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Large Random Matrices

Random matrices
It is a N ×N matrix

YN =

 Y11 · · · Y1N

...
...

YN1 · · · YNN


whose entries (Yij ; 1 ≤ i, j ≤ N) are random variables.

Matrix features
Of interest are the following quantities

I YN ’s spectrum (λi, 1 ≤ i ≤ N) in particular λmin and λmax (if real spectrum).

I linear statistics

tr f(YN ) =
N∑
i=1

f(λi)

I eigenvectors, etc.

Asymptotic regime

Often, the description of the previous features takes a simplified form as

N →∞

leading to “good enough” approximation in real applications with finite N .
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Large Random Matrices: Wigner Matrices

Matrix model

Let XN = (Xij) a symmetric N ×N
matrix with i.i.d. entries on and above
the diagonal with

EXij = 0 and E |Xij |2 = 1

and Xij = Xji (for symmetry).

I consider the spectrum of Wigner

matrix YN = XN√
N

Wigner’s theorem (1948)

”The histogram of a Wigner matrix converges to the semi-circular distribution”
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Large Covariance Matrices

: Marčenko-Pastur’s theorem

Matrix model

Let XN be a N × n matrix with i.i.d.
entries

EXij = 0 , E|Xij |2 = 1

and consider the spectrum of 1
n

XNX∗N
in the regime where

N,n→∞ and
N

n
→ c ∈ (0,∞)

dimensions of matrix XN of the same order

Marčenko-Pastur’s theorem (1967)

”The histogram of a Large Covariance Matrix converges to
Marčenko-Pastur distribution with given parameter (here 0.4)”
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Marčenko-Pastur distribution with given parameter (here 0.4)”

6



Large Covariance Matrices
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Large Non-Hermitian Matrices

: The Circular Law

Matrix model

Let XN be a N ×N matrix with i.i.d.
entries

EXij = 0 , E|Xij |2 = 1

and consider the spectrum of matrix
YN = 1√

N
XN as N →∞

I In this case, the eigenvalues are
complex!

Theorem: The Circular Law (Ginibre, Girko, Bai, Tao & Vu, etc.)

The spectrum of YN converges to the uniform probability on the disc
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Motivations

An old history

I Data Analysis (Wishart, 1928)

I Theoretical Physics (from the ’50s - Wigner, Dyson, Pastur, etc.)

I Pure mathematics (from the late ’80s - non-commutative probability, free
probability, operator algebra - Voiculescu, etc.)

I Graph theory (spectrum of the Laplacian)

I Wireless communication (Telatar, 1995 - Verdú, Tse, Shamai, Lévêque, a Parisian
group with Loubaton, Debbah, Najim, etc.)

Current trends

I Statistics in large dimension (Bai, Bickel & Levina, Ledoit and Wolf, etc.)

I Pure mathematics: universality questions, operator algebra (Tao, Vu, Erdös,
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Empirical spectral distribution (ESD)

The spectral theorem

For a Hermitian (symmetric) matrix A,

A = U∗ΛU =
N∑
j=1

λjuju
∗
j

with its real eigenvalues {λj} and orthonormalized eigenvectors {uj}.

The ESD
The ESD of A is the normalized counting measure of the eigenvalues:

LN =
1

N

N∑
i=1

δλi that is, LN (B) =
1

N
#{λi ∈ B}.
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Spectral analysis tool (i): by moment convergence

Example of the semi-circle law

I The Hermitian Wigner matrix is YN =
1
√
N

XN ;

I Moments of its ESD are

mp(N) =

∫
xp Ln(dx) =

1

N

N∑
i=1

λpi =
1

N
tr Yp

N .

Moment convergence method:

1. Prove, in probability or almost surely, that

mp(N) −−−−→
N→∞

{
1
k+1

(2k
k

)
if p = 2k ,

0 if p is odd

2. Figure out that these are exactly the moment sequence of the semi-circular law:∫ 2

−2
xk µsc(dx) =

{
1
k+1

(2k
k

)
if p = 2k ,

0 if p is odd

3. Conclude, by Carleman’s criterion, that LN =⇒ µsc.

Note. Computation of the empirical moments {mp(N)} relies on heavy combinatorics.
11



Spectral analysis tool (i): by moment convergence

Example of the semi-circle law

I The Hermitian Wigner matrix is YN =
1
√
N

XN ;

I Moments of its ESD are

mp(N) =

∫
xp Ln(dx) =

1

N

N∑
i=1

λpi =
1

N
tr Yp

N .

Moment convergence method:

1. Prove, in probability or almost surely, that

mp(N) −−−−→
N→∞

{
1
k+1

(2k
k

)
if p = 2k ,

0 if p is odd

2. Figure out that these are exactly the moment sequence of the semi-circular law:∫ 2

−2
xk µsc(dx) =

{
1
k+1

(2k
k

)
if p = 2k ,

0 if p is odd

3. Conclude, by Carleman’s criterion, that LN =⇒ µsc.

Note. Computation of the empirical moments {mp(N)} relies on heavy combinatorics.
11



Spectral analysis tool (i): by moment convergence

Example of the semi-circle law

I The Hermitian Wigner matrix is YN =
1
√
N

XN ;

I Moments of its ESD are

mp(N) =

∫
xp Ln(dx) =

1

N

N∑
i=1

λpi =
1

N
tr Yp

N .

Moment convergence method:

1. Prove, in probability or almost surely, that

mp(N) −−−−→
N→∞

{
1
k+1

(2k
k

)
if p = 2k ,

0 if p is odd

2. Figure out that these are exactly the moment sequence of the semi-circular law:∫ 2

−2
xk µsc(dx) =

{
1
k+1

(2k
k

)
if p = 2k ,

0 if p is odd

3. Conclude, by Carleman’s criterion, that LN =⇒ µsc.

Note. Computation of the empirical moments {mp(N)} relies on heavy combinatorics.
11



Spectral analysis tool (i): by moment convergence

Example of the semi-circle law

I The Hermitian Wigner matrix is YN =
1
√
N

XN ;

I Moments of its ESD are

mp(N) =

∫
xp Ln(dx) =

1

N

N∑
i=1

λpi =
1

N
tr Yp

N .

Moment convergence method:

1. Prove, in probability or almost surely, that

mp(N) −−−−→
N→∞

{
1
k+1

(2k
k

)
if p = 2k ,

0 if p is odd

2. Figure out that these are exactly the moment sequence of the semi-circular law:∫ 2

−2
xk µsc(dx) =

{
1
k+1

(2k
k

)
if p = 2k ,

0 if p is odd

3. Conclude, by Carleman’s criterion, that LN =⇒ µsc.

Note. Computation of the empirical moments {mp(N)} relies on heavy combinatorics.
11



Spectral analysis tool (i): by moment convergence

Example of the semi-circle law

I The Hermitian Wigner matrix is YN =
1
√
N

XN ;

I Moments of its ESD are

mp(N) =

∫
xp Ln(dx) =

1

N

N∑
i=1

λpi =
1

N
tr Yp

N .

Moment convergence method:

1. Prove, in probability or almost surely, that

mp(N) −−−−→
N→∞

{
1
k+1

(2k
k

)
if p = 2k ,

0 if p is odd

2. Figure out that these are exactly the moment sequence of the semi-circular law:∫ 2

−2
xk µsc(dx) =

{
1
k+1

(2k
k

)
if p = 2k ,

0 if p is odd

3. Conclude, by Carleman’s criterion, that LN =⇒ µsc.

Note. Computation of the empirical moments {mp(N)} relies on heavy combinatorics.
11



Spectral analysis tool (ii): The Stieltjes Transform

I The Stieltjes transform of a probability measure µ on R is

sµ(z) =

∫
R

1

x− z
µ(dx) , z ∈ C+ ,

I the transform characterize the measure through the inversion formula: for all
continuity points a, b of µ,

µ([a, b]) =
1

π
lim
y↓0
=
∫ b

a
sµ(x+ iy) dx ,

Examples

1. ESD of a Hermitian matrix A: sLN (z) =
1

N

N∑
i=1

1

λi − z

2. Semi-circle law: sµsc (z) =

∫ 2

−2

1

x− z
1

2π

√
4− x2dx =

1

2

(
−z +

√
z2 − 4

)
.

3. Marčenko-Pastur Law:

sµMP (z) =

∫ b

a

1

x− z
1

2πcx

√
(b− x)(x− a)dx =

1− c− z −
√

(z − a)(z − b)
2cz

.

(by convention,
√
z has positive imaginary part for z ∈ C+)
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3. Marčenko-Pastur Law:

sµMP (z) =

∫ b

a

1

x− z
1

2πcx

√
(b− x)(x− a)dx =

1− c− z −
√

(z − a)(z − b)
2cz

.

(by convention,
√
z has positive imaginary part for z ∈ C+)

12



Spectral analysis tool (ii): The Stieltjes Transform

I The Stieltjes transform of a probability measure µ on R is

sµ(z) =

∫
R

1

x− z
µ(dx) , z ∈ C+ ,

I the transform characterize the measure through the inversion formula: for all
continuity points a, b of µ,

µ([a, b]) =
1

π
lim
y↓0
=
∫ b

a
sµ(x+ iy) dx ,

Examples

1. ESD of a Hermitian matrix A: sLN (z) =
1

N

N∑
i=1

1

λi − z

2. Semi-circle law: sµsc (z) =

∫ 2

−2

1

x− z
1

2π

√
4− x2dx =

1

2

(
−z +

√
z2 − 4

)
.
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Why does RMT prefer Stieltjes transform ?

I For a Hermitian matrix A,

sLN (z) = Stieltjes transform of

(
1

N

N∑
i=1

δλi

)

=
1

N

N∑
1

1

λi − z

=
1

N
tr (A− zI)−1 .

I Write

A =

(
a11 a∗1
a1 A1

)
,

and similarly for the diagonal elements a22, . . . , aNN to get the sequence of
N − 1 dimensional vectors {ak} and principal submatrices {Ak};

I By Schur complement

sLN (z) =
1

N
tr (A− zI)−1 =

1

N

N∑
k=1

1

akk − z − a∗k(Ak − zI)−1ak

This shows how matrix algebra helps the study of the ESD of a large matrix A.
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Sketched proof of Wigner’s semi-circle law

I Now we let

A = YN =
1
√
N

XN =
1
√
N


x11 x12 · · · xNN

x22 · · · x2N

...
...

...
xNN


where {xij : i ≤ j} are i.i.d. with mean 0 and variance 1.

So,

aij =
1
√
N
xij , ak =

1
√
N

xk, Ak =
1
√
N

Xk, etc.

I We have

sLN (z) =
1

N

N∑
k=1

1

akk − z − a∗k(Ak − zI)−1ak

=
1

N

N∑
k=1

1

1√
N
xkk − z − 1

N
x∗k

(
1√
N

Xk − zI
)−1

xk

14



Sketched proof of Wigner’s semi-circle law

I Now we let

A = YN =
1
√
N

XN =
1
√
N


x11 x12 · · · xNN

x22 · · · x2N

...
...

...
xNN


where {xij : i ≤ j} are i.i.d. with mean 0 and variance 1.

So,

aij =
1
√
N
xij , ak =

1
√
N

xk, Ak =
1
√
N

Xk, etc.

I We have

sLN (z) =
1

N

N∑
k=1

1

akk − z − a∗k(Ak − zI)−1ak

=
1

N

N∑
k=1

1

1√
N
xkk − z − 1

N
x∗k

(
1√
N

Xk − zI
)−1

xk

14



Sketched proof of Wigner’s semi-circle law (cont.)

sLN (z) =
1

N
tr

(
1
√
N

XN − zI
)−1

=
1

N

N∑
k=1

1

1√
N
xkk − z − 1

N x∗k

(
1√
N

Xk − zI
)−1

xk

I When N →∞,
1
√
N
xkk → 0;

I

1

N
x
∗
k

(
1
√
N

Xk − zI
)−1

xk =
1

N
tr x
∗
k

(
1
√
N

Xk − zI
)−1

xk

=
1

N
tr

(
1
√
N

Xk − zI
)−1

xkx
∗
k

'
1

N
tr

(
1
√
N

Xk − zI
)−1

IN−1

=
1

N
tr

(
1
√
N

Xk − zI
)−1

' sLN (z).

I So sLN (z) does have a limit s(z) satisfying

s =
1

−z − s
, that is, s

2
+ zs+ 1 = 0.

I Solving the equation, we find s(z) =
1

2

(
−z +

√
z2 − 4

)
, i.e. sµsc(z) !
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Outline

Quick introduction to random matrix theory

Large Covariance Matrices
Wishart matrices and Marčenko-Pastur theorem
Proof of Marčenko-Pastur’s theorem

Spiked models

Statistical Test for Single-Source Detection

Applications to the MIMO channel
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Wishart Matrices I

The model

I Consider a N × n matrix XN with i.i.d. entries

EXij = 0 , E|Xij |2 = 1 .

Matrix XN is a n-sample of N -dimensional vectors:

XN = [X·1 · · · X·n] with EX·1X∗·1 = IN .

Objective

I to describe the limiting spectrum of 1
n

XNX∗N as

N

n
−−−−→
n→∞

c ∈ (0,∞) .

i.e. dimensions of matrix XN are of the same order.
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Wishart Matrices II

The usual case N << n

Assume N fixed and n→∞.

Since

EX·1X∗·1 = IN ,

L.L.N implies

1

n
XNX∗N =

1

n

n∑
i=1

X·iX
∗
·i

a.s.−−−−→
n→∞

IN

In particular,

I all the eigenvalues of 1
n

XNX∗N converge to 1,

I equivalently, the spectral measure of 1
n

XNX∗N converges to δ1.

A priori observation # 1

If the ratio of dimensions c↘ 0, then the spectral measure should
look like a Dirac measure at point 1.
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Wishart Matrices III

The case where c > 1

Recall that XN is N × n matrix and c = lim N
n
.

If N > n, then 1
n

XNX∗N is rank-defficient and has rank n;

I in this case, eigenvalue 0 has multiplicity N − n and the spectral measure writes:

LN =
1

N

N∑
i=1

δλi =
1

N

n∑
i=1

δλi +
N − n
N

δ0

I The limiting spectral measure of LN necessarily features a Dirac measure at 0:

N − n
N

δ0 −→
(

1−
1

c

)
δ0 as

N

n
→ c .

A priori observation #2

If c > 1, then the limiting spectral measure will feature a Dirac
measure at 0 with weight 1− 1

c
.
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Simulations
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Simulations
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Marčenko-Pastur theorem

Theorem

I Consider a N × n matrix XN with i.i.d. entries

EXij = 0 , E|Xij |2 = 1 .

with N and n of the same order and LN its spectral measure:

cn
4
=
N

n
−−−−→
n→∞

c ∈ (0,∞) , LN =
1

N

N∑
i=1

δλi , λi = λi

(
1

n
XNX∗N

)

I Then almost surely

LN −−−−−−→
N,n→∞

µMP in distribution

where µMP is Marčenko-Pastur distribution:

µMP(dx) =

(
1−

1

c

)+

δ0(dx) +

√
(b− x)(x− a)

2πcx
1[a,b](x) dx

with

{
a = (1−

√
c)2

b = (1 +
√
c)2
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where µMP is Marčenko-Pastur distribution:

µMP(dx) =

(
1−

1

c

)+

δ0(dx) +

√
(b− x)(x− a)

2πcx
1[a,b](x) dx

with

{
a = (1−

√
c)2

b = (1 +
√
c)2

21
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where µMP is Marčenko-Pastur distribution:

µMP(dx) =

(
1−

1

c

)+

δ0(dx) +

√
(b− x)(x− a)

2πcx
1[a,b](x) dx

with

{
a = (1−

√
c)2

b = (1 +
√
c)2

21
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Simulations vs M̌P distribution
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Simulations vs M̌P distribution
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Simulations vs M̌P distribution
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Simulations vs M̌P distribution
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Remarks I

I Marčenko-Pastur theorem describes the global regime of the spectrum.

I Convergence in distribution: For a given realization and every test function
φ : R→ R (continuous and bounded), the theorem states:

1

N

N∑
i=1

φ(λi) −−−−−−→
N,n→∞

∫
φ(x)µMP(dx) .

I The Dirac measure at zero is an artifact due to the dimensions of the matrix if

N > n (cf. infra) .
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Remarks II

What if c↘ 0?

I If c→ 0, that is n >> N , then
typical from the usual regime
”small dimensional data vs large
samples”.

I the support of Marčenko-Pastur
distribution

[(1−
√
c)2, (1 +

√
c)2]

concentrates around {1} and

µMP −−−→
c→0

δ1 .

I In accordance with a priori
information # 1

24
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distribution

[(1−
√
c)2, (1 +

√
c)2]

concentrates around {1} and

µMP −−−→
c→0

δ1 .

I In accordance with a priori
information # 1

0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

x

c=0.9
c=0.5
c=0.1
c=0.01

Marchenko-Pastur Distribution

Figure : M̌P distribution as c↘ 0

24



Extreme eigenvalues of Wishart matrices

Convergence of extremal eigenvalues

Recall that [(1−
√
c)2, (1 +

√
c)2] is the support of M̌P distribution, then:

λmax

(
1

n
XNX∗N

)
almost surely−−−−−−−−−→
N,n→∞

(1 +
√
c)2,

λmin

(
1

n
XNX∗N

)
almost surely−−−−−−−−−→
N,n→∞

(1−
√
c)2,

under the 4th moment condition: E|Xij |4 <∞ (Bai and Yin, 1988).

Fluctuations of λmax: Tracy-Widom distribution

We can fully describe the fluctuations of λmax:

N2/3

ΘN

{
λmax

(
1

n
XNX∗N

)
− (1 +

√
cn)2

}
L−−−−−−→

N,n→∞
µTW

where

cn =
N

n
and ΘN = (1 +

√
cn)

(
1
√
cn

+ 1

)1/3

(Johnstone 2001).
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Sketched proof of Marčenko-Pastur’s theorem

Recall definition of the Stieltjes transform sn:

sn(z) =
1

N

N∑
i=1

1

λi − z
=

1

N
tr

(
1

n
XNX∗N − zIN

)−1

.

1. As for the semi-circle law, similar steps lead to

sn(z) ≈
1

(1− cn)− z − zcnsn(z)

2. Therefore, sn does have a limit s, solution to the fixed point equation:

s(z) =
1

(1− c)− z − zcs(z)
.

[
semi-circle : s(z) =

1

−z − s(z)

]
3. An explicit solution is given by

s(z) =
−(z + (c− 1)) +

√
(z − b)(z − a)

2cz

which is sµMP !!

4. By the inversion formula, the density is found to be:

µMP(dx) =

(
1−

1

c

)+

δ0(dx) +

√
(b− x)(x− a)

2πxc
1[a,b](x) dx
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sn(z) ≈
1

(1− cn)− z − zcnsn(z)

2. Therefore, sn does have a limit s, solution to the fixed point equation:

s(z) =
1

(1− c)− z − zcs(z)
.

[
semi-circle : s(z) =

1

−z − s(z)

]

3. An explicit solution is given by

s(z) =
−(z + (c− 1)) +

√
(z − b)(z − a)

2cz

which is sµMP !!

4. By the inversion formula, the density is found to be:

µMP(dx) =

(
1−

1

c

)+

δ0(dx) +

√
(b− x)(x− a)

2πxc
1[a,b](x) dx
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Introduction

The largest eigenvalue in M̌P model

Given a N × n matrix XN with i.i.d. entries EXij = 0 and E|Xij |2 = 1,

LN

(
1

n
XNX∗N

)
−−−−−−→
N,n→∞

µMP

where µMP has support

SM̌P = {0} ∪
[
(1−

√
c)2 , (1 +

√
c)2
]︸ ︷︷ ︸

bulk

(remove the set {0} if c < 1)

Theorem

I Let E|Xij |4 <∞, then:

λmax

(
1

n
XNX∗N

)
a.s.−−−−−−→

N,n→∞
(1 +

√
c)2 .

Message: The largest eigenvalue converges to the right edge of the bulk.
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Spiked Models I

Definition

Let ΠN be a small perturbation of the identity:

ΠN = IN + PN where PN = θ1~u1~u
∗
1 + · · ·+ θk~uk~u

∗
k

where k is independent of the dimensions N,n.

Consider

X̃N = Π
1/2
N XN

This model will be refered to as a (multiplicative) spiked model.

Think of ΠN as

ΠN =



1 + θ1
. . .

1 + θk
1

. . .



Very important: The rank k of perturbations is finite
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Spiked Models II

Remarks

I The spiked model is a particular case of large covariance matrix model with

RN = IN +
k∑
`=1

θ`~u`~u
∗
`

I There are also additive spiked models: X̌N = XN + AN where AN is a matrix
with finite rank.

I Spiked models have been introduced by Iain M. Johnstone in his 2001 paper in
Annals of Statistics to take into account the fact that in many datasets, a small
number of eigenvalues is ”far away” the bulk of the other eigenvalues

Objective

I What is the influence of ΠN over LN

(
1
n

X̃N X̃∗N

)
?

None!

I What is the influence of ΠN over λmax

(
1
n

X̃N X̃∗N

)
?

Well, it depends!
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Simulations I: Single spikes
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Simulations I: Single spikes
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Figure : Spiked model - strength of the perturbation θ = 0.1
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Simulations I: Single spikes
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Simulations I: Single spikes
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Figure : Spiked model - strength of the perturbation θ = 2
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Simulations I: Single spikes

N= 800 , n= 2000 , sqrt(c)=0.63, theta=[ 3 ]
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Figure : Spiked model - strength of the perturbation θ = 3

45



Observation #1

If the strength θ of the perturbation PN is large enough, then the limit of

λmax

(
1
n

X̃N X̃∗N

)
is strictly larger than the right edge of the bulk.
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Simulations II: Spectral measure
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Simulations II: Spectral measure
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Simulations III: Multiple Spikes
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Simulations III: Multiple Spikes
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Figure : Spiked model - Two spikes
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Simulations III: Multiple Spikes
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Observation # 2

Whathever the perturbations, the spectral measure converges toward Marčenko-Pastur
distribution
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The limiting spectral measure

Theorem

The following convergence holds true: LN

(
1
n

X̃N X̃∗N

)
a.s.−−−−−−→

N,n→∞
µMP .

The theorem is a simple consequence of the Cauchy (Weyl) interlacing theorem which
states that the eigenvalues of a finite-rank perturbated Hermitian matrix (or a finite
rank reduced submatrix) are interlaced with those of the original Hermitian matrix.

Remark

The limiting spectral measure is not sensitive to the presence of spikes
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Behaviour of the largest eigenvalue

We consider the following spiked model:

X̃N = (IN + θ~u~u∗)1/2 XN with ‖~u‖ = 1 .

which corresponds to a rank-one perturbation.

Theorem

Recall that c = limN,n→∞
N
n

.

I if θ ≤
√
c then

λmax = λmax

(
1

n
X̃N X̃∗N

)
a.s.−−−−−−→

N,n→∞
(1 +

√
c)2

I if θ >
√
c then

λmax
a.s.−−−−−−→

N,n→∞
(1 + θ)

(
1 +

c

θ

)
> (1 +

√
c)2

[ Baik-Ben Arous-Péché (2005); Baik and Silverstein (2006) ]
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Recall that c = limN,n→∞
N
n

.

I if θ ≤
√
c then

λmax = λmax

(
1

n
X̃N X̃∗N

)
a.s.−−−−−−→

N,n→∞
(1 +

√
c)2

I if θ >
√
c then

λmax
a.s.−−−−−−→

N,n→∞
(1 + θ)

(
1 +

c

θ

)
> (1 +

√
c)2

[ Baik-Ben Arous-Péché (2005); Baik and Silverstein (2006) ]
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Figure : Limit of largest eigenvalue λmax as a function of the perturbation θ
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I If θ ≤
√
c then

λmax

(
1

n
X̃N X̃∗N

)
−−−−−−→
N,n→∞

(1 +
√
c)2 .
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I If θ ≤
√
c then

λmax

(
1

n
X̃N X̃∗N

)
−−−−−−→
N,n→∞

(1 +
√
c)2 .

Below the threshold
√
c, λmax

(
1
n

X̃N X̃∗N

)
asymptotically sticks to the bulk.
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I if θ >
√
c then

lim
N,n

λmax

(
1

n
X̃N X̃∗N

)
= (1 + θ)

(
1 +

c

θ

)
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Figure : Limit of largest eigenvalue λmax as a function of the perturbation θ

I if θ >
√
c then

lim
N,n

λmax

(
1

n
X̃N X̃∗N

)
= (1 + θ)

(
1 +

c

θ

)
>
(
1 +
√
c
)2

Above the threshold
√
c, λmax

(
1
n

X̃N X̃∗N

)
asymptotically separates from the bulk.
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Summary I

Spiked model

Let

I ΠN a small perturbation of the identity [Example: ΠN = IN + θ~u~u∗]

I XN a N × n matrix with i.i.d. entries

then X̃N = Π
1/2
N XN is a (multiplicative) spiked model

Global regime

The spectral measure LN

(
1
N

X̃N X̃∗N

)
converges to Marčenko-Pastur distribution:

almost surely, LN

(
1

N
X̃N X̃∗N

)
L−−−−−−→

N,n→∞
µMP

Largest eigenvalue

I if θ ≤
√
c , then λmax

(
1
N

X̃N X̃∗N

)
converges to the right edge of the bulk

I if θ >
√
c , then λmax

(
1
N

X̃N X̃∗N

)
separates from the bulk

λmax

(
1

N
X̃N X̃∗N

)
→ (1 + θ)

(
1 +

c

θ

)
> (1 +

√
c)2
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The hypothesis testing problem

Statistical Setup

let

~y(k) =

{
σ~w(k) under H0
~h s(k) + σ~w(k) under H1

for k = 1 : n

The ~y(k)’s are n observations all either drawn under H0 or H1. Here,

I ~w(k) is a N × 1 complex gaussian white noise process:

~w(k) ∼ CN(0, IN )

I ~h is a N × 1 deterministic and unknown vector representing the characteristics of
the propagation channel

I s(k) represent the signal; it is a scalar complex Gaussian i.i.d. process

Objective

Given n observations (~y(k), 1 ≤ k ≤ n), and the associated sample covariance matrix

R̂n =
1

n
YnY∗n where Yn = [~y(1), · · · , ~y(n)] is N × n ,

the aim is to decide H0 (no signal) or H1 (single-source detection) in the case where

N

n
→ c ∈ (0, 1) i.e. Dimension N of observations ∝ size n of sample
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Neyman-Pearson procedure

Likelihood functions

Notice that Yn is a N × n matrix whose columns are i.i.d. vectors with covariance
matrix defined by

ΣN =

{
IN under H0 ,

~h~h∗ + σ2IN under H1

hence the likelihood functions write

p0(YN ;σ2) =
1

(πσ2)Nn
exp

(
−
n

σ2
tr R̂N

)
p1(YN ; ~h;σ2) =

1[
πN det

(
~h~h∗ + σ2IN

)]n exp

(
−
n

σ2
tr R̂N

(
~h~h∗ + σ2IN

)−1
)

Neyman-Pearson

In case where σ2 and ~h are known, the
Likelihood Ratio Statistics

p1(YN ; ~h;σ2)

p0(YN ;σ2)

provides a uniformly most powerful test:

I Fix a given level α ∈ (0, 1)

I The condition over the Probability of
False Alarm P(H1 | H0) ≤ α sets the
threshold

I the maximum achievable power

1− P(H0 | H1)

is guaranteed by Neyman-Pearson.
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Neyman-Pearson

In case where σ2 and ~h are known, the
Likelihood Ratio Statistics

p1(YN ; ~h;σ2)

p0(YN ;σ2)

provides a uniformly most powerful test:

I Fix a given level α ∈ (0, 1)

I The condition over the Probability of
False Alarm P(H1 | H0) ≤ α sets the
threshold

I the maximum achievable power

1− P(H0 | H1)

is guaranteed by Neyman-Pearson.
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The GLRT

The Generalized Likelihood Ratio Test

In the case where ~h and σ2 are unknown, we use instead:

Ln =
sup

σ2,~h
p1(Yn, σ2, ~h)

supσ2 p0(Yn, σ2)

which is no longer uniformily most powerful.

Expression of the GLRT

The GLRT statistics writes

Ln =

(
1− 1

N

)(1−N)n(
λmax(R̂n)

1
N

tr R̂n

)n (
1− 1

N
λmax(R̂n)

1
N

tr R̂n

)(N−1)n

and is a deterministic function of Tn =
λmax(R̂n)

1
N

tr R̂n
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Limit of the test statistics Tn - I

Under H0

Recall Tn =
λmax(R̂n)

1
N

tr R̂n
.

We have:

λmax(R̂n)
a.s.−−−−−−→

N,n→∞
σ2(1 +

√
c)2

1

N
tr R̂n =

1

Nn

∑
i,j

|Yij |2
a.s.−−−−−−→

N,n→∞
σ2

hence

Tn =
λmax(R̂n)

1
N

tr R̂n

a.s.−−−−−−→
N,n→∞

(1 +
√
c)2
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Limit of the test statistics Tn - II

Under H1

Let

snr =
‖~h‖2

σ2

the Signal-to-Noise (SNR) ratio.

I if snr >
√
c then

Tn
a.s.−−−−−−→

N,n→∞
(1 + snr)

(
1 +

c

snr

)
> (1 +

√
c)2

I if snr ≤
√
c then

Tn
a.s.−−−−−−→

N,n→∞
(1 +

√
c)2

( Phase transition )
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Limit of the test statistics Tn - III

Remarks

I Condition snr >
√
c is automatically fulfilled in the classical regime where

N fixed and n→∞ as c = lim
n→∞

N

n
= 0 .

I In the case N,n→∞, recall that the support of Marčenko-Pastur distribution is

[(1−
√
c)2, (1 +

√
c)2] ,

i.e.

The higher
√
c, the larger the support

One can interpret
√
c as a level of the asymptotic noise induced by the data

dimension (=asymptotic data noise).

Hence the rule of thumb

Detection occurs if snr higher than asymptotic data noise.
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Simulations

N= 50 , n= 2000 , sqrt(c)= 0.158113883008419
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c increases
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Simulations

N= 100 , n= 2000 , sqrt(c)= 0.223606797749979
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Simulations

N= 200 , n= 2000 , sqrt(c)= 0.316227766016838
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Simulations

N= 500 , n= 2000 , sqrt(c)= 0.5

spectrum
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Simulations

N= 1000 , n= 2000 , sqrt(c)= 0.707106781186548
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Sketched proof - I
I We are interested in the largest eigenvalue of the matrix model

1
n

YnY∗n
1
N

tr(R̂n)

asymptotically equivalent to

1

n

YnY∗n
σ2

as
1

N
tr(R̂n)

a.s.−−−−−−→
N,n→∞

σ2

I Notice that

Yn = [~y1, · · · , ~yn] with ~yi ∼ CN(0, ~h~h∗ + σ2IN )

Hence

YN =
(
~h~h∗ + σ2IN

)1/2
XN ⇒

YN

σ
=

(
IN +

~h~h∗

σ2

)1/2

XN

=

(
IN +

‖~h‖2

σ2
~u~u∗

)1/2

XN

with XN a N × n matrix having i.i.d. entries CN(0, 1) and ~u =
~h

‖~h‖

Conclusion

Spectrum of 1
n

YnY∗n follows a spiked model with rank-one perturbation
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Elements of proof - II

We can now conclude:

I If snr >
√
c then

λmax

(
R̂n

)
1
N

tr(R̂n)

(H1)−−−−−−→
N,n→∞

(1 + snr)
(

1 +
c

snr

)
> (1 +

√
c)2

and the test statistics discriminates between the hypotheses H0 and H1.

I If snr ≤
√
c then

λmax

(
R̂n

)
1
N

tr(R̂n)

(H1)−−−−−−→
N,n→∞

(1 +
√
c)2

Same limit as under H0. The test statistics does not discriminate between the
two hypotheses.
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Fluctuations of the GLRT under H0 - I

I The exact distribution of the statistics

Ln =
λmax(R̂n)

1
N

tr R̂n

is needed to set the threshold of the test fo a given confidence level α ∈ (0, 1):

PH0
(LN > tα) = α ,

but hard to obtain.

I We rather study the asymptotic fluctuations of Ln under the regime

N,n→∞ ,
N

n
→ c ∈ (0, 1) .

I LN is the ratio of two random variables. We need to understand

◦ the fluctuations of λmax(R̂n) under H0,

◦ the fluctuations of 1
N

tr R̂n under H0.
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I We rather study the asymptotic fluctuations of Ln under the regime

N,n→∞ ,
N

n
→ c ∈ (0, 1) .

I LN is the ratio of two random variables. We need to understand

◦ the fluctuations of λmax(R̂n) under H0,

◦ the fluctuations of 1
N

tr R̂n under H0.
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Fluctuations of the GLRT under H0 - II

Fluctuations of λmax(R̂n): Tracy-Widom distribution at rate N2/3

N2/3

ΘN

{
λmax

(
R̂n

)
− σ2(1 +

√
cn)2

}
L−−−−−−→

N,n→∞
PTW

where

cn =
N

n
and ΘN = σ2(1 +

√
cn)

(
1
√
cn

+ 1

)1/3

Otherwise stated,

λmax

(
R̂n

)
= σ2(1 +

√
cn)2 +

ΘN

N2/3
XTW + oP (N−2/3)

where XTW is a random variable with Tracy-Widom distribution.
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Details on Tracy-Widom distribution

Tracy-Widom distribution is defined by

I its cumulative distribution function

FTW (x) = exp

{
−
∫ ∞
x

(u− x)2q2(u) du

}

I where
q′′(x) = xq(x) + 2q3(x) and q(x) ∼ Ai(x) as x→∞ .

x 7→ Ai(x) being the Airy function.

Don’t bother .. just download it

I For simulations, cf. R Package ’RMTstat’, by Johnstone et al.

I Also, Folkmar Bornemann (TU München) has developed fast matlab code
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Tracy-Widom curve
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Figure : Tracy-Widom density
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Tracy-Widom curve
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Figure : Fluctuations of the largest eigenvalue λmax(R̂n) under H0
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Fluctuations of the GLRT under H0 - III

Fluctuations of 1
N tr (R̂n): Gaussian distributions at rate N

N

{
1

N

N∑
i=1

λi(R̂n)− σ2

}
L−−−−−−→

N,n→∞
N (0,Γ) ,

Otherwise stated:

1

N
tr (R̂n) =

1

N

N∑
i=1

λi(R̂n) = σ2 +

√
Γ

N
Z + oP (N−1)

where Z is a random variable with distribution N (0, 1).
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Fluctuations of the GLRT under H0 - III
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Fluctuations of the GLRT under H0 - IV

Conclusion

I Fluctuations of Ln =
λmax(R̂n)

1
N

tr R̂n
are driven by λmax(R̂n):

N2/3

Θ̃N

{
LN − (1 +

√
cn)2

} L−−−−−−→
N,n→∞

PTW with Θ̃N = (1+
√
cn)

(
1
√
cn

+ 1

)1/3

I In order to set the threshold α, we choose tnα as

tnα = (1 +
√
cn)2 +

Θ̃N

N2/3
tα

Tracy-Widom

where tαTracy-Widom is the corresponding quantile for a Tracy-Widom random
variable:

P{XTW > tα
Tracy-Widom} ≤ α.
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Summary

I Consider the following hypothesis

~y(k) =

{
σ~w(k) under H0
~h s(k) + σ~w(k) under H1

for k = 1 : n

then the GLRT amounts to study

Tn =
λmax(R̂n)

1
N

tr R̂n

I The test statistics Tn discriminates between H0 and H1 if snr =
‖~h‖2

σ2
>
√
c

I The threshold can be asymptotically determined by Tracy-Widom quantiles.

I The type II error (equivalentlty power of the test) can be analyzed via the error
exponent of the test

E = lim
N,n→∞

−
1

n
log PH1

(LN < tα) .
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MIMO channel

MIMO = Multiple Input Multiple Output

It is a channel with multiple antennas at the emission and reception

.

H
K antennes

Emetteur Récepteur

N antennes

.

I The received signal writes: ~y = H~x + ~v where

. ~x is the signal that is sent,

. ~v is an additive gaussian white noise with variance σ2,

. H is the random gain matrix. Its distribution is associated to the features of the
channel.

. ~y is the received signal.
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Features of the Gain matrix H

I The entry [H]ij represents the gain between emitting antenna j and receiving
antenna i.

I The gain matrix H is random.
I The distribuon of H depends on the nature of the channel:

. Absence of correlation between antennas

H =
1
√
K

X [X]ij à entrées i.i.d., variance θ
2

. Correlation between emitting antennas (D̃1/2) and receiving antennas (D1/2)

H =
1
√
K

D
1/2

XD̃
1/2

(Rayleigh channel)

. Existence of a line-of-sight component (matrix A deterministic) + correlations

H =
1
√
K

D
1/2

XD̃
1/2

+ A (Rice channel)
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Performances

I Shannon’s mutual information (per antenna)

I = 1
N

log det
(
I + HH∗

σ2

)
=

1

N

N∑
i=1

log

(
1 +

λi(HH∗)

σ2

)
⇒ depends on the spectrum of matrix HH∗.

I Ergodic Mutual Information:

Ie = E I .
I Ergodic capacity:

supQ≥0, 1
K

trQ≤1 E log det
(
I + HQH∗

σ2

)
. Regime of interest:

{ # emitting antennas} ∝ { # receiving antennas}
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Questions

. Behaviour of the empirical measure of the eigenvalues:

LN =
1

N

N∑
i=1

δλi(HH∗)

. Explicit expression for the logdet:

1

N
log det

(
I +

HH∗

σ2

)
=

1

N

N∑
i=1

log

(
1 +

λiHH∗

σ2

)

. Fluctuations?

. Ergodic capacity ⇒ Optimisation?

I Asymptotic regime: N ∝ K . Formally

N,K →∞,
N

K
→ c ∈ (0,∞)

It’s the asymptotic regime of large random matrices.
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Empirical measure: the white case

Channel H with i.i.d. entries

I Marčenko-Pastur Stieltjes transform g(z) =
∫ µMP(dλ)

λ−z satisfies:

zcθ2g2(z) + (z + (c− 1)θ2)g(z) + 1 = 0 .

I Convergence of the mutual information:

I =
1

N
log det

(
I +

HH∗

σ2

)
=

1

N

N∑
i=1

log

(
1 +

λi(HH∗)

σ2

)

−→ Iapprox
4
=

∫
log

(
1 +

x

σ2

)
µMP(dx)

=

∫ ∞
σ2

(
1

w
− g(−w)

)
dw

I Explicit formula for the limit:

Iapprox = − log σ
2
g(−σ2

) +
1

c
log

(
1 + cθ2g(−σ2)

σ2

)
−

θ2g(−σ2)

1 + cθ2g(−σ2)

I Important results:

1. E log det
(
I + HH∗

σ2

)
∝ min(N,K)

2. Speed of convergence [for Gaussian entries]: Ie − Iapprox = O
(

1
N2

)
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Rice channel

The gain matrix writes in this case:

H = 1√
K

D1/2XD̃1/2 + A

I We have again Ie − Ieapprox → 0 where

Ieapprox =
1

N
log det

[
I + δ̃D +

1

σ2
A(I + δD̃)−1A∗

]
+

1

N
log det

(
I + δD̃

)
−
σ2n

N
δδ̃

and (δn, δ̃n) unique solutions of the system:

δ =
1

n
tr

[
D
(
−z(I + δ̃D) + A(I + δD̃)−1A∗

)−1
]

δ̃ =
1

n
tr

[
D̃
(
−z(I + δD̃) + A∗(I + δ̃D)−1A

)−1
]

I moreover, I − Iapprox = O
(

1
N2

)
for Gaussian entries
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Ergodic capacity and precoding

MIMO channel with precoding

. The channel becomes HQ1/2, mutual information becomes

Ie(Q) =
1

N
E log det

(
IN +

HQH∗

σ2

)

. We can still compute a ”large random matrix” approximation

Ieapprox = Ieapprox(Q)

=
1

N
log det

[
I + δ̃D +

1

σ2
AQ1/2(I + δD̃Q)−1Q1/2A∗

]
+

1

N
log det

(
I + δD̃Q

)
−
σ2n

N
δδ̃
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Ergodic capacity

The ergodic capacity is obtained by optimizing the mutual information with respect to
linear precoders Q1/2 with finite energy:

C = sup
Q≥0; 1

K
TrQ≤1

1
K E log det

(
IN + HQH∗

σ2

)

Approximating problem

Consider the following approximating problem:

Capprox = sup
Q≥0; 1

K
TrQ≤1

Ieapprox(Q)

Results

1. We have C − Capprox → 0

2. Q∗ = arg max Ie(Q) close to Q∗approx = arg max Ieapprox(Q)

3. Exists an iterative algorithm (i.e. quick) to compute Capprox and Q∗approx
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Simulations

I The iterative algorithm outperforms Paulraj & Vu algorithm with respect to the complexity
(average time per iterations - in s):

N = n = 2 N = n = 4 N = n = 8
Paulraj-Vu 0.75 8.2 138

iterative algo. 10−2 3.10−2 7.10−2
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