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Abstract. In this paper, the authors investigate the question of
when a partition of n ∈ N is an s-core and also a t-core when
s and t are not relatively prime. A characterization of all such
s/t-cores is given, as well as a generating function dependent upon
the polynomial generating functions for s/t-cores when s and t are
relatively prime. Furthermore, characterizations and generating
functions are given for s/t-cores which are self-conjugate and also
for (e, r)/(e′, r)-cores.

1. Introduction and Statement of Results

A partition Λ = (λ1, . . . , λd) of size |Λ| :=
∑d

i=1 λi is any finite
sequence of non-increasing positive integer parts. We will also use a
generalization of this definition to partitions with parts of size zero,
namely partitions (λ1, . . . , λd, λd+1, . . . , λd+r), where λd+i = 0. The
parts λd+i will accordingly be referred to as parts of size zero.

The theory of partitions has a long and storied history. Ramanujan
famously found congruences for counting the number of partitions of
the integers 5n+4, 7n+5, and 11n+6 [18], the last of which was shown
by Hardy [19]. For more examples of partition theoretic generating
functions, a good source is Andrews’ book [2]. The main purpose of
this paper is to give a classification and generating function for s/t-core
partitions, partitions which are simultaneously s-core and t-core. For
s and t relatively prime, Anderson [1] has given such a classification,

showing in the process that there are exactly
(s+t

s )
s+t

such partitions and
a bound was found for the largest integer that can be partitioned by
an s/t-core in [17].

The study of t-cores has applications to representation theory when
t is prime, and has been studied by a variety of authors. We will
first give a brief explanation of the connection to representation the-
ory. Partitions of n are in one-to-one correspondence with irreducible
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representations of the symmetric group Sn. Taking any such repre-
sentation modulo a prime t = p will result in these representations
further splitting into direct products of p-modularly irreducible rep-
resentations. The Brauer graph is constructed by forming an edge
between two representations if and only if they share a p-modularly
irreducible constituent. The equivalence classes of this graph are re-
ferred to as (p-)Brauer blocks. The isolated elements of this graph,
namely the p-modularly irreducible representations, are referred to as
defect zero p-blocks. The representations corresponding to p-core par-
titions are precisely these p-modularly irreducible representations (cf.
[4]). Hence, Anderson’s result in [1] implies that there are only finitely
many n for which Sn has a Brauer block which is both defect zero p
and defect zero q when p 6= q. Navarro and Willems conjectured in
[12] that a p-Brauer block can be equal to a q-Brauer block only when
both are defect zero. Although the group A7 is a counterexample to
the Navarro-Willems conjecture, the conjecture hold specifically for Sn

(and more generally for principle blocks), as was recently shown by
Bessenrodt, Navarro, Olsson, and Tiep [5] so that Anderson’s result
implies that only finitely many Sn have coinciding p and q-blocks.

In addition to their role in representation theory, t-cores have played
a role in combinatorial proofs due to their generating functions being
(basically) a quotient of η-series. For instance, the study of t-cores
played a role in Garvan, Kim, and Stanton establishing a combinato-
rial proof of the above partition function congruences [6]. Garvan [7]
discovered, in terms of the t-core of a partition, a new crank which
proved the congruence p(49n + 47) ≡ 0 (mod 49). A remarkable re-
sult of Granville and Ono showed that every nonnegative integer n
may be partitioned by a t-core partition whenever t ≥ 4 [8], which
combined with the connection to representation theory above, com-
pleted the classification of finite simple groups with defect zero Brauer
p-blocks. We shall show a slight refinement of this result as a corollary
for the following similar result for s/t-core partitions.

Theorem 1.1. Consider

Ss,t := {n : n is partitioned by an s/t-core which is not a gcd(s, t)-core}.

Then Ss,t = {n ≥ gcd(s, t)} if gcd(s, t) ≥ 4, and otherwise Ss,t has
density zero.

Then the following refinement of Granville and Ono’s result [8] fol-
lows immediately by taking any gcd(t′, s′) = 1.
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Corollary 1.2. Fix a positive integer g ≥ 4. For every n ≥ g and
t′ > 1 there exists a partition of n which is a t′g-core but not a g-
core. Moreover, this result is best possible, since partitions of n < g
are automatically g-cores.

A full description of s/t-core partitions will be given in Section 2.
Our classification will be given in terms of the gcd(s, t)-abacus of the
s/t-core partition.

Section 2 will introduce the reader to basic facts about partitions,
giving the necessary background and definition of t-cores, as well as
introducing some results and techniques which we will take advantage
of. Section 3 will be devoted to proving the following classification of
s/t-cores.

Theorem 1.3. A partition Λ is an s/t-core if and only if each column
of the g = gcd(s, t)-abacus corresponds to an s

g
/ t

g
-core (possibly with

parts of size zero).

As usual, for a set S of partitions, we will define the generating
function of S as f(q) := 1 +

∑
Λ∈S q

|Λ|. For ease of notation, we will
sometimes refer to the generating function for sets of partitions S which
may have parts of size zero. In this case, we will be referring to the
generating function for the subset of S containing no parts of size zero.

Section 4 is devoted to showing the generating function for s/t-cores
and to show that there are infinitely many s/t-cores which are not
gcd(s, t)-cores, in contrast to the relatively prime case, resolving the
main remaining question of Anderson from [1]. In the process, a general
result is given for determining generating functions of partitions whose
columns correspond to partitions of a given type, to which our desired
result as well as Theorem 1.1 are a direct corollary.

We will first fix k arbitrary sets Pi of partitions. We will say that the
i-th column (modulo k) of a partition Λ corresponds to the partition
Λi ∈ Pi if the row numbers of the i-th column of the k-abacus of
Λ containing a bead give the first column hook numbers of Λi, after
removing parts of size zero. This concept is discussed in further detail
in Section 2.

Theorem 1.4. If the set of partitions S is defined by taking all parti-
tions Λ with at most k− 1 parts of size zero, such that the i-th column
of Λ corresponds to a partition of type Pi (with arbitrarily many parts
of size zero), then the generating function for partitions of type S is
the product of the generating functions of type Pi evaluated at qk times
the generating function for g-cores.
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Moreover, we give the generating function for (e, r)/(e′, r)-core par-
titions in Corollary 4.7.

Section 5 is devoted to showing some lemmata about Conjugation
of partitions, which we use in Section 6 to give a classification of self-
conjugate s/t-cores and a generating function in Section 7.

We conclude our discussion with a conjecture about the size of the
largest s/t-core partition when gcd(s, t) = 1.

Acknowledgements

Based on work supported by the National Science Foundation under
Grant No. 0097392.

2. Basic Facts and Preliminaries

2.1. Ferrers-Young diagram. The Ferrers-Young diagram of a par-
tition Λ = (λ1, λ2, . . . λd) is formed by arranging |Λ| nodes in rows so
that the ith row has λi nodes. The nodes are labeled by row and column
coordinates as one would label the entries of a matrix. The conjugate
of Λ, denoted ΛC , is the partition whose Ferrers-Young diagram is the
reflection along the main diagonal of Λ’s diagram. The conjugate here
is assumed to have no parts of size zero, but in our investigation in Sec-
tion 5 of conjugate partitions we will introduce a notion of conjugation
which includes partitions with parts of size zero and will be an involu-
tion. We say that Λ is self-conjugate if Λ = ΛC . A node’s hook consists
of the node along with any other nodes directly below or to the right
of the node itself. The size of a hook is its hook number. For partitions
with parts of size zero, we will add the number of parts of size zero
below each node to each first column hook number, and by convention
we will define the first column hook number of a row corresponding
to a part of size zero to be the number of (empty) rows strictly below
this row. It will be convenient to refer to the hook number of a node
in row i and column j by H (i, j) . A node’s rim hook is the sequence
of connected nodes on the right-hand boundary of the Ferrers-Young
diagram connecting the two end points of its hook. By construction,
the rim hook and the hook of a node are of equal length.

Example 2.1. The Ferrers-Young diagram for Λ = (5, 4, 2, 2) is

1 2 3 4 5
1 • • • • •
2 • • • •
3 • •
4 • •

.
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A t−core partition is a partition with no hook number divisible by
t. The main concentration of this paper will is extend Anderson’s [1]
work to give a classification when s and t are not relatively prime.
Furthermore, a generating function is obtained for these partitions,
given the (polynomial) generating functions when s and t are relatively
prime. For notational ease, we shall denote such partitions as s/t-cores.

The t−core of Λ, denoted Λ(t), is obtained by simply successively
removing all rim hooks of length t from Λ. When Λ(t) is the empty par-
tition, Λ is said to have empty t−core. Part of this paper is interested
in t−core partitions with empty r−core where r divides t. We will refer
to these partitions in the following manner.

Definition 2.2. An (e, r)-core partition is a re−core partition with
empty r-core.

This paper will classify partitions that are simultaneous (e, r)/(e′, r)-
cores.

Denote by Hk(Λ) the multiset of hook lengths for the Ferrers-Young
diagram for Λ and Hk(Λ)t to be the submultiset of Hk(Λ) consisting
of hook lengths which are multiples of t. Let t · Hk(Λ) denote the
multiset formed by multiplying each member of Hk(Λ) by t. For the
remainder of this paper, we shall refer to the set of first column hook
numbers as structure numbers, denoted STΛ. Thus, in Example 2.1,
STΛ = {8, 6, 3, 2} . If we add two parts of size zero to this partition, to
obtain Λ′ = (5, 4, 2, 2, 0, 0), then STΛ′ = {10, 8, 5, 4, 1, 0}. The number
of elements in STΛ is necessarily equal to the number of parts in Λ,
counting parts of size zero.

Example 2.3. The structure numbers for Λ = (5, 4, 2, 2) are STΛ =
{8, 6, 3, 2}, with the full diagram of hook numbers given below.

8 7 4 3 1
6 5 2 1
3 2
2 1

2.2. Abaci. The t−abacus of Λ is formed by placing beads on t−
runners labeled from 0 to t− 1 where the positions on the runners are
numbered starting from zero going from left to right then down by rows.
For b = rt + c ∈ STΛ, with 0 ≤ c < t, a bead is placed in coordinate
(r, c). Consider the characteristic function ft : Z× 0..t− 1 → {0, 1} for
which ft(r, c) = 1 if and only if there is a bead in the (r, c) position. It
will also be useful to denote the set of rows numbers which have a bead
in the c-th column of the t-abacus by RNΛ,t,c, since our classification
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of s/t-cores will be given by describing each column of the gcd(s, t)-
abacus. For notational ease, if RNΛ,t,c = STΛ′ , then the number of
parts of size zero of Λ′ will be refered to as ZΛ,t,c (or accordingly ZΛ′).

Example 2.4. The 3−abacus of Λ = (5, 4, 2, 2) is

0 1 2
0 | | •2

1 •3 | |
2 •6 | •8

3 | | |
so that RNΛ,3,0 = {1, 2}, RNΛ,3,1 = ∅, and RNΛ,3,2 = {0, 2}, with
ZΛ = ZΛ,t,0 = ZΛ,t,1 = 0 and ZΛ,t,2 = 1.

A partition Λ is a t-core if and only if each column in its t-abacus
is completely filled in from the zeroeth row because removing a rim
hook is equivalent to pushing up one of the beads in the t-abacus.
Note that this is equivalent to ft(r, c) = 1 =⇒ ft(r − 1, c) = 1
for every (r, c) and ft(0, 0) = 0. Note that this is also equivalent to
n ∈ STΛ =⇒ n − t ∈ STΛ and 0 /∈ STΛ. This observation will be
helpful later in determining relations between t′ and t′g-abaci.

We will investigate s/t-cores via properties given to columns of the
g = gcd(s, t)-abacus, so in order to obtain generating functions it will
be necessary to determine the size of a partition Λ given RNΛ,g,i.

2.3. Determining the size of a Partition based on the columns
of its t-abacus. Let a partition Λ be given. In [9], James and Kerber
obtain a natural correspondence between the partition Λ and a (t+1)-
tuple of partitions

(Λ(t),Λ0,Λ1, . . . ,Λt−1)

such that Λ(t) is the t-core of Λ and STΛi
= RNΛ,t,i.

This correspondence has the properties that

(1) |Λ| = |Λ(t)|+
t−1∑
i=0

t|Λi|

(2) If n ∈ Hk(Λ(t)), then t - n

(3) Hk(Λ)t =
t−1⋃
i=0

t ·Hk(Λi)

Furthermore, under this correspondence ΛC corresponds with the
(t+ 1)-tuple

(ΛC
(t),Λ

C
t−1,Λ

C
t−2, . . . ,Λ

C
0 )
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3. The General Structure of s/t-cores with gcd(s, t) > 1

3.1. A Mapping between a k-abacus and a kn-abacus. We first
show a connection between the k and kn-abaci, which will be used to
show our main result.

Lemma 3.1. For a fixed partition Λ, fk(an + b, c) = 1 if and only if
fkn(a, bk + c) = 1 for 0 ≤ b < n and 0 ≤ c < k.

Proof. fk(an+b, c) = 1 if and only if ank+(bk+c) = (an+b)k+c ∈ STΛ.
But this occurs if and only if fkn(a, bk + c) = 1. �

3.2. General Structure Theorem. We now have developed the nec-
essary tools to show Theorem 1.3. Set g := gcd(s, t), s′ := s

g
and

t′ := t
g
.

Theorem 3.2. A partition Λ (with ZΛ = 0) is an s/t-core if and only
if for every 0 ≤ i < g, RNΛ,g,i = STΛ′ for some s′/t′-core partition Λ′,
with ZΛ,g,0 = 0.

Proof. Let an s/t-core Λ and an integer i < g be given. If k ∈ RNΛ,g,i,
then kg + i ∈ STΛ. Since Λ is an s-core, (k − s′)g + i = kg + i− s′g =
kg + i − s ∈ STΛ and similarly (k − t′)g + i ∈ STΛ because Λ is a
t-core. Hence, k − t′, k − s′ ∈ RNΛ,g,i. But Λ′ is an s′-core (possibly
with ZΛ′ 6= 0) if and only if k ∈ STΛ′ implies that k − s′ ∈ STΛ′ . We
see that RNΛ,g,i = STΛ′ for Λ′ an s′/t′-core, and we see immediately
that ZΛ,g,0 = 0, since ZΛ = 0.

Assume for the converse that for every 0 ≤ i < g, RNΛ,g,i = STΛi

for Λi an s′/t′-core partition. Assume that fs(a, bg + c) = 1. Then
fg(as

′+b, c) = 1 by Lemma 3.1, so that as′+b ∈ STΛi
. Since Λi is an s′-

core, we know that as′+b−s′ ∈ STΛi
. Therefore, fg((a−1)s′+b, c) = 1,

and hence fs(a − 1, bg + c) = 1 by Lemma 3.1. It thus follows that Λ
is an s-core, and the fact that Λ is a t-core follows analogously. �

4. Generating Functions based on the columns of a
k-abacus

4.1. Generating Function with a Given Structure in each Col-
umn. Let k sets of partitions (possibly with zero part sizes) Pi be
given, with the property that if Λ ∈ Pi then if Λ′ is obtained from Λ by
adding parts of size zero, then Λ′ ∈ Pi. Consider the set S of partitions
such that for every Λ ∈ S there exist Λi ∈ Pi with RNΛ,k,i = STΛi

and
at least one of the ZΛi

= 0.
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Theorem 4.1. If the generating function for partitions Λ ∈ Pi with
ZΛ = 0 is φi(q), then the generating function for partitions of type S is(

k−1∏
i=0

φi(q
k)

)
·
∞∏

n=1

(1− qkn)k

1− qn

Specifically, when Pi = P , with generating function ψ(q), we obtain(
ψ(qk)

)k · ∞∏
n=1

(1− qkn)k

1− qn
.

Proof. Consider the set

T = {(Λ′
(k),Λ

′
0, . . . ,Λ

′
k−1)|Λ′

(k) is a k-core and for 0 ≤ i < k, Λi ∈ Pi}.

We will first show a 1-1 correspondence between Λ ∈ S and t ∈ T .
Define ϕ : T → S by the following construction. Let

t = (Λ′
(k),Λ

′
0, . . . ,Λ

′
k−1) ∈ T be given. Consider first the partition

Λ0,t such that RNΛ0,t,k,i = STΛ′
i
. Now choose m ∈ 0..k − 1 such that

#STΛ′
m

is the largest. Add parts of size zero to each Λ′
i to obtain Λ′′

i

such that #STΛ′′
i

= #STΛ′
m
. Now consider the partition Λ1,t (possibly

with ZΛ1,t 6= 0) such that RNΛ1,t,k,i = STΛ′′
i
. Notice that Λ1,t has empty

k-core. Now, if the k-abacus of the k-core Λ′
(k) is (0, a1, . . . , ak−1), where

ai is the number of beads in the i-th column, then add ai parts of size
zero to Λ′′

i to obtain Λ′′′
i . Finally consider the partition Λ2,t where

RNΛ2,t,k,i = STΛ′′′
i
. Now remove parts of size zero from Λ2,t to obtain

a partition ϕ(t) = Λt with ZΛt = 0. Clearly, Λt ∈ S. Notice further
that since rotations to remove parts of size zero do not change the
k-core of a partition, the k-core of Λ is Λ(k). Thus, under the James-
Kerber correspondence, Λ is (Λ′

(k),Λ
′
j, . . . ,Λ

′
j+k−1), where j+ i is taken

modulo k, and our rotations to remove zero part sizes have rotated the
j-th column into the 0-th column. We know from [9] that the size of
Λt is

k ·

(
k−1∑
i=0

λi

)
+ λk

where λi is the size of the partition Λ′
i.

Lemma 4.2. ϕ is a bijection.

Proof. Following Theorem 2.7.30 of James and Kerber [9], a tedious
but straightforward calculation, keeping careful track of #RNΛj,t,k,i

at each step of the construction, gives the desired bijection. Further
details may be found in the second author’s Master’s thesis [10]. �
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Therefore, for each t = (Λ′
(k),Λ

′
0, . . . ,Λ

′
k−1) ∈ T there is a corre-

sponding Λ ∈ S with size

k ·

(
k−1∑
i=0

λi

)
+ λk

where λi is the size of the partition Λ′
i. Hence, going through each ele-

ment of T to get an element of S, the generating function for partitions
in S is (

k−1∏
i=0

φi(q
k)

)
·
∞∏

n=1

(1− qkn)k

1− qn
.

This is a generalization of the proof given by Nakamura, based on
Olsson’s work, for the generating function for (e, r)-cores, in [11, 13].

�

4.2. The Generating Function for s/t-core Partitions.

Corollary 4.3. Set g := gcd(s, t), s′ := s
g
, and t′ := t

g
. If ψs′,t′(q)

is the generating function for s′/t′-core partitions, then the generating
function for s/t-core partitions is

(ψs′,t′(q
g))g ·

∞∏
n=1

(1− qgn)g

1− qn
.

Proof. Using Pi = P as the set of all s′/t′-cores by the classification in
Theorem 3.2, this follows immediately from Theorem 4.1. �

The bijection given by ϕ along with Theorem 3.2 allows us to address
the main question left in [1].

Corollary 4.4. There are infinitely many simultaneous gt/gs-cores
which are not g-cores, with g ∈ N, g > 1.

Proof. This follows directly from Theorem 3.2 for gt/gs-cores, taking
RNλ,g,0 = {1} and Zλ,g,i arbitrarily large for i > 0. �

Proof of Theorem 1.1. Consider

Sg := {n : n is partitioned by an g-core}

and define S
(m)
g to be the set Sg translated by adding m to every ele-

ment. Granville and Ono have shown that Sg is all nonnegative integers
when g ≥ 4 and density zero otherwise [8]. Corollary 4.3 along with
the fact that there are only finitely many s′/t′-cores [1] shows us that

Ss,t is the union of S
(mg)
g for finitely many m. For g < 4 the result
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now follows immediately, and for g ≥ 4 we note that (1) is always an
s′/t′-core, so that the translation with m = 1 gives

Ss,t ⊇ S(g)
g .

The result of Granville and Ono shows that S
(g)
g is the desired set.

Since partitions of every integer less than g are automatically a g-core,
this inclusion implies equality and is the best possible. �

Example 4.5. The only 2/3-core partition is (1), so the generating
function for 2k/3k-core partitions is

(1 + qk)k ·
∞∏
i=1

(1− qkn)k

1− qn
=

(
k∑

i=0

(
k

i

)
qik

)
·
∞∏
i=1

(1− qkn)k

1− qn

4.3. Generating Functions based on the columns of a k-abacus
of partitions with empty k-core. Under the same assumptions as
section 4.1, assume further that each Λ ∈ S has empty k-core.

Theorem 4.6. The generating function for partitions of this type is
k−1∏
i=0

φi(q
k)

where φi(q) is the generating function for partitions in Λ ∈ Pi with
ZΛ = 0.

Additionally, it should be noted that if each column has the same
generating function ψ(q), this becomes

(ψ(qk))k

Proof. The proof follows the proof of Theorem 4.1 by determining the
1-1 correspondence between Λ ∈ S and k + 1-tuples (∅,Λ′

0, . . . ,Λ
′
k−1)

with Λ′
i ∈ Pi, since the k-core is always empty. �

4.4. Generating Function for simultaneous (e, r)/(e′, r) cores.

Corollary 4.7. If ψe,e′(q) is the generating function for e/e′ cores,
then the generating function for (e, r)/(e′, r) cores is

(ψe,e′(q
r))r .

Furthermore, it should be noted that when e and e′ are relatively
prime that Anderson has shown that this is a polynomial [1]. The

number of (e, r)/(e′, r) cores in this case would be

(
(e+e′

e )
e+e′

)r

, due to the

count of e/e′ cores as shown in [1].

Proof. Using Pi = P to be the set of all e/e′-cores, this follows imme-
diately from Theorem 4.6. �
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5. Conjugation

We will first define a notion of conjugation which includes partitions
with parts of size zero. Let a partition Λ and an integer m ≥ maxSTΛ

be given. Then we define the partition ΛC
m to be ΛC plus m−maxSTΛ

parts of size zero. Note that ΛC
max STΛ

= ΛC and
(
ΛC

m

)C
m

= Λ.

5.1. Conjugation Theorem for Structure Numbers.

Theorem 5.1. Let Λ and m be given as above. Then

i /∈ STΛ if and only if m− i ∈ STΛC
m
∀0 ≤ i ≤ m.

In particular, i /∈ STΛ if and only if maxSTΛ − i ∈ STΛC .

Proof. Let a < b ≤ m /∈ STΛ be given such that for all a < i < b,
i ∈ STΛ. Then there are b− a− 1 parts of Λ with the same size, say of
size ` ≥ 1. Thus, the length of the (`+1)st column of the Ferrers-Young
Diagram is b− a− 1 less than the length of the `-th column. Thus, if
the `-th largest structure number of ΛC

m is c, then the ` + 1-th largest
structure number is c− 1− (b− a− 1) = c− (b− a). From symmetry
of the largest structure number for conjugation of partitions without
parts of size zero, the largest structure number of ΛC is maxSTΛ−ZΛ.
Since ZΛC

m
= m−maxSTΛ, the largest structure number of ΛC

m is

maxSTΛ − ZΛ +m−maxSTΛ = m− ZΛ.

We then simply note that a = ZΛ is the smallest natural number not
contained in STΛ and inductively show that the `-th largest structure
number is c = m− a.

�

5.2. Conjugation of a t-core. In the following exposition it will be
helpful to define the (t-th) pivot column of a partition Λ as the col-
umn of the t-abacus containing the largest structure number, namely
maxSTΛ (mod t). We will omit the prefix (t-th) when it is clear from
the context. For a t-core partition Λ, the pivot column is the rightmost
column of the t-abacus for which ZΛ,t,i is maximal. For example, the
4-core partition (4, 3, 2, 2, 2, 1, 1, 1) with 4-abacus

0 1 2 3
0 | • • •
1 | • • •
2 | • | •

has pivot column 3, since columns i = 1 and i = 3 both satisfy the
maximal condition ZΛ,t,i = 3, but the 3-rd column is rightmost with
this property.
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Corollary 5.2. Let a t-core partition Λ with pivot column k be given.
Then

ZΛC ,t,i = ZΛ,t,k − ZΛ,t,k−i − δi>k.

where k − i is taken modulo t and δi>k = 1 if i > k and 0 otherwise.

Proof. Theorem 5.1 gives the process which, taken modulo t, will give
us this result. �

5.3. Self-Conjugate Properties.

Corollary 5.3. Λ is self-conjugate if and only if for every 0 ≤ i <
maxSTΛ, exactly one of i and maxSTΛ − i is in STΛ.

Proof. Since i ∈ STΛC if and only if maxSTΛ − i /∈ STΛ, this follows
directly from Theorem 5.1. �

Corollary 5.4. Let a t-core partition Λ be given with pivot column k.
Then Λ is self-conjugate if and only if

ZΛ,t,i + ZΛ,t,k−i = ZΛ,t,k − δi>k.

and k − i is taken modulo t.

Proof. This follows directly from Corollary 5.2. �

6. General Structure Theorem for Self-Conjugate
s/t-cores With gcd(s, t) > 1

Set g := gcd(s, t), s′ := s
g

and t′ := t
g
.

Theorem 6.1. Let a partition Λ with (g-th) pivot column k be given.

Denote the row containing the largest structure number m =
⌊

max STΛ

g

⌋
.

Then Λ is a self-conjugate s/t-core if and only if RNΛ,g,i = STΛ′
i
for

Λ′
i an s′/t′-core and Λ′

k−i = (Λ′
i)

C
m−δi>k

, where k − i is taken modulo g.

Proof. By Theorem 3.2 we know that Λ is an s/t-core if and only
if RNΛ,g,i = STΛ′

i
with Λ′

i an s′/t′-core. Corollary 5.3 taken mod-
ulo g shows that the partition is self-conjugate if and only if Λ′

k−i =

(Λ′
i)

C
m−δi>k

.
�

7. Generating Function for Self-Conjugate
s-cores/t-cores With gcd(s, t) > 1

Set g := gcd(s, t), s′ := s
g

and t′ := t
g
. Denote the generating function

for self-conjugate g-cores by γg(q) (given explicitly in [3, 11]),the gen-
erating function for simultaneous s′/t′-cores by ψs′,t′(q), and the gen-
erating function for self-conjugate simultaneous s′/t′-cores by ζs′,t′(q).
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Theorem 7.1. If g = gcd(s, t) is odd, then the generating function for
self-conjugate s/t-cores is

γg(q)
(
ψs′,t′(q

2g)
) g−1

2 ζs′,t′(q
g).

If g is even, then the generating function for self-conjugate s/t-cores is

γg(q)
(
ψs′,t′(q

2g
)
)

g
2 .

Proof. Let a partition Λ be given. Recall that the correspondence of
James and Kerber [9] gives a g + 1-tuple

(Λ′
(g),Λ

′
0, ,Λ

′
g−1)

and the g + 1-tuple corresponding to ΛC is

((Λ′
(g))

C , (Λ′
g−1)

C , . . . , (Λ′
0)

C).

Hence Λ is self-conjugate if and only if Λ′
(g) is self-conjugate and Λ′

g−i =

(Λ′
i)

C . Theorems 3.2 and 4.3 show a correspondence between Λ′
i and

s′/t′-cores Λ̃′
i of the same size.

Assume first that g is even. Since the property of being an s′/t′-core
is invariant under conjugation, we have a correspondence between g

2
+1-

tuples (Λ′
(g), Λ̃

′
0, . . . , Λ̃

′
g
2
−1) and self-conjugate s/t-cores, where Λ′

(g) is a

self-conjugate g-core and Λ̃′
i is an s′/t′-core. From above, under the

correspondence of James and Kerber, Λ corresponds to

(Λ′
(g),Λ

′
0, . . . ,Λ

′
g
2
−1, (Λ

′
g
2
−1)

C , . . . , (Λ′
0)

C),

and the size of this partition is g
2
−1∑

i=0

g · 2
∣∣∣Λ̃′

i

∣∣∣
+

∣∣Λ′
(g)

∣∣ ,
The number of choices for positions of the Λ̃′

i’s are the multinomial
coefficients. Therefore, we obtain the generating function

γg(q)
(
ψs′,t′(q

2g
)
)

g
2 .

The argument for g odd follows analogously. �

7.1. Generating Function for Self-Conjugate (e, r)-cores/(e′, r)-
cores. Denote the generating function for simultaneous e/e′-cores by
ψe,e′(q), and the generating function for self-conjugate simultaneous
e/e′-cores by ζe,e′(q).
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Theorem 7.2. If r is odd, then the generating function for self-conjugate
(e, r)/(e′, r)-cores is (

ψe,e′(q
2r)
) r−1

2 ζe,e′(q
r)

If r is even, then the generating function for (e, r)/(e′, r)-cores is(
ψe,e′(q

2r)
) r

2 .

Proof. This follows immediately from Theorem 4.6 and Theorem 7.1.
�

If e and e′ are relatively prime, then it should be noted that this
generating function will be a polynomial [1]. Additionally, if r is even,

then the number of partitions of this type is

(
(e+e′

e )
e+e′

) r
2

[1]. If r is odd,

then we have the number of partions bounded below by

(
(e+e′

e )
e+e′

) r−1
2

and

above by

(
(e+e′

e )
e+e′

) r+1
2

, since there are at most as many self-conjugate

e/e′-cores as general e/e′-cores.

8. Further Questions

While investigating s/t-cores, the authors also investigated the case
when s and t were relatively prime to attempt to understand the poly-
nomial generating function for use in our generating functions above.
Due to computational evidence, an inherent structure, and a simple
proof for 2 = s < t, we make the following conjecture.

Conjecture 8.1. If s and t are relatively prime, then the largest size
of a partition which is an s/t-core is

(s2 − 1)(t2 − 1)

24
.
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