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Abstract. We investigate the history of inner products within the theory of mod-
ular forms. We first give the history of the applications of Petersson’s original def-
inition for the inner product of S2k and then recall Zagier’s extension to a non-
degenerate (but not necessarily positive-definite) inner product on all holomorphic
modular forms. We then recall the history of the so-called “regularization” of the
inner product to extend it to weakly holomorphic modular forms originally by Pe-
tersson and then later independently rediscovered by Harvey–Moore and Borcherds,
as well as its applications to theta lifts by Borcherds, Bruinier–Funke, and many
more recent authors. This has been recently extended to a well-defined inner prod-
uct on all weakly holomorphic modular forms by Bringmann, Diamantis, and Ehlen.
Finally, we consider inner products on meromorphic modular forms which have poles
in the upper half-plane. Petersson also defined a regularization in this case by cut-
ting out small neighborhoods around each pole occurring in the fundamental domain;
Bringmann, von Pippich, and the author have recently constructed an extension of
this regularization, which, when combined with the regularization of Bringmann,
Diamantis, and Ehlen, yields an inner product that is well-defined and finite on all
meromorphic modular forms.

1. Introduction

The Petersson inner product has a long history within the theory of automorphic
forms. This expository paper serves as a brief sojourn through that history. Petersson
[14] provided a well-defined and finite (see Section 2) Hermitian inner product on
the space S2k of weight 2k ∈ 2N cusp forms on SL2(Z) (Petersson considered his
inner product on modular forms for much more general Fuchsian groups, but for
simplicity of the exposition, we restrict ourselves to SL2(Z)). Roughly speaking, the
idea of Petersson’s inner product is to construct a function which is invariant under
the action of SL2(Z) and then integrate over an arbitrary fundamental domain for
SL2(Z)\H, where H is the complex upper half-plane.

For f, g ∈ S2k, we denote Petersson’s inner product by 〈f, g〉. The inner product
has a number of applications. Firstly, the inner product is non-degenerate (and even
positive-definite) on S2k, yielding an orthogonal splitting; this splitting may be ex-
plicitly realized by decomposing into the (one-dimensional) simultaneous eigenspaces
under the Hecke operators. Secondly, Petersson used his inner product to establish the
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well-known Petersson coefficient formula (see Section 2.3 and particularly Theo-
rem 2.1). The coefficient formula gives a way to relate the coefficients of cusp forms
with the inner product of the the cusp forms against certain distinguished elements
called the Poincaré series. Poincaré series are generalizations of the well-known Eisen-
stein series

E2k(z) :=
∑

M=( a bc d )∈Γ∞\SL2(Z)

(cz + d)−2k, (1.1)

where Γ∞ := {±T n : n ∈ Z} with T := ( 1 1
0 1 ). Petersson’s coefficient formula uses a

technique called “unfolding”, where the sum in (1.1) is used to extend the integral
over SL2(Z)\H to an integral over Γ∞\H. The fundamental domain for Γ∞\H is very
simple, allowing one to explicitly compute integral by plugging in Fourier expansions.
In doing so, Petersson obtains the Fourier coefficients of the modular forms by replacing
the summand (cz + d)−2k with another appropriate function.

It is natural to ask whether one can extend the inner product to include inner
products with the Eisenstein series E2k defined in (1.1). Petersson’s original definition
suffices when one takes the inner product of E2k with a cusp form, and reveals that
E2k is orthogonal to all cusp forms. However, the inner product diverges when trying
to compute the Petersson norm

‖f‖2 := 〈f, f〉 (1.2)

for f = E2k. Zagier [21] later managed to extend the inner product to this case and
proved that the Petersson inner product on holomorphic modular forms is indeed non-
degenerate, but in general it is not positive-definite (in particular, the norm of E2k is
either positive or negative, depending on the parity of k).

We next consider the inner product on forms in the space M !
2k of weight 2k weakly

holomorphic modular forms (i.e., meromorphic modular forms all of whose poles are
contained at cusps). Unfortunately, the naive definition usually diverges, even be-
tween a cusp form and a weakly holomorphic modular form. There is however a trick
which allows one to consider inner products on this space, which appears to have
been first realized by Petersson [15] and then later rediscovered by Harvey–Moore [11]
and Borcherds [2]. One “regularizes” the integral over SL2(Z)\H (see Section 3). Pe-
tersson’s original attempt to do so involved taking the Cauchy principal value of the
integral by integrating over a part FT (T ∈ R) of the fundamental domain bounded
away from the cusp of SL2(Z)\H such that the limit of FT as T → ∞ becomes an
entire fundamental domain for SL2(Z)\H. Essentially, this is the same as choosing an
ordering on the integral over the fundamental domain. Borcherds [2], Bruinier–Funke
[6], and numerous other authors have used this regularized inner product to compute
theta lifts between modular forms on orthogonal groups.

Finally, we study the inner product on meromorphic modular forms with poles
in the upper half-plane. The naive inner product again diverges, and one requires
a regularization. Petersson [15] defined the Cauchy principal value in this case by
cutting out small neighborhoods around each pole and shrinking the volume of these
neighborhoods to zero in the limit. His definition extended the inner product to many
cases, but it still diverges in many cases; in particular, the Petersson inner product
for non-cusp forms always diverges with Petersson’s regularization. In Section 4, we
discuss in detail a recent extension of Petersson’s regularization by Bringmann, von
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Pippich, and the author [5] which may be combined with Bringmann, Diamantis, and
Ehlen’s [3] regularization to yield a well-defined and finite inner product on the space
S2k of all meromorphic modular forms. One application of the new regularization is a
formula relating the higher Green’s functions evaluated at CM-points with the inner
product between certain distinguished weight 2k meromorphic modular forms fQ (Q a
positive-definite integral binary quadratic form) which generalize the cusp forms fk,D
(D > 0 a discriminant) which first occurred in Zagier’s paper [20] and were later used
by Kohnen and Zagier [12] to construct a kernel function for the Shimura [18] and
Shintani [19] lifts between integral and half-integral weight modular forms.

2. Petersson inner products

2.1. Holomorphic modular forms and their generalizations. Define the weight
2k slash action |2k with a matrix M = ( a bc d ) ∈ SL2(Z) by

f |2kM(z) := (cz + d)−2kf(Mz),

where M acts on H via fractional linear transformations. A weight 2k (holomorphic)
modular form (on SL2(Z)) is a function f : H→ C for which the following hold.

(1) For all M ∈ SL2(Z), we have

f |2kM = f. (2.1)

(2) The function f is holomorphic on H.
(3) The function f has a Fourier expansion of the type

f(z) =
∑
n≥0

af (n)e2πinz. (2.2)

If af (0) = 0, then we call f a cusp form.
More generally, if we replace condition (2) with meromorphicity (resp. holomor-

phicity) and condition (3) with Fourier expansions (2.2) with the weaker restriction
n� −∞, then we obtain the definition for meromorphic modular forms (resp. weakly
holomorphic modular forms). Later in the paper, we will even replace condition (2)
with the property that f is real analytic and annihilated by a certain differential op-
erator ∆2k called the weight 2k hyperbolic Laplacian (see (3.4)); in this case, the
coefficients af (n) in (2.2) are replaced with coefficients af (y;n) which may depend
on the imaginary part y of z and there is not restriction on n (i.e., n ∈ Z). Doing
so (replacing (2) with annihilation by ∆2k) yields the definition of a special class of
non-holomorphic modular forms known as harmonic Maass forms. Analogously to the
change in condition (2) from holomorphic modular forms to meromorphic modular
forms, for non-holomorphic modular forms we may also allow (not necessarily mero-
morphic) singularities in the upper half-plane or at cusps. This final class of forms are
called polar harmonic Maass forms.

In all of the above generalizations, the one property which has remained unchanged
is (2.1). This is the main essence of the definition. Of course, there are generalizations
where the condition M ∈ SL2(Z) is restricted to M ∈ Γ for some subgroup Γ ⊆ SL2(Z)
and one can slightly augment the definition of the slash operator |2k (for example,
allowing a character) or allow k ∈ Q, k ∈ R or even k ∈ C, but essentially these changes
do not modify (2.1). The condition (2.1) is thus aptly called weight 2k modularity.
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2.2. Definition of the inner product. Considering the variables z and z as inde-
pendent variables, note that for a weight 2k modular form f(z), the function f(z)
satisfies weight 2k modularity as a function of z. Furthermore, writing z = x+ iy ∈ H,
the function y2k satisfies simultaneous weight −2k modularity in both z and z because

Im(Mz) = Im

(
az + b

cz + d

)
=

Im((az + b)(cz + d))

|cz + d|2
=

y

|cz + d|2
,

where we used the fact that ad− bc = 1.
Petersson [14] then realized that, for functions f and g satisfying (2.1) (i.e., satisfying

modularity) for all M ∈ SL2(Z), the function

f(z)g(z)y2k

is SL2(Z)-invariant. Moreover, the metric

dxdy

y2

is also SL2(Z)-invariant. Hence the integral

〈f, g〉 :=

∫
SL2(Z)\H

f(z)g(z)y2k dxdy

y2
(2.3)

is well-defined whenever it converges absolutely. Using bounds for cusp forms (in
particular, they exponentially decay as y →∞), one can show that the integral (2.3)
converges absolutely for f, g ∈ S2k. This exponential decay also suffices to show
convergence when taking the inner product between f ∈ S2K and the Eisenstein series
E2k defined in (1.1).

2.3. Petersson coefficient formula. The Petersson coefficient formula uses an ex-
plicit evaluation of the inner product to compute the Fourier coefficients (in the expan-
sion (2.2)) of modular forms. To describe this result, we require the classical Poincaré
series (see [16, 17])

P2k,m(z) :=
∑

M∈Γ∞\SL2(Z)

ϕm
∣∣
2k
M(z), (2.4)

where k ∈ N≥2 and for m ∈ Z
ϕm(z) := e2πimz.

These converge locally and absolutely uniformly. For m = 0, the Poincaré series is
precisely the Eisenstein series (1.1), while for m > 0 we have P2k,m ∈ S2k and for
m < 0 we have P2k,m ∈M !

2k.

Theorem 2.1 (Petersson coefficient formula). If f ∈ S2k and m ∈ N, then

〈f, P2k,m〉 =
(2k − 2)!

(4πm)2k−1
af (m).

Sketch of proof. Plugging in the definition (2.4) of the Poincaré series P2k,m and choos-
ing a fundamental domain F for SL2(Z)\H (a “nice” connected set of representatives
z ∈ H of the orbits of SL2(Z)\H under fractional linear transformations), we unfold
the integral on the left-hand side by rewriting (formally, but this is valid because of
the exponential decay of cusp forms towards the cusps)
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∫
SL2(Z)\H

f(z)
∑

M∈Γ∞\SL2(Z)

ϕm(Mz)

(cz + d)2k
y2k dxdy

y2

=
∑

M∈Γ∞\SL2(Z)

∫
F
f(Mz)ϕm(Mz)Im(Mz)2k dxdy

y2

=
∑

M∈Γ∞\SL2(Z)

∫
MF

f(z)ϕm(z)y2k dxdy

y2
=

∫
Γ∞\H

f(z)ϕm(z)y2k dxdy

y2
. (2.5)

Since the fundamental domain for Γ∞\H is very simple, this unfolding argument results
in the double integral ∫ ∞

0

∫ 1

0

f(z)ϕm(z)y2k dxdy

y2
.

The integral over x essentially picks off the mth coefficient and then explicitly com-
puting the integral over y yields the claim. �

2.4. Orthogonal splitting. The inner product on S2k is positive-definite. Hence,
by the Gram-Schmidt process, one can construct an orthonormal basis. A particular
choice of the basis elements turns out to be very natural.

There are certain operators Tn known as the Hecke operators and defined for each
n ∈ N by (these are normalized differently in different books and papers for various
purposes, but the normalization is not important for the discussion at hand)

f |2kTn :=
∑

M∈SL2(Z)\Mn

f |2kM,

where Mn denotes the set of 2× 2 integral matrices with determinant n. The Hecke
operators commute and are Hermitian with respect to the Petersson inner product. By
the Spectral Theorem, one may therefore diagonalize to obtain simultaneous eigenfunc-
tions under all Tn. These simultaneous eigenfunctions are known as Hecke eigenforms.
The Hecke eigenforms f ∈ S2k are often normalized to have af (1) = 1, but another
natural normalization to take is ‖f‖2 = 1, where the Petersson norm ‖ · ‖2 was defined
in (1.2). The Hecke operators satisfy what is known as multiplicity one, which means
that the eigenspaces of simultaneous eigenfunctions under all Hecke operators are all
one-dimensional (indeed, they satisfy a much stronger condition known as strong mul-
tiplicity one). Hence, for two distinct Hecke eigenforms f, g ∈ S2k, there exists n ∈ N
for which the eigenvalues λf (n) and λg(n) differ. However, since the Hecke operators
are Hermitian, we have

λf (n) 〈f, g〉 = 〈λf (n)f, g〉 = 〈f |2kTn, g〉 = 〈f, g|2kTn〉 = 〈f, λg(n)g〉 = λg(n) 〈f, g〉 .
Since λf (n) 6= λg(n), this leads to a contradiction if 〈f, g〉 6= 0. We thus conclude
that f and g are orthogonal to each other. Hence the splitting of S2k into eigenspaces
precisely yields the orthogonal splitting, with the orthonormal basis given by the Hecke
eigenforms normalized such that ‖f‖2 = 1.

We note that the other normalization af (1) = 1 is also natural. Under this normal-
ization (and appropriately normalizing the Hecke operators), the coefficients af (n) and
the eigenvalues λf (n) coincide. This realization “de-mystifies” the coefficients of the
Hecke eigenforms and plays an important role in understanding Fourier expansions.
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3. Inner products for weakly holomorphic modular forms

3.1. The regularization of Petersson, Harvey–Moore, and Borcherds and its
extension. For f, g ∈M !

2k, the integral (2.3) generally diverges. Petersson established
a Cauchy principal value for the integral as a partial solution to this problem. Firstly,
one chooses a specific fundamental domain for SL2(Z)\H. We choose the standard
fundamental domain (for simplicity, we take the closed fundamental domain; this is
easier to write down, but technically there are points on the boundary which are
SL2(Z)-equivalent; however, since we will ultimately integrate over it and the boundary
is a measure zero set, this is irrelevant for our consideration)

F :=

{
z ∈ H : |z| ≥ 1, −1

2
≤ x ≤ 1

2

}
.

Instead of integrating over F in (2.3), we integrate over a cut-off fundamental domain
whose closure does not include the cusp on the boundary of the chosen fundamental
domain. In our case, the cusp is i∞ and the cut-off fundamental domain is given by

FT :=

{
z ∈ H : |z| ≥ 1, y ≤ T, −1

2
≤ x ≤ 1

2

}
.

For f, g ∈M !
2k, Petersson then defined the regularized inner product (see [15])

〈f, g〉 := lim
T→∞

∫
FT
f(z)g(z)y2k dxdy

y2
. (3.1)

The key to the above regularization is that it essentially gives an ordering to the
integrals over x and y.

This construction was further independently rediscovered and extended by Harvey–
Moore [11] and Borcherds [2] by multiplying the integrand by ys for some s ∈ C
with Re(s) � 0 and then taking the constant term of the Laurent expansion of the
meromorphic continuation (in s) at s = 0.

One can use the regularized inner product to show that for m < 0 the Poincaré series
P2k,m, defined in (2.4), is orthogonal to cusp forms. This was shown by Petersson in a
much more general setting in [15, Satz 4].

The regularization of Petersson/Harvey–Moore/Borcherds does not always converge,
however. In particular, Petersson found a necessary and sufficient condition for his
regularization (3.1)to converge (see [15, Satz 1]) and Petersson norms once again pose a
problem, as they did for the Eisenstein series. This problem has been recently resolved
by Bringmann, Diamantis, and Ehlen [3], who were able to extend the regularization
in a way so that the inner product 〈f, g〉 is well-defined and finite for all f, g ∈ M !

2k.
We do not give any of the technical details here, but the reader is encouraged to look
at [3, Section 3, and in particular Theorem 3.2].

3.2. Theta lifts. The inner product has been used by many authors (for example, in
[2] and [6]) to obtain theta lifts from modular forms of one type to modular forms of
another type. To give a rough idea, one defines a two-variable theta function Θ(z, τ)
which is modular in both variables (one calls this function the theta kernel), but which
satisfies a different kind of modularity in each variable (for example, suppose that it
satisfies weight 2k modularity as a function of z and weight k + 1/2 modularity as a
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function of τ). Taking the inner product in one variable against another function f
satisfying the same type of modularity then yields a new function in the other variable
satisfying the other type of modularity. In other words, in the example above, if f
satisfies weight 2k modularity, then

Φ(f)(τ) := 〈Θ(·, τ), f〉
satisfies weight k + 1/2 modularity. This yields a theta lift Φ from weight 2k modular
forms to weight k + 1/2 modular forms. The example illustrated above is Shintani’s
construction [19] of his lift from integral weight to half-integral weight modular forms
and the lift in the opposite direction can be shown to be one of Shimura’s lifts [18]
from half-integral weight to integral weight (see [13] and [12] for two alternative options
for the theta kernel). Note: although we do not define half-integral weight modular
forms here, one may simply think of these as generalizations of modular forms where
the slash operator is slightly augmented to resolve the issue that the square root is
multi-valued and then modularity is again defined by (2.1).

Lifts from “simpler” spaces with special properties often yield strange or exceptional
modular forms which can be used to understand or narrow down conjectures that are
often precisely false on the image or pre-image of such lifts. For example, the Shimura
lift generally sends cusp forms to cusp forms, but there is an exceptional class of
forms known as unary theta functions in weight 3/2 which are cusp forms but whose
image under the Shimura lift is an Eisenstein series. These unary theta functions are
also counter-examples to the Ramanujan–Petersson conjecture, which states that the
coefficients of weight κ ∈ 1

2
Z cusp forms f satisfy

|af (n)| �f,ε n
κ−1
2

+ε.

The coefficients of the unary theta functions grow like n1/2, contradicting the conjec-
ture in this wide of generality. However, for integral weight cusp forms f ∈ S2k,
the conjecture is a celebrated result of Deligne [7] and it is conjectured that the
Ramanujan–Petersson conjecture holds in half-integral weight as long as f is orthog-
onal to unary theta functions.

3.3. Computation of the inner product by the Brunier–Funke pairing. For
f, g ∈ M !

2k, we next describe a way to compute the inner product between these two
forms. There is a natural function G satisfying weight 2− 2k associated with g. The
inner product between f and g is then given by a pairing between the function G and
f given by

{f,G} :=
∑
n∈Z

af (−n)a+
G(n), (3.2)

where a+
G(n) is the nth coefficient of the holomorphic part of the Fourier expansion

(which has the same shape as (2.2)). In particular, we have

〈f, g〉 = {f,G}. (3.3)

The pairing is useful for computing inner products because only finitely many terms
in (3.2) are non-zero.

Roughly speaking, the pairing is shown by using Stokes Theorem to evaluate the
integral instead of the unfolding method described in Section 2.3. When applying
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Stokes Theorem, a pre-image G of g under the operator ξ2−2k := 2iy2−2k ∂
∂z

naturally
appears. Since g is weakly holomorphic, we have

∆2−2k(G) = −ξ2k(g) = 0,

where
∆2−2k := −ξ2k ◦ ξ2−2k (3.4)

is the weight 2−2k hyperbolic Laplacian. Therefore, the pre-image G is what is known
as a weight 2− 2k harmonic Maass form (i.e., it satisfies weight 2− 2k modularity, it
is annihilated by ∆2−2k, and it grows at most linear exponentially towards the cusps).

The pairing was first introduced by Bruinier and Funke in [6]. Its connection to
inner products defined as regularized integrals was then realized in a number of cases
by many authors and one may interpret the recent results in [3] as giving an analytic
interpretation via a regularized integral for the Bruinier–Funke pairing in the general
case for any arbitrary f, g ∈M !

2k.

4. Inner products for meromorphic modular forms

We would now like to define an inner product on arbitrary meromorphic modular
forms f, g ∈ S2k. However, an arbitrary meromorphic modular form f ∈ S2k may be
decomposed into two pieces, one of which only has poles at the cusps (i.e., it is in M !

2k)
and one of which only has poles in the upper half-plane (vanishing towards all cusps);
we call forms of the second type weight 2k meromorphic cusp forms and denote the
subspace of such forms by S2k. It thus essentially suffices to consider inner products
between forms f, g ∈ S2k (technically, we also have to take inner products between
forms f ∈ M !

2k and g ∈ S2k, but hybrid approaches for the regularizations will work
in full generality and we ignore the details here).

4.1. Regularization of Petersson. The idea that Petersson used to generalize (2.3)
is very similar to the idea used in the regularization (3.1). Instead of cutting off the
fundamental domain away from i∞, one cuts out small neighborhoods around each
pole z of f or g and then shrinks the hyperbolic volume of the neighborhoods to zero
in a limit. In particular, for z ∈ H define the ball

Bε(z) := {z ∈ H : rz(z) < ε} ,
where rz(z) := |Xz(z)| with

Xz(z) :=
z − z

z − z
.

The functions rz(z) are naturally connected to the hyperbolic distance d(z, z) between
z and z = z1 + iz2 in H via the formula

rz(z) = tanh

(
d(z, z)

2

)
;

recall that the hyperbolic distance may be expressed through (see p. 131 of [1])

cosh (d(z, z)) = 1 +
|z − z|2

2yz2

. (4.1)

Let [z1], . . . , [zr] ∈ PSL2(Z)\H be the distinct SL2(Z)-equivalence classes of all of
the poles of f, g ∈ S2k and choose a fundamental domain F∗ such that all z` lie in the
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interior of Γz`F∗, where Γz is the stabilizer of z in PSL2(Z). Petersson’s regularized
inner product is then defined by

〈f, g〉 := lim
ε1,...,εr→0+

∫
F∗\(

⋃r
`=1 Bε` (z`))

f(z)g(z)y2k dxdy

y2
. (4.2)

A necessary and sufficient condition for the convergence of the regularization (4.2)
is given in [15, Satz 1]. Furthermore, certain Poincaré series related to the elliptic
expansions (Petersson proved an elliptic coefficient formula as well; cf. [15, Satz 9])
with poles in the upper half-plane were also shown to be orthogonal to cusp forms in
[15, Satz 7]. Once again, Petersson’s necessary and sufficient condition implies that
his regularization diverges in particular when evaluating Petersson norms for elements
of S2k which are not cusp forms.

4.2. A new regularization. Since Petersson’s regularization still sometimes diverges,
one requires a further regularization; we recall the construction from [5]. Roughly
speaking, the integrand in (2.3) is multiplied by an SL2(Z)-invariant function Hs(τ)
which removes the poles of the integrand whenever Re(s) is sufficiently large. We then
take the constant term of the Laurent expansion around s = 0 to be our regularization.
To be more precise, let [z1], . . . , [zr] ∈ PSL2(Z)\H be the distinct SL2(Z)-equivalence
classes of all of the poles of f and g and define

〈f, g〉 := CTs=0

(∫
SL2(Z)\H

f(z)Hs(z)g(z)y2k dxdy

y2

)
, (4.3)

where

Hs(z) = Hs1,...,sr,z1,...,zr(z) :=
r∏
`=1

hs`,z`(z).

Here

hs`,z`(z) := r2s`
z`

(Mz),

with M ∈ SL2(Z) chosen such that Mz ∈ F∗. Moreover CTs=0 denotes the constant
term in the Laurent expansion around s1 = s2 = · · · = sr = 0 of the meromorphic
continuation (if existent).

In the same sense that the results in [3] may be viewed as an analytic definition
for a regularized inner product satisfying the Bruinier–Funke pairing for arbitrary
f, g ∈ M !

2k, the above regularization may be viewed as an analytic definition for a
regularized integral giving a similar pairing for all f, g ∈ S2k. However, instead of
defining the pairing via the Fourier expansions, the pairing is defined via the elliptic
expansions of f and a weight 2 − 2k polar harmonic Maass form (i.e., a harmonic
Maass form with singularities in the upper half-plane) G which is a pre-image of g
under the ξ-operator. To describe the pairing, the elliptic expansion of f ∈ S2k around
z ∈ H is given by

f(z) = (z − z)−2k
∑

n�−∞

af,z(n)Xn
z (z). (4.4)

For the polar harmonic Maass form G, we again denote the coefficients of its mero-
morphic part (i.e., of the form in (4.4)) by a+

G,z(n).
9



Denoting z2 := Im(z) and writing ωz for the size of the stabilizer Γz of z in PSL2(Z),
the pairing is given by (see [4, Proposition 6.1])

{f,G} :=
∑

z∈SL2(Z)\H

π

z2ωz

∑
n∈Z

af,z(n)a+
G,z(−n− 1). (4.5)

It is again important to emphasize that the pairing gives a formula for the inner
product with only finitely many coefficients in (4.5) non-zero. In comparison, Petersson
evaluated his inner product (3.1) (resp. (4.2)) on [15, pages 42–43] via the Fourier
(res. elliptic) coefficients of the forms f and g themselves, but his evaluation is given
as an infinite sum, so one can only obtain an approximation for the inner product
by computing the Fourier (resp. elliptic) coefficients. In other words, Petersson’s
constructions are better in the sense that they are given in terms of the coefficients of
the original functions, while one is required to introduce new functions to determine
(3.2) and (4.5), but the sums in these pairings are instead finite.

4.3. Higher Greens functions. The regularization (4.3) was used in [5] to compute
the inner product between

fQ(z) = fk,−D,[Q](z) := D
k
2

∑
Q∈[Q]

Q(z, 1)−k

for positive-definite integral binary quadratic forms Q of discriminant −D. These are
weight 2k meromorphic modular forms which have poles of order k at the unique zero
τQ of Q in H. The evaluation of the inner product between two such functions is done
by again using Stokes Theorem to rewrite the inner product as the pairing (4.5) in
terms of the elliptic coefficients of fQ and the elliptic coefficients of the meromorphic
part of a polar harmonic Maass form GQ associated with fQ via the ξ-operator. It
then remains to explicitly compute the elliptic coefficients occurring in (4.5).

In particular, choosing two such binary quadratic forms Q and Q, the inner product
between fQ and fQ is related to the higher Green’s function Gk : H × H → C, which
is uniquely characterized by the following properties:

(1) Gk is a smooth real-valued function on H×H \ {(z, γz)|γ ∈ Γ, z ∈ H}.
(2) For γ1, γ2 ∈ Γ, we have Gk(γ1z, γ2z) = Gk(z, z).
(3) Denoting ∆0,z := −4y2 ∂

∂z
∂
∂z

, we have

∆0,z (Gk (z, z)) = ∆0,z(Gk (z, z)) = k(1− k)Gk (z, z) .

(4) As z → z
Gk(z, z) = 2ωz log (rz(z)) +O(1).

(5) As z approaches a cusp, Gk(z, z)→ 0.

These higher Green’s functions have a long history, appearing as special cases of the
resolvent kernel studied by Fay [8] and investigated thoroughly by Hejhal in [10], for
example. Gross and Zagier [9] conjectured that their evaluations at CM-points are
essentially logarithms of algebraic numbers, which has been since proven in a number
of cases. To state the connection with inner products, let β(a, b) :=

∫ 1

0
ta−1(1− t)b−1dt

be the beta function, and let Q−D denote the set of positive-definite integral binary
quadratic forms of discriminant −D < 0. Evaluating the elliptic coefficients in (4.5)
for fQ and GQ then yields the following theorem.
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Theorem 4.1 (Theorem 1.5 of [5]). For Q ∈ Q−D1 and Q ∈ Q−D2 (−D1,−D2 < 0
discriminants) with [τQ] 6= [τQ], we have

〈fQ, fQ〉 = − π(−4)1−k

(2k − 1)β(k, k)

Gk(τQ, τQ)

ωτQωτQ
.

References

[1] A. Beardon, The geometry of discrete groups, Grad. Texts in Math. 91, Springer, New York,
1995.

[2] R. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132
(1998), 491–562.

[3] K. Bringmann, N. Diamantis, and S. Ehlen, Regularized inner products and errors of modularity,
submitted for publication.

[4] K. Bringmann and B. Kane, A problem of Petersson about weight 0 meromorphic modular forms,
Res. Math. Sci., to appear.

[5] K. Bringmann, B. Kane, and A. von Pippich, Regularized inner products of meromorphic modular
forms and higher Green’s functions, submitted for publication.

[6] J. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), no. 1, 45–90.

[7] P. Deligne, La conjecture de Weil I, Inst. Hautes Études Sci. Publ. 43 (1974), 273–307.
[8] J. Fay, Fourier coefficients of the resolvent for a Fuchsian group, J. reine angew. Math. 293-294

(1977), 143–203.
[9] B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986),

225–320.
[10] D. Hejhal, The Selberg trace formula for PSL(2,R) (Volume 2) Lecture Notes in Math. 1001,

1983.
[11] J. Harvey and G. Moore, Algebras, BPS states, and strings, Nuclear Phys. B 463 (1996),

315–368.
[12] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip,

Invent. Math 64 (1981), 175–198.
[13] S. Niwa, Modular forms of half integral weight and the integral of certain theta functions, Nagoya

Math. J. 56 (1974), 147–161.
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