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Abstract. We describe an algorithm for computing the inner product between a holomorphic
modular form and a unary theta function, in order to determine whether the form is orthogonal
to unary theta functions without needing a basis of the entire space of modular forms and without
needing to use linear algebra to decompose this space completely.

1. Introduction

In this paper, we are interested in the decomposition of holomorphic modular forms. Suppose that
f is a weight 3/2 holomorphic modular form on some congruence subgroup Γ. One can decompose
f into an Eisenstein series component E, a sum Ψ of (cuspidal) unary theta functions (see (2.6)
for the definition), and a cusp form g in the orthogonal complement of unary theta functions. This
is an orthogonal splitting with respect to the usual Petersson inner product, since the Eisenstein
series is orthogonal to cusp forms. It is thus natural to try to compute the individual pieces. The
Eisenstein series component may be computed by determining the growth of f towards the cusps.
Furthermore, its Fourier coefficients may be explicitly computed, and these generally constitute the
main asymptotic term of the Fourier coefficients of f . In a number of combinatorial applications,
this is quite useful in determining the overall growth of the coefficients of f . For example, if f is
the generating function for the number of representations by a ternary quadratic form Q, then the
coefficients of the Eisenstein series count the number of local representations, and the fact that this
is (usually) the main asymptotic term implies an equidistribution result about the representations
of integers in the genus of Q (i.e., those quadratic forms which are locally equivalent to Q). This
equidistribution result does not always hold, however; the coefficients of Ψ grow as fast as the
coefficients of E within their support, although they are only supported in finitely many square
classes (known on the algebraic side of the theory of quadratic forms as spinor exceptional square
classes). Using an upper bound of Duke [6] for the coeffients of g, Duke and Schulze-Pillot [7]
combined these ideas to conclude an equidistribution result for the primitive representations by
every element of the genus away from these spinor exceptional square classes.

It is natural to ask whether similar results hold true when the quadratic form is replaced with a
totally positive quadratic polynomial (i.e., a form constructed as a linear combination of a positive-
definite integral quadratic form, linear terms, and the unique constant such that the quadratic
polynomial only represents non-negative integers and represents zero). One such example is sums
of polygonal numbers. For n ∈ Z, the nth generalized m-gonal number is

pm(n) :=
(m− 2)n2 − (m− 4)n
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and for a, b, c ∈ N we investigate sums of the type

P (x, y, z) = Pa,b,c(x, y, z) := apm(x) + bpm(y) + cpm(z),

where x, y, z ∈ Z. We consider a, b, and c to be fixed and vary x, y, and z. We package P into a
generating function ∑

x,y,z∈Z
e2πiP (x,y,z)τ

with τ ∈ H := {α ∈ C : Im(α) > 0}; this is known as the theta function for P . We may then
investigate the Fourier coefficients of this theta function in order to attempt to understand which
integers are represented by P . It is actually more natural to complete the square to rewrite

pm(x) =
(2(m− 2)x− (m− 4))2

8(m− 2)
− (m− 4)2

8(m− 2)

Adding an appropriate constant, we obtain a theta function for a shifted lattice L+ν, where ν ∈ QL
inside a quadratic space with associated quadratic norm Q; quadratic forms are simply the case
when ν = 0 (or equivalently, ν ∈ L). These theta functions are again modular forms and the unary
theta functions govern whether the local-to-global principle fails finitely or infinitely often.

Theorem 1.1. Suppose that L is a ternary positive-definite lattice and ν is a vector in the associated
quadratic space over Q. Suppose further that the congruence class (MZ + r) ∩ N0 is primitively
represented locally by the associated quadratic form Q on L + ν and denote by aL+ν(Mn + r) the
number of vectors of length Mn+r in L+ν (i.e., the number of µ ∈ L+ν for which Q(µ) = Mn+r).
If

ΘL+ν(τ) :=
∑

µ∈L+ν

e2πiQ(µ)τ

is orthogonal to unary theta functions, then

{n ∈ Z :6 ∃µ ∈ L+ ν, Q(µ) = Mn+ r}
is finite.

Remark. If ΘL+ν is orthogonal to unary theta functions for every L+ ν in a given genus, then one
obtains an equidistribution result for representations of Mn + r (for n sufficiently large, but with
an ineffective bound) across the entire genus in the same manner as for the case of quadratic forms.

There are a number of cases where Theorem 1.1 has been employed to show that certain quadratic
polynomials P are almost universal (i.e., they represent all but finitely many integers). In the case
of triangular numbers (that is to say, m = 3), the first author and Sun [10] obtained a near-
classification which was later fully resolved by Chan–Oh [5]; further classification results about
sums of triangular numbers and squares were completed by Chan–Haensch [4]. More recently, the
case a = b = c = 1 with arbitrary m was considered by Haensch and the first author [8]. In
[8], a number of almost universality results are obtained by taking advantage of the fact that the
structure of modular forms may be used to determine that certain congruence classes are not in
the support of the coefficients of all of the unary theta functions in the same space, and hence
directly obtaining the orthogonality needed for Theorem 1.1. This was generalized by the second
author and Mehta [11] to include many more cases of a, b, c where the same phenomenon implies
orthogonality. We next consider a case which does not immediately follow from this approach.

Proposition 1.2. Every sufficiently large positive integer may be written in the form p8(x) +
3p8(y) + 3p8(z) with x, y, z ∈ Z. In other words, p8(x) + 3p8(y) + 3p8(z) is almost universal.

In order to show Proposition 1.2, we use Theorem 1.1 and show that the theta function ΘL+ν

associated to p8(x)+3p8(y)+3p8(z) is orthogonal to all unary theta functions. One can numerically
compute the inner product with unary theta functions directly from the definition as an integral
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over a fundamental domain of SL2(Z)\H or use a method called unfolding to write it as infinite
sums involving products of the Fourier coefficients of ΘL+ν and those of the unary theta functions.
However, this is not sufficient for our purposes, since we need to algebraically verify that the inner
product is indeed zero and the first method is only a numerical approximation while the second
method yields an infinite sum. Since the associated space of modular forms is finite-dimensional
and there is a natural orthogonal basis of Hecke eigenforms, one can decompose the space explicitly
to determine whether this orthogonality holds, but the linear algebra involved is usually computa-
tionally expensive and is not feasible in many cases. We hence use a pairing of Bruinier and Funke
[3] to rewrite the inner product as a finite sum. The basic idea is to use Stokes’ Theorem to rewrite
the inner product as a (finite) linear combination of products of the Fourier coefficients of ΘL+ν

and coefficients of certain “pre-images” of the unary theta functions under a natural differential
operator. In order to find these pre-images, we employ work of Zwegers [17], who showed that these
pre-images are related to the mock theta functions of Ramanujan.

The paper is organized as follows. In Section 2, we give some preliminary information about
modular forms and harmonic Maass forms. In Section 3, we describe how to compute the inner
product using the Bruinier–Funke pairing and construct explicit pre-images of unary theta functions
using [17] (see Theorem 3.4). Finally, in Section 4, we prove Theorem 1.1 and Proposition 1.2.

2. Preliminaries

We recall some results about modular forms and harmonic Maass forms.

2.1. Basic definitions. Let H denote the upper half-plane, i.e., those τ = u+ iv ∈ C with u ∈ R
and v > 0. The matrices γ =

(
a b
c d

)
∈ SL2(Z) (the space of two-by-two integral matrices with

integer coefficients and determinant 1) act on H via fractional linear transformations γτ := aτ+b
cτ+d .

For
j(γ, τ) := cτ + d,

a multiplier system for a subgroup Γ ⊆ SL2(Z) and weight r ∈ R is a function ν : Γ 7→ C such that
for all γ,M ∈ Γ (cf. [12, (2a.4)])

ν(Mγ)j(Mγ, τ)r = ν(M)j(M,γτ)rν(γ)j(γ, τ)r.

The slash operator |r,ν of weight r and multiplier system ν is then

f |r,νγ(τ) := ν(γ)−1j(γ, τ)−rf(γτ).

A harmonic Maass form of weight r ∈ R and multiplier system ν for Γ is a function f : H → C
satisfying the following criteria:

(1) The function f is annihilated by the weight r hyperbolic Laplacian

∆r := −ξ2−r ◦ ξr,
where

ξr := 2ivr
∂

∂τ
. (2.1)

(2) For every γ ∈ Γ, we have
f |r,νγ = f. (2.2)

(3) The function f exhibits at most linear exponential growth towards every cusp (i.e., those
elements of Γ\(Q ∪ {i∞})). This means that at each cusp % of Γ\H, the Fourier expansion of
the function f%(τ) := f |r,νγ%(τ) has at most finitely many terms which grow, where γ% ∈ SL2(Z)
sends i∞ to %.

If f is holomorphic and the Fourier expansion at each cusp is bounded, then we call f a holomorphic
modular form. Furthermore, if f is a holomorphic modular form and vanishes at every cusp (i.e.,
the limit limτ→i∞ f%(τ) = 0), then we call f a cusp form.
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2.2. Half-integral weight forms. We are particularly interested in the case where r = k + 1/2
with k ∈ N0 and, in the example given in Theorem 1.1 that motivates this study we may choose Γ
to be an intersection between the groups

Γ0(M) :=

{(
a b
c d

)
∈ SL2(Z) : M | c

}
,

Γ1(M) :=

{(
a b
c d

)
∈ SL2(Z) : M | c, a ≡ d ≡ 1 (mod M)

}
for some M ∈ N divisible by 4. The multiplier system we are particularly interested in is given in
[13, Proposition 2.1], although we do not need the explicit form of the multiplier for this paper.

If TN ∈ Γ with T := ( 1 1
0 1 ), then by (2.2) we have f(τ + N) = f(τ), and hence f has a Fourier

expansion (cf (v;n) ∈ C)

f(τ) =
∑

n�−∞
cf (v;n)e

2πinτ
N . (2.3)

Moreover, f is meromorphic if and only if cf (v;n) = cf (n) is independent of v. For holomorphic
modular forms, an additional restriction n ≥ 0 follows from the fact that f is bounded as τ → i∞.
There are similar expansions at the other cusps. One commonly sets q := e2πiτ and associates the
above expansion with the corresponding formal power series, using them interchangeably unless
explicit analytic properties of the function f are required.

2.3. Theta functions for quadratic polynomials. In [13, (2.0)], Shimura defined theta func-
tions associated to lattice cosets L + ν (for a lattice L of rank n) and polynomials P on lattice
points. Namely, he defined

ΘL+ν,P (τ) :=
∑

x∈L+ν

P (x)qQ(x),

where Q is the quadratic map in the associated quadratic space. We omit P when it is trivial. In
this case, we may write rL+ν(`) for the number of elements in L+ ν of norm ` and we get

ΘL+ν(τ) =
∑
`≥0

rL+ν(`)q`. (2.4)

Shimura then showed (see [13, Proposition 2.1]) that ΘL+ν is a modular form of weight n/2 for
Γ = Γ0(4N2) ∩ Γ1(2N) (for some N which depends on L and ν) and a particular multiplier. Note
that we have taken τ 7→ 2Nτ in Shimura’s definition. To show the modularity properties, for
γ =

(
a b
c d

)
∈ Γ, we compute

2Nγ(τ) = 2N
aτ + b

cτ + d
=
a(2Nτ) + 2Nb
c

2N (2Nτ) + d
=

(
a 2Nb
c

2N d

)
(2Nτ). (2.5)

Since γ ∈ Γ, we have(
a 2Nb
c

2N d

)
∈ Γ(2N) :=

{
γ =

(
a b
c d

)
∈ SL2(Z) : γ ≡ I2 (mod N)

}
⊂ Γ1(2N),

so we may then use [13, Proposition 2.1]. Specifically, the multiplier is the same multiplier as Θ3,

where Θ(τ) :=
∑

n∈Z q
n2

is the classical Jacobi theta function.
We only require the associated polynomial in one case. Namely, for n = 1 and P (x) = x, we

require the unary theta functions (see [13, (2.0)] with N 7→ N/t, P (m) = m, A = (N/t), and
τ 7→ 2Nτ)

ϑh,t(τ) = ϑh,t,N (τ) :=
∑
r∈Z

r≡h (mod 2N
t

)

rqtr
2
, (2.6)
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where h may be chosen modulo 2N/t and t is a squarefree divisor of 2N . These are weight 3/2
modular forms on Γ0(4N2) ∩ Γ1(2N) with the same multliplier system as ΘL+ν .

3. The Bruinier–Funke pairing

In this section, we describe how to compute the inner product with unary theta functions. We
again begin by noting the decomposition of a weight 3/2 modular form f as

f = E + Ψ + g,

where E is an Eisenstein series, Ψ is a linear combination of unary theta functions, and g is a cusp
form in the orthogonal complement of unary theta functions. Since the decomposition above is
an orthogonal splitting with respect to the Petersson inner product, one may instead compute the
inner product

〈f,Θj〉
for each unary theta function Θj . Recall that Petersson’s classical definition of the inner product
between two holomorphic modular forms f and h (for which fh is cuspidal) is (here and throughout
τ = u+ iv)

〈f, h〉 :=
1

[SL2(Z) : Γ]

∫
Γ\H

f(τ)h(τ)v
3
2
dudv

v2
,

where [SL2(Z) : Γ] denotes the index of Γ in SL2(Z). While one may be able to approximate the
integral well numerically, we are interested in obtaining a precise (algebraic) formula for the inner
product (and hence an explicit formula for Ψ). In order to do so, we rely on a formula of Bruinier
and Funke (see [3, Theorem 1.1 and Proposition 3.5]) known as the Bruinier–Funke pairing. The
basic premise is to use Stokes’ Theorem in order to compute the inner product in a different way.
Suppose that we have a preimage H under the operator ξ1/2, where

ξκ := 2ivκ
∂

∂τ

is a differential operator which sends functions satisfying weight κ modularity to functions satisfying
weight 2−κ modularity. Note that since h is holomorphic and ξ1/2(H) = h, the fact that the kernel
of ξ2−κ is holomorphic functions implies that the function H is necessarily annihilated by the weight
κ hyperbolic Laplacian (for κ = 1/2)

∆κ = −ξ2−κ ◦ ξκ.

If we further impose that H is modular of weight κ on Γ and has certain restrictions on its singular-
ities in Γ\(H∪Q∪{i∞}) (see Section 2 for further details), then we obtain a harmonic Maass form.
Due to the fact that Γ is a congruence subgroup, it contains TN for some N , where T := ( 1 1

0 1 ).
Similarly, if γ% ∈ SL2(Z) sends i∞ to a cusp %, then TN% is contained in γ−1

% Γγ% for some N% ∈ N;
here N% is known as the cusp width at %. Using this, one can show that it has a Fourier expansion
around each cusp % of Γ of the shape

H%(τ) =
∑
n∈Z

cH,%(v;n)e
2πinτ
N% ,

for some cH,%(y;n) ∈ C, and where H% := H|κγ% is the expansion around %. Note however, that
since H is not holomorphic, the Fourier coefficients may depend on v. Solving the differential
equation ∆κ(H) = 0 termwise yields a natural splitting of the Fourier expansion into holomorphic
and non-holomorphic parts, namely

H%(τ) = H+
% (τ) +H−% (τ)
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with

H+
% (τ) =

∑
n�−∞

c+
H,%(n)e

2πinτ
N%

H−% (τ) = c−H,%(0)v2−κ +
∑
n�∞
n6=0

c−H,%(n)Γ

(
2− κ,−4πnv

N%

)
e

2πinτ
N% ,

where now the coefficients are independent of v. It is these Fourier coefficients which are used by
Bruinier and Funke to compute the inner product explicitly in [3, Proposition 3.5]. To state their
formula, let SΓ denote the set of cusps and write

f%(τ) =
∑
n≥0

cf,%(n)e
2πinτ
N% .

Theorem 3.1 (Bruinier–Funke). We have

〈f, h〉 =
1

[SL2(Z) : Γ]

∑
%∈SΓ

∑
n≥0

cf,%(n)c+
H,%(−n).

Theorem 3.1 is algebraic, precise, and is actually a finite sum since there are only finitely many n
for which c+

H,%(−n) 6= 0, allowing one to explicitly compute the inner product. We will assume that
sufficiently many Fourier coefficients of f are known, or in other words the input to our algorithm
will be the Fourier coefficients cf,%(n) and the function h, which in our case will be a unary theta
function. The assumption that the expansions are known at every cusp may at first seem to be a
somewhat strong assumption, since in combinatorial applications we often only know the expansion
at one cusp. However, when f = ΘL+ν is the theta function for a shifted lattice, Shimura [13] has
computed the modularity properties for all of SL2(Z) and one obtains modularity for SL2(Z) in a
vector-valued sense, where the components of the vector are the functions f%. In other words, given
just the theta function f , one can determine the functions f% as long as one can write γ% explicitly
in terms of the generators S :=

(
0 −1
1 0

)
and T of SL2(Z). Although this rewriting is well-known, we

provide the details for the convenience of the reader.

Lemma 3.2. Given % = a/c, there is an algorithm to determine γ% ∈ SL2(Z) explicitly in terms of
S and T .

Proof. First, we need to construct γ% for which γ%(i∞) = a/c. In other words, we want a matrix(
a b
c d

)
∈ SL2(Z). Since ad − bc = 1 and a and c are necessarily prime, we see that b and −c

are precisely the coefficients from Bezout’s theorem. We next construct the sequence of S and T
recursively as follows.

Let γ0 := γ%. At step j + 1 (with j ∈ N0) we will construct γj+1 inductively/recursively from γj
by multiplying either by S or by STm for some m ∈ Z, and eventually obtain γ` = ±Tm for some
step ` and m ∈ Z. Suppose that

γj =

(
aj bj
cj dj

)
.

If cj = 0, then aj = dj = ±1 and ` = j with γj = ±T±bj , and reversing back through the recursion
gives the expansion of γ0 in terms of S and T , so we are done.

If cj 6= 0, then we choose r ∈ Z such that |aj + rcj | is minimal (if there are two choices, i.e, if
aj + rcj = cj/2 for some r, then we take this choice of r). We then set

γj+1 := ST rγj−1 = S

(
aj + rcj bj + rdj

cj dj

)
=

(
−cj −dj

aj + rcj bj + rdj

)
.
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Note that |aj + rcj | ≤ |cj |/2 by construction, so the entry in the lower-left corner is necessarily
smaller at step j + 1 than it was at step j. Therefore the algorithm will halt after a finite number
of steps. �

In order to determine the inner product 〈f, h〉, it remains to compute the preimage H and
compute its Fourier expansion. Luckily, motivated by Ramanujan’s mock theta functions, Zwegers
[17] constructed pre-images of the unary theta functions using a holomorphic function µ which he
“completed” to obtain a harmonic Maass form (actually, he is even able to view his completed
object as a non-holomorphic Jacobi form, and one obtains the pre-images of unary theta functions
by plugging in elements of Q + Qτ for the elliptic variable z). Choosing z to be an appropriate
element of Q+Qτ , one may compute the expansions at all cusps by viewing Zwegers’s function as
a component of a vector-valued modular form. As a first example, Zwegers himself computed the
corresponding vector when the unary theta function is given by

Θ0(τ) :=
∑
n∈Z

(
n+

1

6

)
e3πi(n+ 1

6)
2
τ .

This is related to the third order mock theta function f(q), and played an important role in
Bringmann and Ono’s [1] proof of the Andrews–Dragonette conjecture. One may find the full
transformation properties listed in [1, Theorem 2.1]. Specifically, let

f(q) := 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · ·(1 + qn)2

and

ω(q) :=

∞∑
n=0

qn
2+2n

(1− q)2(1− q3)2 · · ·(1− q2n+1)2 .

Setting (q := e2πiτ )

F (τ) = (F0(τ), F1(τ), F2(τ))T :=
(
q−

1
24 f(q), 2q

1
3ω
(
q

1
2

)
, 2q

1
3ω
(
−q

1
2

))T
,

we have the following.

Theorem 3.3 (Zwegers [17]). There is a vector-valued harmonic Maass form H = (H0,H1,H2)T

whose meromorphic part is F (component-wise). The harmonic Maass form satisfies

ξ 1
2

(H0) = Θ0

and the modularity properties for SL2(Z) given by

H(τ + 1) =

ζ−1
24 0 0
0 0 ζ3

0 ζ3 0

H(τ),

H
(
−1

τ

)
=
√
−iτ

0 1 0
1 0 0
0 0 −1

H(τ),

where ζn := e2πi/n.

Pre-images of a more general family of unary theta functions were investigated by Bringmann
and Ono in [2]; these are connected to Dyson’s rank for the partition function, and the modularity
of the relevant functions is given in [2, Theorem 1.2], with the full vector-valued transformation
properties given in [2, Theorem 2.3].
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Theorem 3.3 is the first case of a much more general theorem which follows by combining the re-
sults in Zwegers’s thesis [17]. To describe this result, for a, b ∈ C and τ ∈ H, define the holomorphic
function

µ(a, b; τ) :=
eπia

θ(b; τ)

∑
n∈Z

(−1)neπi(n
2+n)τ+2πinb

1− e2πinτ+2πia
,

and also define the real-analytic function

R(a; τ) :=
∑

ν∈ 1
2

+Z

(
sgn(ν)− E

((
ν +

Im(a)

v

)√
2v

))
(−1)ν−

1
2 e−πiν

2τ−2πiaν ,

where sgn(x) is the usual sign function,

θ(z; τ) :=
∑

ν∈ 1
2

+Z

eπiν
2τ+2πiν(z+ 1

2),

and

E(z) := sgn(z)
(
1− β

(
z2
))

with (for x ∈ R≥0)

β(x) :=

∫ ∞
x

t−
1
2 e−πtdt.

One then defines

µ̃(a, b; τ) := µ(a, b; τ) +
i

2
R(a− b; τ). (3.1)

The function µ̃ is essentially a weight 1/2 harmonic Maass form.

Theorem 3.4. For h, t,N ∈ N with t | 2N , the function

Fh,t,N (τ) := −e−2πi(h−Nt )
2
τ µ̃

(
ht−N

2N

8N2τ

t2
,−1

2
;
8N2τ

t2

)
is a weight 1/2 harmonic Maass form on Γ := Γ1(4N/t)∩Γ0(16N2/t2) with some multiplier system.
Furthermore, it satisfies

ξ 1
2

(Fh,t,N ) = ϑh,t,N (τ).

Proof. The modularity properties of Fh,t,N follow by [17, Theorem 1.11]. In particular, for γ =(
a b
c d

)
∈ Γ and γ′ =

(
a 8N2b/t2

ct2/(8N2) d

)
, a change of variables in [17, Theorem 1.11 (2)] together

with (2.5) implies that (with v(γ′) := η(γ′τ)/(j(γ′, τ)η(τ)) denoting the multiplier system of the

Dedekind η-function η(τ) := q1/24
∏
n≥1(1− qn))

Fh,t,N
(
aτ + b

cτ + d

)
= −e−2πi(h−Nt )

2 aτ+b
cτ+d µ̃

ht−N
2N

a
(

8N2

t2
τ
)

+ 8N2b
t2

ct2

8N2

(
8N2

t2
τ
)

+ d
,−1

2
;
a
(

8N2

t2
τ
)

+ 8N2b
t2

ct2

8N2

(
8N2

t2
τ
)

+ d


= −e−2πi(h−Nt )

2
(aτ+b
cτ+d)v(γ′)−3(cτ + d)

1
2 e−πi

ct2

8N2

(
ht−N

2N

(
a

(
8N2

t2
τ

)
+ 8N2b

t2

)
+ cτ+d

2

)2

cτ+d

× µ̃
((

ht

2N
− 1

2

)(
a

(
8N2

t2
τ

)
+

8N2b

t2

)
,−cτ + d

2
;
8N2τ

t2

)
. (3.2)

We next use the fact that a ≡ 1 (mod 4N/t) to obtain

ht−N
2N

(
a

(
8N2

t2
τ

)
+

8N2b

t2

)
≡ ht−N

2N

8N2τ

t2
(mod Z

8N2τ

t2
+ Z),
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while 16N2/t2 | c and d ≡ 1 (mod 4N/t) imply that

cτ + d

2
≡ 1

2
(mod Z

8N2τ

t2
+ Z),

Hence by [17, Theorem 1.11 (1)], we have

µ̃

(
ht−N

2N

(
a

(
8N2

t2
τ

)
+

8N2b

t2

)
,−cτ + d

2
;
8N2τ

t2

)
= (−1)(a−1)ht−N

2N
+(h−Nt ) 4Nb

t
− ct2

16N2−
d−1

2 e
πi

(
(a−1)ht−N

2N
+ ct2

16N2

)2
8N2τ
t2

+2πi
(

(a−1)ht−N
2N

+ ct2

16N2

)(
ht−N

2N
8N2τ
t2

+ 1
2

)

× µ̃
(
ht−N

2N

8N2τ

t2
,−1

2
;
8N2τ

t2

)
. (3.3)

The power of −1 modifies the multiplier system accordingly. Plugging back into (3.2), we see that
it remains to simplify the exponentials to match the power of τ .

The parameter of the exponential (or rather, the part which involves τ) is 2πi
cτ+d times

−
(
h− N

t

)2

(aτ + b)− ct2

16N2

(
ht−N

2N

(
a

(
8N2

t2
τ

)
+

8N2b

t2

)
+
cτ + d

2

)2

+
1

2

(
(a− 1)

ht−N
2N

+
ct2

16N2

)2
8N2τ

t2
(cτ + d) +

(
(a− 1)

ht−N
2N

+
ct2

16N2

)
ht−N

2N

8N2τ

t2
(cτ + d)

= −
(
h− N

t

)2

(aτ + b)− c(aτ + b)2

(
h− N

t

)2

− ct

4N

(
h− N

t

)
(aτ + b)(cτ + d)− ct2

64N2
(cτ + d)2

+ (a− 1)2

(
h− N

t

)2

τ(cτ + d) +
t

4N
(a− 1)

(
h− N

t

)
cτ(cτ + d) +

t2

64N2
c2τ(cτ + d)

+ 2(a− 1)

(
h− N

t

)2

τ(cτ + d) +
t

4N

(
h− N

t

)
cτ(cτ + d). (3.4)

We consider (3.4) as a polynomial in h−N/t and simplify the coefficients of each power of h−N/t.
We first combine and simplify the terms in (3.4) with (h − N/t)2. Using ad − bc = 1, these are
(h−N/t)2 times

− (aτ + b)− c(aτ + b)2 + (a− 1)2τ(cτ + d) + 2(a− 1)τ(cτ + d)

= −aτ−b−2abcτ−b2c+a2dτ+dτ−cτ2−2dτ = −aτ−b−2abcτ−b(ad−1)+a(1+bc)τ+dτ−cτ2−2dτ

= −abcτ − abd+ dτ − cτ2 − 2dτ = −(cτ + d)(τ + ab).

Thus the exponential corresponding to the terms with (h−N/t)2 is

e
2πi
cτ+d(h−Nt )

2
(cτ+d)(−τ−ab) = e−2πi(h−Nt )

2
τe−2πi(h−Nt )

2
ab.

The first factor is precisely the factor in front of Fh,t,N and the second contributes to the multiplier
system.

We next simplify the terms in (3.4) with h−N/t. These give(
h− N

t

)
(cτ + d)

ct

4N
(−(aτ + b) + (a− 1)τ + τ) = −b

(
h− N

t

)
(cτ + d)

ct

4N
.

The resulting exponential contributes to the multiplier system since the factor cτ + d cancels.
Finally, we see directly that the terms in (3.4) which are constant when considered as a polynomial

in h−N/t cancel. Therefore, the simplification of (3.4) yields that the exponential is

e−2πi(h−Nt )
2
τe−2πi(h−Nt )

2
abe−2πib(h−Nt ) ct

4N . (3.5)
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Altogether, plugging (3.3) and (3.5) into (3.2) (note that in the simplification we left out one
exponential term in (3.3) because it was independent of τ) yields

Fh,t,N
(
aτ + b

cτ + d

)
= v(γ′)−3(cτ + d)

1
2 (−1)(a−1)ht−N

2N
+(h−Nt ) 4Nb

t
− ct2

16N2−
d−1

2

× e−2πi(h−Nt )
2
abe−2πib(h−Nt ) ct

4N e
πi

(
(a−1)ht−N

2N
+ ct2

16N2

)
Fh,t,N (τ). (3.6)

We see from (3.6) that Fh,t,N has the desired modularity properties.
We next compute the image under ξ1/2. Since the µ-function is holomorphic on the upper half-

plane, it is annihilated by ξ1/2. Therefore, plugging in the definition (3.1) of µ̃, we have

ξ 1
2

(Fh,t,N (τ)) = − 1

2i
ξ 1

2

(
e−2πi(h−Nt )

2
τR

(
8N2

t2

(
ht

2N
− 1

2

)
τ +

1

2
;
8N2τ

t2

))
.

Noting that we have

Im
(

8N2

t2

(
ht
2N −

1
2

)
τ + 1

2

)
Im
(

8N2τ
t2

) =
ht

2N
− 1

2
,

we then employ [17, Theorem 1.16] to rewrite this as

ξ 1
2

(Fh,t,N (τ)) = − 1

2i
ξ 1

2

∫ i∞

− 8N2τ
t2

g ht
2N

,0(z)√
−i
(
z + 8N2τ

t2

)dz
 , (3.7)

where

ga,b(τ) :=
∑
ν∈a+Z

νeπiν
2τ+2πibν .

The remaining integral is what is known as a non-holomorphic Eichler integral, and is easily eval-
uated by the Fundamental Theorem of Calculus as

ξ 1
2

∫ i∞

− 8N2τ
t2

g ht
2N

,0(z)√
−i
(
z + 8N2τ

t2

)dz
 = −2iv

1
2

8N2

t2

g ht
2N

,0

(
8N2τ
t2

)
2N
t

√
−2i(τ − τ)

= −2i
2N

t
g ht

2N
,0

(
2N

t
τ

)
.

Therefore (3.7) becomes

ξ 1
2

(Fh,t,N (τ)) =
2N

t
g ht

2N
,0

(
8N2

t2
τ

)
.

We finally rewrite

2N

t
g ht

2N
,0

(
8N2

t2
τ

)
=

2N

t

∑
ν∈ ht

2N
+Z

νe
8πiN2ν2τ

t2 =
∑

ν∈h+ 2N
t
Z

νe2πiν2τ = ϑh,t,N (τ).

�

In order to prove Proposition 1.2, we are particularly interested in the case of N = 3 and h = 2. It
turns out that congruence conditions immediately rule out all of the possible unary theta functions
except for the form

ϑχ−3(τ) :=
∑
n∈Z

χ−3(n)ne2πin2τ , (3.8)

where χd(n) :=
(
d
n

)
is the usual Kronecker–Jacobi character (also known as the extended Legendre

symbol). We rewrite this form in the notation from this paper as follows.
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Lemma 3.5. We have

ϑχ−3(τ) = ϑ2,1,3

(τ
4

)
.

Remark. By Theorem 3.4, Lemma 3.5 together with the chain rule implies that

ξ 1
2

(
F2,1,3

(τ
4

))
=

1

4
ϑχ−3(τ).

Proof. We compute

ϑχ−3(τ) =
∑
n∈Z

(3n+ 1)ne2πi(3n+1)2τ −
∑
n∈Z

(3n− 1)ne2πi(3n−1)2τ

=
∑
n∈Z

(3n+ 1)ne2πi(3n+1)2τ −
∑
n∈Z

(−3n− 1)ne2πi(−3n−1)2τ

= 2
∑

n≡1 (mod 3)

ne2πin2τ =
∑

n≡2 (mod 6)

ne2πin2 τ
4 = ϑ2,1,3

(τ
4

)
.

�

4. An application to lattice theory

4.1. An application. To motivate this study, we first prove Theorem 1.1.

Proof of Theorem 1.1. We decompose ΘL+ν as an Eisenstein series E, a unary theta function, and
a cusp form g which is orthogonal to unary theta functions. Since the unary theta function is trivial
by assumption, we have

ΘL+ν = E + g.

We then compare the coefficients of E+g. Since every element of MZ+r is primitively represented
locally, the local densities increase as a function of n. The product of the local densities were shown
in [16] (and independently in [14]) to be the Fourier coefficients of E, paralleling the famous Siegel–
Weil formula. Since ν ∈ QL, there exists R ∈ N for which Rν ∈ L. Note further that (denoting
the localization at the prime p by Lp := L⊗Qp) for each prime p - R, we have ν ∈ Lp (because R
is invertible in Qp) Therefore

Lp + ν = Lp.

In other words, the local density at p for L + ν and for L agree. Denoting the local densities for
L+ ν by βp and the local densities of L by αp, we have∏

p

βp =

∏
p|R βp∏
p|R αp

∏
p

αp.

The product
∏
p αp is known to be a (Hurwitz) class number for an imaginary quadratic field (see

[9, Theorem 86]) and these are known to grow faster than n
1
2
−ε by Siegel’s [15] famous (ineffective)

lower bound for the class numbers. On the other hand, Duke [6] has shown that the coefficients of

g grow slower than n3/7+ε. Therefore, the coefficients of E are the main asymptotic term and they
are positive. For n sufficiently large the coefficient must be positive, yielding the claim. �

It is worth noting that the Fourier coefficients of the unary theta function grow at the same rate
as the coefficients of the Eisenstein series. In other words, when the unary theta function is not
trivial, it is often the case that the set investigated in Theorem 1.1 is actually infinite. One such
example is worked out in [8, Theorem 1.5] with an applications to sums of polygonal numbers, and
a proposed algebraic explanation for this behavior involving the spinor genus of L + ν is given in
[8, Conjecture 1.3].
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4.2. An individual case. In individual cases, one may combine Theorem 1.1 with Theorem 3.4 to
show that certain quadratic polynomials are almost universal. We demonstrate one such example
in Proposition 1.2.

Proof of Proposition 1.2. Let L+ν be the corresponding shifted lattice. By Theorem 1.1, it suffices
to show that the inner product of ΘL+ν against all theta functions in the same space is trivial. For
the diagonal lattice corresponding to the quadratic form Q(x, y, z) = x2 + 3y2 + 3z2, an inclusion-

exclusion argument implies that (recalling that Θ(τ) =
∑

n∈Z q
n2

)

ΘL+ν(τ) = (Θ(τ)−Θ(9τ)) (Θ(3τ)−Θ(27τ)) (Θ(3τ)−Θ(27τ)) ,

from which one sees that ΘL+ν is actually a weight 3/2 modular form on Γ0(108). Specifically, in
Shimura’s notation, we have

ΘL+ν(τ) = θ

6τ ;

3
9
9

 ,

3 0 0
0 9 0
0 0 9

 , 9, 1

 ,

where (for A a symmetric n× n matrix, h ∈ Zn satisfying Ah ∈ NZn, and P a spherical function)

θ(τ ;h,A,N, P ) :=
∑
x∈Zn

x≡h (mod N)

P (x)e
2πiτ
2N2

txAx. (4.1)

Here tx denotes the transpose of x. We write hL and AL for the corresponding vector and lattice
in our case and omit P = 1 in the notation in the following.

A straightforward check of congruence conditions implies that the only relevant theta function is
ϑχ−3 defined in (3.8). By Lemma 3.5, Theorem 3.4, and Theorem 3.1, it suffices to show that, for
Γ = Γ0(108), ∑

%∈SΓ

∑
n≥0

cΘL+ν ,%(n)cF2,1,3(τ/4),%(−n) = 0, (4.2)

where we abuse notation to write cF2,1,3(τ/4),%(−n) as the (−n)th coefficient of F2,1,3(τ/4). In order

to compute the expansions at other cusps, we apply S and T repeatedly (using Lemma 3.2) and
note that [17, Theorem 1.11 (2)] yields the fully modularity properties of F2,1,3(τ/4) as a vector-
valued modular form, while ΘL+ν behaves as a vector-valued modular form on the full modular
group by [13, (2.4) and (2.5)]. Specifically, we have (for arbitrary h satisfying ALh ∈ 9Z3)

θ

(
−1

z
;h,AL, 9

)
=

∑
k (mod 9)

ALk≡0 (mod 9)

e
2πi
27

(k1h1+3k2h2+3k3h3)θ(z; k,AL, 9) ,

θ(z + 2; ;h,AL, 9) = e
2πi
27 (h2

1+3h2
2+3h2

3)θ(z;h,AL, 9) .

Note that the restriction ALh ≡ 0 (mod 9) is equivalent to 3 | h1, so the exponential in the first
identity may be simplified as

e
2πi
9

(
k1h1

3
+k2h2+k3h3

)
and the exponential in the second identity may be simplified as

e
2πi
9

(
h2

1
3

+h2
2+h2

3

)
.

Since the only terms contributing to the sum in (4.2) are the principal parts (the terms where the
power of q is negative) of the expansions around each cusp of F2,1,3, we only need to compute a few
Fourier coefficients for each of the components of the vector-valued modular forms corresponding
to ΘL+ν and F2,1,3. A computer check then verifies (4.2), yielding the claim in the proposition. �
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