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Hidden Markov chains

• A hidden Markov chain Z = {Zi} is a stochastic process of
the form Zi = Φ(Yi), where Y = {Yi} denotes a stationary
finite-state Markov chain (with the probability transition matrix
∆ = (p(j|i))) and Φ is a deterministic function on the Markov
states.

• Alternatively a hidden Markov chain Z can be defined as the
output process obtained when passing a stationary finite-state
Markov chain X through a noisy channel.
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An Example from Digital Communication

At time n a binary symmetric channel with crossover probability ε

(denoted by BSC(ε)) can be characterized by the following equation

Zn = Xn ⊕ En,

where ⊕ denotes binary addition, Xn denotes the binary input, En

denotes the i.i.d. binary noise with pE(0) = 1− ε and pE(1) = ε,
and Zn denotes the corrupted output.

We further assume that X = {Xi} be the binary input Markov
chain with the probability transition matrix

Π =


 π00 π01

π10 π11


 .
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Since {Yi} = {(Xi, Ei)} is jointly Markov with

∆ =




y (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) π00(1− ε) π00ε π01(1− ε) π01ε

(0, 1) π00(1− ε) π00ε π01(1− ε) π01ε

(1, 0) π10(1− ε) π10ε π11(1− ε) π11ε

(1, 1) π10(1− ε) π10ε π11(1− ε) π11ε




.

{Zi} is a hidden Markov chain with Z = Φ(Y ), where Φ maps
states (0, 0) and (1, 1) to 0 and maps states (0, 1) and (1, 0) to 1.
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Entropy Rate

For a stationary stochastic process Y = {Yi}, the entropy rate of
Y is defined as

H(Y ) = lim
n→∞

Hn(Y ),

where

Hn(Y ) = H(Y0|Y−1, Y−2, · · · , Y−n) =
∑

y0
−n

−p(y0
−n) log p(y0|y−1

−n).

Let Y be a stationary first order Markov chain with

∆(i, j) = p(y1 = j|y0 = i).

It is well known that

H(Y ) = −
∑

i,j

p(y0 = i)∆(i, j) log ∆(i, j).
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In this talk

• Analyticity of entropy rate of a hidden Markov chain as a
function of the underlying Markov chain parameters under mild
positivity assumptions.

• Analyticity of hidden Markov chain in the sense of functional
analysis.

• A “stabilizing” property and then obtain Taylor series expansion
for “Black Hole” case.

• An example for determining domain of analyticity.

• Necessary and sufficient conditions for analyticity of the
entropy rate for a hidden Markov chain with unambiguous
symbol.
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A random dynamical system

Let B be the number of states for Markov chain Y .

For each symbol a of the Z process, we form ∆a by zeroing out the
columns of ∆ corresponding to states that do not map to a.

Let W be the simplex, comprising the vectors

{w = (w1, w2, · · · , wB) ∈ RB : wi ≥ 0,
∑

i

wi = 1},

and similarly we form Wa by zeroing out all the coordinates
corresponding to the states that do not map to a.

Let WC, WC
a denote the complex version of W , Wa, respectively.

7



For each symbol a, define the vector-valued function fa on W by

fa(w) = w∆a/ra(w),

where ra(w) = w∆a1. For any fixed n and z0
−n, define

xi = xi(zi
−n) = p(yi = · |zi, zi−1, · · · , z−n). (1)

Then, {xi} satisfies the random dynamical iteration

xi+1 = fzi+1(xi), (2)

starting with the stationary distribution of Y .
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Blackwell showed that

H(Z) = −
∫ ∑

a

ra(w) log ra(w)dQ(w), (3)

where Q, known as Blackwell’s measure, is the limiting probability
distribution, as n →∞, of {x0} on W . Moreover, Q satisfies

Q(E) =
∑

a

∫

f−1
a (E)

ra(w)dQ(w). (4)
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Analyticity Theorem

Theorem 1. Suppose that the entries of ∆ are analytically
parameterized by a real variable vector ~ε. If at ~ε = ~ε0,

1. Every column of ∆ is either all zero or strictly positive –and–

2. For all a, ∆a has at least one strictly positive column,

then H(Z) is a real analytic function of ~ε at ~ε0.

Remark Note that Theorem 1 holds when ∆ is positive.
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Contraction Property of the Random Dynamical System

• For each a and any two points w, v ∈ WC
a , define the following

metric:
da(w, v) = max{da,H(w, v), da,E(w, v)},

where

da,H(w, v) = dH(wIp(a), vIp(a)), da,E(w, v) = dE(wIz(a), vIz(a)).

• For a1, a2 ∈ A, the mapping fa2 : Wa1 → Wa2 is a contraction
mapping under the metric defined above.

• Applying mean value theorem, one can show that on certain
neighborhood of Wa1 in WC

a1
will be a contraction mapping as

well.

• There is a universal contraction coefficient for all pairs (a1, a2),
denoted by ρ.
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Proof. Extend the dynamical system from real to complex:

x~ε
i+1 = f~ε

zi+1
(x~ε

i ), (5)

starting with
x~ε
−n−1 = p~ε(y−n−1 = · ). (6)

If the extension is “small” enough, we can prove x~ε
i stay within

fa-contracting complex neighborhood. As a consequence, there is
a positive constant L′′, independent of n1, n2,

| log p~ε(z0|z−1
−n1

)− log p~ε(ẑ0|ẑ−1
−n2

)| ≤ Lρn, (7)

if zj = ẑj for j = 0, 1, · · · , n.

Further choose the extension and σ with 1 < σ < 1/ρ such that
∑

z0
−n−1

|p~ε(z0
−n−1)| ≤ σn+2. (8)
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Let
H~ε

n(Z) = −
∑

z0
−n

p~ε(z0
−n) log p~ε(z0|z−1

−n),

then we have

|H~ε
n+1(Z)−H~ε

n(Z)| = |
∑

z0
−n−1

p~ε(z0
−n−1) log p~ε(z0|z−1

−n−1)−
∑

z0
−n

p~ε(z0
−n) log p~ε(z0|z−1

−n)|

= |
∑

z0
−n−1

p~ε(z0
−n−1)(log p~ε(z0|z−1

−n−1)− log p~ε(z0|z−1
−n))| ≤ σ2L(ρσ)n.

Thus, for m > n,

|H~ε
m(Z)−H~ε

n(Z)| ≤ σ2L′′((ρδ)n + . . . + (ρδ)m−1) ≤ σ2L(ρσ)n

1− ρσ
.
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Entropy Rate Again

Let X denote the set of left infinite sequences with finite alphabet.
For real ~ε, consider the measure ν~ε on X defined by:

ν~ε({x0
−∞ : x0 = z0, · · · , x−n = z−n}) = p~ε(z0

−n). (9)

Note that H(Z) can be rewritten as

H~ε(Z) =
∫
− log p~ε(z0|z−1

−∞)dν~ε. (10)
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Main Idea

Let F θ denote the Banach space consisting of all the “exponential
forgetting” functions on X with certain norm. For every f ∈ F θ,
there is an unique equilibrium state µf . Ruelle Showed that the
mapping from f to µf is analytic.

In our case, for f(~ε, z) = log p~ε(z0|z−1
−∞), one can prove µf(~ε,·) = ν~ε

as in (9).

~ε → log p~ε(z0|z−1
−∞) → ν~ε

In order to show ν~ε is analytic with respect to ~ε, we only need to
show that ~ε 7→ f(~ε, z) is analytic as a mapping from real parameter
space to F ρ.
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Analyticity in a Strong Sense

Theorem 2. Suppose that the entries of ∆ are analytically
parameterized by a real variable vector ~ε. If at ~ε = ~ε0, ∆ satisfies
conditions 1 and 2 in Theorem 1, then the mapping ~ε 7→ ν~ε is
analytic at ~ε0 from the real parameter space to (F ρ)∗.

So, under certain assumptions, a hidden Markov chain itself is
analytic, which, in principle, implies analyticity of other statistical
quantities.
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Theorem 1 is an immediate corollary of Theorem 2:

Proof. The map
Ω → F ρ × (F ρ)∗ → R

~ε 7→ (f~ε, ν~ε) 7→ ν~ε(f~ε)

is analytic at ~ε0, as desired.
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Stabilizing Property of Derivatives in Black Hole Case

Suppose that for every a ∈ A, ∆a is a rank one matrix, and every
column of ∆a is either strictly positive or all zeros. We call this the
Black Hole case.

Theorem 3. If at ε = ε̂, for every a ∈ A, ∆a is a rank one matrix,
and every column of ∆a is either a positive or a zero column, then
for ~n = (n1, n2, · · · , nm),

H(Z)(~n)
∣∣∣
ε=ε̂

= Hd(|~n|+1)/2e(Z)(~n)
∣∣∣
ε=ε̂
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Sketch of the proof

Consider the iteration:

xi =
xi−1∆zi

xi−1∆zi1
.

• xi can be viewed as a function (denoted by g) of xi−1 and ∆a.

• g is a constant as a function of xi−1.

• At ε = ε̂

xi = p(yi = ·|zi
−∞) =

xi−1∆zi

xi−1∆zi
1

=
p(yi−1 = ·)∆zi

p(yi−1 = ·)∆zi
1

= p(yi = ·|zi).

(11)
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• Taking n-th order derivatives, we have

x
(n)
i =

∂g

∂xi−1

∣∣∣∣
ε=ε̂

(xi−1,∆zi) x
(n)
i−1 + other terms,

where “other terms” involve only lower order (than n)
derivatives of xi−1.

• By induction, we conclude that

x
(n)
i = p(n)(yi|zi

−∞) = p(n)(yi|zi
i−n).

at ε = ε̂.

• We then have that for all sequences z0
−∞ the n-th derivative of

p(z0|z−1
−∞) stabilizes:

p(n)(z0|z−1
−∞) = p(n)(z0|z−1

−n−1) at ε = ε̂. (12)
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For n-th order derivative of H(Z),

H(n)(Z) = lim
k→∞

∑

z0
−k

n∑

l=1

Cl−1
n−1p

(l)(z0
−k)(log p(z0|z−1

−k))(n−l)

= lim
k→∞

∑

z0
−k

n∑

l=1

Cl−1
n−1p

(l)(z0
−k)(log p(z0|z−1

−n))(n−l)

=
∑

z0
−n

n∑

l=1

Cl−1
n−1p

(l)(z0
−n)(log p(z0|z−1

−n))(n−l) = H(n)
n (Z).
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Interesting Property of Entropy Rate

The arguments in the proof shows that:

The stabilization of entropy rate (of ANY process) is at least
twice faster than the stabilization of conditional probability.
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Digital Communication Example Revisited

If all transition probabilities πij ’s are positive, then at ε = 0,

∆ =




y (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) π00 0 π01 0

(0, 1) π00 0 π01 0

(1, 0) π10 0 π11 0

(1, 1) π10 0 π11 0




.

∆0 =




y (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) π00 0 0 0

(0, 1) π00 0 0 0

(1, 0) π10 0 0 0

(1, 1) π10 0 0 0




, ∆1 =




y (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) 0 0 π01 0

(0, 1) 0 0 π01 0

(1, 0) 0 0 π11 0

(1, 1) 0 0 π11 0




.

Note that both ∆0 and ∆1 are rank 1 matrix with at least one positive column, which is Black
Hole case. Thus the Taylor series of H(Z) when ε = 0 exists and can be exactly calculated.
This result, as a special case of Theorem 3, recovers computational work by Zuk et. al. [2004].
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Again for this example, domain of analyticity of entropy rate can be
determined as follows: for given ρ with 0 < ρ < 1, choose r and R

to satisfy all the following constraints. Then the entropy rate is an
analytic function of ε on |ε| < r.

0 ≤
√

r(r + 1)| − π00π11 + π10π01|
π11 − |π10 − π11|r − (|π00 − π10 − π01 + π11|r + |π01 − π11|)R <

√
ρ,

0 ≤
√

r(r + 1)| − π00π11 + π10π01|
π01 − |π00 − π01|r − (|π00 − π10 − π01 + π11|r + |π01 − π11|)R <

√
ρ,

0 ≤
√

r(r + 1)| − π11π00 + π01π10|
π00 − |π01 − π00|r − (|π00 − π10 + π11 − π01|r + |π10 − π00|)R <

√
ρ,
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0 ≤
√

r(r + 1)| − π11π00 + π01π10|
π10 − |π11 − π10|r − (|π00 − π10 + π11 − π01|r + |π10 − π00|)R <

√
ρ,

0 ≤ rπ00

π01 − |π00 − π01|r < R(1− ρ), 0 ≤ rπ10

π11 − |π10 − π11|r < R(1− ρ),

0 ≤ rπ11

π10 − |π11 − π10|r < R(1− ρ), 0 ≤ rπ01

π00 − |π01 − π00|r < R(1− ρ),

2(|π00 − π01 − π10 + π11|r + |π01 − π11|)R + 2|π10 − π11|r + 1 < 1/ρ,

2(|π10 − π11 − π00 + π01|r + |π11 − π01|)R + 2|π00 − π01|r + 1 < 1/ρ.

25



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

p

lo
w

er
 b

ou
nd

 o
f r

ad
iu

s 
co

nv
er

ge
nc

e

Figure 1: lower bound on radius of convergence as a function of p
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Hidden Markov Chains with Unambiguous Symbol

Definition 4. A symbol a is called unambiguous if Φ−1(a) contains
only one element.

When an unambiguous symbol is present, the entropy rate can be
expressed in a simple way. In the case of a binary hidden Markov
chain, where 0 is unambiguous,

H(Zε) = pε(0)Hε(z|0)+pε(10)Hε(z|10)+· · ·+pε(1(n)0)Hε(z|1(n)0)+· · · ,

where 1(n) denotes the sequence of n 1’s and

Hε(z|1(n)0) = −pε(0|1(n)0) log pε(0|1(n)0)−pε(1|1(n)0) log pε(1|1(n)0).
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Example of Non-analyticity

Consider the following parameterized stochastic matrix

∆(ε) =




ε a− ε b

g c d

h e f


 .

The states of the Markov chain are the matrix indices {1, 2, 3}. Let
Zε be the binary hidden Markov chain defined by: Φ(1) = 0 and
Φ(2) = Φ(3) = 1. We claim that H(Zε) is not analytic at ε = 0.

28



Let π(ε) = (π1(ε), π2(ε), π3(ε)) be the stationary vector of ∆(ε).
Since ∆(ε) is irreducible, π(ε) is analytic in ε and positive. Now,

pε(0)Hε(z|0) = −pε(00) log pε(0|0)− pε(10) log pε(1|0).

= −π1(ε)ε log ε− π1(ε)(a− ε + b) log(π1(ε)(a− ε + b))

which is not analytic at ε = 0. However it can be shown that the
sum of all other terms is analytic at ε = 0. Thus, H(Zε) is not
analytic at ε = 0.
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Another Example of Non-analyticity

Consider the following parameterized stochastic matrix

∆(ε) =




e a b

f − ε c ε

g 0 c


 .

The states of the Markov chain are the matrix indices {1, 2, 3}.
Let Zε be the binary hidden Markov chain defined by Φ(1) = 0 and
Φ(2) = Φ(3) = 1. We show that H(Zε) is not analytic at ε = 0.
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We have

pε(1|1(n)0) = (acn+1 + aε(n + 1)cn + bcn+1)/(acn + aεncn−1 + bcn)

= (ac2 + aε(n + 1)c + bc2)/(ac + aεn + bc),

and

pε(0|1(n)0) = ((f − ε)acn + gaεncn−1 + gbcn)/(acn + aεncn−1 + bcn)

= ((f − ε)ac + gaεn + gbc)/(ac + aεn + bc).

When ε → −(a + b)c/an, the term pε(1(n)0)Hε(z|1(n)0) →∞.
Meanwhile, the sum of all the other terms is analytic. Thus, we
conclude that H(Zε) blows up when one approaches −(a + b)c/an

and therefore is not analytic at ε = 0.
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Necessary and Sufficient Conditions for Analyticity

Theorem 5. Let ∆ be an irreducible stochastic d× d matrix with
the following form:

∆ =


 a r

c B


 (13)

where a is a scalar and B is an (d− 1)× (d− 1) matrix. Let Φ be
the function defined by Φ(1) = 0, and Φ(2) = · · ·Φ(n) = 1. Then for
any parametrization ∆(ε) such that ∆(ε0) = ∆, letting Zε denote
the hidden Markov chain defined by ∆(ε) and Φ, H(Zε) is analytic
at ε0 if and only if

1. a > 0, and rBjc > 0 for j = 0, 1, · · · .
2. The maximum eigenvalue of B is simple and strictly greater in

absolute value than the other eigenvalues.
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