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Sample 1: (y(l),xfl),xél),...,xc(,l))

(n)’ x{") (n) X(n))

Sample n: (y (X5 s, Xy
@ Parameter estimation:
I 2
(B1. Bos. ., Ba) = argmin —Z\y — (84" + .+ Bax{!)
B1.B2,-B4 M 4=
@ Test sample: (xjest, x5est, .. xffs")

@ Prediction:
ytest = G X{est 4+t By X::fest
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Logistic Regression Models

@ Linear regression models

Y =X+ BaXo+ -+ BaXg = 8- X
@ Logistic regression models

Pr(Y = +1]X) =4-X
Pr(Y = —1|X) =1—Pr(Y = +1|X)
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Logistic Regression Models

@ Linear regression models

Y =BiXi+ B Xo+ -+ BaXg £ B- X

@ Logistic regression models

Pr(Y = +1|X) =3-X
Pr(Y = —1|X) =1—Pr(Y = +1|X)

Y o(x):=1/(1+e7) €[0,1]

Pr(Y = +1|X) =o(8-X)
Pr(Y = —1|X) =1 Pr(Y = +1|X)

“Easton” Li Xu (Texas A&M) Cooperative Interactions August 2016 3/ 40



Logistic Regression Models

@ Linear regression models

Y =BiXi+ B Xo+ -+ BaXg £ B- X

@ Logistic regression models

Pr(Y = +1|X) =3-X
Pr(Y = —1|X) =1—Pr(Y = +1|X)

Y o(x):=1/(1+e7) €[0,1]

Pr(Y = +1|X) =o(8-X)
Pr(Y = —1|X) =1 Pr(Y = +1|X)

“Easton” Li Xu (Texas A&M) Cooperative Interactions August 2016 3/ 40



Individual Effects and Pairwise Interactions

Logistic regression model with individual effects and pairwise interactions

Pr(Y = +1[X) = o(B1 X1 + B2 Xo + -+ - + BaXa



Individual Effects and Pairwise Interactions

Logistic regression model with individual effects and pairwise interactions

Pr(Y = +11X) = o(f1 X1 + BoXo + - - - + g X4
+61,2X1X0 + B13X1 X3 + -+ - + Ba—1,d Xd—1X4)
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Individual Effects and Pairwise Interactions

Logistic regression model with individual effects and pairwise interactions

Pr(Y = +1|X) = O'(,B1X1 + BoXo + -+ + By Xy
+61,2X1X0 + B13X1 X3 + -+ - + Ba—1,d Xd—1X4)

o (; # 0: X; has an individual effect.

@ [3; = 0: X; has no individual effect.

@ ;i # 0: X; and X; has a pairwise interaction.
@ 3;j = 0: X; and X; has no pairwise interaction.
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System Model

@ X1, Xp,..., Xy are independent variables with
Pr{Xi=+1} =Pr{X; =—-1} =1/2,for i =1,2,...,d.

® Y is a binary outcome variable

PV{Y:+1|X1’X2’ . Xd} _J<Z/81X + Z ,B,JXX)

1<i<j<d
PF{Y = —1|X1,X2,. .. ,Xd} =1- Pr{Y = —I—].‘Xl,Xg, R ,Xd}

— (- Zﬁ,X— > BuXX)

1<i<j<d
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System Model

@ X1, Xp,..., Xy are independent variables with
Pr{Xi=+1} =Pr{Xi= -1} =1/2,for i =1,2,...,d.

@ Y is a binary outcome variable

Pr{Y = +11X1, Xa, ... Xd}—ff(Zﬁ,X—i- Z ﬁ,JXX)

1<i<j<d
PF{Y = —1|X1,X2,. .. ,Xd} =1- PI’{Y = +1‘X1,X2, N ,Xd}

( Zﬁ,X— 3 ﬁ,dXX)
1<i<j<d

Target:
Detect all individual effects and pairwise interactions in logistic
regression models from a limited number of samples.
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Motivation 1: Detection of the Graph Underlying an Ising
Model [Bresler (2015)]

@ Ising models on a graph G = (V, E) with |V| = d:

p(X1, Xo,.. ., Xg) =expd > BiXi+ Y BiiXiX; — d(B)
ieVv {ij}cE
@ parameter vector: 3 = {Bi}icv U{Bi;j}{ijreE
@ normalizing constant: ®(f)
@ the maximum degree of nodes is p (constant)
o |Bil < hand A <|Bij| < p.
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Motivation 1: Detection of the Graph Underlying an Ising
Model [Bresler (2015)] (Continued)

Theorem (Bresler 2015)

2 s4p+1 *
Let 6 = %e‘z(”p”’), T = %, =5 0= (T§)2. Suppose we
observe n samples with
144(¢* 4+ 3) d

— 7| .
= ()20 i ¢

Then with probability at least 1 — (, there exists an algorithm to detect
the structure of G running in polynomial time O(¢*dn).
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Motivation 2: Chow-Liu Tree [Chow & Liu (1968)]

Chow-Liu representation:

p(Xlu X27 X37 X47 X5)

= p(X1) - p(X2|X1) - p(X3]| X1, X2) - p(Xa| X1, X2, X3) - p(X5|X1, X2, X3, Xa)

~ p(X1) - p(Xe|X1) - p(X3|X2) - p(Xa|X2) - p(X5|X2)
(first-order product approximation)

= p'(X1, X2, X3, X4, Xs)

Target: Find p’ to minimize the Kullback-Leibler distance D(p||p’)
between p and p'.
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Motivation 2: Chow-Liu Tree [Chow & Liu (1968)]
(Continued)

Dependency Relationship

(X1, Xo, X3, X4, X5) (X1, Xo, X3, Xy, X5)
~ p(X1)p(Xo| X1)p(X3| Xo)p(Xa| Xo)p( X5 Xa) = p(X1)p(Xa2|X1)p(X3|X1)p(Xa| X1)p(X5| X5)
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Motivation 2: Chow-Liu Tree [Chow & Liu (1968)]
(Continued)

Chow-Liu Algorithm:

@ Construct a weighted complete graph G = (V/, E) with
V = {Vl,V2,...,Vd}.

@ The weight w(v;, vj) of edge (v;, v;j) is assigned to be /(X; Xj).

@ Find a maximum spanning tree T of G (by Kruskal's algorithm or
Prim'’s algorithm).

@ Set an arbitrarily node v to be the root of T, then rank the other
nodes by their depths.
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Our Work

@ Model all individual effects and pairwise interaction by a so-called
interaction graph.
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@ Establish an algorithm with a similar style as Chow-Liu algorithm to

detect the structure of the interaction graph from a limited number of
samples.
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Our Work
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@ No assumption of the maximum degree of nodes.
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Our Work

@ Model all individual effects and pairwise interaction by a so-called
interaction graph.

@ Establish an algorithm with a similar style as Chow-Liu algorithm to
detect the structure of the interaction graph from a limited number of
samples.

@ No assumption of the maximum degree of nodes.

@ Sample complexity and running time are both polynomial functions of
the number of features.
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Model with only Pairwise Interactions

@ Assumption:
No individual effects (5; = 0 for 1 < i < d).

@ For example:
» 5 variables X1, X», X3, Xz, Xs
> 312,523,824, 025 # 0 and other 3; ; =0

Pr{Y = +1|X1, X2, X3, X4, X5} = 0(B1,2X1X2 + B2,3X2X3
+ 52,4 X0Xs + 825X X5)
Pr{Y = —1|X1,X2,X3,X4,X5} =1- Pr{Y = —|—1|X1,X2,X3,X4,X5}
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Interaction Graph

Interaction graph: Let G = (V/, E) be the interaction graph with
V ={vi,va,...,vg}, and the edge (v;, v;) € E if and only if the
coefficient 3; ; corresponding to X; and X; is nonzero.

For example:

Pr{Y = +1|X1, X, X3, Xa, X5} (w) (v3)
= 0(B12X1 X2 + 23 X2X3
+ B2,4X0X4 + B2,5X2Xs5) @
PI’{Y: —1|X1,X2,X3,X4,X5} @ @

=1—Pr{Y = +1|X1, X, X3, Xa, X5} B1.2, 823, 32,4, P25 7 0
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Assumption, Difficulty & Target

@ Assumption:
The interaction graph G = (V, E) is acyclic.
» When the model contains at most two interactions, G is always acyclic.
» When the number of interactions is far less than the number of

features, G is acyclic with a high probability.
» The model contains at most d — 1 interactions.

o Difficulty:
We don't know which edges this graph has.

o Target:
Detect the structure of the interaction graph from a limited
number of samples.
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Construction of a Weighted Complete Graph

Construction:
Construct a weighted complete graph G’ = (V/, E’) by
o Vi=(v{,v,...,v})
@ The weight of any edge (v/,v/) € E' is

wiigy = |Pr{Y = 411X = +1,X = +1}—
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Structure Detection of the Interaction Graph (Case 1)

@ Case 1: The third-order joint probability p(X;, Xj, Y) is known.

® wy; jy can be calculated from the third-order joint distribution of
Xi7 )<j7 Y

Wi}
=|Pr{Y =+1|Xi = +1,X; = +1} — Pr{Y = —1|X; = +1, X; = +1}|
=|8Pr{X; =+1,X; =+1,Y = +1} — 1
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Theorem on Detection (Case 1)

Theorem

Let T = (V' ET) be a maximum spanning tree of G'. Then

(vi,vj) € E if and only if (v}, v]

; J)G Et andw{;J}>0.
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Theorem on Detection (Case 1)

Theorem

Let T = (V' ET) be a maximum spanning tree of G'. Then

(vi,vj) € E if and only if (v}, v]

; J)G Et andw{,-,j}>0.

edges in the interaction graph

)

non-zero weighted edges in the maximum spanning tree
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Detection Algorithm (Case 1)

Algorithm (Detecting the interaction graph)
o Construct a weighted graph G' = (V', E") with V' = {v{,v3,...,V}}.

© The weight wy; jy of edge (v;, v;) is assigned to be
Pr{Y = +1|X; = +1,X; = +1} — Pr{Y = —1|X; = +1, X; = +1}|.
® Find a maximum spanning tree T' = (V' E7) of G’ (by Kruskal's
algorithm or Prim’s algorithm).
@ Then the set of the edges in G is

{(V,', VJ) : (VI{, VJ/) € Et and wei iy > 0}
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Detection Algorithm (Case 1)

Algorithm (Detecting the interaction graph)
o Construct a weighted graph G' = (V', E") with V' = {v{,v3,...,V}}.

© The weight wy; jy of edge (v;, v;) is assigned to be
IPr{Y = +1|X; = +1,X; = +1} — Pr{Y = —1|X; = +1,X; = +1}.
® Find a maximum spanning tree T' = (V' E7) of G’ (by Kruskal's
algorithm or Prim’s algorithm).
@ Then the set of the edges in G is

{(V,', VJ) : (VI{, VJ/) € Et and wei iy > 0}

The algorithm is executed in polynomial time O(d?).
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Structure Detection of the Interaction Graph (Case 2)

o Case 2:
> The third-order joint probability p(X;, Xj, Y') is unknown.
» Any non-zero parameter [3; ; satisfies that

A< |Bijl <

@ Weight Assignment: With n samples (Y(t),Xl(t),Xz(t), e ,X(E,t)) for
1 <t < n, we estimate

wiigy = [8Pr{X; = +1,X = +1,Y = +1} 1|

by

Wiijy = XO xO yO)=(+1,41,41) 1.
i 7y

“Easton” Li Xu (Texas A&M) Cooperative Interactions August 2016 19 / 40



Theorem on Detection (Case 2)

Let
v = \/g [o(A+3p) — o(=A+3u)].

Theorem
Assume for 1 < i< j<d,
Wi gy — wipl < /2
Let T = (V' ET) be a maximum spanning tree of G'. Then

(vi,vj) € E if and only if (v{,v]) € ET and Wy jy > /2.
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Theorem on Detection (Case 2)

Let
v = \/g [o(A+3p) — o(=A+3u)].

Theorem
Assume for 1 < i< j<d,
Wi gy — wipl < /2
Let T = (V' ET) be a maximum spanning tree of G'. Then

(vi,vj) € E if and only if (v{,v]) € ET and Wy jy > /2.

edges in the interaction graph

)

large weighted edges in the maximum spanning tree
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Detection Algorithm (Case 2)

Algorithm (Detecting the interaction graph)
o Construct a weighted graph G' = (V', E") with V' = {v{,v3,...,v}}.

/

vj, V) is assigned to be

o The weight wy; j, of edge (v/

n

8
- Z L1, %08, YIe) =(+1,41,41) — L[-

n
t=1

@ Find a maximum spanning tree T' = (V' E7) of G’ (by Kruskal’s
algorithm or Prim’s algorithm).

@ Then the set of the edges in G is
{(Vf7‘/J') ( Vi _,) € Er and Wi} > '7/2}

The algorithm is executed in polynomial time O(nd?).

“Easton” Li Xu (Texas A&M) Cooperative Interactions August 2016 21 / 40



Sample Complexity (Case 2)

Theorem
Fix 0 < e <1 and let n be a positive integer such that
128  d? 64md d?

n>—log— = log —.
=2 T T O 43 — (A3 o e

(1)

Then with probability at least 1 — €, the algorithm can successfully detect
the graph G from n i.i.d. samples of (X1,X2,...,X4,Y).

The order of sample complexity: © (d log %)
Running time: O(d®log 2)
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Models with both Individual Effects and Pairwise
Interactions

o For example:
» 4 variables Xl, XQ,X3,X4
> B2, P12, 82,3, B2,4 # 0 and other 3, 5;; = 0
Pr{Y = —|—].|)(17 X5, X3, X4} = 0’(,32X2 + ﬂ1,2X1X2

+523X0X3 + B2,4X2Xa)
Pr{Y = —1|X1,X2,X3,X4} =1- Pr{Y = —|—1|X1,X2,X3,X4}
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Extended Interaction Graph
For extended interaction graph G = (V, E),
o V = {w(virtual vertex), vi,va,...,v4}
@ (v, v;) € E if and only if X; has an individual effect
@ (vj,vj) € E if and only if X; and X; have a cooperative interaction

With the help of the virtual vertex vy, G can capture all individual effects
and pairwise interactions.

For example:

Pr{Y = +1|X1, X2, X3, Xa} @ @

= 0 (L2 Xo + f1,2X1.X2 @
+ B2,3XoX3 + B2.4X2Xas)

Pr{Y = —1|X1, X2, X3, Xa} @ @

=1- Pr{Y = —|-1|X1, X2, X3, X4} B2, B1.2, B2.3, 2.4 # 0
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Auxiliary Model

@ Assumption:
The extended interaction graph G = (V/, E) is acyclic.

o Auxiliary model: Pr{X; = +1} = Pr{X; = —1} = 1/2 for
0<i<d
(Xo: the virtual feature corresponding to the virtual node vp)

Pr{Y = +11%0, X1, X, ..., X4} = U(Z,B,xox + Y ,3,,Jxx)
1<i<j<d

Pr{\N/ = —1|)~<0,)~<1,)~<2, ... ,Xd} =1- PF{Y = —|-1|XQ,X1,X2, ... ,Xd}

—o( - Z@XOX— > Bk%)

1<i<j<d
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Relationship between Original Model and its Auxiliary
Model

@ Original model:
wio,i} := |Pr(Y = +1|X; = +1) — Pr(Y = —1|X; = +1)
wiijy = [Pr(Y = +11X; = +1,X; = +1)

@ Auxiliary model:

Wiijy =

Pr(Y = +1|X; = +1,%; = +1) — Pr(Y = —1|X; = +1,%; = +1)

Theorem
For0<i<j<d,
Wij = Wi
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|dea of Converting

@ Original model and auxiliary model share the same interaction graph.
@ Auxiliary model contains only pairwise interactions.

@ Assign the empirical weight of the original model into each edge of
the auxiliary model.
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Detection Algorithm of Extended Interaction Graphs

Algorithm

@ Construct a weighted complete graph G' = (V' E’) with
Vi={vj,vi,vg,..., v}
o for1 <i<d, the weight wyg ;y of edge (vy,V;) is assigned to be

1

S (Gl vt = (+1,41) — 1

for 1 <i < j < d, the weight wy; jy of edge (v, v;) is assigned to be

‘% Z 1((xi[t], x;[t], y[t]) = (+1,+1,4+1))+

S Gl e yld]) = (-1, -1, 41)) ~ 1

v
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Detection Algorithm of Extended Interaction Graphs
(Continued)

Algorithm

@ Find a maximum spanning tree T' = (V' E7) of G’ (by Kruskal's
algorithm or Prim’s algorithm).

@ Then the set of the edges in G is
{(vi,vj) : (V/, J) € Et and wjj; > vy "/2}, with

v /ﬁ [0\ + 311) — (= A + 34)]

The algorithm is also executed in polynomial time.
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Non-Uniform Case
@ Assumption:

» Xi,Xa,...,Xq are independent variables with
Pr{Xi = +1} = p;, Pr{X; = =1} = q; with p; + g; = 1, for
i=1,2,...,d (non-uniform features)

» The interaction graph G = (V/, E) is simply a path of length at most 4.

o Target:

Reconstruct the graph from the samples of (Y, X1, Xa, ..., Xq4).
@ Construction:
Construct a weighted complete graph G’ = (V/, E’) by
» Vi=(v,v5,...,v))

» The weight of any edge (v/,v;) € E' is assigned to be

_ 1N i ij i
Wi jy = Q+1 4141 T Q—l,—1,+1 + Q—1,+1,—1 + Q+1,—1,—1

ij i ij
Q+1 +1,—1 071,71,71 - Qfl,+1,+1 - Q+1,71,+1 :

(@il = Pr{Y = is X = i1, X; = i2})
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Theorem on Detection (Non-uniform Case)

Theorem

Let T = (V' ET) be a maximum spanning tree of G'. Then

vi,Vv;) € E if and only if (v/, V!
J i

,vj) € ET and wy; j, > 0.
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Hardness of Detection (Non-uniform Case)

Theorem
Assume that the interaction graph is simply a path of length 5. If the

weight of edge (v;,v;) in G' is assigned to be

c — E e
Wiy = a’ly’Za’3Qi1,l'2,l'3 )

it,yip,i3€{+1,—1}

for any constants {c, i, iy : i1, I, i3 € {+1,—1}}, then there exists a
counterexample where we cannot correctly detect the structure of the
interaction graph by finding a maximum spanning tree of G’.

The theorem for the uniform cases cannot be extended into the generic
non-uniform cases.
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Simulation Experiments

@ 1000 logistic regression models
@ 15 features, 5 individual effects, 10 pairwise interactions
@ 400, 800, 1,200, 1,600, 2,000 samples

@ Detection of the interaction graphs
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Results of Simulation Experiments - Part 1

Comparison of detection correctness among mRMR forward selection
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[Peng, Long & Ding (2005)], feature ranking based on mutual information
estimation [Paninski (2003)], and our algorithm.
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Results of Simulation Experiments - Part 2

Prediction Accuracy (%)

88

86

o % — % — %X Lj-regularized

A A A mRMR Forward
82 o~ — o — -0 MI Ranking
+——+— Algorithm 1
80
400 800 1200 1600 2000

Number of Samples

Comparison of prediction correctness among mRMR forward selection
[Peng, Long & Ding (2005)], feature ranking based on mutual information
estimation [Paninski (2003)], and L;-penalized logistic regression [Park &
Hastie (2007)], and our algorithm.
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Results of Simulation Experiments - Part 3

Comparison of false positive rates for detection between Li-penalized
logistic regression [Park & Hastie (2007)] and our Algorithm.
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Summary

@ Logistic regression models:

PHY = 411X, X, Xak = 30 BXi+ Y. BiiXiX;)

1<i<d 1<i<j<d
PF{Y = —1|X1,X2,. .. ,Xd} =1- PF{Y = +1|X1,X2, . ,Xd}

@ Interaction graph G = (V, E):
(V,',VJ')EE — ,B,'J#O.

@ Detection of the interaction graph:

» Construct a weighted complete graph.
» Find its maximum spanning tree.
> Pick the edges with large weights.

o Extended to the models with both individual effects and pairwise
interactions
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Thank you!
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