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Abstract. We investigate the boundary behavior of modular forms f on the full mod-
ular group. We first show that

{
x ∈ [0, 1]| limy→0+ yk/2|f(x + iy)| exists

}
is contained

in a set of Lebesgue measure 0. In particular, we recover the well-known fact that
the real axis is a natural boundary of definition for f . On the other hand, using the
Rankin-Selberg Dirichlet series attached to f , we show that taking the limit over the
”average” over all x ∈ [0, 1] behaves ”well”. Our results also apply to Maass wave
forms.

1. Introduction and statement of results

For k a positive integer, let Mk be the space of modular forms of weight k on the
full modular group Γ(1) = SL2(Z) and denote by Sk the subspace of cusp forms. If
f, g ∈ Mk and at least one of them is cuspidal, we put as usual

〈f, g〉 :=

∫
F

f(z)g(z)yk−2dxdy,

where F is a fundamental domain for Γ(1) and we write z = x + iy for z ∈ H, the
complex upper half-plane.

Let f ∈ Sk. Using the transformation law of f , one easily sees that for x ∈ Q

lim
y→0+

|f(x + iy)| = 0.

Moreover, for x ∈ R,

lim
y→0+

yk/2+ε|f(x + iy)| = 0 (∀ε > 0).(1.1)

This follows from the fact that the function y
k
2 |f(z)| is bounded in H. That gives rise

to the question of which exponent of y is minimal such that (1.1) is still true. In this
paper, we will show that k/2 + ε is indeed optimal.

For f ∈ Mk, put

h(z) := yk|f(z)|2 (z ∈ H).(1.2)

Then more generally we shall prove
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Theorem 1.1. Let f ∈ Mk, f 6= 0. Then the set

S := {x ∈ [0, 1]| lim
y→0+

h(x + iy) exists}

is contained in a set of Lebesgue measure 0.

Remark. With Theorem 1.1, we slightly improve upon a result of [11] in which the author
states the nonexistence of the limit

lim
y→0+

f(x + iy)

under certain conditions on x and f (see also [7] and [8]).

Clearly, from Theorem 1.1 we obtain the following well-known result.

Corollary 1.2. If f 6= 0 is in Mk, then f cannot be analytically continued to the real
line.

Next we show that the limit behaves at least ”well” in average which we describe in
the following. For f, g ∈ Mk and y ∈ R+, let us define

Hf,g(y) := yk

∫
[0,1]

f(x + iy) · g(x + iy) dx.(1.3)

Remark. This function also plays an important role in the “Semi-Hull” problem in the
more general context of Siegel modular forms (cf. [4]).

As an example, let us consider f = ∆, where

∆(z) := q
∞∏

n=1

(1− qn)24 (q = e2πiz)

is the usual ∆-function in S12. Computational evidence, obtained using MAGMA, sug-
gests that

lim
y→0+

(
y12

∫ 1

0

|∆(x + iy)|2dx

)
≈ 9.886× 10−7.

Observe that

9.886× 10−7 ≈ ‖∆‖2

V (F)
,

where V (F) = π
3

is the volume of F .
This example illustrates a general phenomenon which describes the asymptotic be-

havior of the m-th derivative of Hf,g(y) as y → 0+.

Theorem 1.3. If f, g ∈ Mk, with f or g in Sk, then we have

lim
y→0+

H
(m)
f,g (y) =

{
V (F)−1 · 〈f, g〉 if m = 0,
0 otherwise.
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Remark. The case m = 0 of Theorem 1.3 can be interpreted as a “limit formula.” It
gives the value of the Petersson inner product as the limiting value of a single integral.
This is of computational value since as is well known and will be recalled below one can
write Hf,g(y) as a sum just depending on the Fourier coefficients of f and g.

Theorem 1.4. If f, g ∈ Mk \ Sk, then we have

lim
y→0+

Hf,g(y) = ∞.

Remark. The results of this section are also valid for Maass wave forms (mutatis mutandis
for the proofs). They can also be generalized to modular forms on congruence subgroups,
modular forms of half integral weight, and Hilbert or Siegel modular forms.
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2. Basic facts about modular forms and Dirichlet series.

For general information about Dirichlet series and modular forms, we refer the reader
to [1, 2, 3].

Since Mk = {0} for k odd or k < 4, we may assume in the following that k ≥ 4 is an
even integer. In this case, we define the Eisenstein series

Ek(z) :=
∑

M∈Γ/Γ∞

(cz + d)−k,

where Γ∞ := {± ( 1 n
0 1 )|n ∈ Z}. Recall that 〈f, Ek〉 = 0 for f ∈ Sk.

For f, g ∈ Mk with Fourier coefficients af (n) and ag(n), respectively, we define the
Rankin-Selberg convolution

Df,g(s) :=
∞∑

n=1

af (n) · ag(n) · n−s (Re(s) > 2k − 1).(2.1)

We set
Df,g(s) := (2π)−2s · Γ(s) · Γ(s + 1− k) · ζ(2s + 2− 2k) ·Df,g(s).

Then we have the following (cf. [2])

Theorem 2.1. If f, g ∈ Mk, then the function Df,g(s) has meromorphic continuation
to the entire complex plane. Moreover,

Df,g(s)−
∑

s′all poles

Ress=s′ (Df,g(s))

s− s′

is bounded in vertical strips and the functional equation

Df,g(2k − 1− s) = Df,g(s)(2.2)
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is valid. If either f or g is in Sk, then Df,g(s) has at most possible simple poles at s = k

and s = k − 1 with residues π1−k

2
〈f, g〉 and −π1−k

2
〈f, g〉, respectively.

The function DEk,Ek
(s) has simple poles exactly at s = 0, s = k − 1, s = k, and

s = 2k − 1.

3. Proof of Theorem 1.1

For the proof of Theorem 1.1, we show the following

Lemma 3.1. Let f ∈ Mk, f 6= 0, and define h by (1.2). Let ζ = [a0; a1, a2, . . . ] ∈ R
be an infinite continued fraction (in the usual notation) such that the an are unbounded.
Then there exist sequences zn = ζ + iyn and wn = ζ + iun (n ∈ N) with zn → ζ,
wn → ζ(n →∞) such that:
(i) h(zn) converges to a nonzero constant,
(ii) h(wn) converges either to 0 or ∞, depending on whether f ∈ Sk or not.

Remark. Similar techniques as in the proof of Lemma 3.1 where used in [7], [8], and [11].

Proof. The proof of Lemma 3.1 depends on the following well-known formula (see e.g.
[5])

1

q2
l (al+1 + 2)

<

∣∣∣∣ζ − pl

ql

∣∣∣∣ ≤ 1

q2
l al+1

,(3.1)

where as usual, pl

ql
is the l-th convergent of ζ. From the assumptions of Lemma 3.1, we

find that

q2
nj

∣∣∣∣ζ − pnj

qnj

∣∣∣∣→ 0

for some subsequence nj.
Set ynj

:= 1
c·q2

nj

, where c > 0 is chosen such that f(x + ic) 6= 0. Our assumption on

the sequence an implies that ζ is irrational, hence qn goes to infinity and so znj
(j →∞)

tends to ζ. Applying the modular transformation Mnj
:=
( ∗ ∗

qnj −pnj

)
and using the

invariance of h under Γ(1) we conclude that h(znj
) (j → ∞) converges to a non-zero

constant.
Next we let unj

:=
∣∣∣ζ − pnj

qnj

∣∣∣. Clearly wnj
→ ζ (j →∞). Applying again Mnj

gives

h(wnj
) =

∣∣∣∣ζ − pnj

qnj

∣∣∣∣−k

q−2k
nj

∣∣∣∣∣f
(

ζ +
i

2q2
nj
|ζ − pnj

/qnj
|

)∣∣∣∣∣
2

and so one can easily see using standard estimates for modular forms and (3.1) that
h(wnj

) goes either to 0 or to ∞ depending on whether f ∈ Sk or not. �

From Lemma 3.1, we directly obtain Theorem 1.1 since the set of all ζ that satisfy the
assumptions of Lemma 3.1 contains the set of continued fractions in which every finite
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sequence of integers occurs. Myrberg shows in [9] and [10] that the latter is measurable
and has full measure. Hence its intersection with the interval [0.1] has measure 1.

4. Proof of Theorem 1.3

Clearly, if f, g ∈ Mk with Fourier coefficients af (n) and ag(n), respectively, then we
have

Hf,g(y) = yk
∑
n∈N0

af (n) · ag(n) · e−4πny.(4.1)

Indeed, we insert the Fourier expansions of f and g into (1.3) and interchange sum-
mation and integration (which is allowed due to the local uniform convergence of the
Fourier expansions of f and g) to get

Hf,g(y) = yk ·
∑

n,m∈N0

af (n) · ag(m) · e−2πy(n+m)

∫
[0,1]

e2πi(n−m)xdx.

Using the fact that the integral vanishes unless n = m, in which case it equals 1, gives
us identity (4.1).

Proof of Theorem 1.3. To prove Theorem 1.3, we take the m-th derivative of (4.1),

H
(m)
f,g (y) =

m∑
j=0

(
m

j

)
· [k]m−j · (−4π)j · yk−m+j

∑
n>0

af (n) · ag(n) · nj · e−4πny,

where, for x ∈ R,

[x]j :=

j∏
i=1

(x− j + i) .

For y ∈ R+ we set

Gf,g,j(y) :=
∑
n>0

af (n) · ag(n) · nj · e−4πny.

Lemma 4.1. If f, g ∈ Mk, with f or g in Sk, then we have

Gf,g,j(y) =
[k + j − 1]j

(4π)j
· 3

π
〈f, g〉 y−j−k + Ff,g,j(y),

where for y ∈ R+ we put

Ff,g,j(y) := y−2k+1−j · (4π)−j · π2k−1 · 1

2πi

∫ c+i∞

c−i∞

Γ(2k + j − 1− s)Df,g(s)y
s

πsΓ(2k − 1− s)Γ(k − s)ζ(2k − 2s)
ds,

with c a sufficiently large positive constant.
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Proof. For Re(s) sufficiently large, by taking the Mellin transform, we obtain∫ ∞

0

Gf,g,j(t) · ts
dt

t
= (4π)−s · Γ(s) ·Df,g(s− j)

and hence by Mellin inversion and a change of variables

Gf,g,j(y) =
1

2πi

∫ c+i∞

c−i∞
(4π)−s · Γ(s) ·Df,g(s− j) · y−s ds

= (4π)−jy−j · 1

2πi

∫ c−j+i∞

c−j−i∞
(4π)−s · Γ(s + j) ·Df,g(s) · y−s ds,

where c > 0 is sufficiently large.

We substitute s 7→ 2k− 1− s and then shift the line of integration to the right. Using
Theorem 2.1 and the fact that the integrand is of rapid decay if the imaginary part is
large, we then deduce in the usual way the identity claimed.

�

From Lemma 4.1, we obtain

H
(m)
f,g (y) = y−m · 3

π
· 〈f, g〉 ·

m∑
j=0

(
m

j

)
[k]m−j · [k + j − 1]j · (−1)j

+
m∑

j=0

(
m

j

)
[k]m−j · (−4π)j · yk−m+j · Ff,g,j(y).

Since we can choose c sufficiently large in the definition of Ff,g,j(y), the second summand
vanishes for y → 0+. Here we are allowed to interchange limit and integration since the
integrand (without the factor ys) in the definition of Ff,g,j(y) is absolutely convergent.
Now Theorem 1.3 follows using that

m∑
j=0

(
m

j

)
[k]m−j · [k + j − 1]j · (−1)j

equals zero unless m = 0, in which case it equals 1.
�

Proof of Theorem 1.4. To prove Theorem 1.4, we write f, g ∈ Mk as f = f1 + c1Ek,
g = g1 + c2Ek with f1, g1 ∈ Sk and c1, c2 ∈ C\{0}. Clearly, we have

Hf,g(y) = Hf1,g1(y) + c2Hf1,Ek
(y) + c1HEk,g1(y) + c1c2HEk,Ek

(y).

Thus, due to Theorem 1.3, we may assume f = g = Ek. The proof of Theorem 1.4
follows easily from the following Lemma.
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Lemma 4.2. We have

GEk,Ek,0(y) = c′1y
1−2k + c′2y

−k + c′3 + FEk,Ek,0(y),

where c′1, c′2, and c′3 are certain nonzero constants.

Proof. Lemma 4.2 follows exactly as Lemma 4.1 does, using the fact that DEk,Ek
has

simple poles at s = 0, s = k − 1, s = k, and s = 2k − 1. �

�
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