Large Random Matrices and Applications to Statistical Signal Processing

Jianfeng Yao

Department of Statistics & Act. Sci., The University of Hong Kong

2016 Conference on Applied Mathematics - August 2016 - HKU

(With contributions from Jamal Najim [CNRS, Paris])

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

Applications to the MIMO channel

Outline

Quick introduction to random matrix theory Large Random Matrices

Basic technical tools

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

Applications to the MIMO channel

Random matrices

It is a $N \times N$ matrix

$$\mathbf{Y}_N = \left[\begin{array}{ccc} Y_{11} & \cdots & Y_{1N} \\ \vdots & & \vdots \\ Y_{N1} & \cdots & Y_{NN} \end{array} \right]$$

whose entries $(Y_{ij};\ 1\leq i,j\leq N)$ are random variables.

Random matrices

It is a $N \times N$ matrix

$$\mathbf{Y}_N = \left[\begin{array}{ccc} Y_{11} & \cdots & Y_{1N} \\ \vdots & & \vdots \\ Y_{N1} & \cdots & Y_{NN} \end{array} \right]$$

whose entries $(Y_{ij}; 1 \le i, j \le N)$ are random variables.

Matrix features

Of interest are the following quantities

▶ \mathbf{Y}_N 's spectrum $(\lambda_i, 1 \leq i \leq N)$ in particular λ_{\min} and λ_{\max} (if real spectrum).

Random matrices

It is a $N \times N$ matrix

$$\mathbf{Y}_N = \left[\begin{array}{ccc} Y_{11} & \cdots & Y_{1N} \\ \vdots & & \vdots \\ Y_{N1} & \cdots & Y_{NN} \end{array} \right]$$

whose entries $(Y_{ij}; 1 \le i, j \le N)$ are random variables.

Matrix features

Of interest are the following quantities

- ▶ \mathbf{Y}_N 's spectrum $(\lambda_i, 1 \leq i \leq N)$ in particular λ_{\min} and λ_{\max} (if real spectrum).
- ▶ linear statistics

$$\operatorname{tr} f(\mathbf{Y}_N) = \sum_{i=1}^N f(\lambda_i)$$

Random matrices

It is a $N \times N$ matrix

$$\mathbf{Y}_N = \left[\begin{array}{ccc} Y_{11} & \cdots & Y_{1N} \\ \vdots & & \vdots \\ Y_{N1} & \cdots & Y_{NN} \end{array} \right]$$

whose entries $(Y_{ij}; 1 \le i, j \le N)$ are random variables.

Matrix features

Of interest are the following quantities

- ▶ \mathbf{Y}_N 's spectrum $(\lambda_i, 1 \le i \le N)$ in particular λ_{\min} and λ_{\max} (if real spectrum).
- ▶ linear statistics

$$\operatorname{tr} f(\mathbf{Y}_N) = \sum_{i=1}^N f(\lambda_i)$$

eigenvectors, etc.

Random matrices

It is a $N \times N$ matrix

$$\mathbf{Y}_N = \left[\begin{array}{ccc} Y_{11} & \cdots & Y_{1N} \\ \vdots & & \vdots \\ Y_{N1} & \cdots & Y_{NN} \end{array} \right]$$

whose entries $(Y_{ij}; 1 \le i, j \le N)$ are random variables.

Matrix features

Of interest are the following quantities

- ▶ \mathbf{Y}_N 's spectrum $(\lambda_i, 1 \le i \le N)$ in particular λ_{\min} and λ_{\max} (if real spectrum).
- ▶ linear statistics

$$\operatorname{tr} f(\mathbf{Y}_N) = \sum_{i=1}^N f(\lambda_i)$$

eigenvectors, etc.

Asymptotic regime

Often, the description of the previous features takes a simplified form as

$$N o \infty$$

Random matrices

It is a $N \times N$ matrix

$$\mathbf{Y}_N = \left[\begin{array}{ccc} Y_{11} & \cdots & Y_{1N} \\ \vdots & & \vdots \\ Y_{N1} & \cdots & Y_{NN} \end{array} \right]$$

whose entries $(Y_{ij};\ 1 \leq i,j \leq N)$ are random variables.

Matrix features

Of interest are the following quantities

- ▶ \mathbf{Y}_N 's spectrum $(\lambda_i, 1 \le i \le N)$ in particular λ_{\min} and λ_{\max} (if real spectrum).
- linear statistics

$$\operatorname{tr} f(\mathbf{Y}_N) = \sum_{i=1}^N f(\lambda_i)$$

eigenvectors, etc.

Asymptotic regime

Often, the description of the previous features takes a simplified form as

$$N o \infty$$

leading to "good enough" approximation in real applications with finite N.

Matrix model

Let $\mathbf{X}_N=(X_{ij})$ a symmetric $N\times N$ matrix with i.i.d. entries on and above the diagonal with

$$\mathbb{E}X_{ij} = 0$$
 and $\mathbb{E}|X_{ij}|^2 = 1$

and $X_{ij} = X_{ji}$ (for symmetry).

consider the spectrum of Wigner matrix $\mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$

į

Matrix model

Let $\mathbf{X}_N = (X_{ij})$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$\mathbb{E}X_{ij} = 0$$
 and $\mathbb{E}|X_{ij}|^2 = 1$

and $X_{ij} = X_{ji}$ (for symmetry).

Figure : Histogram of the eigenvalues of \mathbf{Y}_N

Matrix model

Let $\mathbf{X}_N = (X_{ij})$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$\mathbb{E}X_{ij} = 0$$
 and $\mathbb{E}|X_{ij}|^2 = 1$

and $X_{ij} = X_{ji}$ (for symmetry).

consider the spectrum of Wigner $\mathbf{Matrix} \mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$

Figure : Histogram of the eigenvalues of \mathbf{Y}_N

Matrix model

Let $\mathbf{X}_N = (X_{ij})$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$\mathbb{E}X_{ij} = 0$$
 and $\mathbb{E}|X_{ij}|^2 = 1$

and $X_{ij} = X_{ji}$ (for symmetry).

consider the spectrum of Wigner $\mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$

Figure : Histogram of the eigenvalues of \mathbf{Y}_N

Matrix model

Let $\mathbf{X}_N = (X_{ij})$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$\mathbb{E}X_{ij} = 0$$
 and $\mathbb{E}|X_{ij}|^2 = 1$

and $X_{ij} = X_{ji}$ (for symmetry).

consider the spectrum of Wigner $\mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$

Figure : Histogram of the eigenvalues of \mathbf{Y}_N

Matrix model

Let $\mathbf{X}_N = (X_{ij})$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$\mathbb{E}X_{ij} = 0$$
 and $\mathbb{E}|X_{ij}|^2 = 1$

and $X_{ij} = X_{ji}$ (for symmetry).

consider the spectrum of Wigner $\mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$

Figure : Histogram of the eigenvalues of \mathbf{Y}_N

Matrix model

Let $\mathbf{X}_N = (X_{ij})$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$\mathbb{E}X_{ij} = 0$$
 and $\mathbb{E}|X_{ij}|^2 = 1$

and $X_{ij} = X_{ji}$ (for symmetry).

consider the spectrum of Wigner $\mathbf{Matrix} \mathbf{Y}_N = \frac{\mathbf{X}_N}{\sqrt{N}}$

Figure : The semi-circular distribution (in red) with density $x\mapsto \frac{\sqrt{4-x^2}}{2\pi}$

Wigner's theorem (1948)

"The histogram of a Wigner matrix converges to the semi-circular distribution"

Matrix model

Let \mathbf{X}_N be a $N\times n$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ in the regime where

$$N, n \to \infty$$
 and $\frac{N}{n} \to c \in (0, \infty)$

dimensions of matrix \mathbf{X}_N of the same order

Matrix model

Let \mathbf{X}_N be a $N \times n$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ in the regime where

$$N, n \to \infty$$
 and $\frac{N}{n} \to c \in (0, \infty)$

dimensions of matrix X_N of the same order

Figure : Spectrum's histogram - $\frac{N}{n}=0.4$

Matrix model

Let \mathbf{X}_N be a $N \times n$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ in the regime where

$$N, n \to \infty$$
 and $\frac{N}{n} \to c \in (0, \infty)$

dimensions of matrix X_N of the same order

Figure : Spectrum's histogram - $\frac{N}{n} = 0.4$

Matrix model

Let \mathbf{X}_N be a $N \times n$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ in the regime where

$$N, n \to \infty$$
 and $\frac{N}{n} \to c \in (0, \infty)$

dimensions of matrix X_N of the same order

Figure : Spectrum's histogram - $\frac{N}{n} = 0.4$

Matrix model

Let \mathbf{X}_N be a $N \times n$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ in the regime where

$$N, n \to \infty$$
 and $\frac{N}{n} \to c \in (0, \infty)$

dimensions of matrix X_N of the same order

Figure : Spectrum's histogram - $\frac{N}{n} = 0.4$

Matrix model

Let \mathbf{X}_N be a $N \times n$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ in the regime where

$$N, n \to \infty$$
 and $\frac{N}{n} \to c \in (0, \infty)$

dimensions of matrix X_N of the same order

Figure : Spectrum's histogram - $\frac{N}{n} = 0.4$

Large Covariance Matrices: Marčenko-Pastur's theorem

Matrix model

Let \mathbf{X}_N be a $N \times n$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ in the regime where

$$N, n \to \infty$$
 and $\frac{N}{n} \to c \in (0, \infty)$

dimensions of matrix X_N of the same order

Figure : Marčenko-Pastur's distribution (in red)

Marčenko-Pastur's theorem (1967)

"The histogram of a Large Covariance Matrix converges to Marčenko-Pastur distribution with given parameter (here 0.4)"

Matrix model

Let \mathbf{X}_N be a $N\times N$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of matrix $\mathbf{Y}_N = \frac{1}{\sqrt{N}}\mathbf{X}_N$ as $N \to \infty$

► In this case, the eigenvalues are complex!

Matrix model

Let \mathbf{X}_N be a $N \times N$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of matrix $\mathbf{Y}_N = \frac{1}{\sqrt{N}}\mathbf{X}_N$ as $N \to \infty$

► In this case, the eigenvalues are complex!

Figure : Distribution of \mathbf{Y}_N 's eigenvalues

Matrix model

Let \mathbf{X}_N be a $N \times N$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of matrix $\mathbf{Y}_N = \frac{1}{\sqrt{N}}\mathbf{X}_N$ as $N \to \infty$

In this case, the eigenvalues are complex!

Figure : Distribution of \mathbf{Y}_N 's eigenvalues

Matrix model

Let \mathbf{X}_N be a $N \times N$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of matrix $\mathbf{Y}_N = \frac{1}{\sqrt{N}}\mathbf{X}_N$ as $N \to \infty$

► In this case, the eigenvalues are complex!

Figure : Distribution of \mathbf{Y}_N 's eigenvalues

Large Non-Hermitian Matrices: The Circular Law

Matrix model

Let \mathbf{X}_N be a $N \times N$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of matrix $\mathbf{Y}_N = \frac{1}{\sqrt{N}}\mathbf{X}_N$ as $N \to \infty$

In this case, the eigenvalues are complex!

Figure : Distribution of \mathbf{Y}_N 's eigenvalues

Matrix model

Let \mathbf{X}_N be a $N \times N$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of matrix $\mathbf{Y}_N = \frac{1}{\sqrt{N}}\mathbf{X}_N$ as $N \to \infty$

In this case, the eigenvalues are complex!

Figure : Distribution of \mathbf{Y}_N 's eigenvalues

Matrix model

Let \mathbf{X}_N be a $N \times N$ matrix with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \ \mathbb{E}|X_{ij}|^2 = 1$$

and consider the spectrum of matrix $\mathbf{Y}_N = \frac{1}{\sqrt{N}}\mathbf{X}_N$ as $N \to \infty$

► In this case, the eigenvalues are complex!

Figure: The circular law (in red)

Theorem: The Circular Law (Ginibre, Girko, Bai, Tao & Vu, etc.)

The spectrum of Y_N converges to the uniform probability on the disc

Motivations

An old history

- ▶ Data Analysis (Wishart, 1928)
- ► Theoretical Physics (from the '50s Wigner, Dyson, Pastur, etc.)
- Pure mathematics (from the late '80s non-commutative probability, free probability, operator algebra - Voiculescu, etc.)
- ► Graph theory (spectrum of the Laplacian)
- Wireless communication (Telatar, 1995 Verdú, Tse, Shamai, Lévêque, a Parisian group with Loubaton, Debbah, Najim, etc.)

Motivations

An old history

- ▶ Data Analysis (Wishart, 1928)
- ► Theoretical Physics (from the '50s Wigner, Dyson, Pastur, etc.)
- Pure mathematics (from the late '80s non-commutative probability, free probability, operator algebra - Voiculescu, etc.)
- Graph theory (spectrum of the Laplacian)
- Wireless communication (Telatar, 1995 Verdú, Tse, Shamai, Lévêque, a Parisian group with Loubaton, Debbah, Najim, etc.)

Current trends

- ► Statistics in large dimension (Bai, Bickel & Levina, Ledoit and Wolf, etc.)
- Pure mathematics: universality questions, operator algebra (Tao, Vu, Erdös, Guionnet, etc.)
- Social networks, communication networks
- ► Neuroscience (non-hermitian models G. Wainrib)

Outline

Quick introduction to random matrix theory

Large Random Matrices

Basic technical tools

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

Applications to the MIMO channel

Empirical spectral distribution (ESD)

The spectral theorem

For a Hermitian (symmetric) matrix A,

$$\mathbf{A} = \mathbf{U}^* \mathbf{\Lambda} \mathbf{U} = \sum_{j=1}^N \lambda_j \mathbf{u}_j \mathbf{u}_j^*$$

with its real eigenvalues $\{\lambda_j\}$ and orthonormalized eigenvectors $\{\mathbf{u}_j\}$.

Empirical spectral distribution (ESD)

The spectral theorem

For a Hermitian (symmetric) matrix A,

$$\mathbf{A} = \mathbf{U}^* \mathbf{\Lambda} \mathbf{U} = \sum_{j=1}^N \lambda_j \mathbf{u}_j \mathbf{u}_j^*$$

with its real eigenvalues $\{\lambda_j\}$ and orthonormalized eigenvectors $\{\mathbf{u}_j\}$.

The ESD

The ESD of A is the normalized counting measure of the eigenvalues:

$$L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} \qquad \text{that is,} \quad L_N(B) = \frac{1}{N} \# \{ \lambda_i \in B \}.$$

Spectral analysis tool (i): by moment convergence

Example of the semi-circle law

▶ The Hermitian Wigner matrix is $\mathbf{Y}_N = \frac{1}{\sqrt{N}}\mathbf{X}_N$;

Moment convergence method:

Example of the semi-circle law

- ► The Hermitian Wigner matrix is $\mathbf{Y}_N = \frac{1}{\sqrt{N}} \mathbf{X}_N$;
- Moments of its ESD are

$$m_p(N) = \int x^p L_n(dx) = \frac{1}{N} \sum_{i=1}^N \lambda_i^p = \frac{1}{N} \operatorname{tr} \mathbf{Y}_N^p.$$

Moment convergence method:

Example of the semi-circle law

- ► The Hermitian Wigner matrix is $\mathbf{Y}_N = \frac{1}{\sqrt{N}} \mathbf{X}_N$;
- Moments of its ESD are

$$m_p(N) = \int x^p L_n(dx) = \frac{1}{N} \sum_{i=1}^N \lambda_i^p = \frac{1}{N} \operatorname{tr} \mathbf{Y}_N^p.$$

Moment convergence method:

1. Prove, in probability or almost surely, that

$$m_p(N) \xrightarrow[N \to \infty]{} \left\{ \begin{array}{ll} \frac{1}{k+1} {2k \choose k} & \text{if } p = 2k \ , \\ 0 & \text{if } p \text{ is odd} \end{array} \right.$$

Note. Computation of the empirical moments $\{m_p(N)\}$ relies on heavy combinatorics.

Example of the semi-circle law

- ► The Hermitian Wigner matrix is $\mathbf{Y}_N = \frac{1}{\sqrt{N}} \mathbf{X}_N$;
- Moments of its ESD are

$$m_p(N) = \int x^p L_n(dx) = \frac{1}{N} \sum_{i=1}^N \lambda_i^p = \frac{1}{N} \operatorname{tr} \mathbf{Y}_N^p.$$

Moment convergence method:

1. Prove, in probability or almost surely, that

$$m_p(N) \xrightarrow[N \to \infty]{} \left\{ \begin{array}{ll} \frac{1}{k+1} {2k \choose k} & \text{if } p = 2k \ , \\ 0 & \text{if } p \text{ is odd} \end{array} \right.$$

2. Figure out that these are exactly the moment sequence of the semi-circular law:

$$\int_{-2}^2 x^k \, \mu_{sc}(dx) \quad = \; \left\{ \begin{array}{ll} \frac{1}{k+1} {2k \choose k} & \text{if } p = 2k \; , \\ 0 & \text{if } p \; \text{is odd} \end{array} \right.$$

Note. Computation of the empirical moments $\{m_p(N)\}$ relies on heavy combinatorics.

Example of the semi-circle law

- ► The Hermitian Wigner matrix is $\mathbf{Y}_N = \frac{1}{\sqrt{N}} \mathbf{X}_N$;
- Moments of its ESD are

$$m_p(N) = \int x^p L_n(dx) = \frac{1}{N} \sum_{i=1}^N \lambda_i^p = \frac{1}{N} \operatorname{tr} \mathbf{Y}_N^p.$$

Moment convergence method:

1. Prove, in probability or almost surely, that

$$m_p(N) \xrightarrow[N \to \infty]{} \left\{ \begin{array}{ll} \frac{1}{k+1} {2k \choose k} & \text{ if } p = 2k \ , \\ 0 & \text{ if } p \text{ is odd} \end{array} \right.$$

2. Figure out that these are exactly the moment sequence of the semi-circular law:

$$\int_{-2}^2 x^k \, \mu_{sc}(dx) \quad = \; \left\{ \begin{array}{ll} \frac{1}{k+1} {2k \choose k} & \text{if } p=2k \; , \\ 0 & \text{if } p \text{ is odd} \end{array} \right.$$

3. Conclude, by Carleman's criterion, that $L_N \Longrightarrow \mu_{sc}$.

Note. Computation of the empirical moments $\{m_p(N)\}$ relies on heavy combinatorics.

▶ The Stieltjes transform of a probability measure μ on $\mathbb R$ is

$$s_{\mu}(z) = \int_{\mathbb{R}} \frac{1}{x - z} \mu(dx) , \quad z \in \mathbb{C}^+ ,$$

▶ The Stieltjes transform of a probability measure μ on $\mathbb R$ is

$$s_{\mu}(z) = \int_{\mathbb{R}} \frac{1}{x - z} \mu(dx) , \quad z \in \mathbb{C}^+ ,$$

▶ The Stieltjes transform of a probability measure μ on \mathbb{R} is

$$s_{\mu}(z) = \int_{\mathbb{R}} \frac{1}{x - z} \mu(dx) , \quad z \in \mathbb{C}^+ ,$$

• the transform characterize the measure through the inversion formula: for all continuity points a,b of μ ,

$$\mu([a,b]) = \frac{1}{\pi} \lim_{y \downarrow 0} \Im \int_a^b s_\mu(x+\mathbf{i}y) dx ,$$

▶ The Stieltjes transform of a probability measure μ on \mathbb{R} is

$$s_{\mu}(z) = \int_{\mathbb{R}} \frac{1}{x - z} \mu(dx) , \quad z \in \mathbb{C}^+ ,$$

• the transform characterize the measure through the inversion formula: for all continuity points a,b of μ ,

$$\mu([a,b]) = \frac{1}{\pi} \lim_{y \downarrow 0} \Im \int_a^b s_\mu(x+\mathbf{i}y) dx ,$$

▶ The Stieltjes transform of a probability measure μ on $\mathbb R$ is

$$s_{\mu}(z) = \int_{\mathbb{R}} \frac{1}{x - z} \mu(dx) , \quad z \in \mathbb{C}^+ ,$$

• the transform characterize the measure through the inversion formula: for all continuity points a,b of μ ,

$$\mu([a,b]) = \frac{1}{\pi} \lim_{y \downarrow 0} \Im \int_a^b s_\mu(x+\mathbf{i}y) dx ,$$

Examples

1. ESD of a Hermitian matrix
$$A$$
: $s_{L_N}(z) = \frac{1}{N} \sum_{i=1}^N \frac{1}{\lambda_i - z}$

(by convention, \sqrt{z} has positive imaginary part for $z\in\mathbb{C}^+$)

▶ The Stieltjes transform of a probability measure μ on $\mathbb R$ is

$$s_{\mu}(z) = \int_{\mathbb{R}} \frac{1}{x - z} \mu(dx) , \quad z \in \mathbb{C}^+ ,$$

• the transform characterize the measure through the inversion formula: for all continuity points a,b of μ ,

$$\mu([a,b]) = \frac{1}{\pi} \lim_{y \downarrow 0} \Im \int_a^b s_\mu(x+\mathbf{i}y) \, dx \; ,$$

Examples

- 1. ESD of a Hermitian matrix A: $s_{L_N}(z) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_i z}$
- 2. Semi-circle law: $s_{\mu_{sc}}(z) = \int_{-2}^2 \frac{1}{x-z} \frac{1}{2\pi} \sqrt{4-x^2} dx = \frac{1}{2} \left(-z + \sqrt{z^2-4} \right).$

(by convention, \sqrt{z} has positive imaginary part for $z\in\mathbb{C}^+$)

▶ The Stieltjes transform of a probability measure μ on $\mathbb R$ is

$$s_{\mu}(z) = \int_{\mathbb{R}} \frac{1}{x - z} \mu(dx) , \quad z \in \mathbb{C}^+ ,$$

• the transform characterize the measure through the inversion formula: for all continuity points a,b of μ ,

$$\mu([a,b]) = \frac{1}{\pi} \lim_{y \downarrow 0} \Im \int_a^b s_\mu(x+\mathbf{i}y) \, dx \; ,$$

Examples

- 1. ESD of a Hermitian matrix A: $s_{L_N}(z) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_i z}$
- 2. Semi-circle law: $s_{\mu_{sc}}(z) = \int_{-2}^{2} \frac{1}{x-z} \frac{1}{2\pi} \sqrt{4-x^2} dx = \frac{1}{2} \left(-z + \sqrt{z^2-4} \right).$
- 3. Marčenko-Pastur Law:

$$s_{\mu_{MP}}(z) = \int_a^b \frac{1}{x-z} \frac{1}{2\pi cx} \sqrt{(b-x)(x-a)} dx = \frac{1-c-z-\sqrt{(z-a)(z-b)}}{2cz}.$$

(by convention, \sqrt{z} has positive imaginary part for $z\in\mathbb{C}^+$)

► For a Hermitian matrix A,

$$s_{L_N}(z)$$
 = Stieltjes transform of $\left(\frac{1}{N}\sum_{i=1}^N \delta_{\lambda_i}\right)$
 = $\frac{1}{N}\sum_{1}^N \frac{1}{\lambda_i - z}$

► For a Hermitian matrix A,

$$s_{L_N}(z)$$
 = Stieltjes transform of $\left(\frac{1}{N}\sum_{i=1}^N \delta_{\lambda_i}\right)$
 = $\frac{1}{N}\sum_{1}^N \frac{1}{\lambda_i - z}$

► For a Hermitian matrix A,

$$\begin{array}{ll} s_{L_N}(z) & = & \text{Stieltjes transform of } \left(\frac{1}{N}\sum_{i=1}^N \delta_{\lambda_i}\right) \\ \\ & = & \frac{1}{N}\sum_1^N \frac{1}{\lambda_i - z} \\ \\ & = & \frac{1}{N} \text{tr} \left(\mathbf{A} - z \mathbf{I}\right)^{-1}. \end{array}$$

Write

$$\mathbf{A} = \begin{pmatrix} a_{11} & \mathbf{a}_1^* \\ \mathbf{a}_1 & \mathbf{A}_1 \end{pmatrix},$$

and similarly for the diagonal elements a_{22},\ldots,a_{NN} to get the sequence of N-1 dimensional vectors $\{{\bf a}_k\}$ and principal submatrices $\{{\bf A}_k\}$;

This shows how matrix algebra helps the study of the ESD of a large matrix A.

► For a Hermitian matrix A,

$$\begin{array}{ll} s_{L_N}(z) & = & \text{Stieltjes transform of } \left(\frac{1}{N}\sum_{i=1}^N \delta_{\lambda_i}\right) \\ \\ & = & \frac{1}{N}\sum_1^N \frac{1}{\lambda_i - z} \\ \\ & = & \frac{1}{N} \text{tr} \left(\mathbf{A} - z \mathbf{I}\right)^{-1}. \end{array}$$

Write

$$\mathbf{A} = \begin{pmatrix} a_{11} & \mathbf{a}_1^* \\ \mathbf{a}_1 & \mathbf{A}_1 \end{pmatrix},$$

and similarly for the diagonal elements a_{22}, \ldots, a_{NN} to get the sequence of N-1 dimensional vectors $\{\mathbf{a}_k\}$ and principal submatrices $\{\mathbf{A}_k\}$;

▶ By Schur complement

$$s_{L_N}(z) = \frac{1}{N} \text{tr} (\mathbf{A} - z\mathbf{I})^{-1} = \frac{1}{N} \sum_{k=1}^{N} \frac{1}{a_{kk} - z - \mathbf{a}_k^* (\mathbf{A}_k - z\mathbf{I})^{-1} \mathbf{a}_k}$$

This shows how matrix algebra helps the study of the ESD of a large matrix A.

Now we let

$$\mathbf{A} = \mathbf{Y}_N = \frac{1}{\sqrt{N}} \mathbf{X}_N = \frac{1}{\sqrt{N}} \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{NN} \\ & x_{22} & \cdots & x_{2N} \\ & \vdots & \vdots & \vdots \\ & & x_{NN} \end{pmatrix}$$

where $\{x_{ij}: i \leq j\}$ are i.i.d. with mean 0 and variance 1.

So,

$$a_{ij} = \frac{1}{\sqrt{N}} x_{ij}, \quad \mathbf{a}_k = \frac{1}{\sqrt{N}} \mathbf{x}_k, \quad \mathbf{A}_k = \frac{1}{\sqrt{N}} \mathbf{X}_k, \quad \text{etc.}$$

▶ Now we let

$$\mathbf{A} = \mathbf{Y}_N = \frac{1}{\sqrt{N}} \mathbf{X}_N = \frac{1}{\sqrt{N}} \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{NN} \\ & x_{22} & \cdots & x_{2N} \\ & \vdots & \vdots & \vdots \\ & & & x_{NN} \end{pmatrix}$$

where $\{x_{ij}: i \leq j\}$ are i.i.d. with mean 0 and variance 1.

So,

$$a_{ij} = \frac{1}{\sqrt{N}} x_{ij}, \quad \mathbf{a}_k = \frac{1}{\sqrt{N}} \mathbf{x}_k, \quad \mathbf{A}_k = \frac{1}{\sqrt{N}} \mathbf{X}_k, \quad \text{etc.}$$

We have

$$s_{L_N}(z) = \frac{1}{N} \sum_{k=1}^{N} \frac{1}{a_{kk} - z - \mathbf{a}_k^* (\mathbf{A}_k - z\mathbf{I})^{-1} \mathbf{a}_k}$$
$$= \frac{1}{N} \sum_{k=1}^{N} \frac{1}{\frac{1}{\sqrt{N}} x_{kk} - z - \frac{1}{N} \mathbf{x}_k^* \left(\frac{1}{\sqrt{N}} \mathbf{X}_k - z\mathbf{I}\right)^{-1} \mathbf{x}_k}$$

$$s_{L_N}(z) = \frac{1}{N}\operatorname{tr}\left(\frac{1}{\sqrt{N}}\mathbf{X}_N - z\mathbf{I}\right)^{-1} = \frac{1}{N}\sum_{k=1}^N \frac{1}{\frac{1}{\sqrt{N}}x_{kk} - z - \frac{1}{N}\mathbf{x}_k^* \left(\frac{1}{\sqrt{N}}\mathbf{X}_k - z\mathbf{I}\right)^{-1}\mathbf{x}_k}$$

▶ When $N \to \infty$, $\frac{1}{\sqrt{N}} x_{kk} \to 0$;

$$s_{L_N}(z) = \frac{1}{N}\operatorname{tr}\left(\frac{1}{\sqrt{N}}\mathbf{X}_N - z\mathbf{I}\right)^{-1} = \frac{1}{N}\sum_{k=1}^N \frac{1}{\frac{1}{\sqrt{N}}x_{kk} - z - \frac{1}{N}\mathbf{x}_k^*\left(\frac{1}{\sqrt{N}}\mathbf{X}_k - z\mathbf{I}\right)^{-1}\mathbf{x}_k}$$

▶ When $N \to \infty$, $\frac{1}{\sqrt{N}}x_{kk} \to 0$;

$$\begin{split} \frac{1}{N}\mathbf{x}_{k}^{*} \left(\frac{1}{\sqrt{N}}\mathbf{X}_{k} - z\mathbf{I}\right)^{-1}\mathbf{x}_{k} &= \frac{1}{N}\mathrm{tr}\;\mathbf{x}_{k}^{*} \left(\frac{1}{\sqrt{N}}\mathbf{X}_{k} - z\mathbf{I}\right)^{-1}\mathbf{x}_{k} \\ &= \frac{1}{N}\mathrm{tr} \left(\frac{1}{\sqrt{N}}\mathbf{X}_{k} - z\mathbf{I}\right)^{-1}\mathbf{x}_{k}\mathbf{x}_{k}^{*} \\ &\simeq \frac{1}{N}\mathrm{tr} \left(\frac{1}{\sqrt{N}}\mathbf{X}_{k} - z\mathbf{I}\right)^{-1}\mathbf{I}_{N-1} \\ &= \frac{1}{N}\mathrm{tr} \left(\frac{1}{\sqrt{N}}\mathbf{X}_{k} - z\mathbf{I}\right)^{-1} \\ &\simeq s_{LN}(z). \end{split}$$

$$s_{L_N}(z) = \frac{1}{N}\operatorname{tr}\left(\frac{1}{\sqrt{N}}\mathbf{X}_N - z\mathbf{I}\right)^{-1} = \frac{1}{N}\sum_{k=1}^N\frac{1}{\frac{1}{\sqrt{N}}x_{kk} - z - \frac{1}{N}\mathbf{x}_k^*\left(\frac{1}{\sqrt{N}}\mathbf{X}_k - z\mathbf{I}\right)^{-1}\mathbf{x}_k}$$

▶ When $N \to \infty$, $\frac{1}{\sqrt{N}} x_{kk} \to 0$;

•

$$\begin{split} \frac{1}{N}\mathbf{x}_k^* \left(\frac{1}{\sqrt{N}}\mathbf{X}_k - z\mathbf{I}\right)^{-1}\mathbf{x}_k &= \frac{1}{N}\mathrm{tr}\;\mathbf{x}_k^* \left(\frac{1}{\sqrt{N}}\mathbf{X}_k - z\mathbf{I}\right)^{-1}\mathbf{x}_k \\ &= \frac{1}{N}\mathrm{tr} \left(\frac{1}{\sqrt{N}}\mathbf{X}_k - z\mathbf{I}\right)^{-1}\mathbf{x}_k\mathbf{x}_k^* \\ &\simeq \frac{1}{N}\mathrm{tr} \left(\frac{1}{\sqrt{N}}\mathbf{X}_k - z\mathbf{I}\right)^{-1}\mathbf{I}_{N-1} \\ &= \frac{1}{N}\mathrm{tr} \left(\frac{1}{\sqrt{N}}\mathbf{X}_k - z\mathbf{I}\right)^{-1} \\ &\simeq s_{L_N}(z). \end{split}$$

 $lackbox{ So } s_{L_N}(z)$ does have a limit s(z) satisfying

$$s = \frac{1}{-z - s}$$
, that is, $s^2 + zs + 1 = 0$.

$$s_{L_N}(z) = \frac{1}{N}\operatorname{tr}\left(\frac{1}{\sqrt{N}}\mathbf{X}_N - z\mathbf{I}\right)^{-1} = \frac{1}{N}\sum_{k=1}^N\frac{1}{\frac{1}{\sqrt{N}}x_{kk} - z - \frac{1}{N}\mathbf{x}_k^*\left(\frac{1}{\sqrt{N}}\mathbf{X}_k - z\mathbf{I}\right)^{-1}\mathbf{x}_k}$$

 $\blacktriangleright \text{ When } N \to \infty, \ \frac{1}{\sqrt{N}} x_{kk} \to 0;$

'n

$$\begin{split} \frac{1}{N}\mathbf{x}_k^* \left(\frac{1}{\sqrt{N}}\mathbf{X}_k - z\mathbf{I}\right)^{-1}\mathbf{x}_k &= \frac{1}{N}\mathrm{tr}\;\mathbf{x}_k^* \left(\frac{1}{\sqrt{N}}\mathbf{X}_k - z\mathbf{I}\right)^{-1}\mathbf{x}_k \\ &= \frac{1}{N}\mathrm{tr} \left(\frac{1}{\sqrt{N}}\mathbf{X}_k - z\mathbf{I}\right)^{-1}\mathbf{x}_k\mathbf{x}_k^* \\ &\simeq \frac{1}{N}\mathrm{tr} \left(\frac{1}{\sqrt{N}}\mathbf{X}_k - z\mathbf{I}\right)^{-1}\mathbf{I}_{N-1} \\ &= \frac{1}{N}\mathrm{tr} \left(\frac{1}{\sqrt{N}}\mathbf{X}_k - z\mathbf{I}\right)^{-1} \\ &\simeq s_{L_N}(z). \end{split}$$

 $\blacktriangleright \ \mbox{ So } s_{L_N}(z)$ does have a limit s(z) satisfying

$$s = \frac{1}{z^2}$$
, that is, $s^2 + zs + 1 = 0$.

▶ Solving the equation, we find $s(z) = \frac{1}{2} \left(-z + \sqrt{z^2 - 4} \right)$, i.e. $S_{\mu_{SC}}(z)$!

Outline

Quick introduction to random matrix theory

Large Covariance Matrices Wishart matrices and Marčenko-Pastur theorem

Proof of Marčenko-Pastur's theorem

Spiked models

Statistical Test for Single-Source Detection

Applications to the MIMO channel

The model

▶ Consider a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \quad \mathbb{E}|X_{ij}|^2 = 1 .$$

Matrix X_N is a n-sample of N-dimensional vectors:

$$\mathbf{X}_N = [\mathbf{X}_{\cdot 1} \ \cdots \ \mathbf{X}_{\cdot n}] \quad \text{with} \quad \mathbb{E} \mathbf{X}_{\cdot 1} \mathbf{X}_{\cdot 1}^* = \mathbf{I}_N \ .$$

The model

▶ Consider a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \quad \mathbb{E}|X_{ij}|^2 = 1 .$$

Matrix X_N is a n-sample of N-dimensional vectors:

$$\mathbf{X}_N = [\mathbf{X}_{\cdot 1} \ \cdots \ \mathbf{X}_{\cdot n}] \quad \text{with} \quad \mathbb{E} \mathbf{X}_{\cdot 1} \mathbf{X}_{\cdot 1}^* = \mathbf{I}_N \ .$$

Objective

lacktriangle to describe the limiting spectrum of $rac{1}{n}{f X}_N{f X}_N^*$ as

$$\frac{N}{n} \xrightarrow[n \to \infty]{} c \in (0, \infty) .$$

i.e. dimensions of matrix X_N are of the same order.

The usual case N << n

Assume N fixed and $n \to \infty$.

The usual case N << n

Assume N fixed and $n \to \infty$. Since

$$\mathbb{E}\mathbf{X}_{\cdot 1}\mathbf{X}_{\cdot 1}^* = \mathbf{I}_N ,$$

L.L.N implies

$$\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*} = \frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{\cdot i}\mathbf{X}_{\cdot i}^{*} \quad \xrightarrow[n \to \infty]{a.s.} \quad \mathbf{I}_{N}$$

The usual case N << n

Assume N fixed and $n \to \infty$. Since

$$\mathbb{E}\mathbf{X}_{\cdot 1}\mathbf{X}_{\cdot 1}^* = \mathbf{I}_N ,$$

L.L.N implies

$$\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*} = \frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{\cdot i}\mathbf{X}_{\cdot i}^{*} \quad \xrightarrow[n\to\infty]{a.s.} \quad \mathbf{I}_{N}$$

In particular,

▶ all the eigenvalues of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ converge to 1,

The usual case N << n

Assume N fixed and $n \to \infty$. Since

$$\mathbb{E}\mathbf{X}_{\cdot 1}\mathbf{X}_{\cdot 1}^* = \mathbf{I}_N ,$$

L.L.N implies

$$\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*} = \frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{\cdot i}\mathbf{X}_{\cdot i}^{*} \quad \xrightarrow[n \to \infty]{a.s.} \quad \mathbf{I}_{N}$$

In particular,

- ▶ all the eigenvalues of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ converge to 1,
- \blacktriangleright equivalently, the spectral measure of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ converges to $\delta_{1}.$

The usual case N << n

Assume N fixed and $n \to \infty$. Since

$$\mathbb{E}\mathbf{X}_{\cdot 1}\mathbf{X}_{\cdot 1}^* = \mathbf{I}_N ,$$

L.L.N implies

$$\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*} = \frac{1}{n}\sum_{i=1}^{n}\mathbf{X}_{\cdot i}\mathbf{X}_{\cdot i}^{*} \quad \xrightarrow[n \to \infty]{a.s.} \quad \mathbf{I}_{N}$$

In particular,

- ▶ all the eigenvalues of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ converge to 1,
- lacktriangle equivalently, the spectral measure of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ converges to $\delta_{1}.$

A priori observation # 1

If the ratio of dimensions $c \searrow 0$, then the spectral measure should look like a Dirac measure at point 1.

The case where c > 1

Recall that \mathbf{X}_N is N imes n matrix and $c = \lim rac{N}{n}$.

The case where c > 1

Recall that \mathbf{X}_N is $N \times n$ matrix and $c = \lim \frac{N}{n}$.

If N>n, then $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$ is rank-defficient and has rank n;

The case where c > 1

Recall that \mathbf{X}_N is $N \times n$ matrix and $c = \lim \frac{N}{n}$.

If N > n, then $\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^*$ is rank-defficient and has rank n;

 \blacktriangleright in this case, eigenvalue 0 has multiplicity N-n and the spectral measure writes:

$$L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} = \frac{1}{N} \sum_{i=1}^n \delta_{\lambda_i} + \frac{N-n}{N} \delta_0$$

The case where c > 1

Recall that \mathbf{X}_N is N imes n matrix and $c = \lim \frac{N}{n}$.

If N > n, then $\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^*$ is rank-defficient and has rank n;

lacktriangle in this case, eigenvalue 0 has multiplicity N-n and the spectral measure writes:

$$L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} = \frac{1}{N} \sum_{i=1}^n \delta_{\lambda_i} + \frac{N-n}{N} \delta_0$$

▶ The limiting spectral measure of L_N necessarily features a Dirac measure at 0:

$$\frac{N-n}{N}\delta_0 \longrightarrow \left(1-\frac{1}{c}\right)\delta_0$$
 as $\frac{N}{n} \to c$.

The case where c > 1

Recall that \mathbf{X}_N is $N \times n$ matrix and $c = \lim \frac{N}{n}$.

If N > n, then $\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^*$ is rank-defficient and has rank n;

 \blacktriangleright in this case, eigenvalue 0 has multiplicity N-n and the spectral measure writes:

$$L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} = \frac{1}{N} \sum_{i=1}^n \delta_{\lambda_i} + \frac{N-n}{N} \delta_0$$

▶ The limiting spectral measure of L_N necessarily features a Dirac measure at 0:

$$\frac{N-n}{N}\delta_0 \longrightarrow \left(1-\frac{1}{c}\right)\delta_0 \quad \text{as} \quad \frac{N}{n} \to c \ .$$

A priori observation #2

If c>1, then the limiting spectral measure will feature a Dirac measure at 0 with weight $1-\frac{1}{c}$.

Simulations

Wishart Matrix, N= 900 , n= 1000 , c= 0.9

Figure : Histogram of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$, $\sigma^{2}=1$

Simulations

Wishart Matrix, N= 500 , n= 1000 , c= 0.5

Figure : Histogram of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$, $\sigma^{2}=1$

Simulations

Wishart Matrix, N= 100 , n= 1000 , c= 0.1

Figure : Histogram of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$, $\sigma^{2}=1$

Simulations

Figure : Histogram of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$, $\sigma^{2}=1$

Theorem

▶ Consider a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \quad \mathbb{E}|X_{ij}|^2 = 1 .$$

with N and n of the same order and L_N its spectral measure:

Theorem

▶ Consider a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \quad \mathbb{E}|X_{ij}|^2 = 1 .$$

with N and n of the same order and L_N its spectral measure:

$$c_n \stackrel{\triangle}{=} \frac{N}{n} \xrightarrow[n \to \infty]{} c \in (0, \infty) , \quad L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} , \quad \lambda_i = \lambda_i \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right)$$

Theorem

▶ Consider a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \quad \mathbb{E}|X_{ij}|^2 = 1 .$$

with N and n of the same order and L_N its spectral measure:

$$c_n \stackrel{\triangle}{=} \frac{N}{n} \xrightarrow[n \to \infty]{} c \in (0, \infty) , \quad L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} , \quad \lambda_i = \lambda_i \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right)$$

► Then almost surely

$$L_N \xrightarrow[N,n\to\infty]{} \mu_{\mathrm{MP}}$$
 in distribution

Theorem

▶ Consider a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \quad \mathbb{E}|X_{ij}|^2 = 1 .$$

with N and n of the same order and L_N its spectral measure:

$$c_n \stackrel{\triangle}{=} \frac{N}{n} \xrightarrow[n \to \infty]{} c \in (0, \infty) , \quad L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} , \quad \lambda_i = \lambda_i \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right)$$

► Then almost surely

$$L_N \xrightarrow[N,n\to\infty]{} \mu_{\mathrm{MP}}$$
 in distribution

where μ_{MP} is Marčenko-Pastur distribution:

Theorem

▶ Consider a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \quad \mathbb{E}|X_{ij}|^2 = 1 .$$

with N and n of the same order and L_N its spectral measure:

$$c_n \stackrel{\triangle}{=} \frac{N}{n} \xrightarrow[n \to \infty]{} c \in (0, \infty) , \quad L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} , \quad \lambda_i = \lambda_i \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right)$$

► Then almost surely

$$L_N \xrightarrow[N,n\to\infty]{} \mu_{\rm MP}$$
 in distribution

where μ_{MP} is Marčenko-Pastur distribution:

$$\mu_{\text{MP}}(dx) = \left(1 - \frac{1}{c}\right)^{+} \delta_{0}(dx) + \frac{\sqrt{(b-x)(x-a)}}{2\pi cx} 1_{[a,b]}(x) dx$$

Theorem

▶ Consider a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries

$$\mathbb{E}X_{ij} = 0 , \quad \mathbb{E}|X_{ij}|^2 = 1 .$$

with N and n of the same order and L_N its spectral measure:

$$c_n \stackrel{\triangle}{=} \frac{N}{n} \xrightarrow[n \to \infty]{} c \in (0, \infty) \ , \quad L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i} \ , \quad \lambda_i = \lambda_i \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right)$$

► Then almost surely

$$L_N \xrightarrow[N,n\to\infty]{} \mu_{\rm MP}$$
 in distribution

where μ_{MP} is Marčenko-Pastur distribution:

$$\mu_{\text{MP}}(dx) = \left(1 - \frac{1}{c}\right)^{+} \delta_{0}(dx) + \frac{\sqrt{(b-x)(x-a)}}{2\pi cx} 1_{[a,b]}(x) dx$$
with
$$\begin{cases} a = (1 - \sqrt{c})^{2} \\ b = (1 + \sqrt{c})^{2} \end{cases}$$

Wishart Matrix, N= 900 , n= 1000 , c= 0.9

Figure : Histogram of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$, $\sigma^{2}=1$

Figure : Marčenko-Pastur distribution for $c=0.9\,$

Wishart Matrix, N= 500 , n= 1000 , c= 0.5

Figure : Histogram of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$, $\sigma^{2}=1$

Figure : Marčenko-Pastur distribution for $c=0.5\,$

Figure : Histogram of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$, $\sigma^{2}=1$

Figure : Marčenko-Pastur distribution for $c=0.1\,$

Figure : Histogram of $\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}$, $\sigma^{2}=1$

Figure : Marčenko-Pastur distribution for $c=0.01\,$

▶ Marčenko-Pastur theorem describes the **global regime** of the spectrum.

- ▶ Marčenko-Pastur theorem describes the **global regime** of the spectrum.
- ▶ Convergence in distribution: For a given realization and every test function $\phi: \mathbb{R} \to \mathbb{R}$ (continuous and bounded), the theorem states:

$$\frac{1}{N} \sum_{i=1}^{N} \phi(\lambda_i) \xrightarrow[N,n \to \infty]{} \int \phi(x) \mu_{\text{MP}}(dx) .$$

- Marčenko-Pastur theorem describes the global regime of the spectrum.
- ▶ Convergence in distribution: For a given realization and every test function $\phi: \mathbb{R} \to \mathbb{R}$ (continuous and bounded), the theorem states:

$$\frac{1}{N} \sum_{i=1}^{N} \phi(\lambda_i) \xrightarrow[N,n \to \infty]{} \int \phi(x) \mu_{\text{MP}}(dx) .$$

▶ The Dirac measure at zero is an artifact due to the dimensions of the matrix if

$$N > n$$
 (cf. infra) .

What if $c \searrow 0$?

▶ If $c \to 0$, that is n >> N, then typical from the usual regime "small dimensional data vs large samples".

What if $c \setminus 0$?

- If c → 0, that is n >> N, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$[(1-\sqrt{c})^2,(1+\sqrt{c})^2]$$

concentrates around $\{1\}$ and

$$\mu_{\text{MP}} \xrightarrow[c \to 0]{} \delta_1$$
.

What if $c \searrow 0$?

- ▶ If $c \to 0$, that is n >> N, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$[(1-\sqrt{c})^2, (1+\sqrt{c})^2]$$

concentrates around $\{1\}$ and

$$\mu_{\text{MP}} \xrightarrow[c \to 0]{} \delta_1$$
.

► In accordance with a priori information # 1

Figure : MP distribution as $c \searrow 0$

What if $c \setminus 0$?

- ▶ If $c \to 0$, that is n >> N, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$[(1-\sqrt{c})^2, (1+\sqrt{c})^2]$$

concentrates around $\{1\}$ and

$$\mu_{\text{MP}} \xrightarrow[c \to 0]{} \delta_1$$
.

► In accordance with a priori information # 1

Figure : MP distribution as $c \searrow 0$

What if $c \setminus 0$?

- ▶ If $c \to 0$, that is n >> N, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$[(1-\sqrt{c})^2, (1+\sqrt{c})^2]$$

concentrates around $\{1\}$ and

$$\mu_{\text{MP}} \xrightarrow[c \to 0]{} \delta_1$$
.

► In accordance with a priori information # 1

Figure : MP distribution as $c \searrow 0$

What if $c \setminus 0$?

- ▶ If $c \to 0$, that is n >> N, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$[(1-\sqrt{c})^2,(1+\sqrt{c})^2]$$

concentrates around $\{1\}$ and

$$\mu_{\text{MP}} \xrightarrow[c \to 0]{} \delta_1$$
.

► In accordance with a priori information # 1

Figure : MP distribution as $c \searrow 0$

Convergence of extremal eigenvalues

Recall that $[(1-\sqrt{c})^2,(1+\sqrt{c})^2]$ is the support of MP distribution, then:

$$\lambda_{\max}\left(\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}\right) \quad \xrightarrow[N,n\to\infty]{\text{almost surely}} \quad (1+\sqrt{c})^{2},$$

Convergence of extremal eigenvalues

Recall that $[(1-\sqrt{c})^2,(1+\sqrt{c})^2]$ is the support of MP distribution, then:

$$\begin{split} & \lambda_{\max} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right) & \xrightarrow{\text{almost surely}} & (1 + \sqrt{c})^2, \\ & \lambda_{\min} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right) & \xrightarrow{\text{almost surely}} & (1 - \sqrt{c})^2, \end{split}$$

under the 4th moment condition: $\mathbb{E}|X_{ij}|^4 < \infty$ (Bai and Yin, 1988).

Convergence of extremal eigenvalues

Recall that $[(1-\sqrt{c})^2,(1+\sqrt{c})^2]$ is the support of MP distribution, then:

$$\lambda_{\max} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right) \quad \xrightarrow{\text{almost surely}} \quad (1 + \sqrt{c})^2,$$

$$\lambda_{\min} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right) \quad \xrightarrow{\text{almost surely}} \quad (1 - \sqrt{c})^2,$$

under the 4th moment condition: $\mathbb{E}|X_{ij}|^4 < \infty$ (Bai and Yin, 1988).

Fluctuations of λ_{max} : Tracy-Widom distribution

We can fully describe the fluctuations of λ_{max} :

Convergence of extremal eigenvalues

Recall that $[(1-\sqrt{c})^2, (1+\sqrt{c})^2]$ is the support of MP distribution, then:

$$\lambda_{\max} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right) \quad \xrightarrow{\text{almost surely}} \quad (1 + \sqrt{c})^2,$$

$$\lambda_{\min} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right) \quad \xrightarrow{\text{almost surely}} \quad (1 - \sqrt{c})^2,$$

under the 4th moment condition: $\mathbb{E}|X_{ij}|^4 < \infty$ (Bai and Yin, 1988).

Fluctuations of λ_{max} : Tracy-Widom distribution

We can fully describe the fluctuations of λ_{\max} :

$$\frac{N^{2/3}}{\Theta_N} \ \left\{ \lambda_{\max} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* \right) - (1 + \sqrt{c_n})^2 \right\} \xrightarrow[N,n \to \infty]{\mathcal{L}} \mu_{\mathrm{TW}}$$

where

$$c_n = \frac{N}{n}$$
 and $\Theta_N = (1 + \sqrt{c_n}) \left(\frac{1}{\sqrt{c_n}} + 1\right)^{1/3}$

(Johnstone 2001).

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Wishart matrices and Marčenko-Pastur theorem

Proof of Marčenko-Pastur's theorem

Spiked models

Statistical Test for Single-Source Detection

Applications to the MIMO channel

Recall definition of the **Stieltjes transform** s_n :

$$s_n(z) \quad = \quad \frac{1}{N} \sum_{i=1}^N \frac{1}{\lambda_i - z} \quad = \quad \frac{1}{N} \mathrm{tr} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* - z \mathbf{I}_N \right)^{-1} \; .$$

Recall definition of the **Stieltjes transform** s_n :

$$s_n(z) \quad = \quad \frac{1}{N} \sum_{i=1}^N \frac{1}{\lambda_i - z} \quad = \quad \frac{1}{N} \mathrm{tr} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* - z \mathbf{I}_N \right)^{-1} \ .$$

1. As for the semi-circle law, similar steps lead to

$$s_n(z) \approx \frac{1}{(1-c_n)-z-zc_ns_n(z)}$$

Recall definition of the **Stieltjes transform** s_n :

$$s_n(z) = \frac{1}{N} \sum_{i=1}^N \frac{1}{\lambda_i - z} = \frac{1}{N} \operatorname{tr} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* - z \mathbf{I}_N \right)^{-1}.$$

1. As for the semi-circle law, similar steps lead to

$$s_n(z) \approx \frac{1}{(1-c_n)-z-zc_ns_n(z)}$$

2. Therefore, s_n does have a limit s, solution to the fixed point equation:

$$s(z) = \frac{1}{(1-c)-z-zcs(z)}. \hspace{1cm} \left[\text{semi-circle}: \quad s(z) = \frac{1}{-z-s(z)} \ \right]$$

Recall definition of the **Stieltjes transform** s_n :

$$s_n(z) = \frac{1}{N} \sum_{i=1}^N \frac{1}{\lambda_i - z} = \frac{1}{N} \operatorname{tr} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* - z \mathbf{I}_N \right)^{-1}.$$

1. As for the semi-circle law, similar steps lead to

$$s_n(z) \approx \frac{1}{(1-c_n)-z-zc_ns_n(z)}$$

2. Therefore, s_n does have a limit s, solution to the fixed point equation:

$$s(z) = \frac{1}{(1-c)-z-zcs(z)}. \qquad \qquad \left[\text{semi-circle}: \quad s(z) = \frac{1}{-z-s(z)} \ \right]$$

3. An explicit solution is given by

$$s(z) = \frac{-(z + (c-1)) + \sqrt{(z-b)(z-a)}}{2cz}$$

which is $s_{\mu_{MP}}!!$

Recall definition of the **Stieltjes transform** s_n :

$$s_n(z) = \frac{1}{N} \sum_{i=1}^N \frac{1}{\lambda_i - z} = \frac{1}{N} \operatorname{tr} \left(\frac{1}{n} \mathbf{X}_N \mathbf{X}_N^* - z \mathbf{I}_N \right)^{-1}.$$

1. As for the semi-circle law, similar steps lead to

$$s_n(z) \approx \frac{1}{(1-c_n)-z-zc_ns_n(z)}$$

2. Therefore, s_n does have a limit s, solution to the fixed point equation:

$$s(z) = \frac{1}{(1-c)-z-zcs(z)}. \qquad \qquad \left[\text{semi-circle}: \quad s(z) = \frac{1}{-z-s(z)} \ \right]$$

3. An explicit solution is given by

$$s(z) = \frac{-(z + (c - 1)) + \sqrt{(z - b)(z - a)}}{2cz}$$

which is $s_{\mu_{MP}}!!$

4. By the inversion formula, the density is found to be:

$$\mu_{\text{MP}}(dx) = \left(1 - \frac{1}{c}\right)^{+} \delta_{0}(dx) + \frac{\sqrt{(b-x)(x-a)}}{2\pi x c} 1_{[a,b]}(x) dx$$

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Spiked models

Introduction and objective

The limiting spectral measure The largest eigenvalue Spiked models: Summary

Statistical Test for Single-Source Detectior

Applications to the MIMO channel

The largest eigenvalue in MP model

Given a N imes n matrix \mathbf{X}_N with i.i.d. entries $\mathbb{E} X_{ij} = 0$ and $\mathbb{E} |X_{ij}|^2 = 1$,

The largest eigenvalue in MP model

Given a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries $\mathbb{E} X_{ij} = 0$ and $\mathbb{E} |X_{ij}|^2 = 1$,

$$L_N\left(\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*\right) \xrightarrow[N,n\to\infty]{} \mu_{\mathrm{MP}}$$

where μ_{MP} has support

$$\mathcal{S}_{ ext{MP}} \ = \ \{0\} \ \cup \ \underbrace{\left[(1-\sqrt{c})^2 \ , \ (1+\sqrt{c})^2
ight]}_{ ext{bulk}}$$

(remove the set $\{0\}$ if c<1)

The largest eigenvalue in MP model

Given a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries $\mathbb{E} X_{ij} = 0$ and $\mathbb{E} |X_{ij}|^2 = 1$,

$$L_N\left(\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*\right) \xrightarrow[N,n\to\infty]{} \mu_{\mathrm{MP}}$$

where μ_{MP} has support

$$\mathcal{S}_{\mathrm{\check{M}P}} \ = \ \{0\} \ \cup \ \underbrace{\left[(1-\sqrt{c})^2 \ , \ (1+\sqrt{c})^2 \right]}_{\mathrm{bulk}}$$

(remove the set $\{0\}$ if c < 1)

Theorem

The largest eigenvalue in MP model

Given a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries $\mathbb{E} X_{ij} = 0$ and $\mathbb{E} |X_{ij}|^2 = 1$,

$$L_N\left(\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*\right) \xrightarrow[N,n\to\infty]{} \mu_{\mathrm{MP}}$$

where μ_{MP} has support

$$\mathcal{S}_{ ext{MP}} \ = \ \{0\} \ \cup \ \underbrace{\left[(1-\sqrt{c})^2 \ , \ (1+\sqrt{c})^2
ight]}_{ ext{bulk}}$$

(remove the set $\{0\}$ if c < 1)

Theorem

▶ Let $\mathbb{E}|X_{ij}|^4 < \infty$, then:

$$\lambda_{\max}\left(\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*\right)\xrightarrow[N,n\to\infty]{a.s.}(1+\sqrt{c})^2\ .$$

The largest eigenvalue in MP model

Given a $N \times n$ matrix \mathbf{X}_N with i.i.d. entries $\mathbb{E} X_{ij} = 0$ and $\mathbb{E} |X_{ij}|^2 = 1$,

$$L_N\left(\frac{1}{n}\mathbf{X}_N\mathbf{X}_N^*\right) \xrightarrow[N,n\to\infty]{} \mu_{\mathrm{MP}}$$

where μ_{MP} has support

$$S_{
m MP} \ = \ \{0\} \ \cup \ \underbrace{\left[(1 - \sqrt{c})^2 \ , \ (1 + \sqrt{c})^2 \right]}_{
m bulk}$$

(remove the set $\{0\}$ if c < 1)

Theorem

▶ Let $\mathbb{E}|X_{ij}|^4 < \infty$, then:

$$\lambda_{\max}\left(\frac{1}{n}\mathbf{X}_{N}\mathbf{X}_{N}^{*}\right) \xrightarrow[N,n\to\infty]{a.s.} (1+\sqrt{c})^{2}$$
.

Message: The largest eigenvalue converges to the right edge of the bulk.

Definition

Let Π_N be a small perturbation of the identity:

Definition

Let Π_N be a small perturbation of the identity:

$$\Pi_N = \mathbf{I}_N + \mathbf{P}_N$$
 where $\mathbf{P}_N = \theta_1 \vec{\mathbf{u}}_1 \vec{\mathbf{u}}_1^* + \dots + \theta_k \vec{\mathbf{u}}_k \vec{\mathbf{u}}_k^*$

where k is independent of the dimensions N,n.

Definition

Let Π_N be a small perturbation of the identity:

$$\Pi_N = \mathbf{I}_N + \mathbf{P}_N$$
 where $\mathbf{P}_N = \theta_1 \vec{\mathbf{u}}_1 \vec{\mathbf{u}}_1^* + \dots + \theta_k \vec{\mathbf{u}}_k \vec{\mathbf{u}}_k^*$

where k is independent of the dimensions N, n.

Consider

$$\tilde{\mathbf{X}}_N = \mathbf{\Pi}_N^{1/2} \mathbf{X}_N$$

This model will be referred to as a (multiplicative) **spiked model**.

Definition

Let Π_N be a small perturbation of the identity:

$$\Pi_N = \mathbf{I}_N + \mathbf{P}_N$$
 where $\mathbf{P}_N = \theta_1 \vec{\mathbf{u}}_1 \vec{\mathbf{u}}_1^* + \dots + \theta_k \vec{\mathbf{u}}_k \vec{\mathbf{u}}_k^*$

where k is independent of the dimensions N, n.

Consider

$$\tilde{\mathbf{X}}_N = \mathbf{\Pi}_N^{1/2} \mathbf{X}_N$$

This model will be refered to as a (multiplicative) spiked model.

Think of Π_N as

$$\mathbf{\Pi}_N = \left(\begin{array}{cccc} 1 + \theta_1 & & & & \\ & \ddots & & & \\ & & 1 + \theta_k & & \\ & & & 1 & \\ & & & \ddots & \end{array} \right)$$

Definition

Let Π_N be a small perturbation of the identity:

$$\Pi_N = \mathbf{I}_N + \mathbf{P}_N$$
 where $\mathbf{P}_N = \theta_1 \vec{\mathbf{u}}_1 \vec{\mathbf{u}}_1^* + \dots + \theta_k \vec{\mathbf{u}}_k \vec{\mathbf{u}}_k^*$

where k is independent of the dimensions N, n.

Consider

$$ilde{\mathbf{X}}_N = \mathbf{\Pi}_N^{1/2} \mathbf{X}_N$$

This model will be referred to as a (multiplicative) spiked model.

Think of Π_N as

$$\mathbf{\Pi}_N = \left(\begin{array}{cccc} 1 + \theta_1 & & & & \\ & \ddots & & & \\ & & 1 + \theta_k & & \\ & & & 1 & \\ & & & \ddots & \end{array} \right)$$

Very important: The rank k of perturbations is finite

Remarks

► The spiked model is a particular case of large covariance matrix model with

$$\mathbf{R}_N = \mathbf{I}_N + \sum_{\ell=1}^k \theta_\ell \vec{\mathbf{u}}_\ell \vec{\mathbf{u}}_\ell^*$$

Remarks

► The spiked model is a particular case of large covariance matrix model with

$$\mathbf{R}_N = \mathbf{I}_N + \sum_{\ell=1}^k \theta_\ell \vec{\mathbf{u}}_\ell \vec{\mathbf{u}}_\ell^*$$

▶ There are also additive spiked models: $\check{\mathbf{X}}_N = \mathbf{X}_N + \mathbf{A}_N$ where \mathbf{A}_N is a matrix with finite rank.

Remarks

▶ The spiked model is a particular case of large covariance matrix model with

$$\mathbf{R}_N = \mathbf{I}_N + \sum_{\ell=1}^k \theta_\ell \vec{\mathbf{u}}_\ell \vec{\mathbf{u}}_\ell^*$$

- ▶ There are also additive spiked models: $\check{\mathbf{X}}_N = \mathbf{X}_N + \mathbf{A}_N$ where \mathbf{A}_N is a matrix with finite rank.
- ► Spiked models have been introduced by Iain M. Johnstone in his 2001 paper in *Annals of Statistics* to take into account the fact that in many datasets, a small number of eigenvalues is "far away" the bulk of the other eigenvalues

Remarks

▶ The spiked model is a particular case of large covariance matrix model with

$$\mathbf{R}_N = \mathbf{I}_N + \sum_{\ell=1}^k \theta_\ell \vec{\mathbf{u}}_\ell \vec{\mathbf{u}}_\ell^*$$

- ▶ There are also additive spiked models: $\dot{\mathbf{X}}_N = \mathbf{X}_N + \mathbf{A}_N$ where \mathbf{A}_N is a matrix with finite rank.
- Spiked models have been introduced by Iain M. Johnstone in his 2001 paper in Annals of Statistics to take into account the fact that in many datasets, a small number of eigenvalues is "far away" the bulk of the other eigenvalues

Objective

- ▶ What is the influence of Π_N over $L_N\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)$?
- ▶ What is the influence of Π_N over $\lambda_{\max}\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)$?

Figure : Spiked model - strength of the perturbation $\theta=0.1\,$

Figure : Spiked model - strength of the perturbation $\theta=0.5$

Figure : Spiked model - strength of the perturbation $\theta=1$

Figure : Spiked model - strength of the perturbation $\theta=2$

Figure : Spiked model - strength of the perturbation $\theta=3$

Observation #1

If the **strength** θ of the perturbation \mathbf{P}_N is large enough, then the limit of $\lambda_{\max}\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)$ is **strictly larger** than the right edge of the bulk.

Figure : Spiked model - strength of the perturbation $\theta=0.1\,$

Figure : Spiked model - strength of the perturbation $\theta=0.5\,$

Figure : Spiked model - strength of the perturbation $\theta=1$

Figure : Spiked model - strength of the perturbation $\theta=2$

Figure : Spiked model - strength of the perturbation $\theta=3$

Figure: Spiked model - Two spikes

Figure: Spiked model - Two spikes

Figure : Spiked model - Three spikes

Figure: Spiked model - Three spikes

Figure : Spiked model - Multiple spikes

Figure : Spiked model - Multiple spikes

Observation # 2

Whathever the perturbations, the spectral measure converges toward Marčenko-Pastur distribution

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Spiked models

Introduction and objective

The limiting spectral measure

The largest eigenvalue Spiked models: Summar

Statistical Test for Single-Source Detection

Applications to the MIMO channel

The limiting spectral measure

Theorem

The following convergence holds true:
$$\boxed{L_N\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)\xrightarrow[N,n\to\infty]{a.s.}\mu_{\mathrm{MP}}}.$$

The limiting spectral measure

Theorem

The following convergence holds true:

$$L_N\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right) \xrightarrow[N,n\to\infty]{a.s.} \mu_{\mathrm{MP}}.$$

The theorem is a simple consequence of the Cauchy (Weyl) interlacing theorem which states that the eigenvalues of a finite-rank perturbated Hermitian matrix (or a finite rank reduced submatrix) are interlaced with those of the original Hermitian matrix.

Remark

The limiting spectral measure is not sensitive to the presence of spikes

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Spiked models

Introduction and objective
The limiting spectral measur

The largest eigenvalue Spiked models: Summar

Statistical Test for Single-Source Detection

Applications to the MIMO channel

We consider the following spiked model:

$$\tilde{\mathbf{X}}_N = (\mathbf{I}_N + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^*)^{1/2} \mathbf{X}_N \quad \text{with} \quad ||\vec{\mathbf{u}}|| = 1.$$

We consider the following spiked model:

$$\tilde{\mathbf{X}}_N = (\mathbf{I}_N + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^*)^{1/2} \mathbf{X}_N \text{ with } \|\vec{\mathbf{u}}\| = 1.$$

which corresponds to a ${\bf rank\text{-}one}$ perturbation.

We consider the following spiked model:

$$\tilde{\mathbf{X}}_N = (\mathbf{I}_N + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^*)^{1/2} \mathbf{X}_N \text{ with } ||\vec{\mathbf{u}}|| = 1.$$

which corresponds to a rank-one perturbation.

Theorem

Recall that $c=\lim_{N,n\to\infty}\frac{N}{n}.$

We consider the following spiked model:

$$\tilde{\mathbf{X}}_N = (\mathbf{I}_N + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^*)^{1/2} \mathbf{X}_N \quad \text{with} \quad ||\vec{\mathbf{u}}|| = 1.$$

which corresponds to a rank-one perturbation.

Theorem

Recall that $c=\lim_{N,n\to\infty}\frac{N}{n}.$

 $\qquad \qquad \mathbf{if} \ \boxed{\theta \leq \sqrt{c}} \ \mathbf{then}$

$$\lambda_{\max} = \lambda_{\max} \left(\frac{1}{n} \tilde{\mathbf{X}}_N \tilde{\mathbf{X}}_N^* \right) \xrightarrow[N,n \to \infty]{a.s.} (1 + \sqrt{c})^2$$

We consider the following spiked model:

$$\tilde{\mathbf{X}}_N = (\mathbf{I}_N + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^*)^{1/2} \mathbf{X}_N \text{ with } \|\vec{\mathbf{u}}\| = 1.$$

which corresponds to a rank-one perturbation.

Theorem

Recall that $c=\lim_{N,n\to\infty}\frac{N}{n}.$

$$\lambda_{\max} = \lambda_{\max} \left(\frac{1}{n} \tilde{\mathbf{X}}_N \tilde{\mathbf{X}}_N^* \right) \xrightarrow[N,n \to \infty]{a.s.} (1 + \sqrt{c})^2$$

• if $\theta > \sqrt{c}$ then

$$\lambda_{\max} \xrightarrow[N,n\to\infty]{a.s.} (1+\theta) \left(1+\frac{c}{\theta}\right)$$

We consider the following spiked model:

$$\tilde{\mathbf{X}}_N = (\mathbf{I}_N + \theta \vec{\mathbf{u}} \vec{\mathbf{u}}^*)^{1/2} \mathbf{X}_N \text{ with } \|\vec{\mathbf{u}}\| = 1.$$

which corresponds to a rank-one perturbation.

Theorem

Recall that $c = \lim_{N,n \to \infty} \frac{N}{n}$.

• if $\theta \leq \sqrt{c}$ then

$$\lambda_{\max} = \lambda_{\max} \left(\frac{1}{n} \tilde{\mathbf{X}}_N \tilde{\mathbf{X}}_N^* \right) \xrightarrow[N,n \to \infty]{a.s.} (1 + \sqrt{c})^2$$

• if $\theta > \sqrt{c}$ then

$$\lambda_{\max} \xrightarrow[N,n\to\infty]{a.s.} (1+\theta) \left(1+\frac{c}{\theta}\right) > \left(1+\sqrt{c}\right)^2$$

[Baik-Ben Arous-Péché (2005); Baik and Silverstein (2006)]

Figure : Limit of largest eigenvalue λ_{max} as a function of the perturbation θ

limit of lambda max as a function of theta

Figure : Limit of largest eigenvalue λ_{\max} as a function of the perturbation θ

▶ If $\theta \leq \sqrt{c}$ then

$$\lambda_{\max} \left(\frac{1}{n} \tilde{\mathbf{X}}_N \tilde{\mathbf{X}}_N^* \right) \quad \xrightarrow[N,n \to \infty]{} (1 + \sqrt{c})^2 .$$

limit of lambda max as a function of theta

Figure : Limit of largest eigenvalue λ_{max} as a function of the perturbation θ

▶ If $\theta \leq \sqrt{c}$ then

$$\lambda_{\max} \left(\frac{1}{n} \tilde{\mathbf{X}}_N \tilde{\mathbf{X}}_N^* \right) \quad \xrightarrow[N,n \to \infty]{} (1 + \sqrt{c})^2 \ .$$

Below the threshold \sqrt{c} , $\lambda_{\max}\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)$ asymptotically sticks to the bulk.

limit of lambda_max as a function of theta

Figure : Limit of largest eigenvalue λ_{\max} as a function of the perturbation θ

limit of lambda max as a function of theta

Figure : Limit of largest eigenvalue λ_{max} as a function of the perturbation θ

• if $\theta > \sqrt{c}$ then

$$\lim_{N,n} \lambda_{\max} \left(\frac{1}{n} \tilde{\mathbf{X}}_N \tilde{\mathbf{X}}_N^* \right) = (1+\theta) \left(1 + \frac{c}{\theta} \right)$$

limit of lambda max as a function of theta

Figure : Limit of largest eigenvalue λ_{\max} as a function of the perturbation θ

• if $\theta > \sqrt{c}$ then

$$\lim_{N,n} \lambda_{\max} \left(\frac{1}{n} \tilde{\mathbf{X}}_N \tilde{\mathbf{X}}_N^* \right) \quad = \quad (1+\theta) \left(1 + \frac{c}{\theta} \right) > \left(1 + \sqrt{c} \right)^2$$

Above the threshold \sqrt{c} , $\lambda_{\max}\left(\frac{1}{n}\tilde{\mathbf{X}}_N\tilde{\mathbf{X}}_N^*\right)$ asymptotically separates from the bulk.

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Spiked models

Introduction and objective
The limiting spectral measure
The largest eigenvalue

Spiked models: Summary

Statistical Test for Single-Source Detection

Applications to the MIMO channel

Spiked model

Let

▶ Π_N a small perturbation of the identity [Example: $\Pi_N = \mathbf{I}_N + \theta \vec{\mathbf{u}}\vec{\mathbf{u}}^*$]

Spiked model

Let

- $lackbox \Pi_N$ a small perturbation of the identity [Example: $\Pi_N = \mathbf{I}_N + heta \vec{\mathbf{u}} \vec{\mathbf{u}}^*]$
- $ightharpoonup {f X}_N$ a N imes n matrix with i.i.d. entries

Spiked model

Let

- $lackbox \Pi_N$ a small perturbation of the identity [Example: $\Pi_N = \mathbf{I}_N + heta \vec{\mathbf{u}} \vec{\mathbf{u}}^*]$
- $ightharpoonup {f X}_N$ a N imes n matrix with i.i.d. entries

then $\left|\widetilde{\mathbf{X}}_{N}=\mathbf{\Pi}_{N}^{1/2}\mathbf{X}_{N}\right|$ is a (multiplicative) spiked model

Spiked model

Let

- $lackbox \Pi_N$ a small perturbation of the identity [Example: $\Pi_N = \mathbf{I}_N + heta \vec{\mathbf{u}} \vec{\mathbf{u}}^*$]
- $ightharpoonup {f X}_N$ a N imes n matrix with i.i.d. entries

then
$$\left[\widetilde{\mathbf{X}}_N = \mathbf{\Pi}_N^{1/2} \mathbf{X}_N \right]$$
 is a (multiplicative) spiked model

Global regime

The spectral measure $L_N\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right)$ converges to Marčenko-Pastur distribution:

almost surely,
$$L_N\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right) \xrightarrow[N,n \to \infty]{\mathcal{L}} \mu_{\mathrm{MP}}$$

Spiked model

Let

- $lackbox \Pi_N$ a small perturbation of the identity [Example: $m{\Pi}_N = m{I}_N + heta m{u} m{u}^*]$
- $ightharpoonup {f X}_N$ a N imes n matrix with i.i.d. entries

then
$$\left[\widetilde{\mathbf{X}}_N = \mathbf{\Pi}_N^{1/2} \mathbf{X}_N \right]$$
 is a (multiplicative) spiked model

Global regime

The spectral measure $L_N\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right)$ converges to Marčenko-Pastur distribution:

almost surely,
$$L_N\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right) \xrightarrow[N,n\to\infty]{\mathcal{L}} \mu_{\mathrm{MP}}$$

Largest eigenvalue

lacktriangledown if $\boxed{ heta \leq \sqrt{c}}$, then $\lambda_{\max}\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right)$ converges to the right edge of the bulk

Spiked model

Let

- $lackbox \Pi_N$ a small perturbation of the identity [Example: $m{\Pi}_N = m{I}_N + heta m{u} m{u}^*]$
- $ightharpoonup {f X}_N$ a N imes n matrix with i.i.d. entries

then
$$\left[\widetilde{\mathbf{X}}_N = \mathbf{\Pi}_N^{1/2} \mathbf{X}_N \right]$$
 is a (multiplicative) spiked model

Global regime

The spectral measure $L_N\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right)$ converges to Marčenko-Pastur distribution:

almost surely,
$$L_N\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right) \xrightarrow[N,n\to\infty]{\mathcal{L}} \mu_{\mathrm{MP}}$$

Largest eigenvalue

- lacktriangleright if $\theta \leq \sqrt{c}$, then $\lambda_{\max}\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right)$ converges to the right edge of the bulk
- $\blacktriangleright \ \ \text{if} \ \ \overline{\theta > \sqrt{c}} \ \ \text{, then} \ \lambda_{\max}\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right) \ \text{separates from the bulk}$

Spiked model

Let

- $lackbox \Pi_N$ a small perturbation of the identity [Example: $m{\Pi}_N = m{I}_N + heta m{u} m{u}^*]$
- $ightharpoonup {f X}_N$ a N imes n matrix with i.i.d. entries

then
$$\left[\widetilde{\mathbf{X}}_N = \mathbf{\Pi}_N^{1/2} \mathbf{X}_N \right]$$
 is a (multiplicative) spiked model

Global regime

The spectral measure $L_N\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right)$ converges to Marčenko-Pastur distribution:

almost surely,
$$L_N\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right) \xrightarrow[N,n \to \infty]{\mathcal{L}} \mu_{\mathrm{MP}}$$

Largest eigenvalue

- lacktriangleright if $\theta \leq \sqrt{c}$, then $\lambda_{\max}\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right)$ converges to the right edge of the bulk
- $\blacktriangleright \ \, \text{if} \, \left| \, \theta > \sqrt{c} \, \right| \text{, then} \, \, \lambda_{\max} \left(\frac{1}{N} \widetilde{\mathbf{X}}_N \widetilde{\mathbf{X}}_N^* \right) \, \text{separates from the bulk}$

$$\lambda_{\max}\left(\frac{1}{N}\widetilde{\mathbf{X}}_{N}\widetilde{\mathbf{X}}_{N}^{*}\right) \rightarrow \left(1+\theta\right)\left(1+\frac{c}{\theta}\right)$$

Spiked model

Let

- $lackbox \Pi_N$ a small perturbation of the identity [Example: $\Pi_N = \mathbf{I}_N + heta \vec{\mathbf{u}} \vec{\mathbf{u}}^*]$
- $ightharpoonup {f X}_N$ a N imes n matrix with i.i.d. entries

then
$$\left[\widetilde{\mathbf{X}}_N = \mathbf{\Pi}_N^{1/2} \mathbf{X}_N \right]$$
 is a (multiplicative) spiked model

Global regime

The spectral measure $L_N\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right)$ converges to Marčenko-Pastur distribution:

almost surely,
$$L_N\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right) \xrightarrow[N,n \to \infty]{\mathcal{L}} \mu_{\mathrm{MP}}$$

Largest eigenvalue

- lacktriangleright if $\theta \leq \sqrt{c}$, then $\lambda_{\max}\left(\frac{1}{N}\widetilde{\mathbf{X}}_N\widetilde{\mathbf{X}}_N^*\right)$ converges to the right edge of the bulk
- $\blacktriangleright \ \, \text{if} \, \left| \, \theta > \sqrt{c} \, \right| \text{, then} \, \, \lambda_{\max} \left(\frac{1}{N} \widetilde{\mathbf{X}}_N \widetilde{\mathbf{X}}_N^* \right) \, \text{separates from the bulk}$

$$\lambda_{\max}\left(\frac{1}{N}\widetilde{\mathbf{X}}_{N}\widetilde{\mathbf{X}}_{N}^{*}\right) \to (1+\theta)\left(1+\frac{c}{\theta}\right) > (1+\sqrt{c})^{2}$$

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection The setup

Asymptotics of the GLRT Fluctuations of the GLRT statistic The GLRT: Summary

Applications to the MIMO channel

let

$$\vec{\mathbf{y}}(k) = \begin{cases} \sigma \vec{\mathbf{w}}(k) & \text{under } H_0 \\ \vec{\mathbf{h}} s(k) + \sigma \vec{\mathbf{w}}(k) & \text{under } H_1 \end{cases} \quad \text{for } k = 1:n$$

The $\vec{\mathbf{y}}(k)$'s are n observations all either drawn under H_0 or H_1 . Here,

let

$$\vec{\mathbf{y}}(k) = \begin{cases} \sigma \vec{\mathbf{w}}(k) & \text{under } H_0 \\ \vec{\mathbf{h}} s(k) + \sigma \vec{\mathbf{w}}(k) & \text{under } H_1 \end{cases} \quad \text{for } k = 1 : n$$

The $\vec{y}(k)$'s are n observations all either drawn under H_0 or H_1 . Here,

 $ightharpoonup ec{\mathbf{w}}(k)$ is a N imes 1 complex gaussian white noise process:

$$\vec{\mathbf{w}}(k) \sim \mathcal{C}N(0, \mathbf{I}_N)$$

let

$$\vec{\mathbf{y}}(k) = \begin{cases} \sigma \vec{\mathbf{w}}(k) & \text{under } H_0 \\ \vec{\mathbf{h}} s(k) + \sigma \vec{\mathbf{w}}(k) & \text{under } H_1 \end{cases} \quad \text{for } k = 1 : n$$

The $\vec{\mathbf{y}}(k)$'s are n observations all either drawn under H_0 or H_1 . Here,

 $ightharpoonup ec{\mathbf{w}}(k)$ is a N imes 1 complex gaussian white noise process:

$$\vec{\mathbf{w}}(k) \sim \mathcal{C}N(0, \mathbf{I}_N)$$

 $ightharpoonup \vec{h}$ is a N imes 1 deterministic and unknown vector representing the characteristics of the propagation channel

let

$$\vec{\mathbf{y}}(k) = \begin{cases} \sigma \vec{\mathbf{w}}(k) & \text{under } H_0 \\ \vec{\mathbf{h}} s(k) + \sigma \vec{\mathbf{w}}(k) & \text{under } H_1 \end{cases} \quad \text{for } k = 1 : n$$

The $\vec{\mathbf{y}}(k)$'s are n observations all either drawn under H_0 or H_1 . Here,

 $ightharpoonup ec{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process:

$$\vec{\mathbf{w}}(k) \sim \mathcal{C}N(0, \mathbf{I}_N)$$

- $ightharpoonup \vec{h}$ is a N imes 1 deterministic and unknown vector representing the characteristics of the propagation channel
- ightharpoonup s(k) represent the signal; it is a scalar complex Gaussian i.i.d. process

The hypothesis testing problem

Statistical Setup

let

$$\vec{\mathbf{y}}(k) = \begin{cases} \sigma \vec{\mathbf{w}}(k) & \text{under } H_0 \\ \vec{\mathbf{h}} s(k) + \sigma \vec{\mathbf{w}}(k) & \text{under } H_1 \end{cases} \quad \text{for } k = 1 : n$$

The $\vec{\mathbf{y}}(k)$'s are n observations all either drawn under H_0 or H_1 . Here,

 $ightharpoonup ec{\mathbf{w}}(k)$ is a N imes 1 complex gaussian white noise process:

$$\vec{\mathbf{w}}(k) \sim \mathcal{C}N(0, \mathbf{I}_N)$$

- $ightharpoonup \vec{h}$ is a N imes 1 deterministic and unknown vector representing the characteristics of the propagation channel
- ightharpoonup s(k) represent the signal; it is a scalar complex Gaussian i.i.d. process

Objective

Given n observations $(\vec{\mathbf{y}}(k), 1 \leq k \leq n)$, and the associated sample covariance matrix

$$\hat{\mathbf{R}}_n = \frac{1}{n} \mathbf{Y}_n \mathbf{Y}_n^* \quad \text{where} \quad \mathbf{Y}_n = [\vec{\mathbf{y}}(1), \cdots, \vec{\mathbf{y}}(n)] \quad \text{is } N \times n \ ,$$

The hypothesis testing problem

Statistical Setup

let

$$\vec{\mathbf{y}}(k) = \begin{cases} \sigma \vec{\mathbf{w}}(k) & \text{under } H_0 \\ \vec{\mathbf{h}} s(k) + \sigma \vec{\mathbf{w}}(k) & \text{under } H_1 \end{cases} \quad \text{for } k = 1 : n$$

The $\vec{\mathbf{y}}(k)$'s are n observations all either drawn under H_0 or H_1 . Here,

 $ightharpoonup \vec{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process:

$$\vec{\mathbf{w}}(k) \sim \mathcal{C}N(0, \mathbf{I}_N)$$

- \vec{h} is a $N \times 1$ deterministic and unknown vector representing the characteristics of the propagation channel
- \triangleright s(k) represent the signal; it is a scalar complex Gaussian i.i.d. process

Objective

Given n observations $(\vec{\mathbf{y}}(k), 1 \leq k \leq n)$, and the associated sample covariance matrix

$$\hat{\mathbf{R}}_n = \frac{1}{n} \mathbf{Y}_n \mathbf{Y}_n^*$$
 where $\mathbf{Y}_n = [\vec{\mathbf{y}}(1), \cdots, \vec{\mathbf{y}}(n)]$ is $N \times n$,

the aim is to decide H_0 (no signal) or H_1 (single-source detection) in the case where

$$\frac{N}{n} \to c \in (0,1)$$
 i.e.

The hypothesis testing problem

Statistical Setup

let

$$\vec{\mathbf{y}}(k) = \begin{cases} \sigma \vec{\mathbf{w}}(k) & \text{under } H_0 \\ \vec{\mathbf{h}} s(k) + \sigma \vec{\mathbf{w}}(k) & \text{under } H_1 \end{cases} \quad \text{for } k = 1 : n$$

The $\vec{\mathbf{y}}(k)$'s are n observations all either drawn under H_0 or H_1 . Here,

 $ightharpoonup \vec{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process:

$$\vec{\mathbf{w}}(k) \sim \mathcal{C}N(0, \mathbf{I}_N)$$

- $ightharpoonup \vec{h}$ is a N imes 1 deterministic and unknown vector representing the characteristics of the propagation channel
- ightharpoonup s(k) represent the signal; it is a scalar complex Gaussian i.i.d. process

Objective

Given n observations $(\vec{\mathbf{y}}(k), 1 \leq k \leq n)$, and the associated sample covariance matrix

$$\hat{\mathbf{R}}_n = \frac{1}{n} \mathbf{Y}_n \mathbf{Y}_n^* \quad \text{where} \quad \mathbf{Y}_n = [\vec{\mathbf{y}}(1), \cdots, \vec{\mathbf{y}}(n)] \quad \text{is } N \times n \ ,$$

the aim is to decide H_0 (no signal) or H_1 (single-source detection) in the case where

$$\frac{N}{n} \to c \in (0,1)$$
 i.e. Dimension N of observations \propto size n of sample

Neyman-Pearson procedure Likelihood functions

Neyman-Pearson procedure

Likelihood functions

Notice that \mathbf{Y}_n is a $N\times n$ matrix whose columns are i.i.d. vectors with covariance matrix defined by

$$\Sigma_N = \left\{ \begin{array}{ll} \mathbf{I}_N & \text{under } H_0 \ , \\ \vec{\mathbf{h}} \vec{\mathbf{h}}^* + \sigma^2 \mathbf{I}_N & \text{under } H_1 \end{array} \right.$$

Likelihood functions

Notice that \mathbf{Y}_n is a $N\times n$ matrix whose columns are i.i.d. vectors with covariance matrix defined by

$$\Sigma_N = \begin{cases} \mathbf{I}_N & \text{under } H_0, \\ \vec{\mathbf{h}} \vec{\mathbf{h}}^* + \sigma^2 \mathbf{I}_N & \text{under } H_1 \end{cases}$$

hence the likelihood functions write

$$\begin{array}{rcl} p_0(\mathbf{Y}_N;\sigma^2) & = & \frac{1}{(\pi\sigma^2)^{Nn}} \exp\left(-\frac{n}{\sigma^2} \mathrm{tr}\,\hat{\mathbf{R}}_N\right) \\ p_1(\mathbf{Y}_N;\vec{\mathbf{h}};\sigma^2) & = & \frac{1}{\left[\pi^N \det\left(\vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2\mathbf{I}_N\right)\right]^n} \exp\left(-\frac{n}{\sigma^2} \mathrm{tr}\,\hat{\mathbf{R}}_N\left(\vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2\mathbf{I}_N\right)^{-1}\right) \end{array}$$

69

Likelihood functions

Notice that \mathbf{Y}_n is a $N\times n$ matrix whose columns are i.i.d. vectors with covariance matrix defined by

$$\Sigma_N = \begin{cases} \mathbf{I}_N & \text{under } H_0, \\ \vec{\mathbf{h}} \vec{\mathbf{h}}^* + \sigma^2 \mathbf{I}_N & \text{under } H_1 \end{cases}$$

hence the likelihood functions write

$$\begin{array}{lcl} p_0(\mathbf{Y}_N;\sigma^2) & = & \frac{1}{(\pi\sigma^2)^{Nn}} \exp\left(-\frac{n}{\sigma^2} \mathrm{tr}\,\hat{\mathbf{R}}_N\right) \\ p_1(\mathbf{Y}_N;\vec{\mathbf{h}};\sigma^2) & = & \frac{1}{\left[\pi^N \det\left(\vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2\mathbf{I}_N\right)\right]^n} \exp\left(-\frac{n}{\sigma^2} \mathrm{tr}\,\hat{\mathbf{R}}_N\left(\vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2\mathbf{I}_N\right)^{-1}\right) \end{array}$$

Neyman-Pearson

In case where σ^2 and \vec{h} are known, the Likelihood Ratio Statistics

$$\frac{p_1(\mathbf{Y}_N; \vec{\mathbf{h}}; \sigma^2)}{p_0(\mathbf{Y}_N; \sigma^2)}$$

provides a uniformly most powerful test:

Likelihood functions

Notice that \mathbf{Y}_n is a $N\times n$ matrix whose columns are i.i.d. vectors with covariance matrix defined by

hence the likelihood functions write

$$\begin{array}{lcl} p_0(\mathbf{Y}_N;\sigma^2) & = & \frac{1}{(\pi\sigma^2)^{Nn}} \exp\left(-\frac{n}{\sigma^2} \mathrm{tr}\,\hat{\mathbf{R}}_N\right) \\ p_1(\mathbf{Y}_N;\vec{\mathbf{h}};\sigma^2) & = & \frac{1}{\left[\pi^N \det\left(\vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2\mathbf{I}_N\right)\right]^n} \exp\left(-\frac{n}{\sigma^2} \mathrm{tr}\,\hat{\mathbf{R}}_N\left(\vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2\mathbf{I}_N\right)^{-1}\right) \end{array}$$

Neyman-Pearson

Fix a given level $\alpha \in (0,1)$

In case where σ^2 and \vec{h} are known, the Likelihood Ratio Statistics

$$\frac{p_1(\mathbf{Y}_N; \vec{\mathbf{h}}; \sigma^2)}{p_0(\mathbf{Y}_N; \sigma^2)}$$

provides a uniformly most powerful test:

69

Likelihood functions

Notice that \mathbf{Y}_n is a $N \times n$ matrix whose columns are i.i.d. vectors with covariance matrix defined by

hence the likelihood functions write

$$\begin{array}{lcl} p_0(\mathbf{Y}_N;\sigma^2) & = & \frac{1}{(\pi\sigma^2)^{Nn}} \exp\left(-\frac{n}{\sigma^2} \mathrm{tr}\,\hat{\mathbf{R}}_N\right) \\ \\ p_1(\mathbf{Y}_N;\vec{\mathbf{h}};\sigma^2) & = & \frac{1}{\left[\pi^N \det\left(\vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2\mathbf{I}_N\right)\right]^n} \exp\left(-\frac{n}{\sigma^2} \mathrm{tr}\,\hat{\mathbf{R}}_N\left(\vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2\mathbf{I}_N\right)^{-1}\right) \end{array}$$

Neyman-Pearson

In case where σ^2 and $\vec{\mathbf{h}}$ are known, the Likelihood Ratio Statistics

$$\frac{p_1(\mathbf{Y}_N; \vec{\mathbf{h}}; \sigma^2)}{p_0(\mathbf{Y}_N; \sigma^2)}$$

provides a uniformly most powerful test:

Fix a given level
$$\alpha \in (0,1)$$

 $\begin{tabular}{ll} \hline \textbf{F} & \textbf{The condition over the Probability of} \\ \hline \textbf{False Alarm} & \mathbb{P}(H_1 \mid H_0) \leq \alpha \\ \hline \textbf{sets the threshold} \\ \hline \end{tabular}$

Likelihood functions

Notice that \mathbf{Y}_n is a $N \times n$ matrix whose columns are i.i.d. vectors with covariance matrix defined by

$$\mathbf{\Sigma}_{N} = \left\{ egin{array}{ll} \mathbf{I}_{N} & \mathrm{under}\ H_{0}\ , \ \\ \vec{\mathbf{h}} \vec{\mathbf{h}}^{*} + \sigma^{2} \mathbf{I}_{N} & \mathrm{under}\ H_{1} \end{array}
ight.$$

hence the likelihood functions write

$$\begin{array}{lcl} p_0(\mathbf{Y}_N;\sigma^2) & = & \frac{1}{(\pi\sigma^2)^{Nn}} \exp\left(-\frac{n}{\sigma^2} \mathrm{tr}\,\hat{\mathbf{R}}_N\right) \\ \\ p_1(\mathbf{Y}_N;\vec{\mathbf{h}};\sigma^2) & = & \frac{1}{\left[\pi^N \det\left(\vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2\mathbf{I}_N\right)\right]^n} \exp\left(-\frac{n}{\sigma^2} \mathrm{tr}\,\hat{\mathbf{R}}_N\left(\vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2\mathbf{I}_N\right)^{-1}\right) \end{array}$$

Neyman-Pearson

In case where σ^2 and $\vec{\mathbf{h}}$ are known, the Likelihood Ratio Statistics

$$\frac{p_1(\mathbf{Y}_N; \vec{\mathbf{h}}; \sigma^2)}{p_0(\mathbf{Y}_N; \sigma^2)}$$

provides a uniformly most powerful test:

- Fix a given level $\alpha \in (0,1)$
- ▶ The condition over the Probability of False Alarm $\mathbb{P}(H_1 \mid H_0) \leq \alpha$ sets the threshold
- ► the maximum achievable power

$$1 - \mathbb{P}(H_0 \mid H_1)$$

is guaranteed by Neyman-Pearson.

The GLRT

The Generalized Likelihood Ratio Test

In the case where $\vec{\mathbf{h}}$ and σ^2 are unknown, we use instead:

$$L_n = \frac{\sup_{\sigma^2, \vec{\mathbf{h}}} \ p_1(\mathbf{Y}_n, \sigma^2, \vec{\mathbf{h}})}{\sup_{\sigma^2} \ p_0(\mathbf{Y}_n, \sigma^2)}$$

which is no longer uniformily most powerful.

70

The GLRT

The Generalized Likelihood Ratio Test

In the case where $\vec{\mathbf{h}}$ and σ^2 are unknown, we use instead:

$$L_n = \frac{\sup_{\sigma^2, \vec{\mathbf{h}}} \ p_1(\mathbf{Y}_n, \sigma^2, \vec{\mathbf{h}})}{\sup_{\sigma^2} \ p_0(\mathbf{Y}_n, \sigma^2)}$$

which is no longer uniformily most powerful.

Expression of the GLRT

The GLRT statistics writes

$$L_n = \frac{\left(1 - \frac{1}{N}\right)^{(1-N)n}}{\left(\frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N}\operatorname{tr}\hat{\mathbf{R}}_n}\right)^n \left(1 - \frac{1}{N}\frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N}\operatorname{tr}\hat{\mathbf{R}}_n}\right)^{(N-1)n}}$$

and is a deterministic function of $T_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N}\mathrm{tr}\,\hat{\mathbf{R}}_n}$

70

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

The setup

Asymptotics of the GLRT

Fluctuations of the GLRT statistic

Applications to the MIMO channel

Limit of the test statistics T_n - I

Under H_0

Recall
$$T_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_n}$$
 .

Under H_0

Recall
$$T_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \mathrm{tr} \, \hat{\mathbf{R}}_n}$$
 . We have:

$$\lambda_{\max}(\hat{\mathbf{R}}_n) \xrightarrow{n.s.} \sigma^2 (1 + \sqrt{c})^2$$

Under H_0

Recall $T_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \mathrm{tr}\,\hat{\mathbf{R}}_n}$. We have:

$$\begin{split} \lambda_{\max}(\hat{\mathbf{R}}_n) & \xrightarrow[N,n\to\infty]{a.s.} & \sigma^2(1+\sqrt{c})^2 \\ \frac{1}{N} \mathrm{tr}\, \hat{\mathbf{R}}_n &= \frac{1}{Nn} \sum_{i,j} |Y_{ij}|^2 & \xrightarrow[N,n\to\infty]{a.s.} & \sigma^2 \end{split}$$

Under H_0

Recall $T_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_n}$. We have:

$$\begin{split} \lambda_{\max}(\hat{\mathbf{R}}_n) & \xrightarrow[N,n\to\infty]{a.s.} & \sigma^2(1+\sqrt{c})^2 \\ \frac{1}{N} \mathrm{tr}\, \hat{\mathbf{R}}_n &= \frac{1}{Nn} \sum_{i,j} |Y_{ij}|^2 & \xrightarrow[N,n\to\infty]{a.s.} & \sigma^2 \end{split}$$

hence

$$T_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N}\operatorname{tr}\hat{\mathbf{R}}_n} \quad \xrightarrow[N,n\to\infty]{a.s.} \quad (1+\sqrt{c})^2$$

Under H_1

Let

$$\mathbf{snr} = \frac{\|\vec{\mathbf{h}}\|^2}{\sigma^2}$$

the ${\bf Signal\text{-}to\text{-}Noise}$ (SNR) ratio.

Under H_1

Let

$$\mathbf{snr} = \frac{\|\vec{\mathbf{h}}\|^2}{\sigma^2}$$

the Signal-to-Noise (SNR) ratio.

• if $\operatorname{snr} > \sqrt{c}$ then

$$T_n \xrightarrow[N,n\to\infty]{a.s.} (1+\mathbf{snr})\left(1+\frac{c}{\mathbf{snr}}\right)$$

Under H_1

Let

$$\mathbf{snr} = \frac{\|\vec{\mathbf{h}}\|^2}{\sigma^2}$$

the Signal-to-Noise (SNR) ratio.

ightharpoonup if $\operatorname{\mathbf{snr}}>\sqrt{c}$ then

$$T_n \xrightarrow[N,n\to\infty]{a.s.} (1 + \mathbf{snr}) \left(1 + \frac{c}{\mathbf{snr}}\right) > (1 + \sqrt{c})^2$$

Under H_1

Let

$$\mathbf{snr} = \frac{\|\vec{\mathbf{h}}\|^2}{\sigma^2}$$

the Signal-to-Noise (SNR) ratio.

• if $\operatorname{snr} > \sqrt{c}$ then

$$T_n \xrightarrow[N,n\to\infty]{a.s.} (1 + \mathbf{snr}) \left(1 + \frac{c}{\mathbf{snr}}\right) > (1 + \sqrt{c})^2$$

• if $\operatorname{snr} \leq \sqrt{c}$ then

$$T_n \xrightarrow[N,n\to\infty]{a.s.} (1+\sqrt{c})^2$$

(Phase transition)

Remarks

 \blacktriangleright Condition $\boxed{{\bf snr}>\sqrt{c}}$ is automatically fulfilled in the classical regime where

$$N \ {\rm fixed} \quad {\rm and} \quad n \to \infty \quad {\rm as} \quad c = \lim_{n \to \infty} \frac{N}{n} = 0 \ .$$

74

Remarks

 \blacktriangleright Condition $\boxed{{\bf snr}>\sqrt{c}}$ is automatically fulfilled in the classical regime where

N fixed and
$$n \to \infty$$
 as $c = \lim_{n \to \infty} \frac{N}{n} = 0$.

lacktriangle In the case $N,n o\infty$, recall that the support of Marčenko-Pastur distribution is

$$[(1-\sqrt{c})^2, (1+\sqrt{c})^2]$$
,

Remarks

lacktriangleright Condition $\boxed{{f snr}>\sqrt{c}}$ is **automatically fulfilled** in the classical regime where

N fixed and
$$n \to \infty$$
 as $c = \lim_{n \to \infty} \frac{N}{n} = 0$.

lacktriangle In the case $N,n o\infty$, recall that the support of Marčenko-Pastur distribution is

$$[(1-\sqrt{c})^2,(1+\sqrt{c})^2]$$
,

i.e.

The higher \sqrt{c} , the larger the support

Remarks

lacktriangleright Condition $|\mathbf{snr}>\sqrt{c}|$ is **automatically fulfilled** in the classical regime where

N fixed and
$$n \to \infty$$
 as $c = \lim_{n \to \infty} \frac{N}{n} = 0$.

lacktriangleq In the case $N,n o \infty$, recall that the support of Marčenko-Pastur distribution is

$$[(1-\sqrt{c})^2,(1+\sqrt{c})^2]$$
,

i.e.

The higher
$$\sqrt{c}$$
, the larger the support

One can interpret \sqrt{c} as a level of the asymptotic noise induced by the data dimension (=asymptotic data noise).

Remarks

lacktriangleright Condition $|\mathbf{snr}>\sqrt{c}|$ is **automatically fulfilled** in the classical regime where

N fixed and
$$n \to \infty$$
 as $c = \lim_{n \to \infty} \frac{N}{n} = 0$.

lacktriangle In the case $N,n o \infty$, recall that the support of Marčenko-Pastur distribution is

$$[(1-\sqrt{c})^2,(1+\sqrt{c})^2]$$
,

i.e.

The higher
$$\sqrt{c}$$
, the larger the support

One can interpret \sqrt{c} as a level of the asymptotic noise induced by the data dimension (=asymptotic data noise).

Hence the rule of thumb

Detection occurs if ${f snr}$ higher than asymptotic data noise.

Figure : Influence of asymptotic data noise as \sqrt{c} increases

N= 100 , n= 2000 , sqrt(c)= 0.223606797749979 0.1 Density 0.5 0.0

Figure : Influence of asymptotic data noise as \sqrt{c} increases

1.2

spectrum

0.6

0.8

1.0

1.4

1.6

1.8

Figure : Influence of asymptotic data noise as \sqrt{c} increases

Figure : Influence of asymptotic data noise as \sqrt{c} increases

N= 1000 , n= 2000 , sqrt(c)= 0.707106781186548

Figure : Influence of asymptotic data noise as \sqrt{c} increases

▶ We are interested in the largest eigenvalue of the matrix model

$$\frac{\frac{1}{n}\mathbf{Y}_n\mathbf{Y}_n^2}{\frac{1}{N}\mathsf{tr}(\hat{\mathbf{R}}_n)}$$

▶ We are interested in the largest eigenvalue of the matrix model

$$\frac{\frac{1}{n}\mathbf{Y}_n\mathbf{Y}_n^*}{\frac{1}{N}\mathsf{tr}(\hat{\mathbf{R}}_n)}$$

asymptotically equivalent to

$$\frac{1}{n} \frac{\mathbf{Y}_n \mathbf{Y}_n^*}{\sigma^2}$$
 as $\frac{1}{N} \operatorname{tr}(\hat{\mathbf{R}}_n) \xrightarrow[N,n \to \infty]{a.s.} \sigma^2$

▶ We are interested in the largest eigenvalue of the matrix model

$$\frac{\frac{1}{n}\mathbf{Y}_n\mathbf{Y}_n^*}{\frac{1}{N}\mathsf{tr}(\hat{\mathbf{R}}_n)}$$

asymptotically equivalent to

$$\frac{1}{n} \frac{\mathbf{Y}_n \mathbf{Y}_n^*}{\sigma^2}$$
 as $\frac{1}{N} \operatorname{tr}(\hat{\mathbf{R}}_n) \xrightarrow[N,n \to \infty]{a.s.} \sigma^2$

Notice that

$$\mathbf{Y}_n = [\vec{\mathbf{y}}_1, \cdots, \vec{\mathbf{y}}_n] \quad \text{with} \quad \vec{\mathbf{y}}_i \sim \mathcal{C}N(0, \vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2\mathbf{I}_N)$$

▶ We are interested in the largest eigenvalue of the matrix model

$$\frac{\frac{1}{n}\mathbf{Y}_n\mathbf{Y}_n^*}{\frac{1}{N}\mathsf{tr}(\hat{\mathbf{R}}_n)}$$

asymptotically equivalent to

$$\frac{1}{n} \frac{\mathbf{Y}_n \mathbf{Y}_n^*}{\sigma^2}$$
 as $\frac{1}{N} \operatorname{tr}(\hat{\mathbf{R}}_n) \xrightarrow[N,n \to \infty]{a.s.} \sigma^2$

Notice that

$$\mathbf{Y}_n = [\vec{\mathbf{y}}_1, \cdots, \vec{\mathbf{y}}_n] \text{ with } \vec{\mathbf{y}}_i \sim \mathcal{C}N(0, \vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2 \mathbf{I}_N)$$

Hence

$$\mathbf{Y}_N = \left(\vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2 \mathbf{I}_N\right)^{1/2} \mathbf{X}_N$$

▶ We are interested in the largest eigenvalue of the matrix model

$$\frac{\frac{1}{n}\mathbf{Y}_n\mathbf{Y}_n^*}{\frac{1}{N}\mathsf{tr}(\hat{\mathbf{R}}_n)}$$

asymptotically equivalent to

$$\frac{1}{n} \frac{\mathbf{Y}_n \mathbf{Y}_n^*}{\sigma^2}$$
 as $\frac{1}{N} \operatorname{tr}(\hat{\mathbf{R}}_n) \xrightarrow[N,n \to \infty]{a.s.} \sigma^2$

Notice that

$$\mathbf{Y}_n = [\vec{\mathbf{y}}_1, \cdots, \vec{\mathbf{y}}_n] \quad \text{with} \quad \vec{\mathbf{y}}_i \sim \mathcal{C}N(0, \vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2 \mathbf{I}_N)$$

Hence

$$\mathbf{Y}_N = \left(\vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2 \mathbf{I}_N\right)^{1/2} \mathbf{X}_N \quad \Rightarrow \quad \frac{\mathbf{Y}_N}{\sigma} \quad = \quad \left(\mathbf{I}_N + \frac{\vec{\mathbf{h}}\vec{\mathbf{h}}^*}{\sigma^2}\right)^{1/2} \mathbf{X}_N$$

76

▶ We are interested in the largest eigenvalue of the matrix model

$$\frac{\frac{1}{n}\mathbf{Y}_n\mathbf{Y}_n^*}{\frac{1}{N}\mathsf{tr}(\hat{\mathbf{R}}_n)}$$

asymptotically equivalent to

$$\frac{1}{n} \frac{\mathbf{Y}_n \mathbf{Y}_n^*}{\sigma^2}$$
 as $\frac{1}{N} \operatorname{tr}(\hat{\mathbf{R}}_n) \xrightarrow[N,n \to \infty]{a.s.} \sigma^2$

Notice that

$$\mathbf{Y}_n = [\vec{\mathbf{y}}_1, \cdots, \vec{\mathbf{y}}_n] \quad \text{with} \quad \vec{\mathbf{y}}_i \sim \mathcal{C}N(0, \vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2 \mathbf{I}_N)$$

Hence

$$\mathbf{Y}_{N} = \left(\vec{\mathbf{h}}\vec{\mathbf{h}}^{*} + \sigma^{2}\mathbf{I}_{N}\right)^{1/2}\mathbf{X}_{N} \quad \Rightarrow \quad \frac{\mathbf{Y}_{N}}{\sigma} \quad = \quad \left(\mathbf{I}_{N} + \frac{\vec{\mathbf{h}}\vec{\mathbf{h}}^{*}}{\sigma^{2}}\right)^{1/2}\mathbf{X}_{N}$$
$$= \quad \left(\mathbf{I}_{N} + \frac{\|\vec{\mathbf{h}}\|^{2}}{\sigma^{2}}\vec{\mathbf{u}}\vec{\mathbf{u}}^{*}\right)^{1/2}\mathbf{X}_{N}$$

with \mathbf{X}_N a $N \times n$ matrix having i.i.d. entries $\mathcal{C}N(0,1)$ and $\vec{\mathbf{u}} = \frac{\vec{\mathbf{h}}}{\|\vec{\mathbf{h}}\|}$

76

▶ We are interested in the largest eigenvalue of the matrix model

$$\frac{\frac{1}{n}\mathbf{Y}_n\mathbf{Y}_n^*}{\frac{1}{N}\mathsf{tr}(\hat{\mathbf{R}}_n)}$$

asymptotically equivalent to

$$\frac{1}{n} \frac{\mathbf{Y}_n \mathbf{Y}_n^*}{\sigma^2}$$
 as $\frac{1}{N} \operatorname{tr}(\hat{\mathbf{R}}_n) \xrightarrow[N,n \to \infty]{a.s.} \sigma^2$

Notice that

$$\mathbf{Y}_n = [\vec{\mathbf{y}}_1, \cdots, \vec{\mathbf{y}}_n] \quad \text{with} \quad \vec{\mathbf{y}}_i \sim \mathcal{C}N(0, \vec{\mathbf{h}}\vec{\mathbf{h}}^* + \sigma^2\mathbf{I}_N)$$

Hence

$$\mathbf{Y}_{N} = \left(\vec{\mathbf{h}}\vec{\mathbf{h}}^{*} + \sigma^{2}\mathbf{I}_{N}\right)^{1/2}\mathbf{X}_{N} \quad \Rightarrow \quad \frac{\mathbf{Y}_{N}}{\sigma} \quad = \quad \left(\mathbf{I}_{N} + \frac{\vec{\mathbf{h}}\vec{\mathbf{h}}^{*}}{\sigma^{2}}\right)^{1/2}\mathbf{X}_{N}$$
$$= \quad \left(\mathbf{I}_{N} + \frac{\|\vec{\mathbf{h}}\|^{2}}{\sigma^{2}}\vec{\mathbf{u}}\vec{\mathbf{u}}^{*}\right)^{1/2}\mathbf{X}_{N}$$

with \mathbf{X}_N a $N \times n$ matrix having i.i.d. entries $\mathcal{C}N(0,1)$ and $\vec{\mathbf{u}} = \frac{\vec{\mathbf{h}}}{\|\vec{\mathbf{h}}\|}$

Conclusion

Spectrum of $\frac{1}{n}\mathbf{Y}_n\mathbf{Y}_n^*$ follows a spiked model with rank-one perturbation

Elements of proof - II

We can now conclude:

Elements of proof - II

We can now conclude:

• If $|\sin z| > \sqrt{c}$ then

$$\frac{\lambda_{\max}\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N}\operatorname{tr}(\hat{\mathbf{R}}_{n})} \xrightarrow[N,n\to\infty]{(H_{1})} (1+\operatorname{snr})\left(1+\frac{c}{\operatorname{snr}}\right) > (1+\sqrt{c})^{2}$$

and the test statistics discriminates between the hypotheses \mathcal{H}_0 and $\mathcal{H}_1.$

Elements of proof - II

We can now conclude:

▶ If $|snr > \sqrt{c}|$ then

$$\frac{\lambda_{\max}\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N}\operatorname{tr}(\hat{\mathbf{R}}_{n})} \xrightarrow[N,n\to\infty]{(H_{1})} (1+\operatorname{snr})\left(1+\frac{c}{\operatorname{snr}}\right) > (1+\sqrt{c})^{2}$$

and the test statistics discriminates between the hypotheses H_0 and H_1 .

▶ If $snr \le \sqrt{c}$ then

$$\frac{\lambda_{\max}\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N}\operatorname{tr}(\hat{\mathbf{R}}_{n})} \xrightarrow[N,n\to\infty]{(H_{1})} (1+\sqrt{c})^{2}$$

Same limit as under \mathcal{H}_0 . The test statistics does not discriminate between the two hypotheses.

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

I he setup

Asymptotics of the GLRT

Fluctuations of the GLRT statistic

The GLRT: Summary

Applications to the MIMO channe

▶ The exact distribution of the statistics

$$L_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_n}$$

is needed to set the threshold of the test fo a given confidence level $\alpha \in (0,1)$:

$$\mathbb{P}_{H_0}\left(L_N > \boldsymbol{t_{\alpha}}\right) = \alpha ,$$

▶ The exact distribution of the statistics

$$L_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_n}$$

is needed to set the threshold of the test fo a given confidence level $\alpha \in (0,1)$:

$$\mathbb{P}_{H_0}\left(L_N > \boldsymbol{t_{\alpha}}\right) = \alpha ,$$

but hard to obtain.

The exact distribution of the statistics

$$L_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_n}$$

is needed to set the threshold of the test fo a given confidence level $\alpha \in (0,1)$:

$$\mathbb{P}_{H_0}\left(L_N > \boldsymbol{t_{\alpha}}\right) = \alpha ,$$

but hard to obtain.

 \blacktriangleright We rather study the asymptotic fluctuations of L_n under the regime

$$N, n \to \infty$$
 , $\frac{N}{n} \to c \in (0, 1)$.

The exact distribution of the statistics

$$L_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_n}$$

is needed to set the threshold of the test fo a given confidence level $\alpha \in (0,1)$:

$$\mathbb{P}_{H_0}\left(L_N > \boldsymbol{t_{\alpha}}\right) = \alpha ,$$

but hard to obtain.

 \blacktriangleright We rather study the asymptotic fluctuations of L_n under the regime

$$N, n \to \infty$$
, $\frac{N}{n} \to c \in (0, 1)$.

 $ightharpoonup L_N$ is the ratio of **two random variables**. We need to understand

The exact distribution of the statistics

$$L_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_n}$$

is needed to set the threshold of the test fo a given confidence level $\alpha \in (0,1)$:

$$\mathbb{P}_{H_0}\left(L_N > \boldsymbol{t_{\alpha}}\right) = \alpha ,$$

but hard to obtain.

 \blacktriangleright We rather study the asymptotic fluctuations of L_n under the regime

$$N, n \to \infty$$
, $\frac{N}{n} \to c \in (0, 1)$.

- $ightharpoonup L_N$ is the ratio of **two random variables**. We need to understand
- the fluctuations of $\lambda_{\max}(\hat{\mathbf{R}}_n)$ under H_0 ,

The exact distribution of the statistics

$$L_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_n}$$

is needed to set the threshold of the test fo a given confidence level $\alpha \in (0,1)$:

$$\mathbb{P}_{H_0}\left(L_N > \boldsymbol{t_{\alpha}}\right) = \alpha ,$$

but hard to obtain.

lacktriangle We rather study the asymptotic fluctuations of L_n under the regime

$$N, n \to \infty$$
, $\frac{N}{n} \to c \in (0, 1)$.

- $ightharpoonup L_N$ is the ratio of **two random variables**. We need to understand
- the fluctuations of $\lambda_{\max}(\hat{\mathbf{R}}_n)$ under H_0 ,
- \circ the fluctuations of $\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_n$ under H_0 .

Fluctuations of $\lambda_{\max}(\hat{\mathbf{R}}_n)$: Tracy-Widom distribution at rate $N^{2/3}$

Fluctuations of $\lambda_{\max}(\hat{\mathbf{R}}_n)$: Tracy-Widom distribution at rate $N^{2/3}$

$$\frac{N^{2/3}}{\Theta_N} \left\{ \lambda_{\max} \left(\hat{\mathbf{R}}_n \right) - \sigma^2 (1 + \sqrt{c_n})^2 \right\} \xrightarrow[N, n \to \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}}$$

Fluctuations of $\lambda_{\max}(\hat{\mathbf{R}}_n)$: Tracy-Widom distribution at rate $N^{2/3}$

$$\frac{N^{2/3}}{\Theta_N} \left\{ \lambda_{\max} \left(\hat{\mathbf{R}}_n \right) - \sigma^2 (1 + \sqrt{c_n})^2 \right\} \xrightarrow[N, n \to \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}}$$

where

$$c_n = \frac{N}{n}$$
 and $\Theta_N = \sigma^2 (1 + \sqrt{c_n}) \left(\frac{1}{\sqrt{c_n}} + 1\right)^{1/3}$

Fluctuations of $\lambda_{\max}(\hat{\mathbf{R}}_n)$: Tracy-Widom distribution at rate $N^{2/3}$

$$\frac{N^{2/3}}{\Theta_N} \; \left\{ \lambda_{\max} \left(\hat{\mathbf{R}}_n \right) - \sigma^2 (1 + \sqrt{c_n})^2 \right\} \xrightarrow[N,n \to \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}}$$

where

$$c_n = \frac{N}{n}$$
 and $\Theta_N = \sigma^2 (1 + \sqrt{c_n}) \left(\frac{1}{\sqrt{c_n}} + 1\right)^{1/3}$

Otherwise stated,

$$\lambda_{\max} \left(\hat{\mathbf{R}}_n \right) = \sigma^2 (1 + \sqrt{c_n})^2 + \frac{\Theta_N}{N^{2/3}} \boldsymbol{X}_{TW} + o_P(N^{-2/3})$$

where $oldsymbol{X}_{TW}$ is a random variable with Tracy-Widom distribution.

Details on Tracy-Widom distribution

Tracy-Widom distribution is defined by

▶ its cumulative distribution function

$$F_{TW}(x) = \exp\left\{-\int_{x}^{\infty} (u-x)^2 q^2(u) du\right\}$$

where

$$q''(x) = xq(x) + 2q^3(x)$$
 and $q(x) \sim Ai(x)$ as $x \to \infty$.

 $x\mapsto \operatorname{Ai}(x)$ being the Airy function.

Details on Tracy-Widom distribution

Tracy-Widom distribution is defined by

▶ its cumulative distribution function

$$F_{TW}(x) = \exp\left\{-\int_x^\infty (u-x)^2 q^2(u) \, du\right\}$$

where

$$q''(x) = xq(x) + 2q^3(x)$$
 and $q(x) \sim \operatorname{Ai}(x)$ as $x \to \infty$.

 $x\mapsto {\rm Ai}(x)$ being the Airy function.

Don't bother .. just download it

- ► For simulations, cf. R Package 'RMTstat', by Johnstone et al.
- ▶ Also, Folkmar Bornemann (TU München) has developed fast matlab code

Tracy-Widom curve

Figure : Tracy-Widom density

Tracy-Widom curve

Marchenko-Pastur and Tracy-Widom Distributions

Figure : Fluctuations of the largest eigenvalue $\lambda_{\max}(\hat{\mathbf{R}}_n)$ under H_0

Fluctuations of $\frac{1}{N} \operatorname{tr}(\hat{\mathbf{R}}_n)$: Gaussian distributions at rate N

$$N\left\{\frac{1}{N}\sum_{i=1}^{N}\lambda_i(\hat{\mathbf{R}}_n) - \sigma^2\right\} \xrightarrow[N,n\to\infty]{\mathcal{L}} \mathcal{N}(0,\Gamma) ,$$

Fluctuations of $\frac{1}{N} \operatorname{tr}(\hat{\mathbf{R}}_n)$: Gaussian distributions at rate N

$$N\left\{\frac{1}{N}\sum_{i=1}^{N}\lambda_{i}(\hat{\mathbf{R}}_{n})-\sigma^{2}\right\} \xrightarrow[N,n\to\infty]{\mathcal{L}} \mathcal{N}(0,\Gamma) ,$$

Otherwise stated:

$$\frac{1}{N}\operatorname{tr}(\hat{\mathbf{R}}_n) = \frac{1}{N} \sum_{i=1}^{N} \lambda_i(\hat{\mathbf{R}}_n) = \sigma^2 + \frac{\sqrt{\Gamma}}{N} \mathbf{Z} + o_P(N^{-1})$$

where ${\pmb Z}$ is a random variable with distribution ${\mathcal N}(0,1).$

Conclusion

▶ Fluctuations of $L_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \text{tr} \hat{\mathbf{R}}_n}$ are driven by $\lambda_{\max}(\hat{\mathbf{R}}_n)$:

$$\frac{N^{2/3}}{\widetilde{\Theta}_N} \left\{ L_N - (1 + \sqrt{c_n})^2 \right\} \xrightarrow[N, n \to \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}} \quad \text{with} \quad \widetilde{\Theta}_N = (1 + \sqrt{c_n}) \left(\frac{1}{\sqrt{c_n}} + 1 \right)^{1/3}$$

Conclusion

▶ Fluctuations of $L_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \mathrm{tr} \, \hat{\mathbf{R}}_n}$ are driven by $\lambda_{\max}(\hat{\mathbf{R}}_n)$:

$$\frac{N^{2/3}}{\widetilde{\Theta}_N} \left\{ L_N - (1 + \sqrt{c_n})^2 \right\} \xrightarrow[N, n \to \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}} \quad \text{with} \quad \widetilde{\Theta}_N = (1 + \sqrt{c_n}) \left(\frac{1}{\sqrt{c_n}} + 1 \right)^{1/3}$$

In order to set the threshold α , we choose t_{α}^{n} as

$$m{t}_{m{lpha}}^{m{n}} = (1+\sqrt{c_n})^2 + rac{\widetilde{\Theta}_N}{N^{2/3}} m{t}_{m{lpha}}^{\mathsf{Tracy-Widom}}$$

where $t_{lpha}^{\mathrm{Tracy-Widom}}$ is the corresponding quantile for a Tracy-Widom random variable:

$$\mathbb{P}\{\boldsymbol{X}_{TW} > \boldsymbol{t_{lpha}}^{\mathsf{Tracy-Widom}}\} \leq \alpha.$$

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

The setup Asymptotics of the GLRT Fluctuations of the GLRT statistic

The GLRT: Summary

Applications to the MIMO channel

► Consider the following hypothesis

$$\vec{\mathbf{y}}(k) = \begin{cases} \sigma \vec{\mathbf{w}}(k) & \text{under } H_0 \\ \vec{\mathbf{h}} s(k) + \sigma \vec{\mathbf{w}}(k) & \text{under } H_1 \end{cases} \quad \text{for } k = 1 : n$$

► Consider the following hypothesis

$$\vec{\mathbf{y}}(k) = \begin{cases} \sigma \vec{\mathbf{w}}(k) & \text{under } H_0 \\ \vec{\mathbf{h}} s(k) + \sigma \vec{\mathbf{w}}(k) & \text{under } H_1 \end{cases} \quad \text{for } k = 1:n$$

then the GLRT amounts to study

$$T_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_n}$$

Consider the following hypothesis

$$\vec{\mathbf{y}}(k) = \begin{cases} \sigma \vec{\mathbf{w}}(k) & \text{under } H_0 \\ \vec{\mathbf{h}} s(k) + \sigma \vec{\mathbf{w}}(k) & \text{under } H_1 \end{cases} \quad \text{for } k = 1:n$$

then the GLRT amounts to study

$$T_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N}\operatorname{tr}\hat{\mathbf{R}}_n}$$

▶ The test statistics T_n discriminates between H_0 and H_1 if $\sin \mathbf{r} = \frac{\|\vec{\mathbf{h}}\|^2}{\sigma^2} > \sqrt{c}$

Consider the following hypothesis

$$\vec{\mathbf{y}}(k) = \begin{cases} \sigma \vec{\mathbf{w}}(k) & \text{under } H_0 \\ \vec{\mathbf{h}} s(k) + \sigma \vec{\mathbf{w}}(k) & \text{under } H_1 \end{cases} \quad \text{for } k = 1:n$$

then the GLRT amounts to study

$$T_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N}\operatorname{tr}\hat{\mathbf{R}}_n}$$

- ▶ The test statistics T_n discriminates between H_0 and H_1 if $\frac{||\vec{\mathbf{h}}||^2}{\sigma^2} > \sqrt{c}$
- ▶ The threshold can be asymptotically determined by Tracy-Widom quantiles.

Consider the following hypothesis

$$\vec{\mathbf{y}}(k) = \begin{cases} \sigma \vec{\mathbf{w}}(k) & \text{under } H_0 \\ \vec{\mathbf{h}} s(k) + \sigma \vec{\mathbf{w}}(k) & \text{under } H_1 \end{cases} \quad \text{for } k = 1:n$$

then the GLRT amounts to study

$$T_n = \frac{\lambda_{\max}(\hat{\mathbf{R}}_n)}{\frac{1}{N}\operatorname{tr}\hat{\mathbf{R}}_n}$$

- ▶ The test statistics T_n discriminates between H_0 and H_1 if $\left| \mathbf{snr} = \frac{\|\vec{\mathbf{h}}\|^2}{\sigma^2} > \sqrt{c} \right|$
- ► The threshold can be asymptotically determined by Tracy-Widom quantiles.
- The type II error (equivalently power of the test) can be analyzed via the error exponent of the test

$$\mathcal{E} = \lim_{N,n \to \infty} -\frac{1}{n} \log \mathbb{P}_{H_1}(L_N < t_{\alpha})$$
.

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

Applications to the MIMO channel

MIMO channel

MIMO = Multiple Input Multiple Output

It is a channel with multiple antennas at the emission and reception

- lacktriangle The received signal writes: $ec{f y}={f H}ec{f x}+ec{f v}$ where
 - \triangleright \vec{x} is the signal that is sent,
 - \triangleright $\vec{\mathbf{v}}$ is an additive gaussian white noise with variance σ^2 ,
 - H is the random gain matrix. Its distribution is associated to the features of the channel.
 - $ightarrow \vec{\mathbf{y}}$ is the received signal.

Features of the Gain matrix H

- The entry [H]_{ij} represents the gain between emitting antenna j and receiving antenna i.
- ► The gain matrix **H** is random.
- ▶ The distribuon of H depends on the nature of the channel:
 - ▷ Absence of correlation between antennas

$$\mathbf{H} = \frac{1}{\sqrt{K}}\mathbf{X}$$
 [**X**]_{ij} à entrées i.i.d., variance θ^2

 \triangleright Correlation between emitting antennas $(\tilde{\mathbf{D}}^{1/2})$ and receiving antennas $(\mathbf{D}^{1/2})$

$$\mathbf{H} = \frac{1}{\sqrt{K}} \mathbf{D}^{1/2} \mathbf{X} \tilde{\mathbf{D}}^{1/2} \qquad \text{(Rayleigh channel)}$$

▶ Existence of a line-of-sight component (matrix A deterministic) + correlations

$$\mathbf{H} = \frac{1}{\sqrt{K}} \mathbf{D}^{1/2} \mathbf{X} \tilde{\mathbf{D}}^{1/2} + \mathbf{A} \quad \text{(Rice channel)}$$

Performances

► Shannon's mutual information (per antenna)

$$\boxed{\mathcal{I} = \frac{1}{N} \log \det \left(\mathbf{I} + \frac{\mathbf{H}\mathbf{H}^*}{\sigma^2} \right)} = \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + \frac{\lambda_i(\mathbf{H}\mathbf{H}^*)}{\sigma^2} \right)$$

⇒ depends on the spectrum of matrix HH*.

► Ergodic Mutual Information:

$$\mathcal{I}^{\mathbf{e}} = \mathbb{E} \ \mathcal{I} \ .$$

Ergodic capacity:

$$\sup\nolimits_{\mathbf{Q} \geq 0, \frac{1}{K} \mathrm{tr} \, \mathbf{Q} \leq 1} \mathbb{E} \log \det \left(I + \frac{\mathbf{H} \mathbf{Q} \mathbf{H}^*}{\sigma^2} \right)$$

Regime of interest:

 $\{\ \#\ \text{emitting antennas}\}\ {\color{red} \boldsymbol{\propto}}\ \{\ \#\ \text{receiving antennas}\}$

Questions

Behaviour of the empirical measure of the eigenvalues:

$$L_N = \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i(\mathbf{H}\mathbf{H}^*)}$$

Explicit expression for the logdet:

$$\frac{1}{N}\log\det\left(I + \frac{\mathbf{H}\mathbf{H}^*}{\sigma^2}\right) = \frac{1}{N}\sum_{i=1}^{N}\log\left(1 + \frac{\lambda_i\mathbf{H}\mathbf{H}^*}{\sigma^2}\right)$$

- ▶ Fluctuations?
- ▶ Ergodic capacity ⇒ Optimisation?
- Asymptotic regime: $N \propto K$. Formally

$$N, K \to \infty, \qquad \frac{N}{K} \to c \in (0, \infty)$$

It's the asymptotic regime of large random matrices.

Empirical measure: the white case

Channel H with i.i.d. entries

 \blacktriangleright Marčenko-Pastur Stieltjes transform $g(z)=\int \frac{\mu_{\mathrm{MP}}(d\lambda)}{\lambda-z}$ satisfies:

$$zc\theta^2 g^2(z) + (z + (c-1)\theta^2)g(z) + 1 = 0.$$

Convergence of the mutual information:

$$\begin{split} \mathcal{I} &= & \frac{1}{N} \log \det \left(I + \frac{\mathbf{H} \mathbf{H}^*}{\sigma^2} \right) = \frac{1}{N} \sum_{i=1}^N \log \left(1 + \frac{\lambda_i (\mathbf{H} \mathbf{H}^*)}{\sigma^2} \right) \\ &\longrightarrow & \mathcal{I}_{\mathrm{approx}} \stackrel{\triangle}{=} \int \log \left(1 + \frac{x}{\sigma^2} \right) \mu_{\mathrm{MP}} (dx) \\ &= \int_{\sigma^2}^\infty \left(\frac{1}{w} - g(-w) \right) dw \end{split}$$

Explicit formula for the limit:

$$\mathcal{I}_{\text{approx}} = -\log \sigma^2 g(-\sigma^2) + \frac{1}{c} \log \left(\frac{1 + c\theta^2 g(-\sigma^2)}{\sigma^2} \right) - \frac{\theta^2 g(-\sigma^2)}{1 + c\theta^2 g(-\sigma^2)}$$

► Important results:

1.
$$\mathbb{E} \log \det \left(I + \frac{\mathbf{H}\mathbf{H}^*}{\sigma^2} \right) \propto \min(N, K)$$

2. Speed of convergence [for Gaussian entries]: $\mathcal{I}^{\mathbf{e}} - \mathcal{I}_{\mathrm{approx}} = \mathcal{O}\left(\frac{1}{N^2}\right)$

Rice channel

The gain matrix writes in this case:

$$\mathbf{H} = \frac{1}{\sqrt{K}} \mathbf{D}^{1/2} \mathbf{X} \tilde{\mathbf{D}}^{1/2} + \mathbf{A}$$

 \blacktriangleright We have again $\boxed{\mathcal{I}^{\mathbf{e}} - \mathcal{I}^{\mathbf{e}}_{\mathtt{approx}} \to 0}$ where

$$\begin{split} \mathcal{I}_{\text{approx}}^{\text{e}} &= \frac{1}{N} \log \det \left[\mathbf{I} + \tilde{\boldsymbol{\delta}} \mathbf{D} + \frac{1}{\sigma^2} \mathbf{A} (\mathbf{I} + \delta \tilde{\mathbf{D}})^{-1} \mathbf{A}^* \right] \\ &+ \frac{1}{N} \log \det \left(\mathbf{I} + \delta \tilde{\mathbf{D}} \right) - \frac{\sigma^2 n}{N} \delta \tilde{\boldsymbol{\delta}} \end{split}$$

and $(\delta_n, \tilde{\delta}_n)$ unique solutions of the system:

$$\begin{split} \delta &= &\frac{1}{n} \mathrm{tr} \left[\mathbf{D} \left(-z (\mathbf{I} + \tilde{\boldsymbol{\delta}} \mathbf{D}) + \mathbf{A} (\mathbf{I} + \boldsymbol{\delta} \tilde{\mathbf{D}})^{-1} \mathbf{A}^* \right)^{-1} \right] \\ \tilde{\boldsymbol{\delta}} &= &\frac{1}{n} \mathrm{tr} \left[\tilde{\mathbf{D}} \left(-z (\mathbf{I} + \boldsymbol{\delta} \tilde{\mathbf{D}}) + \mathbf{A}^* (\mathbf{I} + \tilde{\boldsymbol{\delta}} \mathbf{D})^{-1} \mathbf{A} \right)^{-1} \right] \end{split}$$

lacktriangleright moreover, $\mathcal{I}-\mathcal{I}_{ ext{approx}}=\mathcal{O}\left(rac{1}{N^2}
ight)$ for Gaussian entries

Ergodic capacity and precoding

MIMO channel with precoding

 \triangleright The channel becomes $\mathbf{HQ}^{1/2}$, mutual information becomes

$$\mathcal{I}^{\mathbf{e}}(\mathbf{Q}) = \frac{1}{N} \mathbb{E} \log \det \left(\mathbf{I}_N + \frac{\mathbf{H} \mathbf{Q} \mathbf{H}^*}{\sigma^2} \right)$$

▶ We can still compute a "large random matrix" approximation

$$\begin{split} \mathcal{I}_{\text{approx}}^{e} &= & \mathcal{I}_{\text{approx}}^{e}(\mathbf{Q}) \\ &= & \frac{1}{N} \log \det \left[\mathbf{I} + \tilde{\boldsymbol{\delta}} \mathbf{D} + \frac{1}{\sigma^{2}} \mathbf{A} \mathbf{Q}^{1/2} (\mathbf{I} + \boldsymbol{\delta} \tilde{\mathbf{D}} \mathbf{Q})^{-1} \mathbf{Q}^{1/2} \mathbf{A}^{*} \right] \\ &+ \frac{1}{N} \log \det \left(\mathbf{I} + \boldsymbol{\delta} \tilde{\mathbf{D}} \mathbf{Q} \right) - \frac{\sigma^{2} n}{N} \boldsymbol{\delta} \tilde{\boldsymbol{\delta}} \end{split}$$

Ergodic capacity

The **ergodic capacity** is obtained by optimizing the mutual information with respect to linear precoders $\mathbf{Q}^{1/2}$ with finite energy:

$$C = \sup_{\mathbf{Q} \ge 0; \frac{1}{K} \operatorname{Tr} \mathbf{Q} \le 1} \frac{1}{K} \mathbb{E} \log \det \left(\mathbf{I}_N + \frac{\mathbf{H} \mathbf{Q} \mathbf{H}^*}{\sigma^2} \right)$$

Approximating problem

Consider the following approximating problem:

$$C_{\text{approx}} = \sup_{\mathbf{Q} \geq 0; \frac{1}{K} \text{Tr } \mathbf{Q} \leq 1} \mathcal{I}_{\text{approx}}^{\mathbf{e}}(\mathbf{Q})$$

Results

- 1. We have $C C_{\texttt{approx}} \to 0$
- 2. $\mathbf{Q}^* = \arg\max \mathcal{I}^{\mathbf{e}}(\mathbf{Q})$ close to $\mathbf{Q}^*_{approx} = \arg\max \mathcal{I}^{\mathbf{e}}_{approx}(\mathbf{Q})$
- 3. Exists an iterative algorithm (i.e. quick) to compute $C_{
 m approx}$ and ${f Q}^*_{
 m approx}$

Simulations

▶ The iterative algorithm outperforms Paulraj & Vu algorithm with respect to the complexity (average time per iterations - in s):

	N=n=2	N=n=4	N = n = 8
Paulraj-Vu	0.75	8.2	138
iterative algo.	10^{-2}	3.10^{-2}	7.10^{-2}

Figure : Comparing with Vu & Paulraj algorithm