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1-D RLL Constraints

Let 0 ≤ d < k ≤ ∞ be fixed integers (k is allowed to be ∞).

Definition
A binary sequence x1x2 . . . xn ∈ {0, 1}n satisfies the (one-dimensional)

(d , k)-runlength-limited (RLL) constraint if any pair of successive 1s in
the sequence is separated by at least d and at most k 0s.

Codes consisting of sequences satisfying a (d , k)-RLL constraint are used
for writing information on magnetic and optical recording devices such as
hard drives and CDs/DVDs.

The maximum rate of such a code is given by the capacity of the
(d , k)-RLL constraint, defined as

Cd,k = lim
n→∞

1

n
log2 Z (d,k)

n

where Z
(d,k)
n denotes the number of binary length-n sequences satisfying

the constraint.

2 / 41



1-D RLL Constraints

Let 0 ≤ d < k ≤ ∞ be fixed integers (k is allowed to be ∞).

Definition
A binary sequence x1x2 . . . xn ∈ {0, 1}n satisfies the (one-dimensional)

(d , k)-runlength-limited (RLL) constraint if any pair of successive 1s in
the sequence is separated by at least d and at most k 0s.

Codes consisting of sequences satisfying a (d , k)-RLL constraint are used
for writing information on magnetic and optical recording devices such as
hard drives and CDs/DVDs.

The maximum rate of such a code is given by the capacity of the
(d , k)-RLL constraint, defined as

Cd,k = lim
n→∞

1

n
log2 Z (d,k)

n

where Z
(d,k)
n denotes the number of binary length-n sequences satisfying

the constraint.

2 / 41



The 1-D (1,∞)-RLL Constraint

A binary sequence satisfies the (1,∞)-RLL constraint if it does not
contain 1s in adjacent (i.e., consecutive) positions.

Some easy facts about Zn := Z
(1,∞)
n :

I Zn, n = 1, 2, 3, . . ., forms a Fibonacci sequence

Z1 = 2, Z2 = 3, and Zn = Zn−1 + Zn−2 for all n ≥ 3

I C1,∞ := lim
n→∞

1
n log2 Zn = log2

1+
√

5
2 = 0.6942 . . .
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The 2-D Hard Square Constraint

Definition
A binary m × n array satisfies the 2-D hard square constraint (also

called the 2-D (1,∞)-RLL constraint) if no row or column of the array
contains 1s in adjacent positions.

Each such array can also be viewed as an independent set in the m × n
grid graph.

4 / 41



The Hard-Square Entropy Constant

Let Zm,n denote the number of such m × n arrays.

It can be shown (for example, using subaddivity arguments) that the limit

η = lim
m,n→∞

1

mn
log2(Zm,n)

exists. This limit is called the hard-square entropy constant.

Open Problem: Determine the hard-square entropy constant η.

What is known:

I Various upper and lower bounds, resulting in the numerical estimate

η = 0.58789116 . . .

[Justesen & Forchhammer, 1999]

I η is computable to within an accuracy of 1
N in time polynomial in N

[Pavlov, 2010]
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Binary Ising Model on the 2-D Lattice
113 2

3 4 5 6

7 8 9 10

11 12

14

15 16

I m × n grid with mn vertices and 2mn − (m + n) edges
I Variable xi ∈ {0, 1} at each vertex i
I Pairwise function f : {0, 1} × {0, 1} → R+

I Defines a joint distribution on {0, 1}m×n:

p(x) =
1

Z

∏
i∼j

f (xi , xj)

I Quantity of interest:

Z =
∑
x

∏
i∼j

f (xi , xj)

Called the partition function.
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Special Case: Hard-Square Model

13 2 14

6543

7 8 9 10

16121115

1

f (a, b) = 1(a,b) 6=(1,1)

The partition function here is precisely Zm,n.
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Gibbs Free Energy

Define the energy of a configuration x ∈ {0, 1}m×n to be

E (x) = −
∑
i∼j

log f (xi , xj)

so that p(x) = 1
Z exp(−E (x)).

For an arbitrary probability distribution b(x) on {0, 1}m×n, define

I the average energy

U(b) =
∑
x

b(x)E (x)

I the entropy

H(b) = −
∑
x

b(x) log b(x)

I the Gibbs free energy

F (b) = U(b)− H(b)
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A Variational Principle

− log Z = min
b

F (b)

Proof: Write

F (b) = − log Z +
∑
x

b(x) log
b(x)

p(x)

= − log Z + D(b ‖ p)
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The Bethe Free Energy
Let (bi,j(xi , xj)) and (bi (xi )) be “beliefs” defined for all edges i ∼ j and
vertices i , respectively. These must satisfy the following:

I the bi,js and bi s are probability mass functions on {0, 1}2 and {0, 1},
respectively

I
∑

xj
bi,j(xi , xj) = bi (xi ) (consistency)

We then define

I the Bethe average energy

UB({bi,j}, {bi}) =
∑
i∼j

∑
(a,b)∈{0,1}2

bi,j(a, b) log f (a, b)

I the Bethe entropy

HB({bi,j}, {bi}) =
∑
i∼j

H(bi,j)−
∑
i

(di − 1)H(bi )

where di denotes the degree of the vertex i .

I the Bethe free energy

FB({bi,j}, {bi}) = UB({bi,j}, {bi})− HB({bi,j}, {bi})
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The Bethe Approximation

− log ZB := min
{bi,j},{bi}

FB({bi,j}, {bi})

Theorem (Yedidia, Freeman and Weiss, 2001)
Stationary points of the Bethe free energy functional correspond to the
beliefs at fixed points of the belief propagation algorithm.
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Belief Propagation (The Sum-Product Algorithm)

ma→imi→a

a
i i j

a

Message update rules:

I mi→a(xi ) =
∏

c∈N(i)\a mc→i (xi )

I ma→i (xi ) =
∑

xj
f (xi , xj)mj→a(xj)

Beliefs:

I bi (xi ) ∝
∏

a∈N(i) ma→i (xi )

I ba(xi , xj) ∝ f (xi , xj)mi→a(xi )mj→a(xj)

(the use of ∝ indicates that the beliefs must be normalized to sum to 1)
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How Good is the Bethe Approximation?

For beliefs {bi,j} and {bi} at a fixed point of the BP algorithm, define

ZBP({bi,j}, {bi}) := exp
(
−FB({bi,j}, {bi})

)

Theorem (Wainwright, Jaakkola and Willsky, 2003)
At any fixed point of the BP algorithm,

Z

ZBP({bi,j}, {bi})
=
∑
x

∏
i∼j bi,j(xi , xj)∏
i bi (xi )di−1

Theorem (Chertkov and Chernyak, 2006)
At any fixed point of the BP algorithm,

Z

ZBP({bi,j}, {bi})
= 1 + a finite series of correction terms
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How Good is the Bethe Approximation?

Theorem (Ruozzi, 2012)
For the binary Ising model considered here,

Z ≥ ZB.
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Numerical Results for the Hard-Square Model

Recall: η = 0.58789116 . . ..

[Plot above is from Sabato and Molkaraie, 2012]
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Regions and Region Graphs

13 2 14
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7 8 9 10
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8, 9,
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9,
12 12, 16

9, 10

R = R0 ∪R1 ∪R2, where

I R0: all the 2x2 subgrids

I R1: all the non-boundary edges (intersections of regions in R0)

I R2: all the non-boundary vertices (intersections of regions in R1)
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Region-Based Beliefs

Beliefs bR(xR) are defined for all regions R ∈ R. These must satisfy the
following:

I each bR is a probability mass function on {0, 1}|R|, where |R|
denotes the size (number of vertices) of the region R;

I for regions P ⊂ R, we have
∑

xR\P
bR(xR) = bP(xP) (consistency)
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Region-Based Free Energy

Given a set of beliefs {bR : R ∈ R}, we define for each region R ∈ R:

I the average energy of R

UR =
∑

xR∈{0,1}|R|

∑
i,j∈R:i∼j

bR(xR) log f (xi , xj)

I the entropy of bR

HR = −
∑
xR

bR(xR) log bR(xR)

I the free energy of R
FR = UR − HR

The region-based free energy of the model (R, {bR}) is defined as

FR({bR}) =
∑
R∈R0

FR −
∑
R∈R1

FR +
∑
R∈R2

FR
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The Kikuchi Approximation

− log ZR = min
{bR}

FR({bR})

Theorem (Yedidia, Freeman and Weiss, 2001)
Stationary points of the region-based free energy functional correspond to
the beliefs at fixed points of a generalized belief propagation (GBP)
algorithm.
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GBP Message Updates (The Parent-to-Child Algorithm)
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f (x4, x5)f (x4, x8)f (x8, x9)
∏
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(green messages)
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GBP Beliefs (The Parent-to-Child Algorithm)
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How Good is the Kikuchi Approximation?

Looking at the hard-square model again . . .

Recall: η = 0.58789116 . . ..

[Plot above is from Sabato and Molkaraie, 2012]
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What We Conjecture

Conjecture (Chan et al., ISIT’14)
For the binary Ising model considered here,

1

mn
log Z − 1

mn
log ZR = o(1)

where o(1) is a positive term that goes to 0 as m, n→∞.

In other words, we conjecture that

Z

ZR
= exp

(
mn o(1)

)
.
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Attacking the Conjecture: The Opening Gambit

For beliefs {bR} at a fixed point of the GBP algorithm, define

ZGBP({bR}) := exp
(
−FR({bR})

)
Theorem (Chan et al., ISIT’14)
At a fixed point of the GBP algorithm,

Z

ZGBP({bR})
=
∑
x

∏
R∈R0∪R2

bR(xR)∏
R∈R1

bR(xR)

Compare this with

Theorem (Wainwright, Jaakkola and Willsky, 2003)
At any fixed point of the BP algorithm,

Z

ZBP({bi,j}, {bi})
=
∑
x

∏
i∼j bi,j(xi , xj)∏
i bi (xi )di−1
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Question to be Addressed

Question

For the binary Ising model considered here, is it true that the beliefs
{bR} at a fixed point of GBP satisfy

1

mn
log
∑
x

∏
R∈R0∪R2

bR(xR)∏
R∈R1

bR(xR)
= o(1)

where o(1) is a positive term that goes to 0 as m, n→∞?
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What We Can Prove . . .

Theorem (Chan et al., ISIT’14)

For a binary Ising model of size at most 5× 5, or size equal to 3× n (or
n × 3) we have ∑

x

∏
R∈R0∪R2

bR(xR)∏
R∈R1

bR(xR)
≥ 1

at any fixed point of GBP. Consequently,

Z ≥ ZGBP({bR})

at any fixed point of GBP.
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A Key Tool: Log-Supermodularity

A function g : {0, 1}k → R+ is called log-supermodular if

g(x)g(y) ≤ g(x ∨ y)g(x ∧ y)

for all x, y ∈ {0, 1}k .

Log-supermodularity is preserved under

I multiplication: g1, g2 log-supermodular =⇒ g1g2 log-supermodular

I marginalization: g log-supermodular =⇒
∑
x1

g(x) log-supermod

(this follows from the Ahlswede-Daykin four functions theorem)
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Log-Supermodularity of Functions with Binary Inputs

I A function f : {0, 1}2 → R+ is log-supermodular iff

f (01)f (10) ≤ f (00)f (11)

I If f : {0, 1}2 → R+ is not log-supermodular, then the function

f̄ (a, b) = f (a, 1− b)

is log-supermodular.
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A Local Transformation

13 2 14

6543

7 8 9 10

16121115

1

16

14

53

8 10

1215

113 2

4

7

6

9

11

A binary Ising model defined by local functions f is equivalent to a binary
Ising model defined by f̄ :

I The partition functions are equal: Z (f ) = Z (f̄ )

I For each set of beliefs {bR}, there exists a corresponding {b̄R} such
that ∑

x

∏
R∈R0∪R2

bR(xR)∏
R∈R1

bR(xR)
=
∑
x

∏
R∈R0∪R2

b̄R(xR)∏
R∈R1

b̄R(xR)
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Ising Models with Log-Supermodular Local Functions

Lemma
In a binary Ising model with log-supermodular local functions, the BP
and GBP message update rules preserve log-supermodularity of messages.

Thus, if BP and GBP are initialized with log-supermodular messages,
then

I the messages in subsequent iterations of BP and GBP remain
log-supermodular, and

I the BP-based beliefs bi,j , bi and the GBP-based beliefs bR are all
log-supermodular.
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The 2× 2 Grid

4

1

3

2

The Kikuchi approximation is exact: ZR = Z .

Theorem
For the 2× 2 grid, at any fixed point of BP, we have

Z

ZBP({bi,j}, {bi})
= 1 +

∆1,2∆2,3∆3,4∆4,1∏
i bi (0)bi (1)

,

where ∆i,j = bi,j(00)bi,j(11)− bi,j(01)bi,j(10).
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Proof of 2× 2 Theorem
I Start with Wainwright-Jaakkola-Willsky:

Z

ZBP({bi,j}, {bi})
=

∑
x1,...,x4

∏
i∼j bi,j(xi , xj)∏

i bi (xi )

=
∑

x1,...,x4

∏
i

bi (xi )
∏
i∼j

bi,j(xi , xj)

bi (xi )bj(xj)

I Verify that
bi,j(xi , xj)

bi (xi )bj(xj)
= 1 +

s(xi )s(xj)∆ij

bi (xi )bj(xj)
,

where s(0) = −1 and s(1) = +1.

I Hence,

Z

ZBP({bi,j}, {bi})
=

∑
x1,...,x4

∏
i

bi (xi )
∏
i∼j

(
1 +

s(xi )s(xj)∆ij

bi (xi )bj(xj)

)
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Proof (cont’d)
I Expand out the product

∏
i∼j

(
1 +

s(xi )s(xj )∆ij

bi (xi )bj (xj )

)
:

Z

ZBP
=

∑
x1,...,x4

∏
i

bi (xi )

(
1 + · · ·+

∏
i∼j ∆i,j∏
i bi (xi )2

)
I Note that ∑

x1,...,x4

∏
i

bi (xi ) =
∏
i

∑
xi

bi (xi ) = 1.

and ∑
x1,...,x4

∏
i

bi (xi )

∏
i∼j ∆i,j∏
i bi (xi )2

=
∏
i∼j

∆i,j

∑
x1,...,x4

1∏
i bi (xi )

=
∏
i∼j

∆i,j

∏
i

∑
xi

1

bi (xi )

=
∏
i∼j

∆i,j

∏
i

1

bi (0)bi (1)

All other terms
∑

x1,...,x4

∏
i

bi (xi )(· · · ) vanish.
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The 3× 3 Grid

1

2 5 3

4

Theorem
For the 3× 3 grid, at any fixed point of GBP, the ratio Z/ZGBP({bR}) is
given by

1 + b5(0)

(
∆(0)

b51(00)b51(01)

)4

+ b5(1)

(
∆(1)

b51(10)b51(11)

)4

,

where ∆(x) = b512(x00)b512(x11)− b512(x01)b512(x10).
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Proof of 3× 3 Theorem

94

52 3

16 7

8

I Start with

Z

ZGBP({bR})
=

∑
x1,...,x9

b(x1526)b(x1537)b(x2548)b(x3549)b(x5)

b(x15)b(x25)b(x35)b(x45)

I Marginalize out x6, x7, x8, x9:

Z

ZGBP({bR})
=

∑
x1,...,x5

b(x152)b(x153)b(x254)b(x354)b(x5)

b(x15)b(x25)b(x35)b(x45)
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Proof (cont’d)

I Now, define

B(x) =
b(x15)b(x25)b(x35)b(x45)

b(x5)3

and write Z
ZGBP({bR}) as

∑
x1,...,x5

B(x) · b(x152)b(x5)

b(x15)b(x25)
· b(x153)b(x5)

b(x15)b(x35)
· b(x254)b(x5)

b(x25)b(x45)
· b(x354)b(x5)

b(x35)b(x45)

I Next, verify that

b(xi5j)b(x5)

b(xi5)b(xj5)
= 1 +

s(xi )s(xj)∆5ij(x5)

b(xi5)b(xj5)

where s(0) = −1 and s(1) = +1.

Plug this back into the expression for Z
ZGBP({bR}) and simplify.
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Proof (cont’d)

I Upon simplification, we obtain

Z

ZGBP({bR})
= 1 +

∑
x5

∆(x5)4

b(x5)3

∑
x1,...,x4

4∏
i=1

1

b(xi5)

I This further simplifies to

Z

ZGBP({bR})
= 1 +

∑
x5

∆(x5)4

b(x5)3

(
1

b(x50)
+

1

b(x51)

)4

= 1 +
∑
x5

b(x5)

(
∆(x5)

b(x50)b(x51)

)4
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