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Zd Shifts of finite type

Let A be a finite alphabet.
AZd

:= { all d-dimensional arrays of symbols from A }.
Shift of finite type (SFT):
Let F is a finite list of “forbidden” patterns on finite sets,

X = XF =
{x ∈ AZd

: x contains no translate of an element of F}
SFT’s also known as “finite memory constraints.”
Nearest neighbor (n.n.) SFT: an SFT where all forbidden
patterns are patterns on edges of Zd .
Main Example (d = 2): hard square SFT

A = {0,1},F = {11,
1
1
}
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Topological entropy

d-dimensional cube: Bn := [0,n − 1]d

for an SFT X ,

Ln(X ) = { legal configurations on Bn}

Topological entropy (noiseless capacity):

h(X ) := lim
n→∞

log |Ln(X )|
nd

By subadditivity of log |Ln(X )|,

h(X ) := inf
n

log |Ln(X )|
nd
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SFT’s, d = 1

A one-dimensional n.n. SFT X = XF is a set of sequences
specified by a directed graph G with vertices in A and an
edge from a to b iff ab 6∈ F .

Golden Mean Shift ((1,∞) constraint): F = {11}

Adjacency matrix A of G is the square matrix indexed by A:

Aab =

{
1 ab 6∈ F
0 ab ∈ F

}
h(X ) = logλ(A), where λ(A) is the spectral radius of A.
Characterization of entropies for d = 1 (Lind):

{logλ1/q}

where λ is a Perron number and q ∈ N
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Examples of Z2 SFTs: hard square

hard squares A = {0,1},F = {11,
1
1
}

h( hard square SFT ) = ???
(Baxter) h( hard hexagons ) = log(λ) where λ is an
algebraic integer of degree 24.
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Examples of Z2 SFTs: checkerboard (coloring)
constraints

q-checkerboard Cq: A = {1, . . . ,q},F = {aa,
a
a
}

h(C2) = 0
(Lieb): h(C3) = (3/2) log(4/3)

h(C4) = ???
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Examples of Z2 SFT’s: dimers

dimers:

F = {LL,LT ,LB,RR,TR,BR,
T
L
,

T
R
,

T
T
,

B
B
,

L
B
,

R
B
}

(Fisher-Kastelyn-Temperley):
h( Dimers ) = 1

16π2

∫ π
−π
∫ π
−π log(4 + 2 cos θ + 2 cosφ) dθdφ

h( Monomers-Dimers) = ???

Author Short Paper Title



Examples of Z2 SFT’s: dimers

dimers:
L

L L
LL

L
L

R

R R
R

R
R
R

T T
T T T T

T T
TT

B B
B B B B

B
BB

B

F = {LL,LT ,LB,RR,TR,BR,
T
L
,

T
R
,

T
T
,

B
B
,

L
B
,

R
B
}

(Fisher-Kastelyn-Temperley):
h( Dimers ) = 1

16π2

∫ π
−π
∫ π
−π log(4 + 2 cos θ + 2 cosφ) dθdφ

h( Monomers-Dimers) = ???

Author Short Paper Title



Examples of Z2 SFT’s: dimers

dimers:
L

L L
LL

L
L

R

R R
R

R
R
R

T T
T T T T

T T
TT

B B
B B B B

B
BB

B

F = {LL,LT ,LB,RR,TR,BR,
T
L
,

T
R
,

T
T
,

B
B
,

L
B
,

R
B
}

(Fisher-Kastelyn-Temperley):
h( Dimers ) = 1

16π2

∫ π
−π
∫ π
−π log(4 + 2 cos θ + 2 cosφ) dθdφ

h( Monomers-Dimers) = ???

Author Short Paper Title



Examples of Z2 SFT’s: dimers

dimers:
L

L L
LL

L
L

R

R R
R

R
R
R

T T
T T T T

T T
TT

B B
B B B B

B
BB

B

F = {LL,LT ,LB,RR,TR,BR,
T
L
,

T
R
,

T
T
,

B
B
,

L
B
,

R
B
}

(Fisher-Kastelyn-Temperley):
h( Dimers ) = 1

16π2

∫ π
−π
∫ π
−π log(4 + 2 cos θ + 2 cosφ) dθdφ

h( Monomers-Dimers) = ???

Author Short Paper Title



Examples of Z2 SFT’s: dimers

dimers:
L

L L
LL

L
L

R

R R
R

R
R
R

T T
T T T T

T T
TT

B B
B B B B

B
BB

B

F = {LL,LT ,LB,RR,TR,BR,
T
L
,

T
R
,

T
T
,

B
B
,

L
B
,

R
B
}

(Fisher-Kastelyn-Temperley):
h( Dimers ) = 1

16π2

∫ π
−π
∫ π
−π log(4 + 2 cos θ + 2 cosφ) dθdφ

h( Monomers-Dimers) = ???

Author Short Paper Title



Topological entropy, d ≥ 2

Exact formula known only in a few cases.
Characterization of entropies for d ≥ 2
(Hochman-Meyerovitch):

{right recursively enumerable (RRE) numbers h ≥ 0}

i.e, there is an algorithm that produces a sequence rn ≥ h
s.t. rn → h.
Proof:

Necessity: Let rn := log |Ln|
nd .

rn → h.
Since lim = inf, each rn ≥ h.
Sufficiency (hard): Emulate Turing machine with an SFT.

RRE’s can be arbitrarily poorly computable, or even
non-computable.
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polynomial time approximation

A polynomial time approximation algorithm: on input n,
produces rn s.t. |rn − h| < 1/n and rn can be computed in
time poly(n).
Theorem (Gamarnik-Katz, Pavlov): There is a polynomial
time approximation algorithm to compute
h( hard square SFT).

Author Short Paper Title



polynomial time approximation

A polynomial time approximation algorithm: on input n,
produces rn s.t. |rn − h| < 1/n and rn can be computed in
time poly(n).
Theorem (Gamarnik-Katz, Pavlov): There is a polynomial
time approximation algorithm to compute
h( hard square SFT).

Author Short Paper Title



Measure-theoretic entropy

Given a shift-invariant Borel probability measure µ on AZd
,

For finite S b Zd ,

Hµ(S) :=
∑

x∈AS

−µ(x) logµ(x) =

∫
− logµ(x)dµ(x)

For finite disjoint S,T ,

Hµ(S | T ) :=
∑

x∈AS ,y∈AT : µ(y)>0

−µ(x , y) logµ(x | y)

Extend to finite S and infinite T :

Hµ(S | T ) := inf
T ′bT

Hµ(S|T ′)
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Entropy (entropy rate) of µ

h(µ) := limn→∞
Hµ(Bn)

nd

d = 1: Theorem: h(µ) = Hµ(0 | {−1,−2,−3, . . .})
d = 2: Let ≺ denotes lexicographic order: (i , j) ≺ (i ′, j ′) iff
either j < j ′ or (j = j ′ and i < i ′).

For z ∈ Z2, let P(z) := {z ′ ∈ Z2 : z ′ ≺ z} the lexicographic
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· · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · ·
• • • • • • • 0 · · · · · · · ·
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
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Defn: The information function of µ is defined as

Iµ(x) := − logµ(x(0)| x(P)) (µ− a.e.)

Corollary:

h(µ) = Hµ(0| P) =

∫
Iµ(x)dµ(x).
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Variational Principle for Topological Entropy

For an SFT X ,
h(X ) = sup

µ
h(µ)

where the sup is taken over all shift-invariant Borel
probability measures µ s.t. support(µ) ⊆ X .
Fact: The sup is always achieved. A measure which
achieves the sup is called a measure of maximal entropy
(MME).
So for an MME µ, h(X ) = h(µ) =

∫
Iµ(x)dµ(x)

Under certain conditions, h(X ) = h(µ) =
∫

Iµ(x)dν(x) for
some other invariant measures ν
If this holds for ν = the δ-measure on a fixed point sZd

, then

h(X ) = h(µ) = Iµ(sZd
) = − logµ(x(0) = s | x(P) = sP)
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Rough Idea for showing h(X ) = Iµ(sZd
)

An MME µ should be “nearly uniform”. So, µ captures entropy:
If sZd ∈ X , then

h(X ) = lim
n→∞

log |Ln(X )|
nd = lim

n→∞

− logµ(x(Bn) = sBn )

nd

= lim
n→∞

(1/nd )
∑
z∈Bn

− logµ(x(z) = s | x(P(z) ∩ Bn) = sP(z)∩Bn )

· · · · ·
· · · · ·
· · · · ·
· · · · ·

This is an average of nd terms of two types:
Bulk terms: Terms that are far from the boundary of Bn
Boundary terms: Terms that are near the boundary of Bn

Bulk terms are close to Iµ(sZd
). All terms are uniformly

bounded. Most terms are bulk terms. So, h(X ) = Iµ(sZd
).
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Theorem (Lanford-Ruelle): Every MME on a n.n. SFT is a
uniform Markov random field i.e., conditioned on boundary of a
finite set, interior and exterior are independent, and the
conditional distribution on interior is uniform.

Under a mild topological (combinatorial) assumption on a n.n.
SFT X , we get:

Even if you condition on a boundary condition, µ still
captures topological entropy.
All terms are uniformly bounded.

Also need a convergence condition to get bulk terms close to
their limit Iµ(aZd

). Obtained by coupling and Peirels arguments.
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Safe symbol

A n.n. SFT X has a safe symbol s if it is legal with every
configuration of nearest neighbours:

?

? s ?

?

Examples: Yes: Hard squares (s = 0)
No: Checkerboard shifts, Dimers, Monomer-dimers
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Entropy Representation

Let Ra,b,c := [−a,−1]× [1, c] ∪ [0,b]× [0, c]
Example: R3,4,3 :

| · · · · · · · ·
c · · · · · · · ·
| · · · · · · · ·

· · · · ·
− a − − b −

Theorem: Let X be a n.n. Zd SFT and µ an MME on X . If
1 X has a safe symbol s – and –
2 (for d = 2)

L := lim
a,b,c→∞

µ(s0 | s∂Ra,b,c ) exists

Then
h(X ) = − log L
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Moreover, if d = 2 and convergence in hypothesis 2 is
exponential, then there is a polynomial time algorithm to
compute h(X ).
Proof of Moreover: Approximate L by µ(s0 | s∂Rn,n,n ).

Accuracy is e−Ω(n)

Claim: Computation time is eO(n)

Trade exponential accuracy in exponential time for linear
accuracy (1/n) in polynomial time. �
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Proof of Claim, via transfer matrices

µ(s0 | s∂Rn,n,n ) =

#

s s s s s
s · · · · · s
s · · · · · s
s s s s · · s

s s s

#

s s s s s
s · · · · · s
s · · · · · s
s s s · · · s

s s s

=
(
∏−1

i=−n Mi)M̂0(
∏n−1

i=1 Mi)

(
∏−1

i=−n Mi)M0(
∏n−1

i=1 Mi)

Mi is transition matrix from column i to column i + 1 compatible
with s∂Rn,n,n and
M̂0 is matrix obtained from M0 by forcing s at origin. �
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Extensions

Weaken fixed point sZd
to periodic orbit

Weaken safe symbol to topological strong spatial mixing
Applies to

hard squares
monomer-dimers
q-checkerboard SFT with q ≥ 6

Generalize results from entropy to pressure of n n.
interactions on n.n. SFT’s

Applies to large sets of temperature regions for classical
models in statistical physics, in both subcritical and
supercritical regions:

Hard square
Ising
Potts
Widom-Rowlinson
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End of talk

The following slides form a hodge-podge of topics that were not
included in the talk.
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Topological Strong Spatial Mixing (TSSM)

Defn of TSSM with gap g:
for any disjoint U,S,V b Z d s.t. d(U,V ) ≥ g,
if u ∈ AU , s ∈ AS, v ∈ AV , s.t. us and sv are allowed, then so is
usv .
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Let Ra,b,c := [−a,−1]× [1, c] ∪ [0,b]× [0, c]
Example: R3,4,3 :

· · · · · · · ·
| · · · · · · · ·
c · · · · · · · ·
| · · · · · · · ·

· · · · ·
− a − − b −

Theorem: Let X be a Zd n.n. SFT and µ an MME on X . If
1 X satisfies TSSM
2 (for d = 2) For some periodic orbit O in X and all ω ∈ O

L(ω) := lim
a,b,c→∞

µ(ω(0) | ω(∂Ra,b,c)) exists

Then
h(X ) = − 1

|O|
∑
ω∈O

log L(ω)
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MME is characterized by as much:
Site-to-site independence -and-
Uniformity of distribution

as possible.

Author Short Paper Title



MME is characterized by as much:
Site-to-site independence -and-
Uniformity of distribution

as possible.

Author Short Paper Title



MME is characterized by as much:
Site-to-site independence -and-
Uniformity of distribution

as possible.

Author Short Paper Title



MME is characterized by as much:
Site-to-site independence -and-
Uniformity of distribution

as possible.

Author Short Paper Title



Markov random fields

A Markov random field (MRF) is a shift-invariant Borel
probability measure µ on AZd

such that for any choice of:
S b Zd ,
T b Zd s.t. ∂S ⊆ T ⊆ Zd \ S
configuration x on S
configuration y on T s.t. µ(y) > 0,

we have:
µ(x | y) = µ(x | y(∂S))
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configuration y on T s.t. µ(y) > 0,

we have:
µ(x | y) = µ(x | y(∂S))

S

∂S
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Uniform MRF

Let X be a n.n. SFT. For S b Zd and y ∈ A∂S, let

Ly
S(X ) := {x ∈ AS : xy is legal }

An MRF on X is uniform if whenever µ(y) > 0, then for
x ∈ Ly

S(X )

µ(x | y) =
1

|Ly
S(X )|

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n.
SFT is a uniform MRF.

Author Short Paper Title



Uniform MRF

Let X be a n.n. SFT. For S b Zd and y ∈ A∂S, let

Ly
S(X ) := {x ∈ AS : xy is legal }

An MRF on X is uniform if whenever µ(y) > 0, then for
x ∈ Ly

S(X )

µ(x | y) =
1

|Ly
S(X )|

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n.
SFT is a uniform MRF.

Author Short Paper Title



Uniform MRF

Let X be a n.n. SFT. For S b Zd and y ∈ A∂S, let

Ly
S(X ) := {x ∈ AS : xy is legal }

S

∂S

An MRF on X is uniform if whenever µ(y) > 0, then for
x ∈ Ly

S(X )

µ(x | y) =
1

|Ly
S(X )|

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n.
SFT is a uniform MRF.

Author Short Paper Title



Uniform MRF

Let X be a n.n. SFT. For S b Zd and y ∈ A∂S, let

Ly
S(X ) := {x ∈ AS : xy is legal }

S

∂S

An MRF on X is uniform if whenever µ(y) > 0, then for
x ∈ Ly

S(X )

µ(x | y) =
1

|Ly
S(X )|

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n.
SFT is a uniform MRF.

Author Short Paper Title



Uniform MRF

Let X be a n.n. SFT. For S b Zd and y ∈ A∂S, let

Ly
S(X ) := {x ∈ AS : xy is legal }

S

∂S

An MRF on X is uniform if whenever µ(y) > 0, then for
x ∈ Ly

S(X )

µ(x | y) =
1

|Ly
S(X )|

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n.
SFT is a uniform MRF.

Author Short Paper Title



Uniform MRF

Let X be a n.n. SFT. For S b Zd and y ∈ A∂S, let

Ly
S(X ) := {x ∈ AS : xy is legal }

S

∂S

An MRF on X is uniform if whenever µ(y) > 0, then for
x ∈ Ly

S(X )

µ(x | y) =
1

|Ly
S(X )|

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n.
SFT is a uniform MRF.

Author Short Paper Title



Proof

Since µ is an MME, µ must be a uniform MRF.
Since s is a safe symbol,

1 For all T b Zd containing 0,

µ(s0 | s∂T ) ≥ 1
|A| .

2

h(X ) = lim
n→∞

− logµ(sBn | s∂Bn )

nd

Proof:
µ(sBn | s∂Bn ) =

1
|GAn(X )|
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Decomposition

h(X ) = lim
n→∞

− logµ(sBn | s∂Bn )

nd

µ(sBn | s∂Bn ) =
∏

z∈Bn

µ(sz | sP(z)∩Bns∂Bn )

• • • •
• · · · · •
• · · · · •
• · · · · •
z • · · · •
• • • •
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Decomposition

h(X ) = lim
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− logµ(sBn | s∂Bn )

nd

µ(sBn | s∂Bn ) =
∏

z∈Bn

µ(sz | sP(z)∩Bns∂Bn ) =
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µ(s0 | s∂Ra(z),b(z),c(z))

• • • •
• · · · · •
• · · · · •
• • z · •

• •

Author Short Paper Title



Proof

So,

logµ(sBn | s∂Bn ) =
∑
z∈Bn

logµ(sz | s∂Ra(z),b(z),c(z))

By the convergence assumption, for “most” z ∈ Bn

logµ(sz | s∂Ra(z),b(z),c(z)) ≈ log L

By safe symbol assumption, for the remaining z ∈ Bn,

0 ≥ logµ(sz | s∂Ra(z),b(z),c(z)) ≥ − log |A|

Thus, h(X ) = lim
n→∞

− logµ(sBn | s∂Bn )

nd = − log L. �
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Algorithmic consequence

Theorem: Let X be a n.n. Z2 SFT and µ an MME on X . If
1 X has a safe symbol s – and –
2

L := lim
a,b,c→∞

µ(s0 | s∂Ra,b,c ) exists

and convergence is exponential
Then there is a polynomial time algorithm to compute
h(X ) = − log L.
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Strong Spatial Mixing

An MRF µ satisfies strong spatial mixing (SSM) at rate
f (n)

if for all V b Z d , U ⊂ V

all u ∈ AU , and v , v ′ ∈ A∂V satisfying µ(v), µ(v ′) > 0,

we have
∣∣µ(u | v)− µ(u | v ′)

∣∣ ≤ |U|f (d(U,Σ∂V (v , v ′))).
where Σ∂V (v , v ′) = {t ∈ ∂V : v(t) 6= v(t ′)}.
SSM⇒ convergence condition in theorem.
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Stronger conclusion

Theorem (Briceno): Let X be a Zd n.n. SFT and µ an MME on
X . If

1 X satisfies TSSM
2 µ satisfies SSM

Then for all invariant measures ν s.t. support(ν) ⊆ X ,

h(X ) =

∫
Iµ(x) dν(x)

Applies to:
hard squares
q-checkerboard with q ≥ 6
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Topological Pressure and Variational Principle

Let X be a shift space and f : X → R a continuous function.
Topological Pressure (defined by Variational Principle):

PX (f ) := sup
µ

h(µ) +

∫
fdµ

where the sup is taken over all shift-invariant Borel
probability measures µ such that support(µ) ⊆ X .
Fact: The sup is always achieved.
A measure which achieves the sup is called an
equilibrium state.
Note: PX (0) = h(X ).
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Nearest-Neighbour interactions and Gibbs measures

A nearest-neighbor interaction is a shift-invariant function
Φ from a set of configurations on vertices and edges in Zd

to R ∪∞
For a nearest-neighbor interaction Φ, the underlying SFT:

X = XΦ := {x ∈ AZd
: Φ(x({v , v ′})) 6=∞, for all v ∼ v ′}.

A nearest neighbour (n.n.) Gibbs measure µ
corresponding to Φ is an MRF on X such that for S b Zd ,
δ ∈ A∂S, µ(δ) > 0, w ∈ AS:

µ(w |δ) =
e−UΦ(wδ)

Z Φ,δ(S)
.

where
UΦ(wδ) is the sum of all Φ-values of wδ for vertices, edges
in S ∪ ∂S
Z Φ,δ(S) is the normalization factor.
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to R ∪∞
For a nearest-neighbor interaction Φ, the underlying SFT:

X = XΦ := {x ∈ AZd
: Φ(x({v , v ′})) 6=∞, for all v ∼ v ′}.

A nearest neighbour (n.n.) Gibbs measure µ
corresponding to Φ is an MRF on X such that for S b Zd ,
δ ∈ A∂S, µ(δ) > 0, w ∈ AS:

µ(w |δ) =
e−UΦ(wδ)

Z Φ,δ(S)
.

where
UΦ(wδ) is the sum of all Φ-values of wδ for vertices, edges
in S ∪ ∂S
Z Φ,δ(S) is the normalization factor.
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Examples of n.n. Gibbs measures

uniform MME on n.n. SFT
hard square model with activities
ferromagnetic Ising model with no external field.
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Equilibrium states versus n.n. Gibbs measures

Pressure of n.n. interaction Φ:

P(Φ) := lim
n→∞

log Z Φ(Bn)

nd

where Z Φ(Bn) is the “free boundary” normalization.
Let AΦ(x) := −Φ(x(0))−∑d

i=1 Φ(x(0), x(ei)).
Fact: PXΦ

(AΦ) = P(Φ).
Lanford-Ruelle Theorem: Every equilibrium state for AΦ is
a Gibbs measure for Φ.
Dobrushin Theorem: If XΦ is strongly irreducible, then
every Gibbs measure for Φ is an equilibrium state for AΦ.
These theorems hold in much greater generality.
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Pressure representation and approximation

Theorem (Adams, Briceno, Marcus, Pavlov): Let µ a Gibbs
measure for a n.n. interaction Φ with underlying Zd n.n. SFT X .
If

1 X satisfies TSSM
2 For some periodic orbit O in X and all ω ∈ O

L(ω) := lim
a,b,c→∞

µ(ω(0) | ω(∂Ra,b,c)) exists

Then
P(Φ) =

1
|O|

∑
ω∈O

− log L(ω) + AΦ(ω)

Moreover, if d = 2 and convergence in hypothesis 2 is
exponential, then there is a polynomial time algorithm to
compute P(Φ).
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Stronger conclusion

Theorem (Briceno): Let µ a Gibbs measure for a n.n.
interaction Φ with underlying Zd n.n. SFT X . If

X satisfies TSSM
µ satisfies SSM.

Then for all shift-invariant measures ν such that
support(ν) ⊆ X ,

P(Φ) =

∫
(Iµ(x) + AΦ(x))dν
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D-condition

An SFT X satisfies the D-condition if
there exist sequences of finite subsets (Λn), (Mn) of Zd

such that Λn ↗∞, Λn ⊆ Mn, |Mn|
|Λn| → 1, such that

for any globally admissible v ∈ AΛn and finite S ⊂ Mc
n and

globally admissible w ∈ AS, we have that vw is globally
admissible.

Safe symbol⇒ TSSM⇒ D-condition
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Connection with Thermodynamic Formalism

Theorem: Let µ a Gibbs measure for a n.n. interaction Φ with
underlying Zd n.n. SFT X . If

X satisfies the D-condition
Iµ = AΨ for some absolutely summable interaction Ψ s.t.
XΨ = X ,

Then
P(Φ) =

∫
Iµ(x) + AΦ(x) dν(x)

for every shift-invariant measure ν with support(ν) ⊆ X .
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MME, d = 1

Assuming adjacency matrix A is irreducible and aperiodic,
there is a unique MME µmax, which is a Markov chain given
by transition matrix

Pij =

{
rj
λri

ij 6∈ F
0 ij ∈ F

}
where λ = λ(A) and r is a right eigenvector for λ, and
stationary vector ri`i where ` is a left eigenvector for λ
(suitably normalized)
Thus, if µ(w1w2 . . .wn−1wn) > 0, then

µ(w1w2 . . .wn−1wn) =
`w1rwn

λn−1

Thus, fixing w1,wn,

µ(w2 . . .wn−1| w1,wn) is uniform
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Entropy representation for MME, d = 1

Iµ(x) = − logµ(x(0)| x(P))
= − log Px0x−1

= logλ+ log rx−1 − log rx0

So, for all invariant measures ν,∫
Iµ(x)dν(x) =

∫
(logλ+ log rx−1 − log rx0)dν(x)

= logλ
= h(X )

In particular, if the SFT has a fixed point x∗ := aZ and ν is
the delta measure on x∗, then on

h(X ) =

∫
Iµ(x)dν(x) = Iµ(x∗) = − logµ(x∗)

and so h(X ) can be computed from the value of the
information function at only one point.
In this case, Iµ(x) is defined everywhere.
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