# Polynomial time approximation of entropy of shifts of finite type

Stefan Adams, Raimundo Briceno, Brian Marcus, Ronnie Pavlov

Conference on Applied Mathematics University of Hong Kong August, 2016

- Let  $\mathcal{A}$  be a finite alphabet.  $\mathcal{A}^{\mathbb{Z}^d} := \{ \text{ all } d\text{-dimensional arrays of symbols from } \mathcal{A} \}.$
- Shift of finite type (SFT): Let  $\mathcal{F}$  is a *finite* list of "forbidden" patterns on *finite* sets  $X = X_{\mathcal{F}} = \{x \in \mathcal{A}^{\mathbb{Z}^d} : x \text{ contains no translate of an element of } \mathcal{F}\}$
- SFT's also known as "finite memory constraints."
- Nearest neighbor (n.n.) SFT: an SFT where all forbidden patterns are patterns on *edges* of  $\mathbb{Z}^d$ .
- Main Example (d=2): hard square SFT  $A = \{0,1\}, \mathcal{F} = \{11, \begin{array}{c} 1 \\ 1 \end{array} \}$



- Let  $\mathcal{A}$  be a finite alphabet.  $\mathcal{A}^{\mathbb{Z}^d} := \{ \text{ all } d\text{-dimensional arrays of symbols from } \mathcal{A} \}.$
- Shift of finite type (SFT):

Let  $\mathcal{F}$  is a *finite* list of "forbidden" patterns on *finite* sets,  $X = X_{\mathcal{F}} = \{x \in \mathcal{A}^{\mathbb{Z}^d} : x \text{ contains no translate of an element of } \mathcal{F}\}$ 

- SFT's also known as "finite memory constraints."
- Nearest neighbor (n.n.) SFT: an SFT where all forbidden patterns are patterns on *edges* of  $\mathbb{Z}^d$ .
- Main Example (d=2): hard square SFT  $A = \{0,1\}, \mathcal{F} = \{11, \begin{array}{c} 1 \\ 1 \end{array} \}$



- Let  $\mathcal{A}$  be a finite alphabet.  $\mathcal{A}^{\mathbb{Z}^d} := \{ \text{ all } d\text{-dimensional arrays of symbols from } \mathcal{A} \}.$
- Shift of finite type (SFT):
   Let F is a finite list of "forbidden" patterns on finite sets,

$$X = X_{\mathcal{F}} = \{x \in \mathcal{A}^{\mathbb{Z}^d}: x ext{ contains no translate of an element of } \mathcal{F}\}$$

- SFT's also known as "finite memory constraints."
- Nearest neighbor (n.n.) SFT: an SFT where all forbidden patterns are patterns on *edges* of  $\mathbb{Z}^d$ .
- Main Example (d=2): hard square SFT  $A = \{0,1\}, \mathcal{F} = \{11, \begin{array}{c} 1 \\ 1 \end{array} \}$



- Let  $\mathcal{A}$  be a finite alphabet.  $\mathcal{A}^{\mathbb{Z}^d} := \{ \text{ all } d\text{-dimensional arrays of symbols from } \mathcal{A} \}.$
- Shift of finite type (SFT): Let  $\mathcal{F}$  is a *finite* list of "forbidden" patterns on *finite* sets,  $X = X_{\mathcal{F}} =$

$$\{x \in \mathcal{A}^{\mathbb{Z}^d}: x \text{ contains no translate of an element of } \mathcal{F}\}$$

- SFT's also known as "finite memory constraints."
- Nearest neighbor (n.n.) SFT: an SFT where all forbidden patterns are patterns on edges of  $\mathbb{Z}^d$ .
- Main Example (d=2): hard square SFT  $A = \{0,1\}, \mathcal{F} = \{11, \begin{array}{c} 1 \\ 1 \end{array} \}$



- Let  $\mathcal{A}$  be a finite alphabet.  $\mathcal{A}^{\mathbb{Z}^d} := \{ \text{ all } d\text{-dimensional arrays of symbols from } \mathcal{A} \}.$
- Shift of finite type (SFT): Let  $\mathcal{F}$  is a *finite* list of "forbidden" patterns on *finite* sets,  $X = X_{\mathcal{F}} =$

 $\{x \in \mathcal{A}^{\mathbb{Z}^d} : x \text{ contains no translate of an element of } \mathcal{F}\}$ • SFT's also known as "finite memory constraints."

- Nearest neighbor (n.n.) SFT: an SFT where all forbidden patterns are patterns on *edges* of  $\mathbb{Z}^d$ .
- Main Example (d=2): hard square SFT  $A = \{0,1\}, \mathcal{F} = \{11, \begin{array}{c} 1 \\ 1 \end{array} \}$



- Let  $\mathcal{A}$  be a finite alphabet.  $\mathcal{A}^{\mathbb{Z}^d} := \{ \text{ all } d\text{-dimensional arrays of symbols from } \mathcal{A} \}.$
- Shift of finite type (SFT): Let  $\mathcal{F}$  is a *finite* list of "forbidden" patterns on *finite* sets,  $X = X_{\mathcal{F}} = \{x \in \mathcal{A}^{\mathbb{Z}^d} : x \text{ contains no translate of an element of } \mathcal{F} \}$

• SFT's also known as "finite memory constraints."

- Nearest neighbor (n.n.) SFT: an SFT where all forbidden patterns are patterns on *edges* of  $\mathbb{Z}^d$ .
- Main Example (d=2): hard square SFT  $A = \{0,1\}, \mathcal{F} = \{11, \begin{array}{c} 1 \\ 1 \end{array} \}$



- Let  $\mathcal{A}$  be a finite alphabet.  $\mathcal{A}^{\mathbb{Z}^d} := \{ \text{ all } d\text{-dimensional arrays of symbols from } \mathcal{A} \}.$
- Shift of finite type (SFT): Let  $\mathcal F$  is a *finite* list of "forbidden" patterns on *finite* sets,  $X = X_{\mathcal F} =$

 $\{x \in \mathcal{A}^{\mathbb{Z}^d} : x \text{ contains no translate of an element of } \mathcal{F}\}$ 

- SFT's also known as "finite memory constraints."
- Nearest neighbor (n.n.) SFT: an SFT where all forbidden patterns are patterns on *edges* of  $\mathbb{Z}^d$ .
- Main Example (d=2): hard square SFT  $\mathcal{A} = \{0,1\}, \mathcal{F} = \{11, \begin{array}{c} 1 \\ 1 \end{array} \}$



- Let  $\mathcal{A}$  be a finite alphabet.  $\mathcal{A}^{\mathbb{Z}^d} := \{ \text{ all } d\text{-dimensional arrays of symbols from } \mathcal{A} \}.$
- Shift of finite type (SFT): Let  $\mathcal F$  is a *finite* list of "forbidden" patterns on *finite* sets,  $X = X_{\mathcal F} =$

 $\{x \in \mathcal{A}^{\mathbb{Z}^d} : x \text{ contains no translate of an element of } \mathcal{F}\}$ 

- SFT's also known as "finite memory constraints."
- Nearest neighbor (n.n.) SFT: an SFT where all forbidden patterns are patterns on *edges* of  $\mathbb{Z}^d$ .
- Main Example (d=2): hard square SFT  $\mathcal{A} = \{0,1\}, \mathcal{F} = \{11, \begin{array}{c} 1 \\ 1 \end{array} \}$



- Let A be a finite alphabet.  $A^{\mathbb{Z}^d} := \{ \text{ all } d\text{-dimensional arrays of symbols from } A \}.$
- Shift of finite type (SFT): Let  $\mathcal{F}$  is a *finite* list of "forbidden" patterns on *finite* sets,  $X = X_{\mathcal{F}} = \{x \in \mathcal{A}^{\mathbb{Z}^d} : x \text{ contains no translate of an element of } \mathcal{F}\}$
- SFT's also known as "finite memory constraints."
- Nearest neighbor (n.n.) SFT: an SFT where all forbidden patterns are patterns on *edges* of  $\mathbb{Z}^d$ .
- Main Example (d = 2): hard square SFT

- *d*-dimensional cube:  $B_n := [0, n-1]^d$
- for an SFT X,

$$L_n(X) = \{ \text{ legal configurations on } B_n \}$$

Topological entropy (noiseless capacity):

$$h(X) := \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d}$$

$$h(X) := \inf_{n} \frac{\log |L_n(X)|}{n^d}$$



- *d*-dimensional cube:  $B_n := [0, n-1]^d$
- for an SFT X,

$$L_n(X) = \{ \text{ legal configurations on } B_n \}$$

Topological entropy (noiseless capacity):

$$h(X) := \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d}$$

$$h(X) := \inf_{n} \frac{\log |L_n(X)|}{n^d}$$



- *d*-dimensional cube:  $B_n := [0, n-1]^d$
- for an SFT X,

$$L_n(X) = \{ \text{ legal configurations on } B_n \}$$

Topological entropy (noiseless capacity):

$$h(X) := \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d}$$

$$h(X) := \inf_{n} \frac{\log |L_n(X)|}{n^d}$$



- *d*-dimensional cube:  $B_n := [0, n-1]^d$
- for an SFT X,

$$L_n(X) = \{ \text{ legal configurations on } B_n \}$$

Topological entropy (noiseless capacity):

$$h(X) := \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d}$$

$$h(X) := \inf_{n} \frac{\log |L_n(X)|}{n^d}$$



 A one-dimensional n.n. SFT X = X<sub>F</sub> is a set of sequences specified by a directed graph G with vertices in A and an edge from a to b iff ab ∉ F.

Golden Mean Shift ((1,  $\infty$ ) constraint):  $\mathcal{F} = \{11\}$ 

- Adjacency matrix A of G is the square matrix indexed by A:  $A_{ab} = \left\{ \begin{array}{cc} 1 & ab \notin \mathcal{F} \\ 0 & ab \in \mathcal{F} \end{array} \right\}$
- $h(X) = \log \lambda(A)$ , where  $\lambda(A)$  is the spectral radius of A.
- Characterization of entropies for d = 1 (Lind):

$$\{\log \lambda^{1/q}\}$$



 A one-dimensional n.n. SFT X = X<sub>F</sub> is a set of sequences specified by a directed graph G with vertices in A and an edge from a to b iff ab ∉ F.

Golden Mean Shift ((1, 
$$\infty$$
) constraint):  $\mathcal{F} = \{11\}$ 

• Adjacency matrix A of G is the square matrix indexed by A:

$$A_{ab} = \left\{ \begin{array}{cc} 1 & ab \notin \mathcal{F} \\ 0 & ab \in \mathcal{F} \end{array} \right\}$$

- $h(X) = \log \lambda(A)$ , where  $\lambda(A)$  is the spectral radius of A.
- Characterization of entropies for d = 1 (Lind):

$$\{\log \lambda^{1/q}\}$$



 A one-dimensional n.n. SFT X = X<sub>F</sub> is a set of sequences specified by a directed graph G with vertices in A and an edge from a to b iff ab ∉ F.



- Adjacency matrix A of G is the square matrix indexed by A:  $A_{ab} = \left\{ \begin{array}{cc} 1 & ab \notin \mathcal{F} \\ 0 & ab \in \mathcal{F} \end{array} \right\}$
- $h(X) = \log \lambda(A)$ , where  $\lambda(A)$  is the spectral radius of A.
- Characterization of entropies for d = 1 (Lind):

$$\{\log \lambda^{1/q}\}$$



 A one-dimensional n.n. SFT X = X<sub>F</sub> is a set of sequences specified by a directed graph G with vertices in A and an edge from a to b iff ab ∉ F.



• Adjacency matrix A of G is the square matrix indexed by A:

$$A_{ab} = \left\{ egin{array}{ll} 1 & ab 
otin \mathcal{F} \\ 0 & ab 
otin \mathcal{F} \end{array} 
ight\}$$

- $h(X) = \log \lambda(A)$ , where  $\lambda(A)$  is the spectral radius of A.
- Characterization of entropies for d = 1 (Lind):

$$\{\log \lambda^{1/q}\}$$



• A one-dimensional n.n. SFT  $X = X_{\mathcal{F}}$  is a set of sequences specified by a directed graph G with vertices in  $\mathcal{A}$  and an edge from a to b iff  $ab \notin \mathcal{F}$ .



• Adjacency matrix A of G is the square matrix indexed by A:

$$A_{ab} = \left\{ egin{array}{ll} 1 & ab 
otin \mathcal{F} \\ 0 & ab 
otin \mathcal{F} \end{array} 
ight\}$$

- $h(X) = \log \lambda(A)$ , where  $\lambda(A)$  is the spectral radius of A.
- Characterization of entropies for d = 1 (Lind):

$$\{\log \lambda^{1/q}\}$$



• A one-dimensional n.n. SFT  $X = X_{\mathcal{F}}$  is a set of sequences specified by a directed graph G with vertices in  $\mathcal{A}$  and an edge from a to b iff  $ab \notin \mathcal{F}$ .



• Adjacency matrix A of G is the square matrix indexed by A:

$$A_{ab} = \left\{ egin{array}{ll} 1 & ab 
otin \mathcal{F} \\ 0 & ab 
otin \mathcal{F} \end{array} 
ight\}$$

- $h(X) = \log \lambda(A)$ , where  $\lambda(A)$  is the spectral radius of A.
- Characterization of entropies for d = 1 (Lind):

$$\{\log \lambda^{1/q}\}$$



• hard squares  $A = \{0, 1\}, F = \{11, \begin{array}{c} 1 \\ 1 \end{array}\}$ 

- h( hard square SFT ) = ???
- (Baxter) h( hard hexagons ) =  $\log(\lambda)$  where  $\lambda$  is an algebraic integer of degree 24.

- h( hard square SFT ) = ???
- (Baxter) h( hard hexagons ) =  $\log(\lambda)$  where  $\lambda$  is an algebraic integer of degree 24.

- (Baxter) h( hard hexagons ) =  $\log(\lambda)$  where  $\lambda$  is an

- (Baxter) h( hard hexagons ) =  $\log(\lambda)$  where  $\lambda$  is an algebraic integer of degree 24.

• q-checkerboard  $C_q$ :  $A = \{1, ..., q\}, F = \{aa, \frac{a}{a}\}$ 

• 
$$h(C_2) = 0$$

• (Lieb): 
$$h(C_3) = (3/2) \log(4/3)$$

• 
$$h(C_4) = ???$$

• 
$$h(C_2) = 0$$

• (Lieb): 
$$h(C_3) = (3/2) \log(4/3)$$

• 
$$h(C_4) = ???$$

• 
$$h(C_2) = 0$$

• (Lieb): 
$$h(C_3) = (3/2) \log(4/3)$$

• 
$$h(C_4) = ???$$



- $h(C_2) = 0$
- (Lieb):  $h(C_3) = (3/2) \log(4/3)$
- $h(C_4) = ???$



- $h(C_2) = 0$
- (Lieb):  $h(C_3) = (3/2) \log(4/3)$
- $h(C_4) = ???$



- $h(C_2) = 0$
- (Lieb):  $h(C_3) = (3/2) \log(4/3)$
- $h(C_4) = ???$





- $h(C_2) = 0$
- (Lieb):  $h(C_3) = (3/2) \log(4/3)$
- $h(C_4) = ???$





$$\mathcal{F} = \{LL, LT, LB, RR, TR, BR, \begin{array}{cccc} T & T & T & B & L & R \\ L & R & T & B & B & B \end{array} \}$$

- (Fisher-Kastelyn-Temperley):  $h( \ \, \text{Dimers} \, \, ) = \frac{1}{16\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \log(4+2\cos\theta+2\cos\phi) \, \, d\theta d\phi$
- h( Monomers-Dimers) = ???





$$\mathcal{F} = \{LL, LT, LB, RR, TR, BR, \begin{array}{cccc} T & T & T & B & L & R \\ L & R & T & B & B & B \end{array}\}$$

- (Fisher-Kastelyn-Temperley):  $h( \ \, \text{Dimers} \, \, ) = \frac{1}{16\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \log(4+2\cos\theta+2\cos\phi) \, \, d\theta d\phi$
- h( Monomers-Dimers) = ???





- (Fisher-Kastelyn-Temperley):  $h( \ \, \text{Dimers} \, \, ) = \frac{1}{16\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \log(4+2\cos\theta+2\cos\phi) \, \, d\theta d\phi$
- h( Monomers-Dimers) = ???





- (Fisher-Kastelyn-Temperley):  $h( \text{ Dimers } ) = \frac{1}{16\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \log(4+2\cos\theta+2\cos\phi) \ d\theta d\phi$
- h( Monomers-Dimers) = ???





$$\mathcal{F} = \{ LL, LT, LB, RR, TR, BR, \begin{array}{cccc} T & T & T & B \\ L & R & T & B \end{array}, \begin{array}{cccc} L & R \\ B & B \end{array} \}$$

- (Fisher-Kastelyn-Temperley):  $h( \ \, \text{Dimers} \, \, ) = \frac{1}{16\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \log(4+2\cos\theta+2\cos\phi) \, \, d\theta d\phi$
- h( Monomers-Dimers) = ???



- Exact formula known only in a few cases.
- Characterization of entropies for d ≥ 2 (Hochman-Meyerovitch):

```
{right recursively enumerable (RRE) numbers h \ge 0}
```

i.e, there is an algorithm that produces a sequence  $r_n \ge h$  s.t.  $r_n \to h$ .

- Necessity: Let  $r_n := \frac{\log |L_n|}{n^d}$ .  $r_n \to h$ . Since  $\lim = \inf$ , each  $r_n \ge h$ .
- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be arbitrarily poorly computable, or even non-computable.



- Exact formula known only in a few cases.
- Characterization of entropies for d ≥ 2 (Hochman-Meyerovitch):

```
{right recursively enumerable (RRE) numbers h \ge 0}
```

i.e, there is an algorithm that produces a sequence  $r_n \ge h$  s.t.  $r_n \to h$ .

- Necessity: Let  $r_n := \frac{\log |L_n|}{n^d}$ .  $r_n \to h$ . Since  $\lim = \inf$ , each  $r_n \ge h$ .
- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be arbitrarily poorly computable, or even non-computable.



- Exact formula known only in a few cases.
- Characterization of entropies for d ≥ 2 (Hochman-Meyerovitch):

```
{right recursively enumerable (RRE) numbers h \ge 0}
```

i.e, there is an algorithm that produces a sequence  $r_n \ge h$  s.t.  $r_n \to h$ .

- Necessity: Let  $r_n := \frac{\log |L_n|}{n^d}$ .  $r_n \to h$ . Since  $\lim = \inf$ , each  $r_n \ge h$ .
- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be arbitrarily poorly computable, or even non-computable.



- Exact formula known only in a few cases.
- Characterization of entropies for d ≥ 2 (Hochman-Meyerovitch):

```
{right recursively enumerable (RRE) numbers h \ge 0}
```

i.e, there is an algorithm that produces a sequence  $r_n \ge h$  s.t.  $r_n \to h$ .

- Necessity: Let  $r_n := \frac{\log |L_n|}{n^d}$ .  $r_n \to h$ . Since  $\lim = \inf$ , each  $r_n \ge h$ .
- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be arbitrarily poorly computable, or even non-computable.



- Exact formula known only in a few cases.
- Characterization of entropies for d ≥ 2 (Hochman-Meyerovitch):

{right recursively enumerable (RRE) numbers  $h \ge 0$ }

i.e, there is an algorithm that produces a sequence  $r_n \ge h$  s.t.  $r_n \to h$ .

- Necessity: Let  $r_n := \frac{\log |L_n|}{n^d}$ .  $r_n \to h$ . Since  $\lim = \inf$ , each  $r_n \ge h$
- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be arbitrarily poorly computable, or even non-computable.



- Exact formula known only in a few cases.
- Characterization of entropies for d ≥ 2 (Hochman-Meyerovitch):

{right recursively enumerable (RRE) numbers  $h \ge 0$ }

i.e, there is an algorithm that produces a sequence  $r_n \ge h$  s.t.  $r_n \to h$ .

- Necessity: Let  $r_n := \frac{\log |L_n|}{n^d}$ .  $r_n \to h$ . Since  $\lim = \inf$ , each  $r_n > h$
- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be arbitrarily poorly computable, or even non-computable.



- Exact formula known only in a few cases.
- Characterization of entropies for d ≥ 2 (Hochman-Meyerovitch):

{right recursively enumerable (RRE) numbers  $h \ge 0$ }

i.e, there is an algorithm that produces a sequence  $r_n \ge h$  s.t.  $r_n \to h$ .

- Necessity: Let  $r_n := \frac{\log |L_n|}{n^d}$ .  $r_n \to h$ . Since  $\lim = \inf$ , each  $r_n \ge h$ .
- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be arbitrarily poorly computable, or even non-computable.



- Exact formula known only in a few cases.
- Characterization of entropies for d ≥ 2 (Hochman-Meyerovitch):

```
{right recursively enumerable (RRE) numbers h \ge 0}
```

i.e, there is an algorithm that produces a sequence  $r_n \ge h$  s.t.  $r_n \to h$ .

- Necessity: Let  $r_n := \frac{\log |L_n|}{n^d}$ .  $r_n \to h$ . Since  $\lim = \inf$ , each  $r_n \ge h$ .
- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be arbitrarily poorly computable, or even non-computable.



- Exact formula known only in a few cases.
- Characterization of entropies for d ≥ 2 (Hochman-Meyerovitch):

```
{right recursively enumerable (RRE) numbers h \ge 0}
```

i.e, there is an algorithm that produces a sequence  $r_n \ge h$  s.t.  $r_n \to h$ .

- Necessity: Let  $r_n := \frac{\log |L_n|}{n^d}$ .  $r_n \to h$ . Since  $\lim = \inf$ , each  $r_n \ge h$ .
- Sufficiency (hard): Emulate Turing machine with an SFT.
- RRE's can be arbitrarily poorly computable, or even non-computable.



### polynomial time approximation

- A polynomial time approximation algorithm: on input n, produces  $r_n$  s.t.  $|r_n h| < 1/n$  and  $r_n$  can be computed in time poly(n).
- Theorem (Gamarnik-Katz, Pavlov): There is a polynomial time approximation algorithm to compute h( hard square SFT).

### polynomial time approximation

- A polynomial time approximation algorithm: on input n, produces  $r_n$  s.t.  $|r_n h| < 1/n$  and  $r_n$  can be computed in time poly(n).
- Theorem (Gamarnik-Katz, Pavlov): There is a polynomial time approximation algorithm to compute h( hard square SFT).

### Given a shift-invariant Borel probability measure $\mu$ on $\mathcal{A}^{\mathbb{Z}^d}$ ,

• For finite  $S \in \mathbb{Z}^d$ ,

$$H_{\mu}(S) := \sum_{x \in \mathcal{A}^S} -\mu(x) \log \mu(x) = \int -\log \mu(x) d\mu(x)$$

• For finite disjoint *S*, *T*,

$$H_{\mu}(\mathcal{S} \mid T) := \sum_{x \in \mathcal{A}^{\mathcal{S}}, y \in \mathcal{A}^{T}: \ \mu(y) > 0} -\mu(x, y) \log \mu(x \mid y)$$

$$H_{\mu}(S \mid T) := \inf_{T' \in T} H_{\mu}(S \mid T')$$



Given a shift-invariant Borel probability measure  $\mu$  on  $\mathcal{A}^{\mathbb{Z}^d}$ ,

• For finite  $S \subseteq \mathbb{Z}^d$ ,

$$H_{\mu}(\mathcal{S}) := \sum_{\mathbf{x} \in \mathcal{A}^{\mathcal{S}}} -\mu(\mathbf{x}) \log \mu(\mathbf{x}) = \int -\log \mu(\mathbf{x}) d\mu(\mathbf{x})$$

• For finite disjoint *S*, *T*,

$$H_{\mu}(\mathcal{S} \mid T) := \sum_{x \in \mathcal{A}^{\mathcal{S}}, y \in \mathcal{A}^{T}: \ \mu(y) > 0} -\mu(x, y) \log \mu(x \mid y)$$

$$H_{\mu}(S \mid T) := \inf_{T' \in T} H_{\mu}(S \mid T')$$



Given a shift-invariant Borel probability measure  $\mu$  on  $\mathcal{A}^{\mathbb{Z}^d}$ ,

• For finite  $S \subseteq \mathbb{Z}^d$ ,

$$H_{\mu}(\mathcal{S}) := \sum_{x \in \mathcal{A}^{\mathcal{S}}} -\mu(x) \log \mu(x) = \int -\log \mu(x) d\mu(x)$$

For finite disjoint S, T,

$$H_{\mu}(\mathcal{S} \mid T) := \sum_{x \in \mathcal{A}^{\mathcal{S}}, y \in \mathcal{A}^{\mathcal{T}}: \; \mu(y) > 0} - \mu(x, y) \log \mu(x \mid y)$$

$$H_{\mu}(S \mid T) := \inf_{T' \in T} H_{\mu}(S \mid T')$$



Given a shift-invariant Borel probability measure  $\mu$  on  $\mathcal{A}^{\mathbb{Z}^d}$ ,

• For finite  $S \subseteq \mathbb{Z}^d$ ,

$$H_{\mu}(S) := \sum_{\mathbf{x} \in \mathcal{A}^S} -\mu(\mathbf{x}) \log \mu(\mathbf{x}) = \int -\log \mu(\mathbf{x}) d\mu(\mathbf{x})$$

For finite disjoint S, T,

$$H_{\mu}(\mathcal{S} \mid T) := \sum_{x \in \mathcal{A}^{\mathcal{S}}, y \in \mathcal{A}^{\mathcal{T}}: \; \mu(y) > 0} -\mu(x, y) \log \mu(x \mid y)$$

$$H_{\mu}(\mathcal{S} \mid \mathcal{T}) := \inf_{\mathcal{T}' \in \mathcal{T}} H_{\mu}(\mathcal{S} | \mathcal{T}')$$



• 
$$h(\mu) := \lim_{n \to \infty} \frac{H_{\mu}(B_n)}{n^d}$$

- d = 1: Theorem:  $h(\mu) = H_{\mu}(0 \mid \{-1, -2, -3, \ldots\})$
- d = 2: Let  $\prec$  denotes lexicographic order:  $(i, j) \prec (i', j')$  iff either j < j' or (j = j') and i < i'.

For  $\overline{z} \in \mathbb{Z}^2$ , let  $\mathcal{P}(\overline{z}) := \{\overline{z}' \in \mathbb{Z}^2 : \overline{z}' \prec \overline{z}\}$  the lexicographic past of  $\overline{z}$ , and  $\mathcal{P} := \mathcal{P}(0)$ 



- $h(\mu) := \lim_{n \to \infty} \frac{H_{\mu}(B_n)}{n^d}$
- d = 1: Theorem:  $h(\mu) = H_{\mu}(0 \mid \{-1, -2, -3, \ldots\})$
- d = 2: Let  $\prec$  denotes lexicographic order:  $(i, j) \prec (i', j')$  iff either j < j' or (j = j') and i < i'.

For  $\overline{z}\in\mathbb{Z}^2$ , let  $\mathcal{P}(\overline{z}):=\{\overline{z}'\in\mathbb{Z}^2:\ \overline{z}'\prec\overline{z}\}$  the lexicographic past of  $\overline{z}$ , and  $\mathcal{P}:=\mathcal{P}(0)$ 



- $h(\mu) := \lim_{n \to \infty} \frac{H_{\mu}(B_n)}{n^d}$
- d = 1: Theorem:  $h(\mu) = H_{\mu}(0 \mid \{-1, -2, -3, \ldots\})$
- d = 2: Let  $\prec$  denotes lexicographic order:  $(i, j) \prec (i', j')$  iff either j < j' or (j = j') and i < i'.

For  $\overline{z}\in\mathbb{Z}^2$ , let  $\mathcal{P}(\overline{z}):=\{\overline{z}'\in\mathbb{Z}^2:\ \overline{z}'\prec\overline{z}\}$  the lexicographic past of  $\overline{z}$ , and  $\mathcal{P}:=\mathcal{P}(0)$ 



- $h(\mu) := \lim_{n \to \infty} \frac{H_{\mu}(B_n)}{n^d}$
- d = 1: Theorem:  $h(\mu) = H_{\mu}(0 \mid \{-1, -2, -3, \ldots\})$
- d = 2: Let  $\prec$  denotes lexicographic order:  $(i, j) \prec (i', j')$  iff either j < j' or (j = j') and i < i'.

For  $\overline{z} \in \mathbb{Z}^2$ , let  $\mathcal{P}(\overline{z}) := \{\overline{z}' \in \mathbb{Z}^2 : \overline{z}' \prec \overline{z}\}$  the lexicographic past of  $\overline{z}$ , and  $\mathcal{P} := \mathcal{P}(0)$ 



- $h(\mu) := \lim_{n \to \infty} \frac{H_{\mu}(B_n)}{n^d}$
- d = 1: Theorem:  $h(\mu) = H_{\mu}(0 \mid \{-1, -2, -3, \ldots\})$
- d = 2: Let  $\prec$  denotes lexicographic order:  $(i, j) \prec (i', j')$  iff either j < j' or (j = j') and i < i'.

For  $\overline{z} \in \mathbb{Z}^2$ , let  $\mathcal{P}(\overline{z}) := \{\overline{z}' \in \mathbb{Z}^2 : \overline{z}' \prec \overline{z}\}$  the lexicographic past of  $\overline{z}$ , and  $\mathcal{P} := \mathcal{P}(0)$ 



- $h(\mu) := \lim_{n \to \infty} \frac{H_{\mu}(B_n)}{n^d}$
- d = 1: Theorem:  $h(\mu) = H_{\mu}(0 \mid \{-1, -2, -3, \ldots\})$
- d = 2: Let  $\prec$  denotes lexicographic order:  $(i, j) \prec (i', j')$  iff either j < j' or (j = j') and i < i'.

For  $\overline{z} \in \mathbb{Z}^2$ , let  $\mathcal{P}(\overline{z}) := \{\overline{z}' \in \mathbb{Z}^2 : \overline{z}' \prec \overline{z}\}$  the lexicographic past of  $\overline{z}$ , and  $\mathcal{P} := \mathcal{P}(0)$ 



$$\mathcal{P}:=\mathcal{P}(0)$$



Theorem: 
$$h(\mu) = H_{\mu}(0 \mid \mathcal{P})$$
.

Defn: The **information function** of  $\mu$  is defined as

$$I_{\mu}(x) := -\log \mu(x(0)|x(\mathcal{P})) \quad (\mu - a.e.)$$

Corollary

$$h(\mu) = H_{\mu}(0|\mathcal{P}) = \int I_{\mu}(x) d\mu(x).$$



$$\mathcal{P}:=\mathcal{P}(0)$$



Theorem: 
$$h(\mu) = H_{\mu}(0 \mid \mathcal{P})$$
.

Defn: The **information function** of  $\mu$  is defined as

$$I_{\mu}(x) := -\log \mu(x(0)|x(\mathcal{P})) \quad (\mu - a.e.)$$

Corollary

$$h(\mu) = H_{\mu}(0|\mathcal{P}) = \int I_{\mu}(x)d\mu(x).$$



$$\mathcal{P} := \mathcal{P}(0)$$



Theorem: 
$$h(\mu) = H_{\mu}(0 \mid \mathcal{P})$$
.

Defn: The **information function** of  $\mu$  is defined as

$$I_{\mu}(x) := -\log \mu(x(0)|x(\mathcal{P})) \quad (\mu - a.e.)$$

Corollary:

$$h(\mu) = H_{\mu}(0|\mathcal{P}) = \int I_{\mu}(x)d\mu(x).$$



• For an SFT X,

$$h(X) = \sup_{\mu} h(\mu)$$

- Fact: The sup is always achieved. A measure which achieves the sup is called a measure of maximal entropy (MME).
- So for an MME  $\mu$ ,  $h(X) = h(\mu) = \int I_{\mu}(x) d\mu(x)$
- Under certain conditions,  $h(X) = h(\mu) = \int I_{\mu}(x) d\nu(x)$  for some other invariant measures  $\nu$
- If this holds for  $\nu =$  the  $\delta$ -measure on a fixed point  $s^{\mathbb{Z}^d}$ , then

$$h(X) = h(\mu) = I_{\mu}(s^{\mathbb{Z}^d}) = -\log \mu(x(0) = s \mid x(\mathcal{P}) = s^{\mathcal{P}})$$



• For an SFT X,

$$h(X) = \sup_{\mu} h(\mu)$$

- Fact: The sup is always achieved. A measure which achieves the sup is called a measure of maximal entropy (MME).
- So for an MME  $\mu$ ,  $h(X) = h(\mu) = \int I_{\mu}(x) d\mu(x)$
- Under certain conditions,  $h(X) = h(\mu) = \int I_{\mu}(x) d\nu(x)$  for some other invariant measures  $\nu$
- If this holds for  $\nu =$  the  $\delta$ -measure on a fixed point  $s^{\mathbb{Z}^d}$ , then

$$h(X) = h(\mu) = I_{\mu}(s^{\mathbb{Z}^d}) = -\log \mu(x(0) = s \mid x(\mathcal{P}) = s^{\mathcal{P}})$$



• For an SFT X,

$$h(X) = \sup_{\mu} h(\mu)$$

- Fact: The sup is always achieved. A measure which achieves the sup is called a measure of maximal entropy (MME).
- So for an MME  $\mu$ ,  $h(X) = h(\mu) = \int I_{\mu}(x) d\mu(x)$
- Under certain conditions,  $h(X) = h(\mu) = \int I_{\mu}(x) d\nu(x)$  for some other invariant measures  $\nu$
- If this holds for  $\nu =$  the  $\delta$ -measure on a fixed point  $s^{\mathbb{Z}^d}$ , then

$$h(X) = h(\mu) = I_{\mu}(s^{\mathbb{Z}^d}) = -\log \mu(x(0) = s \mid x(\mathcal{P}) = s^{\mathcal{P}})$$



• For an SFT X,

$$h(X) = \sup_{\mu} h(\mu)$$

- Fact: The sup is always achieved. A measure which achieves the sup is called a measure of maximal entropy (MME).
- So for an MME  $\mu$ ,  $h(X) = h(\mu) = \int I_{\mu}(x) d\mu(x)$
- Under certain conditions,  $h(X) = h(\mu) = \int I_{\mu}(x) d\nu(x)$  for some other invariant measures  $\nu$
- If this holds for  $\nu =$  the  $\delta$ -measure on a fixed point  $s^{\mathbb{Z}^d}$ , then

$$h(X) = h(\mu) = I_{\mu}(s^{\mathbb{Z}^d}) = -\log \mu(x(0) = s \mid x(\mathcal{P}) = s^{\mathcal{P}})$$



• For an SFT X,

$$h(X) = \sup_{\mu} h(\mu)$$

- Fact: The sup is always achieved. A measure which achieves the sup is called a measure of maximal entropy (MME).
- So for an MME  $\mu$ ,  $h(X) = h(\mu) = \int I_{\mu}(x) d\mu(x)$
- Under certain conditions,  $h(X) = h(\mu) = \int I_{\mu}(x) d\nu(x)$  for some other invariant measures  $\nu$
- If this holds for  $\nu=$  the  $\delta-$ measure on a fixed point  ${\boldsymbol s}^{{\mathbb Z}^d}$ , then

$$h(X) = h(\mu) = I_{\mu}(s^{\mathbb{Z}^d}) = -\log \mu(x(0) = s \mid x(\mathcal{P}) = s^{\mathcal{P}})$$



• For an SFT X,

$$h(X) = \sup_{\mu} h(\mu)$$

- Fact: The sup is always achieved. A measure which achieves the sup is called a measure of maximal entropy (MME).
- So for an MME  $\mu$ ,  $h(X) = h(\mu) = \int I_{\mu}(x) d\mu(x)$
- Under certain conditions,  $h(X) = h(\mu) = \int I_{\mu}(x) d\nu(x)$  for some other invariant measures  $\nu$
- If this holds for  $\nu =$  the  $\delta$ -measure on a fixed point  $s^{\mathbb{Z}^d}$ , then

$$h(X) = h(\mu) = I_{\mu}(s^{\mathbb{Z}^d}) = -\log \mu(x(0) = s \mid x(\mathcal{P}) = s^{\mathcal{P}})$$



# Rough Idea for showing $h(X) = I_{u}(s^{\mathbb{Z}^{d}})$

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $s^{\mathbb{Z}^d} \in X$ . then

$$h(X) = \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d} = \lim_{n \to \infty} \frac{-\log \mu(x(B_n) = s^{B_n})}{n^d}$$

$$= \lim_{n \to \infty} (1/n^d) \sum_{\overline{z} \in B_n} -\log \mu(x(\overline{z}) = s \mid x(\mathcal{P}(\overline{z}) \cap B_n) = s^{\mathcal{P}(\overline{z}) \cap B_n})$$

$$\vdots \qquad \vdots \qquad \vdots$$

- Bulk terms: Terms that are far from the boundary of  $B_n$
- Boundary terms: Terms that are near the boundary of  $B_n$

bounded. Most terms are bulk terms. So,  $h(X) = h(s^{2}) = 1$ 

# Rough Idea for showing $h(X) = I_{u}(s^{\mathbb{Z}^{d}})$

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $s^{\mathbb{Z}^d} \in X$ , then

$$h(X) = \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d} = \lim_{n \to \infty} \frac{-\log \mu(x(B_n) = s^{B_n})}{n^d}$$

$$= \lim_{n \to \infty} (1/n^d) \sum_{\overline{z} \in B_n} -\log \mu(x(\overline{z}) = s \mid x(\mathcal{P}(\overline{z}) \cap B_n) = s^{\mathcal{P}(\overline{z}) \cap B_n})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\vdots \qquad \vdots \qquad \vdots$$

- Bulk terms: Terms that are far from the boundary of  $B_n$
- Boundary terms: Terms that are near the boundary of  $B_n$

bounded. Most terms are bulk terms. So,  $h(X) = h_{i}(s^{\mathbb{Z}^{d}}) \in \mathbb{R}$ 

# Rough Idea for showing $h(X) = I_{\mu}(s^{\mathbb{Z}^d})$

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $\mathbf{s}^{\mathbb{Z}^d} \in \mathbf{X}$ , then

$$h(X) = \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d} = \lim_{n \to \infty} \frac{-\log \mu(x(B_n) = s^{B_n})}{n^d}$$

$$= \lim_{n \to \infty} (1/n^d) \sum_{\overline{z} \in B_n} -\log \mu(x(\overline{z}) = s \mid x(\mathcal{P}(\overline{z}) \cap B_n) = s^{\mathcal{P}(\overline{z}) \cap B_n})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\vdots \qquad \vdots \qquad \vdots$$

This is an average of  $n^d$  terms of two types:

- Bulk terms: Terms that are far from the boundary of  $B_n$
- $\bullet$  Boundary terms: Terms that are near the boundary of  $B_n$

Bulk terms are close to  $I_{\mu}(s^{\mathbb{Z}^{\alpha}})$ . All terms are uniformly

bounded. Most terms are bulk terms. So,  $h(X) = l_{L}(s^{\mathbb{Z}^{0}})$ :

# Rough Idea for showing $h(X) = I_{\mu}(s^{\mathbb{Z}^{\sigma}})$

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $\mathbf{s}^{\mathbb{Z}^d} \in \mathbf{X}$ , then

$$h(X) = \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d} = \lim_{n \to \infty} \frac{-\log \mu(x(B_n) = s^{B_n})}{n^d}$$

$$= \lim_{n \to \infty} (1/n^d) \sum_{\overline{z} \in B_n} -\log \mu(x(\overline{z}) = s \mid x(\mathcal{P}(\overline{z}) \cap B_n) = s^{\mathcal{P}(\overline{z}) \cap B_n})$$

$$\vdots \qquad \vdots \qquad \vdots$$

This is an average of  $n^d$  terms of two types:

- Bulk terms: Terms that are far from the boundary of B<sub>n</sub>
- Boundary terms: Terms that are near the boundary of  $B_n$

Bulk terms are close to  $I_{\mu}(s^{\mathbb{Z}^{\alpha}})$ . All terms are uniformly

bounded. Most terms are bulk terms. So,  $h(X) = I_L(S^{\mathbb{Z}^0})$ :  $\longrightarrow \mathbb{Z}^0$ 

# Rough Idea for showing $h(X) = I_{\mu}(s^{\mathbb{Z}^{\sigma}})$

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $\mathbf{s}^{\mathbb{Z}^d} \in \mathbf{X}$ , then

This is an average of  $n^d$  terms of two types:

- Bulk terms: Terms that are far from the boundary of B<sub>n</sub>
- Boundary terms: Terms that are near the boundary of  $B_n$

Bulk terms are close to  $I_{\mu}(s^{\mathbb{Z}^{\alpha}})$ . All terms are uniformly

bounded. Most terms are bulk terms. So,  $h(X) = l_{L}(S^{\mathbb{Z}})$   $\longrightarrow 1$ 

# Rough Idea for showing $h(X) = I_{\mu}(s^{\mathbb{Z}^{\sigma}})$

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $\mathbf{s}^{\mathbb{Z}^d} \in \mathbf{X}$ , then

This is an average of  $n^d$  terms of two types:

- Bulk terms: Terms that are far from the boundary of B<sub>n</sub>
- Boundary terms: Terms that are near the boundary of  $B_n$

Bulk terms are close to  $I_{\mu}(s^{\mathbb{Z}^{\alpha}})$ . All terms are uniformly

bounded. Most terms are bulk terms. So,  $h(X) = l_{L}(S^{\mathbb{Z}})$   $\longrightarrow 1$ 

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $\mathbf{s}^{\mathbb{Z}^d} \in \mathbf{X}$ , then

$$h(X) = \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d} = \lim_{n \to \infty} \frac{-\log \mu(x(B_n) = s^{B_n})}{n^d}$$

$$= \lim_{n \to \infty} (1/n^d) \sum_{\overline{z} \in B_n} -\log \mu(x(\overline{z}) = s \mid x(\mathcal{P}(\overline{z}) \cap B_n) = s^{\mathcal{P}(\overline{z}) \cap B_n})$$

$$\vdots \qquad \vdots \qquad \vdots$$

This is an average of  $n^d$  terms of two types:

- Bulk terms: Terms that are far from the boundary of B<sub>n</sub>
- Boundary terms: Terms that are near the boundary of  $B_n$

Bulk terms are close to  $I_{\mu}(s^{\mathbb{Z}^{\alpha}})$ . All terms are uniformly

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $\mathbf{s}^{\mathbb{Z}^d} \in \mathbf{X}$ , then

$$h(X) = \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d} = \lim_{n \to \infty} \frac{-\log \mu(x(B_n) = s^{B_n})}{n^d}$$

$$= \lim_{n \to \infty} (1/n^d) \sum_{\overline{z} \in B_n} -\log \mu(x(\overline{z}) = s \mid x(\mathcal{P}(\overline{z}) \cap B_n) = s^{\mathcal{P}(\overline{z}) \cap B_n})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\overline{z} \qquad \vdots \qquad \vdots$$

This is an average of  $n^d$  terms of two types:

- Bulk terms: Terms that are far from the boundary of B<sub>n</sub>
- Boundary terms: Terms that are near the boundary of  $B_n$

Bulk terms are close to  $I_{\mu}(s^{\mathbb{Z}^{\alpha}})$ . All terms are uniformly

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $\mathbf{s}^{\mathbb{Z}^d} \in \mathbf{X}$ , then

$$h(X) = \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d} = \lim_{n \to \infty} \frac{-\log \mu(x(B_n) = s^{B_n})}{n^d}$$

$$= \lim_{n \to \infty} (1/n^d) \sum_{\overline{z} \in B_n} -\log \mu(x(\overline{z}) = s \mid x(\mathcal{P}(\overline{z}) \cap B_n) = s^{\mathcal{P}(\overline{z}) \cap B_n})$$

$$\vdots \qquad \vdots \qquad \vdots$$

This is an average of  $n^d$  terms of two types:

- Bulk terms: Terms that are far from the boundary of B<sub>n</sub>
- Boundary terms: Terms that are near the boundary of  $B_n$

Bulk terms are close to  $I_{\mu}(s^{\mathbb{Z}^{\alpha}})$ . All terms are uniformly

bounded. Most terms are bulk terms. So,  $h(X) = I_L(S^{\mathbb{Z}^0})$ :  $\Rightarrow \quad \Rightarrow \quad \land \circ$ 

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $\mathbf{s}^{\mathbb{Z}^d} \in \mathbf{X}$ , then

$$h(X) = \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d} = \lim_{n \to \infty} \frac{-\log \mu(x(B_n) = s^{B_n})}{n^d}$$

$$= \lim_{n \to \infty} (1/n^d) \sum_{\overline{z} \in B_n} -\log \mu(x(\overline{z}) = s \mid x(\mathcal{P}(\overline{z}) \cap B_n) = s^{\mathcal{P}(\overline{z}) \cap B_n})$$

$$\vdots \qquad \vdots \qquad \vdots$$

#### This is an average of $n^d$ terms of two types:

- Bulk terms: Terms that are far from the boundary of B<sub>n</sub>
- Boundary terms: Terms that are near the boundary of  $B_n$  Bulk terms are close to  $I_{\mu}(s^{\mathbb{Z}^d})$ . All terms are uniformly

bounded. Most terms are bulk terms. So,  $h(X) = l_{L}(S^{\mathbb{Z}})$   $\longrightarrow 1$ 

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $\mathbf{s}^{\mathbb{Z}^d} \in \mathbf{X}$ , then

$$h(X) = \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d} = \lim_{n \to \infty} \frac{-\log \mu(x(B_n) = s^{B_n})}{n^d}$$

$$= \lim_{n \to \infty} (1/n^d) \sum_{\overline{z} \in B_n} -\log \mu(x(\overline{z}) = s \mid x(\mathcal{P}(\overline{z}) \cap B_n) = s^{\mathcal{P}(\overline{z}) \cap B_n})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\bullet \qquad \overline{z} \qquad \vdots$$

This is an average of  $n^d$  terms of two types:

- Bulk terms: Terms that are far from the boundary of B<sub>n</sub>
- Boundary terms: Terms that are near the boundary of  $B_n$  Bulk terms are close to  $I_{\mu}(s^{\mathbb{Z}^d})$ . All terms are uniformly bounded. Most terms are bulk terms. So,  $h(\mathbb{X}) = I_{\mu}(s^{\mathbb{Z}^d})$ ,  $\mathbb{R} \to \mathbb{R}$

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $\mathbf{s}^{\mathbb{Z}^d} \in \mathbf{X}$ , then

$$h(X) = \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d} = \lim_{n \to \infty} \frac{-\log \mu(x(B_n) = s^{B_n})}{n^d}$$

$$= \lim_{n \to \infty} (1/n^d) \sum_{\overline{z} \in B_n} -\log \mu(x(\overline{z}) = s \mid x(\mathcal{P}(\overline{z}) \cap B_n) = s^{\mathcal{P}(\overline{z}) \cap B_n})$$

$$\vdots \qquad \vdots \qquad \vdots$$

This is an average of  $n^d$  terms of two types:

- Bulk terms: Terms that are far from the boundary of B<sub>n</sub>
- Boundary terms: Terms that are near the boundary of  $B_n$

Bulk terms are close to  $I_{\mu}(s^{\mathbb{Z}^d})$ . All terms are uniformly

bounded. Most terms are bulk terms. So,  $h(X) = I_L(S^{\mathbb{Z}^0}) : \mathbb{R} \to \mathbb{R}$ 

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $\mathbf{s}^{\mathbb{Z}^d} \in \mathbf{X}$ , then

$$h(X) = \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d} = \lim_{n \to \infty} \frac{-\log \mu(x(B_n) = s^{B_n})}{n^d}$$

$$= \lim_{n \to \infty} (1/n^d) \sum_{\overline{z} \in B_n} -\log \mu(x(\overline{z}) = s \mid x(\mathcal{P}(\overline{z}) \cap B_n) = s^{\mathcal{P}(\overline{z}) \cap B_n})$$

$$\vdots \qquad \vdots \qquad \vdots$$

This is an average of  $n^d$  terms of two types:

- Bulk terms: Terms that are far from the boundary of B<sub>n</sub>
- Boundary terms: Terms that are near the boundary of  $B_n$

Bulk terms are close to  $I_{\mu}(s^{\mathbb{Z}^d})$ . All terms are uniformly

bounded. Most terms are bulk terms. So,  $h(X) = b_{\mu}(s^{\mathbb{Z}^0})$ :  $\Rightarrow b \in \mathcal{D}$ 

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $\mathbf{s}^{\mathbb{Z}^d} \in \mathbf{X}$ , then

$$h(X) = \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d} = \lim_{n \to \infty} \frac{-\log \mu(x(B_n) = s^{B_n})}{n^d}$$

$$= \lim_{n \to \infty} (1/n^d) \sum_{\overline{z} \in B_n} -\log \mu(x(\overline{z}) = s \mid x(\mathcal{P}(\overline{z}) \cap B_n) = s^{\mathcal{P}(\overline{z}) \cap B_n})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\bullet \qquad \overline{z} \qquad \vdots$$

This is an average of  $n^d$  terms of two types:

- Bulk terms: Terms that are far from the boundary of B<sub>n</sub>
- Boundary terms: Terms that are near the boundary of  $B_n$

Bulk terms are close to  $I_{\mu}(s^{\mathbb{Z}^d})$ . All terms are uniformly

bounded. Most terms are bulk terms. So,  $h(X) = d_L(S^{\mathbb{Z}^0})$   $\longrightarrow \mathbb{Z}^0$ 

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $\mathbf{s}^{\mathbb{Z}^d} \in \mathbf{X}$ , then

$$h(X) = \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d} = \lim_{n \to \infty} \frac{-\log \mu(x(B_n) = s^{B_n})}{n^d}$$

$$= \lim_{n \to \infty} (1/n^d) \sum_{\overline{z} \in B_n} -\log \mu(x(\overline{z}) = s \mid x(\mathcal{P}(\overline{z}) \cap B_n) = s^{\mathcal{P}(\overline{z}) \cap B_n})$$

$$\vdots \qquad \vdots \qquad \vdots$$

This is an average of  $n^d$  terms of two types:

- Bulk terms: Terms that are far from the boundary of B<sub>n</sub>
- Boundary terms: Terms that are near the boundary of  $B_n$

Bulk terms are close to  $I_{\mu}(s^{\mathbb{Z}^d})$ . All terms are uniformly

bounded. Most terms are bulk terms. So,  $h(X) = d_h(S^{\mathbb{Z}_p})$   $\longrightarrow \infty$ 

An MME  $\mu$  should be "nearly uniform". So,  $\mu$  captures entropy: If  $\mathbf{s}^{\mathbb{Z}^d} \in \mathbf{X}$ , then

$$h(X) = \lim_{n \to \infty} \frac{\log |L_n(X)|}{n^d} = \lim_{n \to \infty} \frac{-\log \mu(x(B_n) = s^{B_n})}{n^d}$$

$$= \lim_{n \to \infty} (1/n^d) \sum_{\overline{z} \in B_n} -\log \mu(x(\overline{z}) = s \mid x(\mathcal{P}(\overline{z}) \cap B_n) = s^{\mathcal{P}(\overline{z}) \cap B_n})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\bullet \qquad \overline{z} \qquad \vdots$$

This is an average of  $n^d$  terms of two types:

- Bulk terms: Terms that are far from the boundary of B<sub>n</sub>
- Boundary terms: Terms that are near the boundary of  $B_n$

Bulk terms are close to  $I_{\mu}(s^{\mathbb{Z}^d})$ . All terms are uniformly

bounded. Most terms are bulk terms. So,  $h(X) = I_{\mu}(s^{\mathbb{Z}^d})$ .

Under a mild topological (combinatorial) assumption on a n.n. SFT X, we get:

- Even if you condition on a boundary condition,  $\mu$  still captures topological entropy.
- All terms are uniformly bounded.

Under a mild topological (combinatorial) assumption on a n.n. SFT X, we get:

- Even if you condition on a boundary condition,  $\mu$  still captures topological entropy.
- All terms are uniformly bounded.

Under a mild topological (combinatorial) assumption on a n.n. SFT X, we get:

- Even if you condition on a boundary condition,  $\mu$  still captures topological entropy.
- All terms are uniformly bounded.

Under a mild topological (combinatorial) assumption on a n.n. SFT X, we get:

- Even if you condition on a boundary condition,  $\mu$  still captures topological entropy.
- All terms are uniformly bounded.

Under a mild topological (combinatorial) assumption on a n.n. SFT X, we get:

- Even if you condition on a boundary condition,  $\mu$  still captures topological entropy.
- All terms are uniformly bounded.

Under a mild topological (combinatorial) assumption on a n.n. SFT X, we get:

- Even if you condition on a boundary condition,  $\mu$  still captures topological entropy.
- All terms are uniformly bounded.

Under a mild topological (combinatorial) assumption on a n.n. SFT X, we get:

- Even if you condition on a boundary condition,  $\mu$  still captures topological entropy.
- All terms are uniformly bounded.

Under a mild topological (combinatorial) assumption on a n.n. SFT X, we get:

- Even if you condition on a boundary condition,  $\mu$  still captures topological entropy.
- All terms are uniformly bounded.

A n.n. SFT *X* has a **safe symbol** *s* if it is legal with every configuration of nearest neighbours:

|   | * |   |
|---|---|---|
| * | S | * |
|   | * |   |

Examples: Yes: Hard squares (s = 0)

A n.n. SFT *X* has a **safe symbol** *s* if it is legal with every configuration of nearest neighbours:

|   | * |   |
|---|---|---|
| * | s | * |
|   | * |   |

Examples: Yes: Hard squares (s = 0)

A n.n. SFT *X* has a **safe symbol** *s* if it is legal with every configuration of nearest neighbours:

Examples: Yes: Hard squares (s = 0)

A n.n. SFT *X* has a **safe symbol** *s* if it is legal with every configuration of nearest neighbours:

|   | * |   |
|---|---|---|
| * | s | * |
|   | * |   |

Examples: Yes: Hard squares (s = 0)

Let 
$$R_{a,b,c} := [-a, -1] \times [1, c] \cup [0, b] \times [0, c]$$
  
Example:  $R_{3,4,3}$ :

Theorem: Let X be a n.n.  $\mathbb{Z}^d$  SFT and  $\mu$  an MME on X. If

- (for d = 2)

$$L := \lim_{a,b,c \to \infty} \mu(s^0 \mid s^{\partial R_{a,b,c}})$$
 exists

$$h(X) = -\log L$$



Let 
$$R_{a,b,c} := [-a,-1] \times [1,c] \cup [0,b] \times [0,c]$$
  
Example:  $R_{3,4,3}$ :

Theorem: Let X be a n.n.  $\mathbb{Z}^d$  SFT and  $\mu$  an MME on X. If

- (for d = 2)

$$L := \lim_{a,b,c \to \infty} \mu(s^0 \mid s^{\partial R_{a,b,c}})$$
 exists

$$h(X) = -\log L$$



- $\bigcirc$  X has a safe symbol s -and -
- ② (for d = 2)

$$L := \lim_{a,b,c \to \infty} \mu(s^0 \mid s^{\partial R_{a,b,c}})$$
 exists

Then

$$h(X) = -\log L$$



Theorem: Let X be a n.n.  $\mathbb{Z}^d$  SFT and  $\mu$  an MME on X. If

Theorem: Let X be a n.n.  $\mathbb{Z}^d$  SFT and  $\mu$  an MME on X. If

- a - - b -

- X has a safe symbol s and -
- ② (for d = 2)

$$L := \lim_{a,b,c \to \infty} \mu(s^0 \mid s^{\partial R_{a,b,c}})$$
 exists

$$h(X) = -\log L$$



Theorem: Let X be a n.n.  $\mathbb{Z}^d$  SFT and  $\mu$  an MME on X. If

- X has a safe symbol s and –
- **2** (for d = 2)

$$L := \lim_{a,b,c \to \infty} \mu(s^0 \mid s^{\partial R_{a,b,c}})$$
 exists

$$h(X) = -\log L$$



Let 
$$R_{a,b,c} := [-a,-1] \times [1,c] \cup [0,b] \times [0,c]$$
  
Example:  $R_{3,4,3}$ :

Theorem: Let X be a n.n.  $\mathbb{Z}^d$  SFT and  $\mu$  an MME on X. If

- X has a safe symbol s and –
- **2** (for d = 2)

$$L := \lim_{a,b,c \to \infty} \mu(s^0 \mid s^{\partial R_{a,b,c}})$$
 exists

$$h(X) = -\log L$$



- Accuracy is  $e^{-\Omega(n)}$
- Claim: Computation time is  $e^{O(n)}$
- Trade exponential accuracy in exponential time for linear accuracy (1/n) in polynomial time.

- Accuracy is  $e^{-\Omega(n)}$
- Claim: Computation time is  $e^{O(n)}$
- Trade exponential accuracy in exponential time for linear accuracy (1/n) in polynomial time.

- Accuracy is  $e^{-\Omega(n)}$
- Claim: Computation time is  $e^{O(n)}$
- Trade exponential accuracy in exponential time for linear accuracy (1/n) in polynomial time.

- Accuracy is  $e^{-\Omega(n)}$
- Claim: Computation time is  $e^{O(n)}$
- Trade exponential accuracy in exponential time for linear accuracy (1/n) in polynomial time.

- Accuracy is  $e^{-\Omega(n)}$
- Claim: Computation time is  $e^{O(n)}$
- Trade exponential accuracy in exponential time for linear accuracy (1/n) in polynomial time.

#### Proof of Claim, via transfer matrices

$$\mu(s^{0} \mid s^{\partial R_{n,n,n}}) = \frac{\begin{array}{c} s & s & s & s \\ s & \cdot & \cdot & \cdot & \cdot & s \\ \# & s & \cdot & \cdot & \cdot & \cdot & s \\ s & s & s & s & \cdot & \cdot & s \\ \hline s & s & s & s & s & s \\ \hline s & s & s & s & s & s \\ \hline s & \cdot & \cdot & \cdot & \cdot & s \\ \# & s & \cdot & \cdot & \cdot & \cdot & s \\ s & s & s & \cdot & \cdot & \cdot & s \\ \hline s & s & s & s & s & s \\ \hline \end{array}$$

$$= \frac{(\prod_{i=-n}^{-1} M_{i}) \hat{M}_{0}(\prod_{i=1}^{n-1} M_{i})}{(\prod_{i=-n}^{-1} M_{i}) \hat{M}_{0}(\prod_{i=1}^{n-1} M_{i})}$$

 $M_i$  is transition matrix from column i to column i+1 compatible with  $s^{\partial R_{n,n,n}}$  and

 $\hat{M}_0$  is matrix obtained from  $M_0$  by forcing s at origin.

#### Proof of Claim, via transfer matrices

$$\mu(s^0 \mid s^{\partial R_{n,n,n}}) = rac{s \quad s \quad s \quad s \quad s}{s \quad s \quad s \quad s \quad s \quad s} = rac{s \quad s \quad s \quad s}{s \quad s \quad s \quad s \quad s} = rac{s \quad s \quad s \quad s}{s \quad s \quad s \quad s \quad s} = rac{\left(\prod_{i=-n}^{-1} M_i\right) \hat{M}_0 \left(\prod_{i=1}^{n-1} M_i\right)}{\left(\prod_{i=-n}^{-1} M_i\right) M_0 \left(\prod_{i=1}^{n-1} M_i\right)}$$

 $M_i$  is transition matrix from column i to column i+1 compatible with  $s^{\partial R_{n,n,n}}$  and

 $\hat{M}_0$  is matrix obtained from  $M_0$  by forcing s at origin.

#### Proof of Claim, via transfer matrices

$$\mu(s^{0} \mid s^{\partial R_{n,n,n}}) = \frac{\begin{array}{c} s & s & s & s \\ s & \cdot & \cdot & \cdot & \cdot & s \\ \# & s & \cdot & \cdot & \cdot & \cdot & s \\ s & s & s & s & \cdot & \cdot & s \\ \hline s & s & s & s & s & s \\ \hline s & \cdot & \cdot & \cdot & \cdot & s \\ \# & s & \cdot & \cdot & \cdot & \cdot & s \\ \# & s & \cdot & \cdot & \cdot & \cdot & s \\ s & s & s & \cdot & \cdot & \cdot & s \\ \hline s & s & s & \cdot & \cdot & \cdot & s \\ \hline s & s & s & \cdot & \cdot & \cdot & s \\ \hline & s & s & s & \cdot & \cdot & \cdot & s \\ \hline & s & s & s & \cdot & \cdot & \cdot & s \\ \hline & s & s & s & \cdot & \cdot & \cdot & s \\ \hline & s & s & s & \cdot & \cdot & \cdot & s \\ \hline & s & s & s & \cdot & \cdot & \cdot & s \\ \hline & s & s & s & \cdot & \cdot & \cdot & s \\ \hline & s & s & s & \cdot & \cdot & \cdot & s \\ \hline & s & s & s & \cdot & \cdot & \cdot & s \\ \hline & s & s & s & \cdot & \cdot & \cdot & s \\ \hline & s & s & s & \cdot & \cdot & \cdot & s \\ \hline & s & s & s & \cdot & \cdot & \cdot & s \\ \hline & s & s & s & \cdot & \cdot & \cdot & s \\ \hline & s & s & s & s & \cdot & \cdot & s \\ \hline & s & s & s & s & \cdot & \cdot & s \\ \hline & s & s & s & s & \cdot & \cdot & s \\ \hline & s & s & s & s & \cdot & \cdot & s \\ \hline & s & s & s & s & s & s \\ \hline \end{array}$$

 $M_i$  is transition matrix from column i to column i+1 compatible with  $s^{\partial R_{n,n,n}}$  and

 $\hat{M}_0$  is matrix obtained from  $M_0$  by forcing s at origin.

## Proof of Claim, via transfer matrices

$$\mu(s^0 \mid s^{\partial R_{n,n,n}}) = rac{s \quad s \quad s \quad s}{s \quad s \quad s \quad s \quad s} = rac{s \quad s \quad s}{s \quad s \quad s \quad s} = rac{s \quad s \quad s}{s \quad s \quad s \quad s} = rac{\left(\prod_{i=-n}^{-1} M_i\right) \hat{M}_0(\prod_{i=1}^{n-1} M_i)}{(\prod_{i=-n}^{-1} M_i) M_0(\prod_{i=1}^{n-1} M_i)}$$

 $M_i$  is transition matrix from column i to column i+1 compatible with  $s^{\partial R_{n,n,n}}$  and

 $\hat{M}_0$  is matrix obtained from  $M_0$  by forcing s at origin.  $\Box$ 



- Weaken fixed point  $s^{\mathbb{Z}^d}$  to periodic orbit
- Weaken safe symbol to topological strong spatial mixing
- Applies to
  - hard squares
  - monomer-dimers
  - q-checkerboard SFT with  $q \ge 6$
- Generalize results from entropy to pressure of n n. interactions on n.n. SFT's
- Applies to large sets of temperature regions for classical models in statistical physics, in both subcritical and supercritical regions:
  - Hard square
    - Ising
    - Potts
    - Widom-Rowlinson



- Weaken fixed point  $s^{\mathbb{Z}^d}$  to periodic orbit
- Weaken safe symbol to topological strong spatial mixing
- Applies to
  - hard squares
  - monomer-dimers
  - q-checkerboard SFT with  $q \ge 6$
- Generalize results from entropy to pressure of n n. interactions on n.n. SFT's
- Applies to large sets of temperature regions for classical models in statistical physics, in both subcritical and supercritical regions:
  - Hard square
    - Ising
    - Potts
    - Widom-Rowlinson



- Weaken fixed point  $s^{\mathbb{Z}^d}$  to periodic orbit
- Weaken safe symbol to topological strong spatial mixing
- Applies to
  - hard squares
  - monomer-dimers
  - q-checkerboard SFT with q ≥ 6
- Generalize results from entropy to pressure of n n. interactions on n.n. SFT's
- Applies to large sets of temperature regions for classical models in statistical physics, in both subcritical and supercritical regions:
  - Hard square
    - Ising
    - Potts
    - Widom-Rowlinson



- Weaken fixed point  $s^{\mathbb{Z}^d}$  to periodic orbit
- Weaken safe symbol to topological strong spatial mixing
- Applies to
  - hard squares
  - monomer-dimers
  - q-checkerboard SFT with q ≥ 6
- Generalize results from entropy to pressure of n n. interactions on n.n. SFT's
- Applies to large sets of temperature regions for classical models in statistical physics, in both subcritical and supercritical regions:
  - Hard square
    - Ising
    - Potts
    - Widom-Rowlinson



- Weaken fixed point  $s^{\mathbb{Z}^d}$  to periodic orbit
- Weaken safe symbol to topological strong spatial mixing
- Applies to
  - hard squares
  - monomer-dimers
  - q-checkerboard SFT with q ≥ 6
- Generalize results from entropy to pressure of n n. interactions on n.n. SFT's
- Applies to large sets of temperature regions for classical models in statistical physics, in both subcritical and supercritical regions:
  - Hard square
    - Ising
    - Potts
    - Widom-Rowlinson



- ullet Weaken fixed point  $s^{\mathbb{Z}^d}$  to periodic orbit
- Weaken safe symbol to topological strong spatial mixing
- Applies to
  - hard squares
  - monomer-dimers
  - q-checkerboard SFT with  $q \ge 6$
- Generalize results from entropy to pressure of n n. interactions on n.n. SFT's
- Applies to large sets of temperature regions for classical models in statistical physics, in both subcritical and supercritical regions:
  - Hard square
    - Ising
    - Potts
    - Widom-Rowlinson



## End of talk

The following slides form a hodge-podge of topics that were not included in the talk.

### Defn of TSSM with gap *g*:

Defin of TSSM with gap g: for any disjoint  $U, S, V \subseteq Z^d$  s.t.  $d(U, V) \ge g$ ,

if  $u \in A^U$ ,  $s \in A^S$ ,  $v \in A^V$ , s.t. *us* and sv are allowed, then so is usv.









Let 
$$R_{a,b,c} := [-a,-1] \times [1,c] \cup [0,b] \times [0,c]$$



- X satisfies TSSM
- ② (for d=2) For some periodic orbit O in X and all  $\omega \in O$

$$L(\omega) := \lim_{\substack{a,b,c \to \infty \\ c \to \infty}} \mu(\omega(0) \mid \omega(\partial R_{a,b,c}))$$
 exists

$$h(X) = -\frac{1}{|O|} \sum_{\alpha \in O} \log L(\omega)$$



Let 
$$R_{a,b,c} := [-a,-1] \times [1,c] \cup [0,b] \times [0,c]$$
  
Example:  $R_{3,4,3}$ :



- X satisfies TSSM
- ② (for d=2) For some periodic orbit O in X and all  $\omega \in O$

$$L(\omega) := \lim_{\substack{a,b,c \to \infty \\ c \to \infty}} \mu(\omega(0) \mid \omega(\partial R_{a,b,c}))$$
 exists

$$h(X) = -\frac{1}{|O|} \sum_{n \in O} \log L(\omega)$$



Let 
$$R_{a,b,c} := [-a,-1] \times [1,c] \cup [0,b] \times [0,c]$$
  
Example:  $R_{3,4,3}$ :



- X satisfies TSSM
- ② (for d=2) For some periodic orbit O in X and all  $\omega \in O$

$$L(\omega) := \lim_{\substack{a \ b \ c o \infty}} \mu(\omega(0) \mid \omega(\partial R_{a,b,c}))$$
 exists

$$h(X) = -\frac{1}{|O|} \sum_{\omega \in O} \log L(\omega)$$



Let 
$$R_{a,b,c} := [-a,-1] \times [1,c] \cup [0,b] \times [0,c]$$
  
Example:  $R_{3,4,3}$ :



- X satisfies TSSM
- ② (for d=2) For some periodic orbit O in X and all  $\omega \in O$

$$L(\omega) := \lim_{\substack{a,b,c \to \infty \\ a,b,c \to \infty}} \mu(\omega(0) \mid \omega(\partial R_{a,b,c}))$$
 exists

$$h(X) = -\frac{1}{|O|} \sum_{\alpha \in O} \log L(\omega)$$



Let 
$$R_{a,b,c} := [-a,-1] \times [1,c] \cup [0,b] \times [0,c]$$
  
Example:  $R_{3,4,3}$ :

- X satisfies TSSM
- ② (for d=2) For some periodic orbit O in X and all  $\omega \in O$

$$L(\omega) := \lim_{a,b,c \to \infty} \mu(\omega(0) \mid \omega(\partial R_{a,b,c}))$$
 exists

$$h(X) = -\frac{1}{|O|} \sum_{\alpha \in O} \log L(\omega)$$

Let 
$$R_{a,b,c} := [-a,-1] \times [1,c] \cup [0,b] \times [0,c]$$
  
Example:  $R_{3,4,3}$ :

- X satisfies TSSM
- ② (for d=2) For some periodic orbit O in X and all  $\omega \in O$

$$L(\omega) := \lim_{a,b,c \to \infty} \mu(\omega(0) \mid \omega(\partial R_{a,b,c}))$$
 exists

$$h(X) = -\frac{1}{|O|} \sum_{\omega \in O} \log L(\omega)$$

- Site-to-site independence -and-
- Uniformity of distribution as possible.

- Site-to-site independence -and-
- Uniformity of distribution s possible.

- Site-to-site independence -and-
- Uniformity of distribution

as possible.

- Site-to-site independence -and-
- Uniformity of distribution as possible.

A **Markov random field (MRF)** is a shift-invariant Borel probability measure  $\mu$  on  $\mathcal{A}^{\mathbb{Z}^d}$  such that for any choice of:

- $S \in \mathbb{Z}^d$ ,
- $T \in \mathbb{Z}^d$  s.t.  $\partial S \subseteq T \subseteq \mathbb{Z}^d \setminus S$
- configuration x on S
- configuration y on T s.t.  $\mu(y) > 0$ ,

$$\mu(\mathbf{x} \mid \mathbf{y}) = \mu(\mathbf{x} \mid \mathbf{y}(\partial \mathbf{S}))$$



A **Markov random field (MRF)** is a shift-invariant Borel probability measure  $\mu$  on  $\mathcal{A}^{\mathbb{Z}^d}$  such that for any choice of:

- $S \subseteq \mathbb{Z}^d$ ,
- $T \in \mathbb{Z}^d$  s.t.  $\partial S \subseteq T \subseteq \mathbb{Z}^d \setminus S$
- configuration x on S
- configuration y on T s.t.  $\mu(y) > 0$ ,

$$\mu(x \mid y) = \mu(x \mid y(\partial S))$$



A **Markov random field (MRF)** is a shift-invariant Borel probability measure  $\mu$  on  $\mathcal{A}^{\mathbb{Z}^d}$  such that for any choice of:

- $S \subseteq \mathbb{Z}^d$ ,
- $T \in \mathbb{Z}^d$  s.t.  $\partial S \subseteq T \subseteq \mathbb{Z}^d \setminus S$
- configuration x on S
- configuration y on T s.t.  $\mu(y) > 0$ ,

$$\mu(x \mid y) = \mu(x \mid y(\partial S))$$



A **Markov random field (MRF)** is a shift-invariant Borel probability measure  $\mu$  on  $\mathcal{A}^{\mathbb{Z}^d}$  such that for any choice of:

- $S \subseteq \mathbb{Z}^d$ ,
- $T \in \mathbb{Z}^d$  s.t.  $\partial S \subseteq T \subseteq \mathbb{Z}^d \setminus S$
- configuration x on S
- configuration y on T s.t.  $\mu(y) > 0$ ,

$$\mu(x \mid y) = \mu(x \mid y(\partial S))$$



A **Markov random field (MRF)** is a shift-invariant Borel probability measure  $\mu$  on  $\mathcal{A}^{\mathbb{Z}^d}$  such that for any choice of:

- $S \subseteq \mathbb{Z}^d$ ,
- $T \in \mathbb{Z}^d$  s.t.  $\partial S \subseteq T \subseteq \mathbb{Z}^d \setminus S$
- configuration x on S
- configuration y on T s.t.  $\mu(y) > 0$ ,

$$\mu(x \mid y) = \mu(x \mid y(\partial S))$$



A **Markov random field (MRF)** is a shift-invariant Borel probability measure  $\mu$  on  $\mathcal{A}^{\mathbb{Z}^d}$  such that for any choice of:

- $S \subseteq \mathbb{Z}^d$ ,
- $T \in \mathbb{Z}^d$  s.t.  $\partial S \subseteq T \subseteq \mathbb{Z}^d \setminus S$
- configuration x on S
- configuration y on T s.t.  $\mu(y) > 0$ ,

$$\mu(\mathbf{x} \mid \mathbf{y}) = \mu(\mathbf{x} \mid \mathbf{y}(\partial \mathcal{S}))$$



A **Markov random field (MRF)** is a shift-invariant Borel probability measure  $\mu$  on  $\mathcal{A}^{\mathbb{Z}^d}$  such that for any choice of:

- $S \subseteq \mathbb{Z}^d$ ,
- $T \in \mathbb{Z}^d$  s.t.  $\partial S \subseteq T \subseteq \mathbb{Z}^d \setminus S$
- configuration x on S
- configuration y on T s.t.  $\mu(y) > 0$ ,

$$\mu(\mathbf{x} \mid \mathbf{y}) = \mu(\mathbf{x} \mid \mathbf{y}(\partial S))$$



Let *X* be a n.n. SFT. For  $S \in \mathbb{Z}^d$  and  $y \in \mathcal{A}^{\partial S}$ , let

$$L_{\mathcal{S}}^{y}(X) := \{x \in \mathcal{A}^{\mathcal{S}} : xy \text{ is legal } \}$$

An MRF on X is **uniform** if whenever  $\mu(y) > 0$ , then for  $x \in L_S^y(X)$ 

$$\mu(X \mid y) = \frac{1}{|L_S^y(X)|}$$

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n. SFT is a uniform MRF.



Let *X* be a n.n. SFT. For  $S \in \mathbb{Z}^d$  and  $y \in \mathcal{A}^{\partial S}$ , let

$$L_{\mathcal{S}}^{y}(X) := \{x \in \mathcal{A}^{\mathcal{S}} : xy \text{ is legal } \}$$

An MRF on X is **uniform** if whenever  $\mu(y) > 0$ , then for  $x \in L_S^y(X)$ 

$$\mu(X \mid y) = \frac{1}{|L_S^y(X)|}$$

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n. SFT is a uniform MRF.



Let X be a n.n. SFT. For  $S \in \mathbb{Z}^d$  and  $y \in A^{\partial S}$ , let

$$L_{\mathcal{S}}^{y}(X) := \{x \in \mathcal{A}^{\mathcal{S}} : xy \text{ is legal } \}$$



An MRF on X is **uniform** if whenever  $\mu(y) > 0$ , then for  $x \in L_S^y(X)$ 

$$\mu(X \mid y) = \frac{1}{|L_S^y(X)|}$$

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n. SFT is a uniform MRF.

Let X be a n.n. SFT. For  $S \subseteq \mathbb{Z}^d$  and  $y \in A^{\partial S}$ , let

$$L_{\mathcal{S}}^{y}(X) := \{x \in \mathcal{A}^{\mathcal{S}} : xy \text{ is legal } \}$$



An MRF on *X* is **uniform** if whenever  $\mu(y) > 0$ , then for  $x \in L_{\mathcal{S}}^{y}(X)$ 

$$\mu(X \mid y) = \frac{1}{|L_S^y(X)|}$$

#### **Uniform MRF**

Let X be a n.n. SFT. For  $S \subseteq \mathbb{Z}^d$  and  $y \in A^{\partial S}$ , let

$$L_{\mathcal{S}}^{y}(X) := \{x \in \mathcal{A}^{\mathcal{S}} : xy \text{ is legal } \}$$



An MRF on X is **uniform** if whenever  $\mu(y) > 0$ , then for  $x \in L_S^y(X)$ 

$$\mu(X \mid y) = \frac{1}{|L_S^{\gamma}(X)|}$$

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n. SFT is a uniform MRF.

#### **Uniform MRF**

Let *X* be a n.n. SFT. For  $S \subseteq \mathbb{Z}^d$  and  $y \in \mathcal{A}^{\partial S}$ , let

$$L_{\mathcal{S}}^{y}(X) := \{x \in \mathcal{A}^{\mathcal{S}} : xy \text{ is legal } \}$$



An MRF on X is **uniform** if whenever  $\mu(y) > 0$ , then for  $x \in L_S^y(X)$ 

$$\mu(X \mid y) = \frac{1}{|L_S^y(X)|}$$

Theorem (Lanford/Ruelle, Burton/Steif): Every MME on a n.n. SFT is a uniform MRF.

- Since  $\mu$  is an MME,  $\mu$  must be a uniform MRF.
- Since s is a safe symbol,

$$\mu(\mathbf{s}^0 \mid \mathbf{s}^{\partial T}) \geq \frac{1}{|\mathcal{A}|}$$

2

$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d}$$

$$\mu(s^{B_n}\mid s^{\partial B_n})=rac{1}{|GA_n(X)|}$$



- Since  $\mu$  is an MME,  $\mu$  must be a uniform MRF.
- Since s is a safe symbol,
  - ① For all  $T \subseteq \mathbb{Z}^d$  containing 0,

$$\mu(s^0 \mid s^{\partial T}) \ge \frac{1}{|\mathcal{A}|}.$$

2

$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d}$$

$$\mu(s^{B_n}\mid s^{\partial B_n})=rac{1}{|GA_n(X)|}$$



- Since  $\mu$  is an MME,  $\mu$  must be a uniform MRF.
- Since s is a safe symbol,
  - For all T 
    otin 
    otin delta definition of the following of the followi

$$\mu(s^0 \mid s^{\partial T}) \geq \frac{1}{|\mathcal{A}|}.$$

2

$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d}$$

$$\mu(s^{B_n}\mid s^{\partial B_n})=rac{1}{|GA_n(X)|}$$



- Since  $\mu$  is an MME,  $\mu$  must be a uniform MRF.
- Since s is a safe symbol,
  - For all T 
    otin 
    otin delta definition of the state o

$$\mu(s^0 \mid s^{\partial T}) \geq rac{1}{|\mathcal{A}|}.$$

2

$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d}$$

$$\mu(s^{B_n}\mid s^{\partial B_n})=rac{1}{|GA_n(X)|}$$



- Since  $\mu$  is an MME,  $\mu$  must be a uniform MRF.
- Since s is a safe symbol,
  - For all T 
    otin 
    otin delta definition of the state o

$$\mu(s^0 \mid s^{\partial T}) \geq \frac{1}{|\mathcal{A}|}.$$

2

$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d}$$

$$\mu(s^{B_n}\mid s^{\partial B_n})=rac{1}{|GA_n(X)|}$$



$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d}$$

$$\mu(s^{B_n} \mid s^{\partial B_n}) = \prod_{\overline{z} \in B_n} \mu(s^{\overline{z}} \mid s^{\mathcal{P}(\overline{z}) \cap B_n} s^{\partial B_n})$$

$$\bullet \quad \bullet \quad \bullet$$

$$\bullet \quad \cdot \quad \cdot \quad \cdot \quad \bullet$$

$$\bullet \quad \cdot \quad \cdot \quad \cdot \quad \bullet$$

$$\overline{z} \quad \bullet \quad \cdot \quad \cdot \quad \bullet$$

$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d}$$

$$\mu(\mathbf{s}^{B_n} \mid \mathbf{s}^{\partial B_n}) = \prod_{\overline{\mathbf{z}} \in B_n} \mu(\mathbf{s}^{\overline{\mathbf{z}}} \mid \mathbf{s}^{\mathcal{P}(\overline{\mathbf{z}}) \cap B_n} \mathbf{s}^{\partial B_n})$$

- . . . . .
- • •
  - <u>Z</u> · · ·
    - . . . .

$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d}$$

$$\mu(\mathbf{s}^{B_n} \mid \mathbf{s}^{\partial B_n}) = \prod_{\overline{z} \in B_n} \mu(\mathbf{s}^{\overline{z}} \mid \mathbf{s}^{\mathcal{P}(\overline{z}) \cap B_n} \mathbf{s}^{\partial B_n})$$

- . . . . .
- • • •
- $\overline{z}$ 
  - • •

$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d}$$

$$\mu(\mathbf{s}^{B_n} \mid \mathbf{s}^{\partial B_n}) = \prod_{\overline{z} \in B_n} \mu(\mathbf{s}^{\overline{z}} \mid \mathbf{s}^{\mathcal{P}(\overline{z}) \cap B_n} \mathbf{s}^{\partial B_n})$$

- • • •
- • • •
- • <del>Z</del>
  - • •

$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d}$$

$$\mu(s^{\mathcal{B}_n} \mid s^{\partial \mathcal{B}_n}) = \prod_{\overline{z} \in \mathcal{B}_n} \mu(s^{\overline{z}} \mid s^{\mathcal{P}(\overline{z}) \cap \mathcal{B}_n} s^{\partial \mathcal{B}_n})$$

- . . . . .
- • • •
- • <del>Z</del>



$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d}$$

$$\mu(s^{\mathcal{B}_n} \mid s^{\partial \mathcal{B}_n}) = \prod_{\overline{z} \in \mathcal{B}_n} \mu(s^{\overline{z}} \mid s^{\mathcal{P}(\overline{z}) \cap \mathcal{B}_n} s^{\partial \mathcal{B}_n})$$

- . . . . .
- • • •
- $\overline{Z}$  · · ·
  - • •

$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d}$$

$$\mu(\boldsymbol{s}^{\mathcal{B}_n} \mid \boldsymbol{s}^{\partial \mathcal{B}_n}) = \prod_{\overline{z} \in \mathcal{B}_n} \mu(\boldsymbol{s}^{\overline{z}} \mid \boldsymbol{s}^{\mathcal{P}(\overline{z}) \cap \mathcal{B}_n} \boldsymbol{s}^{\partial \mathcal{B}_n})$$

- • • •
- • <del>Z</del> · · •

$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d}$$

$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d}$$

$$\mu(\boldsymbol{s}^{\mathcal{B}_n} \mid \boldsymbol{s}^{\partial \mathcal{B}_n}) = \prod_{\overline{z} \in \mathcal{B}_n} \mu(\boldsymbol{s}^{\overline{z}} \mid \boldsymbol{s}^{\mathcal{P}(\overline{z}) \cap \mathcal{B}_n} \boldsymbol{s}^{\partial \mathcal{B}_n}) = \prod_{\overline{z} \in \mathcal{B}_n} \mu(\boldsymbol{s}^0 \mid \boldsymbol{s}^{\partial R_{\mathsf{a}(\overline{z}), b(\overline{z}), c(\overline{z})}})$$

- • •
- - <del>Z</del> ·
    - •

So,

$$\log \mu(\boldsymbol{s}^{B_n} \mid \boldsymbol{s}^{\partial B_n}) = \sum_{\overline{z} \in B_n} \log \mu(\boldsymbol{s}^{\overline{z}} \mid \boldsymbol{s}^{\partial R_{\mathsf{a}(\overline{z}),b(\overline{z}),c(\overline{z})}})$$

• By the convergence assumption, for "most"  $\overline{z} \in B_n$   $\log \mu(s^{\overline{z}} \mid s^{\partial R_{a(\overline{z}),b(\overline{z}),c(\overline{z})}}) \approx \log L$ 

• By safe symbol assumption, for the remaining  $\overline{z} \in B_n$ ,

$$0 \ge \log \mu(s^{\overline{z}} \mid s^{\partial R_{a(\overline{z}),b(\overline{z}),c(\overline{z})}}) \ge -\log |\mathcal{A}|$$

Thus, 
$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d} = -\log L$$
.  $\square$ 



So,

$$\log \mu(\boldsymbol{s}^{B_n} \mid \boldsymbol{s}^{\partial B_n}) = \sum_{\overline{z} \in B_n} \log \mu(\boldsymbol{s}^{\overline{z}} \mid \boldsymbol{s}^{\partial R_{\boldsymbol{a}(\overline{z}), b(\overline{z}), c(\overline{z})}})$$

• By the convergence assumption, for "most"  $\overline{z} \in B_n$   $\log \mu(s^{\overline{z}} \mid s^{\partial R_{a(\overline{z}),b(\overline{z}),c(\overline{z})}}) \approx \log L$ 

• By safe symbol assumption, for the remaining  $\overline{z} \in B_n$ ,

Thus, 
$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d} = -\log L.$$

So,

$$\log \mu(s^{B_n} \mid s^{\partial B_n}) = \sum_{\overline{z} \in B_n} \log \mu(s^{\overline{z}} \mid s^{\partial R_{a(\overline{z}),b(\overline{z}),c(\overline{z})}})$$

• By the convergence assumption, for "most"  $\overline{z} \in B_n$   $\log \mu(s^{\overline{z}} \mid s^{\partial R_{a(\overline{z}),b(\overline{z}),c(\overline{z})}}) \approx \log L$ 

• By safe symbol assumption, for the remaining  $\overline{z} \in B_n$ ,

$$0 \geq \log \mu(s^{\overline{z}} \mid s^{\partial R_{a(\overline{z}),b(\overline{z}),c(\overline{z})}}) \geq -\log |\mathcal{A}|$$

Thus,  $h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d} = -\log L$ .  $\square$ 

So,

$$\log \mu(\boldsymbol{s}^{B_n} \mid \boldsymbol{s}^{\partial B_n}) = \sum_{\overline{z} \in B_n} \log \mu(\boldsymbol{s}^{\overline{z}} \mid \boldsymbol{s}^{\partial R_{\mathsf{a}(\overline{z}),b(\overline{z}),c(\overline{z})}})$$

• By the convergence assumption, for "most"  $\overline{z} \in B_n$ 

$$\log \mu(s^{\overline{z}} \mid s^{\partial R_{a(\overline{z}),b(\overline{z}),c(\overline{z})}}) \approx \log L$$

• By safe symbol assumption, for the remaining  $\overline{z} \in B_n$ ,

$$0 \geq \log \mu(s^{\overline{z}} \mid s^{\partial R_{a(\overline{z}),b(\overline{z}),c(\overline{z})}}) \geq -\log |\mathcal{A}|$$

•

Thus, 
$$h(X) = \lim_{n \to \infty} \frac{-\log \mu(s^{B_n} \mid s^{\partial B_n})}{n^d} = -\log L$$
.  $\square$ 



#### Theorem: Let X be a n.n. $\mathbb{Z}^2$ SFT and $\mu$ an MME on X. If

- X has a safe symbol s and -
- 2

$$L:=\lim_{a,b,c o\infty}\mu(s^0\mid s^{\partial R_{a,b,c}})$$
 exists

#### and convergence is exponential



Theorem: Let X be a n.n.  $\mathbb{Z}^2$  SFT and  $\mu$  an MME on X. If

- X has a safe symbol s − and −
- 2

$$L:=\lim_{a,b,c o\infty}\mu(s^0\mid s^{\partial R_{a,b,c}})$$
 exists

and convergence is exponential



Theorem: Let X be a n.n.  $\mathbb{Z}^2$  SFT and  $\mu$  an MME on X. If

- X has a safe symbol s − and −
- 2

$$L := \lim_{a,b,c o \infty} \mu(s^0 \mid s^{\partial R_{a,b,c}})$$
 exists

#### and convergence is exponential



Theorem: Let X be a n.n.  $\mathbb{Z}^2$  SFT and  $\mu$  an MME on X. If

- X has a safe symbol s and -
- 2

$$L := \lim_{a,b,c o \infty} \mu(s^0 \mid s^{\partial R_{a,b,c}})$$
 exists

and convergence is exponential



Theorem: Let X be a n.n.  $\mathbb{Z}^2$  SFT and  $\mu$  an MME on X. If

- 2

$$L := \lim_{a,b,c o \infty} \mu(s^0 \mid s^{\partial R_{a,b,c}})$$
 exists

and convergence is exponential

• An MRF  $\mu$  satisfies **strong spatial mixing (SSM)** at rate f(n)

if for all 
$$V \in Z^d$$
,  $U \subset V$  all  $u \in A^U$ , and  $v, v' \in A^{\partial V}$  satisfying  $\mu(v), \mu(v') > 0$ , we have  $\left| \mu(u \mid v) - \mu(u \mid v') \right| \leq |U| f(d(U, \Sigma_{\partial V}(v, v')))$ . where  $\Sigma_{\partial V}(v, v') = \{t \in \partial V : v(t) \neq v(t')\}$ .

• An MRF  $\mu$  satisfies **strong spatial mixing (SSM)** at rate f(n)

if for all 
$$V \in Z^d$$
,  $U \subset V$  all  $u \in A^U$ , and  $v, v' \in A^{\partial V}$  satisfying  $\mu(v), \mu(v') > 0$ , we have  $\left| \mu(u \mid v) - \mu(u \mid v') \right| \leq |U| f(d(U, \Sigma_{\partial V}(v, v')))$ . where  $\Sigma_{\partial V}(v, v') = \{t \in \partial V : v(t) \neq v(t')\}$ .

• An MRF  $\mu$  satisfies **strong spatial mixing (SSM)** at rate f(n)

if for all 
$$V \in Z^d$$
,  $U \subset V$  all  $u \in A^U$ , and  $v, v' \in A^{\partial V}$  satisfying  $\mu(v), \mu(v') > 0$ , we have  $|\mu(u \mid v) - \mu(u \mid v')| \leq |U| f(d(U, \Sigma_{\partial V}(v, v')))$ . where  $\Sigma_{\partial V}(v, v') = \{t \in \partial V : v(t) \neq v(t')\}$ .

• An MRF  $\mu$  satisfies **strong spatial mixing (SSM)** at rate f(n)

if for all 
$$V \in Z^d$$
,  $U \subset V$  all  $u \in A^U$ , and  $v, v' \in A^{\partial V}$  satisfying  $\mu(v), \mu(v') > 0$ , we have  $\left| \mu(u \mid v) - \mu(u \mid v') \right| \leq |U| f(d(U, \Sigma_{\partial V}(v, v')))$ . where  $\Sigma_{\partial V}(v, v') = \{t \in \partial V : v(t) \neq v(t')\}$ .



• An MRF  $\mu$  satisfies **strong spatial mixing (SSM)** at rate f(n)

if for all 
$$V \in Z^d$$
,  $U \subset V$  all  $u \in A^U$ , and  $v, v' \in A^{\partial V}$  satisfying  $\mu(v), \mu(v') > 0$ , we have  $\big|\mu(u \mid v) - \mu(u \mid v')\big| \leq |U|f(d(U, \Sigma_{\partial V}(v, v')))$ . where  $\Sigma_{\partial V}(v, v') = \{t \in \partial V : v(t) \neq v(t')\}$ .



• An MRF  $\mu$  satisfies **strong spatial mixing (SSM)** at rate f(n)

if for all 
$$V \in Z^d$$
,  $U \subset V$  all  $u \in A^U$ , and  $v, v' \in A^{\partial V}$  satisfying  $\mu(v), \mu(v') > 0$ , we have  $\big|\mu(u \mid v) - \mu(u \mid v')\big| \leq |U|f(d(U, \Sigma_{\partial V}(v, v')))$ . where  $\Sigma_{\partial V}(v, v') = \{t \in \partial V : v(t) \neq v(t')\}$ .



# Theorem (Briceno): Let X be a $\mathbb{Z}^d$ n.n. SFT and $\mu$ an MME on X. If

- X satisfies TSSM
- $2 \mu$  satisfies SSM

Then for *all* invariant measures  $\nu$  s.t. support( $\nu$ )  $\subseteq X$ ,

$$h(X) = \int I_{\mu}(x) \, d\nu(x)$$

- hard squares
- q-checkerboard with  $q \ge 6$

Theorem (Briceno): Let X be a  $\mathbb{Z}^d$  n.n. SFT and  $\mu$  an MME on X. If

- X satisfies TSSM
- $^{2}~\mu$  satisfies SSM

Then for *all* invariant measures  $\nu$  s.t. support( $\nu$ )  $\subseteq X$ ,

$$h(X) = \int I_{\mu}(x) \ d\nu(x)$$

- hard squares
- q-checkerboard with  $q \ge 6$



Theorem (Briceno): Let X be a  $\mathbb{Z}^d$  n.n. SFT and  $\mu$  an MME on X. If

- X satisfies TSSM
- $\mathbf{2} \ \mu$  satisfies SSM

Then for *all* invariant measures  $\nu$  s.t. support $(\nu) \subseteq X$ ,

$$h(X) = \int I_{\mu}(x) \ d\nu(x)$$

- hard squares
- q-checkerboard with  $q \ge 6$



Theorem (Briceno): Let X be a  $\mathbb{Z}^d$  n.n. SFT and  $\mu$  an MME on X. If

- X satisfies TSSM
- $\mathbf{2} \ \mu$  satisfies SSM

Then for *all* invariant measures  $\nu$  s.t. support $(\nu) \subseteq X$ ,

$$h(X) = \int I_{\mu}(x) \ d\nu(x)$$

- hard squares
- q-checkerboard with  $q \ge 6$



Theorem (Briceno): Let X be a  $\mathbb{Z}^d$  n.n. SFT and  $\mu$  an MME on X. If

- X satisfies TSSM
- $\mathbf{2} \mu$  satisfies SSM

Then for *all* invariant measures  $\nu$  s.t. support( $\nu$ )  $\subseteq X$ ,

$$h(X) = \int I_{\mu}(x) \ d\nu(x)$$

- hard squares
- q-checkerboard with  $q \ge 6$



Theorem (Briceno): Let X be a  $\mathbb{Z}^d$  n.n. SFT and  $\mu$  an MME on X. If

- X satisfies TSSM
- $\mathbf{2} \mu$  satisfies SSM

Then for *all* invariant measures  $\nu$  s.t. support( $\nu$ )  $\subseteq X$ ,

$$h(X) = \int I_{\mu}(x) \ d\nu(x)$$

#### Applies to:

- hard squares
- q-checkerboard with q ≥ 6



- Let *X* be a shift space and  $f: X \to \mathbb{R}$  a continuous function.
- **Topological Pressure** (defined by Variational Principle):

$$P_X(f) := \sup_{\mu} h(\mu) + \int f d\mu$$

- Fact: The sup is always achieved.
- A measure which achieves the sup is called an equilibrium state.
- Note:  $P_X(0) = h(X)$ .



- Let *X* be a shift space and  $f: X \to \mathbb{R}$  a continuous function.
- Topological Pressure (defined by Variational Principle):

$$P_X(f) := \sup_{\mu} h(\mu) + \int f d\mu$$

- Fact: The sup is always achieved.
- A measure which achieves the sup is called an equilibrium state.
- Note:  $P_X(0) = h(X)$ .



- Let *X* be a shift space and  $f: X \to \mathbb{R}$  a continuous function.
- **Topological Pressure** (defined by Variational Principle):

$$P_X(f) := \sup_{\mu} h(\mu) + \int f d\mu$$

- Fact: The sup is always achieved.
- A measure which achieves the sup is called an equilibrium state.
- Note:  $P_X(0) = h(X)$ .



- Let *X* be a shift space and  $f: X \to \mathbb{R}$  a continuous function.
- **Topological Pressure** (defined by Variational Principle):

$$P_X(f) := \sup_{\mu} h(\mu) + \int f d\mu$$

- Fact: The sup is always achieved.
- A measure which achieves the sup is called an equilibrium state.
- Note:  $P_X(0) = h(X)$ .



- Let *X* be a shift space and  $f: X \to \mathbb{R}$  a continuous function.
- Topological Pressure (defined by Variational Principle):

$$P_X(f) := \sup_{\mu} h(\mu) + \int f d\mu$$

- Fact: The sup is always achieved.
- A measure which achieves the sup is called an equilibrium state.
- Note:  $P_X(0) = h(X)$ .



- Let *X* be a shift space and  $f: X \to \mathbb{R}$  a continuous function.
- Topological Pressure (defined by Variational Principle):

$$P_X(f) := \sup_{\mu} h(\mu) + \int f d\mu$$

- Fact: The sup is always achieved.
- A measure which achieves the sup is called an equilibrium state.
- Note:  $P_X(0) = h(X)$ .



- A nearest-neighbor interaction is a shift-invariant function  $\Phi$  from a set of configurations on vertices and edges in  $\mathbb{Z}^d$  to  $\mathbb{R} \cup \infty$
- For a nearest-neighbor interaction  $\Phi$ , the *underlying SFT*:

$$X = X_{\Phi} := \{x \in \mathcal{A}^{\mathbb{Z}^d} : \Phi(x(\{v, v'\})) \neq \infty, \text{ for all } v \sim v'\}.$$

• A nearest neighbour (n.n.) Gibbs measure  $\mu$  corresponding to  $\Phi$  is an MRF on X such that for  $S \in \mathbb{Z}^d$ ,  $\delta \in \mathcal{A}^{\partial S}$ ,  $\mu(\delta) > 0$ ,  $w \in \mathcal{A}^S$ :

$$\mu(w|\delta) = \frac{e^{-U^{\Phi}(w\delta)}}{Z^{\Phi,\delta}(S)}.$$

- $U^{\Phi}(w\delta)$  is the sum of all  $\Phi$ -values of  $w\delta$  for vertices, edges in  $S \cup \partial S$
- $Z^{\Phi,\delta}(S)$  is the normalization factor.



- A nearest-neighbor interaction is a shift-invariant function  $\Phi$  from a set of configurations on vertices and edges in  $\mathbb{Z}^d$  to  $\mathbb{R} \cup \infty$
- For a nearest-neighbor interaction Φ, the underlying SFT:

$$X = X_{\Phi} := \{x \in \mathcal{A}^{\mathbb{Z}^d} : \Phi(x(\{v,v'\})) \neq \infty, \text{ for all } v \sim v'\}.$$

• A nearest neighbour (n.n.) Gibbs measure  $\mu$  corresponding to  $\Phi$  is an MRF on X such that for  $S \in \mathbb{Z}^d$ ,  $\delta \in \mathcal{A}^{\partial S}$ ,  $\mu(\delta) > 0$ ,  $w \in \mathcal{A}^S$ :

$$\mu(w|\delta) = \frac{e^{-U^{\Phi}(w\delta)}}{Z^{\Phi,\delta}(S)}.$$

- $U^{\Phi}(w\delta)$  is the sum of all  $\Phi$ -values of  $w\delta$  for vertices, edges in  $S \cup \partial S$
- $Z^{\Phi,\delta}(S)$  is the normalization factor.



- A nearest-neighbor interaction is a shift-invariant function  $\Phi$  from a set of configurations on vertices and edges in  $\mathbb{Z}^d$  to  $\mathbb{R} \cup \infty$
- For a nearest-neighbor interaction Φ, the underlying SFT:

$$X = X_{\Phi} := \{x \in \mathcal{A}^{\mathbb{Z}^d} : \Phi(x(\{v,v'\})) \neq \infty, \text{ for all } v \sim v'\}.$$

• A nearest neighbour (n.n.) Gibbs measure  $\mu$  corresponding to  $\Phi$  is an MRF on X such that for  $S \in \mathbb{Z}^d$ ,  $\delta \in \mathcal{A}^{\partial S}$ ,  $\mu(\delta) > 0$ ,  $w \in \mathcal{A}^S$ :

$$\mu(w|\delta) = \frac{e^{-U^{\Phi}(w\delta)}}{Z^{\Phi,\delta}(S)}.$$

- $U^{\Phi}(w\delta)$  is the sum of all  $\Phi$ -values of  $w\delta$  for vertices, edges in  $S \cup \partial S$
- $Z^{\Phi,\delta}(S)$  is the normalization factor.



- A nearest-neighbor interaction is a shift-invariant function  $\Phi$  from a set of configurations on vertices and edges in  $\mathbb{Z}^d$  to  $\mathbb{R} \cup \infty$
- For a nearest-neighbor interaction Φ, the underlying SFT:

$$X = X_{\Phi} := \{x \in \mathcal{A}^{\mathbb{Z}^d} : \Phi(x(\{v,v'\})) \neq \infty, \text{ for all } v \sim v'\}.$$

• A nearest neighbour (n.n.) Gibbs measure  $\mu$  corresponding to  $\Phi$  is an MRF on X such that for  $S \in \mathbb{Z}^d$ ,  $\delta \in \mathcal{A}^{\partial S}$ ,  $\mu(\delta) > 0$ ,  $w \in \mathcal{A}^S$ :

$$\mu(\mathbf{w}|\delta) = \frac{\mathbf{e}^{-U^{\Phi}(\mathbf{w}\delta)}}{Z^{\Phi,\delta}(S)}.$$

- $U^{\Phi}(w\delta)$  is the sum of all  $\Phi$ -values of  $w\delta$  for vertices, edges in  $S \cup \partial S$
- $Z^{\Phi,\delta}(S)$  is the normalization factor.



- A nearest-neighbor interaction is a shift-invariant function  $\Phi$  from a set of configurations on vertices and edges in  $\mathbb{Z}^d$  to  $\mathbb{R} \cup \infty$
- For a nearest-neighbor interaction Φ, the underlying SFT:

$$X = X_{\Phi} := \{x \in \mathcal{A}^{\mathbb{Z}^d} : \Phi(x(\{v,v'\})) \neq \infty, \text{ for all } v \sim v'\}.$$

• A nearest neighbour (n.n.) Gibbs measure  $\mu$  corresponding to  $\Phi$  is an MRF on X such that for  $S \in \mathbb{Z}^d$ ,  $\delta \in \mathcal{A}^{\partial S}$ ,  $\mu(\delta) > 0$ ,  $w \in \mathcal{A}^S$ :

$$\mu(\mathbf{w}|\delta) = \frac{\mathbf{e}^{-U^{\Phi}(\mathbf{w}\delta)}}{Z^{\Phi,\delta}(S)}.$$

- $U^{\Phi}(w\delta)$  is the sum of all  $\Phi$ -values of  $w\delta$  for vertices, edges in  $S \cup \partial S$
- $Z^{\Phi,\delta}(S)$  is the normalization factor.



- A nearest-neighbor interaction is a shift-invariant function  $\Phi$  from a set of configurations on vertices and edges in  $\mathbb{Z}^d$  to  $\mathbb{R} \cup \infty$
- For a nearest-neighbor interaction Φ, the underlying SFT:

$$X = X_{\Phi} := \{x \in \mathcal{A}^{\mathbb{Z}^d} : \Phi(x(\{v,v'\})) \neq \infty, \text{ for all } v \sim v'\}.$$

• A nearest neighbour (n.n.) Gibbs measure  $\mu$  corresponding to  $\Phi$  is an MRF on X such that for  $S \in \mathbb{Z}^d$ ,  $\delta \in \mathcal{A}^{\partial S}$ ,  $\mu(\delta) > 0$ ,  $w \in \mathcal{A}^S$ :

$$\mu(\mathbf{w}|\delta) = \frac{\mathbf{e}^{-U^{\Phi}(\mathbf{w}\delta)}}{Z^{\Phi,\delta}(S)}.$$

- $U^{\Phi}(w\delta)$  is the sum of all  $\Phi$ -values of  $w\delta$  for vertices, edges in  $S \cup \partial S$
- $Z^{\Phi,\delta}(S)$  is the normalization factor.



#### Examples of n.n. Gibbs measures

- uniform MME on n.n. SFT
- hard square model with activities
- ferromagnetic Ising model with no external field.

Pressure of n.n. interaction Φ:

$$P(\Phi) := \lim_{n \to \infty} \frac{\log Z^{\Phi}(B_n)}{n^d}$$

- Let  $A_{\Phi}(x) := -\Phi(x(0)) \sum_{i=1}^{d} \Phi(x(0), x(e_i)).$
- Fact:  $P_{X_{\Phi}}(A_{\Phi}) = P(\Phi)$ .
- Lanford-Ruelle Theorem: Every equilibrium state for  $A_{\Phi}$  is a Gibbs measure for  $\Phi$ .
- Dobrushin Theorem: If  $X_{\Phi}$  is strongly irreducible, then every Gibbs measure for  $\Phi$  is an equilibrium state for  $A_{\Phi}$ .
- These theorems hold in much greater generality.



Pressure of n.n. interaction Φ:

$$P(\Phi) := \lim_{n \to \infty} \frac{\log Z^{\Phi}(B_n)}{n^d}$$

- Let  $A_{\Phi}(x) := -\Phi(x(0)) \sum_{i=1}^{d} \Phi(x(0), x(e_i)).$
- Fact:  $P_{X_{\Phi}}(A_{\Phi}) = P(\Phi)$ .
- Lanford-Ruelle Theorem: Every equilibrium state for  $A_{\Phi}$  is a Gibbs measure for  $\Phi$ .
- Dobrushin Theorem: If  $X_{\Phi}$  is strongly irreducible, then every Gibbs measure for  $\Phi$  is an equilibrium state for  $A_{\Phi}$ .
- These theorems hold in much greater generality.



Pressure of n.n. interaction Φ:

$$P(\Phi) := \lim_{n \to \infty} \frac{\log Z^{\Phi}(B_n)}{n^d}$$

- Let  $A_{\Phi}(x) := -\Phi(x(0)) \sum_{i=1}^{d} \Phi(x(0), x(e_i)).$
- Fact:  $P_{X_{\Phi}}(A_{\Phi}) = P(\Phi)$ .
- Lanford-Ruelle Theorem: Every equilibrium state for  $A_{\Phi}$  is a Gibbs measure for  $\Phi$ .
- Dobrushin Theorem: If  $X_{\Phi}$  is strongly irreducible, then every Gibbs measure for  $\Phi$  is an equilibrium state for  $A_{\Phi}$ .
- These theorems hold in much greater generality.



Pressure of n.n. interaction Φ:

$$P(\Phi) := \lim_{n \to \infty} \frac{\log Z^{\Phi}(B_n)}{n^d}$$

- Let  $A_{\Phi}(x) := -\Phi(x(0)) \sum_{i=1}^{d} \Phi(x(0), x(e_i)).$
- Fact:  $P_{X_{\Phi}}(A_{\Phi}) = P(\Phi)$ .
- Lanford-Ruelle Theorem: Every equilibrium state for  $A_{\Phi}$  is a Gibbs measure for  $\Phi$ .
- Dobrushin Theorem: If  $X_{\Phi}$  is strongly irreducible, then every Gibbs measure for  $\Phi$  is an equilibrium state for  $A_{\Phi}$ .
- These theorems hold in much greater generality.



Pressure of n.n. interaction Φ:

$$P(\Phi) := \lim_{n \to \infty} \frac{\log Z^{\Phi}(B_n)}{n^d}$$

- Let  $A_{\Phi}(x) := -\Phi(x(0)) \sum_{i=1}^{d} \Phi(x(0), x(e_i)).$
- Fact:  $P_{X_{\Phi}}(A_{\Phi}) = P(\Phi)$ .
- Lanford-Ruelle Theorem: Every equilibrium state for A<sub>Φ</sub> is a Gibbs measure for Φ.
- Dobrushin Theorem: If  $X_{\Phi}$  is strongly irreducible, then every Gibbs measure for  $\Phi$  is an equilibrium state for  $A_{\Phi}$ .
- These theorems hold in much greater generality.



Pressure of n.n. interaction Φ:

$$P(\Phi) := \lim_{n \to \infty} \frac{\log Z^{\Phi}(B_n)}{n^d}$$

- Let  $A_{\Phi}(x) := -\Phi(x(0)) \sum_{i=1}^{d} \Phi(x(0), x(e_i)).$
- Fact:  $P_{X_{\Phi}}(A_{\Phi}) = P(\Phi)$ .
- Lanford-Ruelle Theorem: Every equilibrium state for A<sub>Φ</sub> is a Gibbs measure for Φ.
- Dobrushin Theorem: If X<sub>Φ</sub> is strongly irreducible, then every Gibbs measure for Φ is an equilibrium state for A<sub>Φ</sub>.
- These theorems hold in much greater generality.



Pressure of n.n. interaction Φ:

$$P(\Phi) := \lim_{n \to \infty} \frac{\log Z^{\Phi}(B_n)}{n^d}$$

- Let  $A_{\Phi}(x) := -\Phi(x(0)) \sum_{i=1}^{d} \Phi(x(0), x(e_i)).$
- Fact:  $P_{X_{\Phi}}(A_{\Phi}) = P(\Phi)$ .
- Lanford-Ruelle Theorem: Every equilibrium state for A<sub>Φ</sub> is a Gibbs measure for Φ.
- Dobrushin Theorem: If  $X_{\Phi}$  is strongly irreducible, then every Gibbs measure for  $\Phi$  is an equilibrium state for  $A_{\Phi}$ .
- These theorems hold in much greater generality.



Theorem (Adams, Briceno, Marcus, Pavlov): Let  $\mu$  a Gibbs measure for a n.n. interaction  $\Phi$  with underlying  $\mathbb{Z}^d$  n.n. SFT X. If

- X satisfies TSSM
- ② For some periodic orbit O in X and all  $\omega \in O$

$$L(\omega) := \lim_{a,b,c o\infty} \mu(\omega(\mathsf{0}) \mid \omega(\partial R_{a,b,c}))$$
 exists

Then

$$P(\Phi) = \frac{1}{|O|} \sum_{\omega \in O} -\log L(\omega) + A_{\Phi}(\omega)$$



Theorem (Adams, Briceno, Marcus, Pavlov): Let  $\mu$  a Gibbs measure for a n.n. interaction  $\Phi$  with underlying  $\mathbb{Z}^d$  n.n. SFT X. If

- X satisfies TSSM
- ② For some periodic orbit O in X and all  $\omega \in O$

$$L(\omega) := \lim_{a,b,c o\infty} \mu(\omega(\mathsf{0}) \mid \omega(\partial R_{a,b,c}))$$
 exists

Then

$$P(\Phi) = \frac{1}{|O|} \sum_{\omega \in O} -\log L(\omega) + A_{\Phi}(\omega)$$



Theorem (Adams, Briceno, Marcus, Pavlov): Let  $\mu$  a Gibbs measure for a n.n. interaction  $\Phi$  with underlying  $\mathbb{Z}^d$  n.n. SFT X. If

- X satisfies TSSM
- ② For some periodic orbit O in X and all  $\omega \in O$

$$L(\omega) := \lim_{a,b,c \to \infty} \mu(\omega(0) \mid \omega(\partial R_{a,b,c}))$$
 exists

Then

$$P(\Phi) = \frac{1}{|O|} \sum_{\omega \in O} -\log L(\omega) + A_{\Phi}(\omega)$$



Theorem (Adams, Briceno, Marcus, Pavlov): Let  $\mu$  a Gibbs measure for a n.n. interaction  $\Phi$  with underlying  $\mathbb{Z}^d$  n.n. SFT X. If

- X satisfies TSSM
- ② For some periodic orbit O in X and all  $\omega \in O$

$$L(\omega) := \lim_{a,b,c \to \infty} \mu(\omega(0) \mid \omega(\partial R_{a,b,c}))$$
 exists

Then

$$P(\Phi) = \frac{1}{|O|} \sum_{\omega \in O} -\log L(\omega) + A_{\Phi}(\omega)$$



Theorem (Adams, Briceno, Marcus, Pavlov): Let  $\mu$  a Gibbs measure for a n.n. interaction  $\Phi$  with underlying  $\mathbb{Z}^d$  n.n. SFT X. If

- X satisfies TSSM
- ② For some periodic orbit O in X and all  $\omega \in O$

$$L(\omega) := \lim_{a,b,c \to \infty} \mu(\omega(0) \mid \omega(\partial R_{a,b,c}))$$
 exists

Then

$$P(\Phi) = \frac{1}{|O|} \sum_{\omega \in O} -\log L(\omega) + A_{\Phi}(\omega)$$



Theorem (Adams, Briceno, Marcus, Pavlov): Let  $\mu$  a Gibbs measure for a n.n. interaction  $\Phi$  with underlying  $\mathbb{Z}^d$  n.n. SFT X. If

- X satisfies TSSM
- ② For some periodic orbit O in X and all  $\omega \in O$

$$L(\omega) := \lim_{a,b,c \to \infty} \mu(\omega(0) \mid \omega(\partial R_{a,b,c}))$$
 exists

Then

$$P(\Phi) = \frac{1}{|O|} \sum_{\omega \in O} -\log L(\omega) + A_{\Phi}(\omega)$$



Theorem (Briceno): Let  $\mu$  a Gibbs measure for a n.n. interaction  $\Phi$  with underlying  $\mathbb{Z}^d$  n.n. SFT X. If

- X satisfies TSSM
- ullet  $\mu$  satisfies SSM.

Then for all shift-invariant measures  $\nu$  such that  $\operatorname{support}(\nu) \subseteq X$ ,

$$P(\Phi) = \int (I_{\mu}(x) + A_{\Phi}(x)) dx$$



Theorem (Briceno): Let  $\mu$  a Gibbs measure for a n.n. interaction  $\Phi$  with underlying  $\mathbb{Z}^d$  n.n. SFT X. If

- X satisfies TSSM
- $\mu$  satisfies SSM.

Then for all shift-invariant measures  $\nu$  such that support( $\nu$ )  $\subseteq X$ ,

$$P(\Phi) = \int (I_{\mu}(x) + A_{\Phi}(x)) d\nu$$

Theorem (Briceno): Let  $\mu$  a Gibbs measure for a n.n. interaction  $\Phi$  with underlying  $\mathbb{Z}^d$  n.n. SFT X. If

- X satisfies TSSM
- ullet  $\mu$  satisfies SSM.

Then for all shift-invariant measures  $\nu$  such that  $\operatorname{support}(\nu) \subseteq X$ ,

$$P(\Phi) = \int (I_{\mu}(x) + A_{\Phi}(x)) d\nu$$

Theorem (Briceno): Let  $\mu$  a Gibbs measure for a n.n. interaction  $\Phi$  with underlying  $\mathbb{Z}^d$  n.n. SFT X. If

- X satisfies TSSM
- ullet  $\mu$  satisfies SSM.

Then for all shift-invariant measures  $\nu$  such that support( $\nu$ )  $\subseteq$  X,

$$P(\Phi) = \int (I_{\mu}(x) + A_{\Phi}(x)) d\nu$$

Theorem (Briceno): Let  $\mu$  a Gibbs measure for a n.n. interaction  $\Phi$  with underlying  $\mathbb{Z}^d$  n.n. SFT X. If

- X satisfies TSSM
- ullet  $\mu$  satisfies SSM.

Then for all shift-invariant measures  $\nu$  such that support( $\nu$ )  $\subseteq$  X,

$$P(\Phi) = \int (I_{\mu}(x) + A_{\Phi}(x)) d\nu$$

#### An SFT X satisfies the **D-condition** if

- there exist sequences of finite subsets  $(\Lambda_n)$ ,  $(M_n)$  of  $\mathbb{Z}^d$  such that  $\Lambda_n \nearrow \infty$ ,  $\Lambda_n \subseteq M_n$ ,  $\frac{|M_n|}{|\Lambda_n|} \to 1$ , such that
- for any globally admissible  $v \in \mathcal{A}^{\Lambda_n}$  and finite  $S \subset M_n^c$  and globally admissible  $w \in \mathcal{A}^S$ , we have that vw is globally admissible.

Safe symbol  $\Rightarrow$  TSSM  $\Rightarrow$  D-condition



#### An SFT X satisfies the **D-condition** if

- there exist sequences of finite subsets  $(\Lambda_n)$ ,  $(M_n)$  of  $\mathbb{Z}^d$  such that  $\Lambda_n \nearrow \infty$ ,  $\Lambda_n \subseteq M_n$ ,  $\frac{|M_n|}{|\Lambda_n|} \to 1$ , such that
- for any globally admissible  $v \in \mathcal{A}^{\Lambda_n}$  and finite  $S \subset M_n^c$  and globally admissible  $w \in \mathcal{A}^S$ , we have that vw is globally admissible.

Safe symbol  $\Rightarrow$  TSSM  $\Rightarrow$  D-condition



#### An SFT X satisfies the **D-condition** if

- there exist sequences of finite subsets  $(\Lambda_n)$ ,  $(M_n)$  of  $\mathbb{Z}^d$  such that  $\Lambda_n \nearrow \infty$ ,  $\Lambda_n \subseteq M_n$ ,  $\frac{|M_n|}{|\Lambda_n|} \to 1$ , such that
- for any globally admissible  $v \in \mathcal{A}^{\Lambda_n}$  and finite  $S \subset M_n^c$  and globally admissible  $w \in \mathcal{A}^S$ , we have that vw is globally admissible.

Safe symbol  $\Rightarrow$  TSSM  $\Rightarrow$  D-condition



#### An SFT X satisfies the **D-condition** if

- there exist sequences of finite subsets  $(\Lambda_n)$ ,  $(M_n)$  of  $\mathbb{Z}^d$  such that  $\Lambda_n \nearrow \infty$ ,  $\Lambda_n \subseteq M_n$ ,  $\frac{|M_n|}{|\Lambda_n|} \to 1$ , such that
- for any globally admissible  $v \in \mathcal{A}^{\Lambda_n}$  and finite  $S \subset M_n^c$  and globally admissible  $w \in \mathcal{A}^S$ , we have that vw is globally admissible.

 $Safe \ symbol \Rightarrow TSSM \Rightarrow D\text{-condition}$ 



# Theorem: Let $\mu$ a Gibbs measure for a n.n. interaction $\Phi$ with underlying $\mathbb{Z}^d$ n.n. SFT X. If

- X satisfies the D-condition
- $I_{\mu} = A_{\Psi}$  for some *absolutely summable* interaction  $\Psi$  s.t.  $X_{\Psi} = X$ ,

Then

$$P(\Phi) = \int I_{\mu}(x) + A_{\Phi}(x) \, d\nu(x)$$



Theorem: Let  $\mu$  a Gibbs measure for a n.n. interaction  $\Phi$  with underlying  $\mathbb{Z}^d$  n.n. SFT X. If

- X satisfies the D-condition
- $I_{\mu} = A_{\Psi}$  for some absolutely summable interaction  $\Psi$  s.t.  $X_{\Psi} = X$ ,

Then

$$P(\Phi) = \int I_{\mu}(x) + A_{\Phi}(x) \ d\nu(x)$$



Theorem: Let  $\mu$  a Gibbs measure for a n.n. interaction  $\Phi$  with underlying  $\mathbb{Z}^d$  n.n. SFT X. If

- X satisfies the D-condition
- $I_{\mu} = A_{\Psi}$  for some *absolutely summable* interaction  $\Psi$  s.t.  $X_{\Psi} = X$ ,

Then

$$P(\Phi) = \int I_{\mu}(x) + A_{\Phi}(x) \ d\nu(x)$$



Theorem: Let  $\mu$  a Gibbs measure for a n.n. interaction  $\Phi$  with underlying  $\mathbb{Z}^d$  n.n. SFT X. If

- X satisfies the D-condition
- $I_{\mu} = A_{\Psi}$  for some *absolutely summable* interaction  $\Psi$  s.t.  $X_{\Psi} = X$ ,

Then

$$P(\Phi) = \int I_{\mu}(x) + A_{\Phi}(x) \, d\nu(x)$$



• Assuming adjacency matrix A is irreducible and aperiodic, there is a unique MME  $\mu_{\rm max}$ , which is a Markov chain given by transition matrix

$$P_{ij} = \left\{ \begin{array}{cc} \frac{r_j}{\lambda r_i} & ij \notin \mathcal{F} \\ 0 & ij \in \mathcal{F} \end{array} \right\}$$

where  $\lambda = \lambda(A)$  and r is a right eigenvector for  $\lambda$ , and stationary vector  $r_i \ell_i$  where  $\ell$  is a left eigenvector for  $\lambda$  (suitably normalized)

• Thus, if  $\mu(w_1 w_2 \dots w_{n-1} w_n) > 0$ , then

$$\mu(w_1 w_2 \dots w_{n-1} w_n) = \frac{\ell_{w_1} r_{w_n}}{\lambda^{n-1}}$$

• Thus, fixing  $w_1, w_n$ ,

$$\mu(w_2 \dots w_{n-1} | w_1, w_n)$$
 is uniform



• Assuming adjacency matrix A is irreducible and aperiodic, there is a unique MME  $\mu_{\rm max}$ , which is a Markov chain given by transition matrix

$$P_{ij} = \left\{ \begin{array}{cc} \frac{r_j}{\lambda r_i} & ij \notin \mathcal{F} \\ 0 & ij \in \mathcal{F} \end{array} \right\}$$

where  $\lambda = \lambda(A)$  and r is a right eigenvector for  $\lambda$ , and stationary vector  $r_i \ell_i$  where  $\ell$  is a left eigenvector for  $\lambda$  (suitably normalized)

• Thus, if  $\mu(w_1 w_2 \dots w_{n-1} w_n) > 0$ , then

$$\mu(w_1 w_2 \dots w_{n-1} w_n) = \frac{\ell_{w_1} r_{w_n}}{\lambda^{n-1}}$$

• Thus, fixing  $w_1, w_n$ ,

$$\mu(w_2 \dots w_{n-1} | w_1, w_n)$$
 is uniform

Author

• Assuming adjacency matrix A is irreducible and aperiodic, there is a unique MME  $\mu_{\rm max}$ , which is a Markov chain given by transition matrix

$$P_{ij} = \left\{ \begin{array}{cc} \frac{r_j}{\lambda r_i} & ij \notin \mathcal{F} \\ 0 & ij \in \mathcal{F} \end{array} \right\}$$

where  $\lambda = \lambda(A)$  and r is a right eigenvector for  $\lambda$ , and stationary vector  $r_i \ell_i$  where  $\ell$  is a left eigenvector for  $\lambda$  (suitably normalized)

• Thus, if  $\mu(w_1 w_2 \dots w_{n-1} w_n) > 0$ , then

$$\mu(w_1 w_2 \dots w_{n-1} w_n) = \frac{\ell_{w_1} r_{w_n}}{\lambda^{n-1}}$$

• Thus, fixing  $w_1, w_n$ ,

$$\mu(w_2 \dots w_{n-1} | w_1, w_n)$$
 is uniform

• Assuming adjacency matrix A is irreducible and aperiodic, there is a unique MME  $\mu_{\rm max}$ , which is a Markov chain given by transition matrix

$$P_{ij} = \left\{ \begin{array}{cc} \frac{r_j}{\lambda r_i} & ij \notin \mathcal{F} \\ 0 & ij \in \mathcal{F} \end{array} \right\}$$

where  $\lambda = \lambda(A)$  and r is a right eigenvector for  $\lambda$ , and stationary vector  $r_i \ell_i$  where  $\ell$  is a left eigenvector for  $\lambda$  (suitably normalized)

• Thus, if  $\mu(w_1 w_2 \dots w_{n-1} w_n) > 0$ , then

$$\mu(\mathbf{w}_1\mathbf{w}_2\ldots\mathbf{w}_{n-1}\mathbf{w}_n)=\frac{\ell_{\mathbf{w}_1}\mathbf{r}_{\mathbf{w}_n}}{\lambda^{n-1}}$$

• Thus, fixing  $w_1, w_n$ ,

$$\mu(w_2 \dots w_{n-1} | w_1, w_n)$$
 is utiliottil

• Assuming adjacency matrix A is irreducible and aperiodic, there is a unique MME  $\mu_{\rm max}$ , which is a Markov chain given by transition matrix

$$P_{ij} = \left\{ \begin{array}{cc} \frac{r_j}{\lambda r_i} & ij \notin \mathcal{F} \\ 0 & ij \in \mathcal{F} \end{array} \right\}$$

where  $\lambda = \lambda(A)$  and r is a right eigenvector for  $\lambda$ , and stationary vector  $r_i \ell_i$  where  $\ell$  is a left eigenvector for  $\lambda$  (suitably normalized)

• Thus, if  $\mu(w_1 w_2 \dots w_{n-1} w_n) > 0$ , then

$$\mu(\mathbf{w}_1\mathbf{w}_2\ldots\mathbf{w}_{n-1}\mathbf{w}_n)=\frac{\ell_{\mathbf{w}_1}\mathbf{r}_{\mathbf{w}_n}}{\lambda^{n-1}}$$

Thus, fixing w<sub>1</sub>, w<sub>n</sub>,

$$\mu(w_2 \dots w_{n-1} | w_1, w_n)$$
 is uniform



## Entropy representation for MME, d = 1

$$I_{\mu}(x) = -\log \mu(x(0)| x(\mathcal{P}))$$
  
= -\log P\_{x\_0 x\_{-1}}  
= \log \lambda + \log r\_{x\_{-1}} - \log r\_{x\_0}

• So, for *all* invariant measures  $\nu$ ,

$$\int I_{\mu}(x)d\nu(x) = \int (\log \lambda + \log r_{x_{-1}} - \log r_{x_0})d\nu(x) 
= \log \lambda 
= h(X)$$

In particular, if the SFT has a fixed point  $x^* := a^{\mathbb{Z}}$  and  $\nu$  is the delta measure on  $x^*$ , then on

$$h(X) = \int I_{\mu}(x) d\nu(x) = I_{\mu}(x^*) = -\log \mu(x^*)$$

and so h(X) can be computed from the value of the information function at only one point.



## Entropy representation for MME, d = 1

$$I_{\mu}(x) = -\log \mu(x(0)| x(\mathcal{P}))$$
  
=  $-\log P_{x_0x_{-1}}$   
=  $\log \lambda + \log r_{x_{-1}} - \log r_{x_0}$ 

• So, for *all* invariant measures  $\nu$ ,

$$\int I_{\mu}(x)d\nu(x) = \int (\log \lambda + \log r_{x_{-1}} - \log r_{x_0})d\nu(x) 
= \log \lambda 
= h(X)$$

In particular, if the SFT has a fixed point  $x^* := a^{\mathbb{Z}}$  and  $\nu$  is the delta measure on  $x^*$ , then on

$$h(X) = \int I_{\mu}(x) d\nu(x) = I_{\mu}(X^*) = -\log \mu(X^*)$$

and so h(X) can be computed from the value of the information function at only one point.



## Entropy representation for MME, d = 1

$$I_{\mu}(x) = -\log \mu(x(0)| x(\mathcal{P}))$$
  
=  $-\log P_{x_0x_{-1}}$   
=  $\log \lambda + \log r_{x_{-1}} - \log r_{x_0}$ 

• So, for *all* invariant measures  $\nu$ ,

$$\int I_{\mu}(x)d\nu(x) = \int (\log \lambda + \log r_{x_{-1}} - \log r_{x_0})d\nu(x) 
= \log \lambda 
= h(X)$$

In particular, if the SFT has a fixed point  $x^* := a^{\mathbb{Z}}$  and  $\nu$  is the delta measure on  $x^*$ , then on

$$h(X) = \int I_{\mu}(x) d\nu(x) = I_{\mu}(x^*) = -\log \mu(x^*)$$

and so h(X) can be computed from the value of the information function at only one point.



## Entropy representation for MME, d=1

$$I_{\mu}(x) = -\log \mu(x(0)| x(\mathcal{P}))$$
  
= -\log P\_{x\_0 x\_{-1}}  
= \log \lambda + \log r\_{x\_{-1}} - \log r\_{x\_0}

• So, for *all* invariant measures  $\nu$ ,

$$\int I_{\mu}(x)d\nu(x) = \int (\log \lambda + \log r_{x_{-1}} - \log r_{x_{0}})d\nu(x) 
= \log \lambda 
= h(X)$$

In particular, if the SFT has a fixed point  $x^* := a^{\mathbb{Z}}$  and  $\nu$  is the delta measure on  $x^*$ , then on

$$h(X) = \int I_{\mu}(x) d\nu(x) = I_{\mu}(x^*) = -\log \mu(x^*)$$

and so h(X) can be computed from the value of the information function at only one point.

