 127549$

• Q: Is <u>127549</u> prime?

RSA

- Problem: Relatively slow if primes are big.
- Basic algorithm:
 - Pick 2 large primes.
 - Multiply them together and give answer to others.
 - Others use this as "public key" to encrypt information
 - You know secret primes ("private key").

Passing of messages

- Alice wants to send Bob a message.
- Alice knows Bob's public key (everyone does)
- Alice encrypts/locks information with public key
- Bob uses the private key to decrypt/unlock
- People in middle can see message, but it is locked

RSA details

• Encryption:

- Turn message M into number m (e.g., 'a'=1, 'b'=2,...)
- Public key is *e* and some (special) number N
- Compute

 $c = m^e (mod N)$

- Here "mod N" means r equals N + r (clock arithmetic)
- Answer *c* is sent
- "Special" N and secret d satisfy: $m = m^{de} \pmod{N}$

RSA details

- Further details:
 - *N* is product of two primes
 - *e* is (basically) random
 - Given *e* and primes, can compute *d*
 - Uses Fermat's little Theorem: If p is prime, then

 $m^p = m(mod \ p)$

- Decrypt: Take $c^d = m^{ed} = m(mod N)$
- Security: Not easy to find *d* from *e* and *N*.

RSA Example

- Primes 17 and 13.
- Product is $N = 17 \times 13 = 221$
- Fermat's little Theorem:
 - $m^{16} = 1 \pmod{17}$
 - $m^{12} = 1 \pmod{13}$
 - 1 times 1 is 1 (also works with modular arith.), so

•
$$m^{48} = (m^{16})^3 = 1 \pmod{17}$$

•
$$m^{48} = (m^{12})^4 = 1 \pmod{13}$$

$$m^{48} = 1 \pmod{17 \times 13}$$

RSA Example

- Choose say e = 11
- Want $de = 1 \pmod{48}$
- Solve:
 - $d = 3 \pmod{16}$ (so d = 3, d = 19, or d = 35),
 - $d = 2 \pmod{3} (\text{so } d = 35)$
- Message m = 12 < 221
 - $12^{11} = 743008370688 = 142 \pmod{221}$
 - $142^{35} = \dots = 12 \pmod{221}$

Other one-way functions

- Another choice: ECC (elliptic curve cryptography)
- Elliptic curve is solutions to (f(x) poly. degree 3) $C: y^2 = f(x)$
- Example:

$$C: y^2 = x^3 - x$$

Points (x, y) on curve: (0,0), (1,0), (-1,0), $(2, \sqrt{6}), (2, -\sqrt{6}), ...$

Elliptic curves

• Can graph the solutions:

By GYassineMrabetTalk CC BY-SA 3.0,

- Between two points, there is a unique line
- Connects to one other point on the curve

Elliptic curves: Addition (加法)

• Addition on points:

- Between two points, there is a unique line
- Connects to one other point on the line
- Rotate around *x*-axis:
- Extra point "at infinity"
 - Vertical lines add to infinity
 - Infinity like zero (0_c)
 - Why?

Elliptic curves: Addition and zero

• Addition with "infinity" :

- Line between P = (x, y) and infinity vertical
- Other point on line is (x, -y)
- Rotate around *x*-axis:
- Gives (x, y) = P!
- So adding infinity does nothing
- Just like zero in addition!

• Example:

- Curve: $C: y^2 = x^3 + x 1$
- Points (1,1), (2,3)
- Line between points:

• slope
$$=\frac{3-1}{2-1}=2$$
,

•
$$y = 2x + b \to 1 = 2(1) + b \to y = 2x - 1$$

• Both equations at same time: $(2x - 1)^2 = x^3 + x - 1 \rightarrow x^3 - 4x^2 + 5x - 2 = 0$ $(x - 1)^2(x - 2) = 0$

• Overall:

$$(1,1) +_{C} (2,3) = (1,-1)$$

- Minus: flip over *x*-axis: $(1,1) +_c (1,-1) = 0_c$.
- So define $-_{\mathcal{C}}(1,1) \coloneqq (1,-1)$
- Given a point P, can we compute $2_C P = P +_C P, 3_C P = P +_C P +_C P, ...?$

• Remember example: $(1,1) +_C (2,3) = -_C (1,1),$ $2_C (1,1) = -_C (2,3) = (2,-3)$

- Geometric interpretation of $2_C P$?
- Line with point and itself?

Kefa Rabah, *Theory and Implementation of Elliptic Curve Cryptography*, Journal of Applied Sciences **5** (2005), 604-633.

- Example: Find $3_c(1,1)$
 - Curve: *C*: $y^2 = x^3 + x 1$
 - Points $(1,1), (2,-3) = 2_c(1,1)$
 - Line between points:

• slope
$$=\frac{-3-1}{2-1}=-4$$
,

• $y = -4x + b \to 1 = -4(1) + b \to y = -4x + 5$

• Both equations at same time: $(-4x + 5)^2 = x^3 + x - 1 \rightarrow$ $x^3 - 16x^2 + 41x - 26 = 0$ $\rightarrow (x - 1)(x - 2)(x - 13) = 0$

- Overall:
 - $3_{\rm C}(1,1) = (1,1) +_{\rm C} (2,-3) = (13,-47)$
- Can continue like this ...

- Find $4_c(1,1)$, $5_c(1,1)$, ... Elliptic curve 的乘法.
 - Easy to **teach a computer** to repeat the process!
 - Question: How **fast** is calculation of $100_C(1,1)$?

• Add 100 times (**100 sums**, kind of slow)

• But ... Can easily **double**: $2_C(1,1) +_C 2_C(1,1) = 4_C(1,1)$ $4_C(1,1) +_C 4_C(1,1) = 8_C(1,1)$:

- Compute $100_C(1,1) = 64_C(1,1) + 32_C(1,1) + 4_C(1,1)$
- Only double 6 times to get 64... 8 sums!

Binary numbers to the rescue

- Can write number in binary: $abcd_2 = a \times 2^3 + b \times 2^2 + c \times 2^1 + d \times 2^0$
- So $1011_2 = 2^3 + 2 + 1 = 11$
- For $(2^n)_C(1,1)$, only need to double *n* times
- Note that 10 is **a lot** less than $2^{10} = 1024$
- Many less calculations, so faster

Elliptic curve cryptography

- One way function?
- Given 1000_CP , can you find *P*?
- Easy in one way, seemingly hard in the other way
- Advantages/disadvantages of ECC:
 - Adv.: Smaller keys generally, fast to create
 - Dis.: Complicated to implement
- Used in Blockchain.

Key Sharing?

- Can we share a key?
- Session keys:
 - If I send you my key:
 - others can see it
 - Someone steals your message, replaces with own
 - Send you my key, encrypted with your public key
 - You decrypt with private key
 - Maybe someone in the middle pretended to be me?
 - You send back confirmation encrypted with my public key

Back to the future...

- Suppose you have everyone's biological data.
- You want to compute some statistics/information.
- Your computer takes too long.
- You need help, but who can you **trust**?
- Idea: What if others could do your calculations, but get no data?
- How would you do that? Is it even possible?

- You give the data m in encrypted form (say E(m))
- You want others to be able to add and multiply, but never see *m*.
- What if

$$E(m_1 + m_2) = E(m_1) + E(m_2), E(m_1 \times m_2) = E(m_1) \times E(m_2)?$$

• This is *homomorphic Encryption*.

Partial Homomorphic Encryption

- Is homomorphic cryptography possible? Do we know some examples?
- Caesar (shift by 1): $E(m_1 + m_2) = m_1 + m_2 + 1,$ $E(m_1 + m_2) = m_1 + 1 + m_2 + 1,$ $E(m_1 \times m_2) = m_1 \times m_2 + 1$ $E(m_1) \times E(m_2) = (m_1 + 1) \times (m_2 + 1)$

Some methods partially work:

• RSA: $E(m_1 \times m_2) = E(m_1) \times E(m_2)$

- There are some rules ...
- Needs to be safe ...
 - Can't guess based on saving lots of encrypted messages
 - In particular, everything is zeros/ones
 - So can't guess what is zero.
- A problem:

$$E(m) = E(m+0) = E(m) + E(0)$$

$$\rightarrow E(0) = 0$$

- Seems impossible to "hide" zero.
- Can it be "mostly true"?
- If "mostly true", is the answer accurate?
- Should we give up?

Somewhat homomorphic encryption

- Gentry (2009): Added some "noise" so that encryption is almost homomorphic.
- Is it accurate?
 - Noise is "small" compared to main answer
- Allows many additions/multiplications
- Builds off of this to get homomorphic encryption:
 - Noise cancellation method
 - Takes a lot of operations, though

- A trick:
 - Is zero really zero?
 - 12 o'clock is midnight, but also noon.
 - What if someone doesn't know # hours on clock?
 - We pick a number of hours, but don't tell anyone!
 - They read 26 o'clock, but don't know the "real time"
- Pass info one way ...
- Interpret the info differently yourself ...

- Now we have "a lot of zeros"
 - 0 is zero
 - 12 is zero
 - 24 is zero
 - 36 is zero
 - •••
- Problem: Pattern too simple
 - Can be guessed
 - Not safe

- Need to combine with other ideas
 - Pass some data...
 - Do something ...
 - Get a value (secret)
 - Now apply modular arithmetic (secret)
- Need to make sure others can't compute value
 - Otherwise they can guess pattern in modular arith.
 - Starts to fall apart piece-by-piece
 - Some new ideas out there ...

