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Hidden Markov chains

e A hidden Markov chain Z = {Z;} is a stochastic process of
the form Z;, = ®(Y;), where Y = {Y;} denotes a stationary
finite-state Markov chain (with the probability transition matrix
A = (p(j]i))) and ® is a deterministic function on the Markov
states.

e Alternatively a hidden Markov chain Z can be defined as the
output process obtained when passing a stationary finite-state
Markov chain X through a noisy channel.



An Example from Digital Communication

At time n a binary symmetric channel with crossover probability ¢
(denoted by BSC(¢)) can be characterized by the following equation

Zn :Xn@Eny

where & denotes binary addition, X,, denotes the binary input, E,,
denotes the i.i.d. binary noise with pg(0) =1 —e¢ and pg(1) = ¢,
and Z,, denotes the corrupted output.

We further assume that X = { X} be the binary input Markov
chain with the probability transition matrix
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Since {Y;} = {(X;, F;)} is jointly Markov with

y | 00 01 (1o 1
(0,0) | moo(1 —¢) mooe mo1(1 —€) mo1€
A=1(0,1) | mpo(1 —¢) mooe mo1(l—¢) o€
(1,0) | mo(1 —g) m0e m1(l —€) 1€

(L) | mo(l—¢) moe mai(l—g) mne |

{Z;} is a hidden Markov chain with Z = ®(Y'), where ® maps
states (0,0) and (1, 1) to 0 and maps states (0,1) and (1,0) to 1.



Entropy Rate

For a stationary stochastic process Y = {Y;}, the entropy rate of
Y is defined as
H(Y)= lim H,(Y),

n—00

where

Ho(Y)=HYo|Y_1,Y o, -+, Yop) =Y —pu2,,) log p(yoly~,)-

v,
Let Y be a stationary first order Markov chain with

A(i, 5) = p(yr = jlyo = 1).

It is well known that

H(Y) = =) plyo = )A, ) log Afi, j).



In this talk

Analyticity of entropy rate of a hidden Markov chain as a
function of the underlying Markov chain parameters under mild
positivity assumptions.

Analyticity of hidden Markov chain in the sense of functional
analysis.

A “stabilizing” property and then obtain Taylor series expansion
for “Black Hole” case.

An example for determining domain of analyticity.

Necessary and sufficient conditions for analyticity of the
entropy rate for a hidden Markov chain with unambiguous
symbol.



A random dynamical system
Let B be the number of states for Markov chain Y.

For each symbol a of the Z process, we form A, by zeroing out the
columns of A corresponding to states that do not map to a.

Let W be the simplex, comprising the vectors

{w = (wi,ws, - ,wr) € R? 1w, ZO,Zw,; =1},

and similarly we form W, by zeroing out all the coordinates
corresponding to the states that do not map to a.

Let W&, WE denote the complex version of W, W, respectively.



For each symbol a, define the vector-valued function f, on W by

folw) = wA,/rq(w),

where r,(w) = wA,1. For any fixed n and 2° , define

Ty = x’L(ZZ—n) — p(yi = |Zz',2z'—1, e 7Z—n)- (1)
Then, {z;} satisfies the random dynamical iteration
'CUZ'-I-l — fzi+1 (xl)7 (2)

starting with the stationary distribution of Y.



Blackwell showed that
H(Z) =~ [ Y ralw)logry (w)dQ(w). 3

where 0, known as Blackwell’s measure, is the limiting probability
distribution, as n — oo, of {zg} on W. Moreover, @ satisfies

Qe =Y [ | rawiq) @



Analyticity Theorem

Theorem 1. Suppose that the entries of A are analytically
parameterized by a real variable vector €. If at € = &y,

1. Every column of A is either all zero or strictly positive —and—
2. For all a, A, has at least one strictly positive column,
then H(Z) is a real analytic function of £ at &.

Remark Note that Theorem 1 holds when A is positive.
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Contraction Property of the Random Dynamical System

e For each a and any two points w,v € W<, define the following
metric:
do(w,v) = max{dy g (w,v),ds g(w,v)},

where
da,H(wa U) =dpg (wlp(a)a Ufp(a))a da,E(wa U) =dg (wfz (a)s VI, (a))'

e Foray,as € A, the mapping f,, : W,, — W,, is a contraction
mapping under the metric defined above.

e Applying mean value theorem, one can show that on certain
neighborhood of W,, in Wg will be a contraction mapping as
well.

e There is a universal contraction coefficient for all pairs (a1, a2),
denoted by p.
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Proof. Extend the dynamical system from real to complex:
93§+1 = iﬂ(xf)a (5)

starting with

xin—l = pg(y—n—l =-). (6)

If the extension is “small” enough, we can prove z¢ stay within
fo-contracting complex neighborhood. As a consequence, there is
a positive constant L”, independent of nq, no,

| log p¥ (20|22, ) — logp®(20]2Z1,)| < Lp™, (7)
iij :,7:’j forj:O,l,'“ s 0.

Further choose the extension and o with 1 < ¢ < 1/p such that

>, ) <ot (8)

—n—1

12



Let
H(Z) ==Y p°(2°,)logp(z0]27,),

then we have

H; 1 (Z2)—H,(Z)] = | Z p° (22, 1) logp(z0lz2 1) =Y p7(2°,,)log p(20]2 7))

=[ > P72, 1) (logp™(20]225_1) — logp(20]225))| < 0®L(po)™.

0
z—n—l

Thus, for m > n,

[Hy(Z) — Hi(2)] < L7 ((p0)" + ...+ (p5)™ )
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Entropy Rate Again

Let X denote the set of left infinite sequences with finite alphabet.
For real £, consider the measure v on X defined by:

({2l rxo =20, ,@_p =2_n}) =p°(22). (9)
Note that H(Z) can be rewritten as

HE(Z) = /—logpg(zo|z:io)dvg. (10)
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Main Idea

Let I’ denote the Banach space consisting of all the “exponential
forgetting” functions on X with certain norm. For every f € F?,
there is an unique equilibrium state ... Ruelle Showed that the
mapping from f to p is analytic.

In our case, for f(&,z) = logp®(z0|2ZL,), ONe can prove iy z.) = v°

as in (9).

—1 g

& — logp®(z0]27%,) — v

In order to show »# is analytic with respect to &, we only need to
show that &'— f(£] z) is analytic as a mapping from real parameter
space to F”.
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Analyticity in a Strong Sense
Theorem 2. Suppose that the entries of A are analytically
parameterized by a real variable vector €. If at ¢ = &, A satisfies
conditions 1 and 2 in Theorem 1, then the mapping & — v is
analytic at ¢y from the real parameter space to (F*)*.

S0, under certain assumptions, a hidden Markov chain itself is
analytic, which, in principle, implies analyticity of other statistical
quantities.
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Theorem 1 is an immediate corollary of Theorem 2:

Proof. The map

—

e (f5,0°) = v3(f7)

IS analytic at £, as desired.
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Stabilizing Property of Derivatives in Black Hole Case

Suppose that for every a € A, A, is a rank one matrix, and every
column of A, is either strictly positive or all zeros. We call this the
Black Hole case.

Theorem 3. [fate = ¢, forevery a € A, A, IS a rank one matrix,
and every column of A, is either a positive or a zero column, then
fori = (ni,na, - ,Nm),

H(Z2)™| = Hygar1)2(2)™

E—=—¢ g=¢&

18



Sketch of the proof
Consider the iteration:

zU’L'—lAZi

r; — .
Cliz'_lﬁzi]_

e 1; can be viewed as a function (denoted by ¢g) of z;_; and A,.
e ¢ is a constant as a function of x;_;.

o Ate =¢

L) = Tl P = )As — py; = -|2)
zi-1821  plyi-1 =-)A1 Z z

(1)
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e Taking n-th order derivatives, we have

mn a mn
xf )= 99 (xi—1,A,,) :137(;_)1 -+ other terms,
8561'_1 e=¢€

where “other terms” involve only lower order (than n)
derivatives of x;_1.

e By induction, we conclude that

2™ = p™ (yi]27 ) = p™ (wilzi_,,).

at e = ¢&.

e We then have that for all sequences 2° __ the n-th derivative of

p(z0|z=L) stabilizes:

'™ (z0]2=L) = p(”)(zo\z:i_l) ate =¢. (12)
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For n-th order derivative of H(Z),

H(”) — lim ZZ - U (22,)(log p(z0 |2~ ))(”_l)

k— o0

= lim ZZ = p (20 ") (logp(zp|2- n))(”_l)

k— o0

20 I=1

—ZZCZ Lp®(22,) (log plzolz= 1)) = H™ (2).
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Interesting Property of Entropy Rate
The arguments in the proof shows that:

The stabilization of entropy rate (of ANY process) is at least
twice faster than the stabilization of conditional probability.
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Digital Communication Example Revisited

If all transition probabilities 7, ;’'s are positive, then at e = 0,

y | (0,00 (0,1) (1,0) (1,1) |
(0,0) | moo 0 T01 0
A = (0,1) T00 0 To1 0
(1,0) T10 0 T11 0
i (1,1) 710 0 T11 0
y | (0,00 (0,1) (1,0) (1,1) | y | (0,00 (0,1) (1,0) (1,1) |
(0,0) | oo 0 0 0 (0,0) 0 0 To1 0
(0,1) | oo 0 0 0 ;A1 = (0,1) 0 0 o1 0
(1,0) | w10 0 0 0 (1,0) 0 0 T11 0
(1,1) | 710 0 0 0 | (1,1) 0 0 711 0o

Note that both Ay and A; are rank 1 matrix with at least one positive column, which is Black
Hole case. Thus the Taylor series of H(Z) when € = 0 exists and can be exactly calculated.
This result, as a special case of Theorem 3, recovers computational work by Zuk et. al. [2004].
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Again for this example, domain of analyticity of entropy rate can be
determined as follows: for given p with 0 < p < 1, choose r and R
to satisfy all the following constraints. Then the entropy rate is an
analytic function of ¢ on |e| < 7.

Vr(r+1)| — meomi1 + Tiomo1 |
0< <
— w11 — |mo — mi1|r — (|moo — 10 — wo1 + w117 + |wo1 — T11|) R VP,
\/7“ + 1)| — moom11 + T10701]|
0< <
— mo1 — |moo — mo1|T — (|mo0 — T10 — o1 + T11|r + W01 — T11|) R VP,
r( 1)| —
0 < Vr(r+1)| — m1moo + To1m10] <7

oo — |mo1 — moo|r — (|moo — w10 + w11 — mo1|r + |mT10 — To0|) R
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\/’l“ + 1)| — m11700 + To1710]

T10 — |m11 — mo|r — (|moo — ™10 + ™11 — mo1|r + |70 — Woo|) R

<P

0< L < R(1—p),0< EL < R(1—p),
o1 — 7T00—7T01\?“ T11 — 7T10—7Tll|7°
0< EL <R(1-p),0< Lo < R(1 - p),

mT10 — 7T11—7T10\’l“ oo — 7701—7T00|7"

2(|moo — mo1 — w10 + mi1|r + |Mo1 — m11|) R 4 2|m10 — mi1|r + 1 < 1/p,

2(|m10 — w11 — moo + mo1|r + |m11 — mo1|) R 4 2|mo0 — mor|r + 1 < 1/p.
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Figure 1: lower bound on radius of convergence as a function of p



Hidden Markov Chains with Unambiguous Symbol

Definition 4. A symbol a is called unambiguous if ®~!(a) contains
only one element.

When an unambiguous symbol is present, the entropy rate can be
expressed in a simple way. In the case of a binary hidden Markov
chain, where 0 is unambiguous,

H(Z%) = p(0)H® (2]0)+p (10)HE (2|10)+- - -+p= (1M 0)HE (2|1 0)+- - -
where 1™ denotes the sequence of n 1’s and

HE(21070) = —p7(0]10) log p7 (0]1™0)—p* (1]10V0) log p* (1]1(™0).
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Example of Non-analyticity

Consider the following parameterized stochastic matrix

Ale)=|g ¢ d

The states of the Markov chain are the matrix indices {1, 2, 3}. Let
Z¢ be the binary hidden Markov chain defined by: ®(1) = 0 and
®(2) = ®(3) = 1. We claim that H(Z¢) is not analytic at ¢ = 0.

28



Let w(e) = (m1(e), m2(g), w3(e)) be the stationary vector of A(e).
Since A(e) is irreducible, w(¢e) is analytic in € and positive. Now,

p°(0)H*(2]0) = —p(00) log p°(0]|0) — p(10) log p*(1]0).

= —m(e)eloge — mi(e)(a — e+ b)log(mi(e)(a —e + b))

which is not analytic at ¢ = 0. However it can be shown that the
sum of all other terms is analytic at e = 0. Thus, H(Z¢) is not
analytic at ¢ = 0.
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Another Example of Non-analyticity

Consider the following parameterized stochastic matrix

Ae) =

e
f—e
9

a

C

0

b

E

C

The states of the Markov chain are the matrix indices {1, 2, 3}.

Let Z¢ be the binary hidden Markov chain defined by (1) = 0 and
®(2) = (3) = 1. We show that H(Z¢) is not analytic at ¢ = 0.
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We have
pE(111™0) = (ac™™t + ag(n + 1)c™ 4+ be™ ) /(ac™ + aenc™ ™t + be™)

= (ac® + ag(n + 1)c + bc?)/(ac + aen + be),

and
pe(0]170) = ((f — €)ac™ + gaenc™ L + gbc™) /(ac™ + asnc™ ™ + bc™)
= ((f —e)ac+ gaen + gbc)/(ac + aen + be).

When ¢ — —(a + b)c/an, the term p*(1(0)H*(2]1(™0) — oo.
Meanwhile, the sum of all the other terms is analytic. Thus, we
conclude that H(Z¢) blows up when one approaches —(a + b)c/an
and therefore is not analytic at € = 0.
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Necessary and Sufficient Conditions for Analyticity

Theorem 5. Let A be an irreducible stochastic d x d matrix with
the following form:

A = (13)

where a is a scalar and B is an (d — 1) x (d — 1) matrix. Let ® be
the function defined by ®(1) = 0, and ®(2) = --- ®(n) = 1. Then for
any parametrization A(e) such that A(eg) = A, letting Z¢ denote
the hidden Markov chain defined by A(e) and ®, H(Z¢) is analytic
at eq if and only if

1. a>0,andrB’¢c>0forj=0,1,---.

2. The maximum eigenvalue of B is simple and strictly greater in
absolute value than the other eigenvalues.
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