Estimating the Capacity of the 2-D Hard Square Constraint Using Generalized Belief Propagation

Navin Kashyap

(joint work with Eric Chan, Mahdi Jafari Siavoshani, Sidharth Jaggi and Pascal Vontobel, Chinese University of Hong Kong)

> Conference on Applied Mathematics University of Hong Kong August 23, 2016

1-D RLL Constraints

Let $0 \le d < k \le \infty$ be fixed integers (k is allowed to be ∞).

Definition

A binary sequence $x_1x_2...x_n \in \{0,1\}^n$ satisfies the (one-dimensional) (d,k)-runlength-limited (RLL) constraint if any pair of successive 1s in the sequence is separated by at least d and at most k 0s.

1-D RLL Constraints

Let $0 \le d < k \le \infty$ be fixed integers (k is allowed to be ∞).

Definition

A binary sequence $x_1x_2...x_n \in \{0,1\}^n$ satisfies the (one-dimensional) (d,k)-runlength-limited (RLL) constraint if any pair of successive 1s in the sequence is separated by at least d and at most k 0s.

Codes consisting of sequences satisfying a (d, k)-RLL constraint are used for writing information on magnetic and optical recording devices such as hard drives and CDs/DVDs.

The maximum rate of such a code is given by the capacity of the (d, k)-RLL constraint, defined as

$$C_{d,k} = \lim_{n \to \infty} \frac{1}{n} \log_2 Z_n^{(d,k)}$$

where $Z_n^{(d,k)}$ denotes the number of binary length-n sequences satisfying the constraint.

The 1-D $(1, \infty)$ -RLL Constraint

A binary sequence satisfies the $(1, \infty)$ -RLL constraint if it does not contain 1s in adjacent (i.e., consecutive) positions.

Some easy facts about $Z_n := Z_n^{(1,\infty)}$:

 $ightharpoonup Z_n$, $n=1,2,3,\ldots$, forms a Fibonacci sequence

$$Z_1 = 2$$
, $Z_2 = 3$, and $Z_n = Z_{n-1} + Z_{n-2}$ for all $n \ge 3$

 $C_{1,\infty} := \lim_{n \to \infty} \frac{1}{n} \log_2 Z_n = \log_2 \frac{1 + \sqrt{5}}{2} = 0.6942...$

The 2-D Hard Square Constraint

Definition

A binary $m \times n$ array satisfies the 2-D hard square constraint (also called the 2-D $(1, \infty)$ -RLL constraint) if no row or column of the array contains 1s in adjacent positions.

Each such array can also be viewed as an independent set in the $m \times n$ grid graph.

The Hard-Square Entropy Constant

Let $Z_{m,n}$ denote the number of such $m \times n$ arrays.

It can be shown (for example, using subaddivity arguments) that the limit

$$\eta = \lim_{m,n\to\infty} \frac{1}{mn} \log_2(Z_{m,n})$$

exists. This limit is called the hard-square entropy constant.

Open Problem: Determine the hard-square entropy constant η .

The Hard-Square Entropy Constant

Let $Z_{m,n}$ denote the number of such $m \times n$ arrays.

It can be shown (for example, using subaddivity arguments) that the limit

$$\eta = \lim_{m,n\to\infty} \frac{1}{mn} \log_2(Z_{m,n})$$

exists. This limit is called the hard-square entropy constant.

Open Problem: Determine the hard-square entropy constant η .

What is known:

Various upper and lower bounds, resulting in the numerical estimate

$$\eta = 0.58789116...$$

[Justesen & Forchhammer, 1999]

▶ η is computable to within an accuracy of $\frac{1}{N}$ in time polynomial in N [Pavlov, 2010]

Binary Ising Model on the 2-D Lattice

- ▶ $m \times n$ grid with mn vertices and 2mn (m+n) edges
- ▶ Variable $x_i \in \{0, 1\}$ at each vertex i
- ▶ Pairwise function $f: \{0,1\} \times \{0,1\} \rightarrow \mathbb{R}_+$
- ▶ Defines a joint distribution on $\{0,1\}^{m \times n}$:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{i \sim j} f(x_i, x_j)$$

Binary Ising Model on the 2-D Lattice

- ▶ $m \times n$ grid with mn vertices and 2mn (m+n) edges
- ▶ Variable $x_i \in \{0,1\}$ at each vertex i
- ▶ Pairwise function $f: \{0,1\} \times \{0,1\} \rightarrow \mathbb{R}_+$
- ▶ Defines a joint distribution on $\{0,1\}^{m \times n}$:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{i \sim j} f(x_i, x_j)$$

Quantity of interest:

$$Z = \sum_{\mathbf{x}} \prod_{i \sim i} f(x_i, x_j)$$

Called the partition function.

Special Case: Hard-Square Model

$$f(a,b) = \mathbf{1}_{(a,b)\neq(1,1)}$$

The partition function here is precisely $Z_{m,n}$.

Gibbs Free Energy

Define the energy of a configuration $\mathbf{x} \in \{0,1\}^{m \times n}$ to be

$$E(\mathbf{x}) = -\sum_{i \sim j} \log f(x_i, x_j)$$

so that
$$p(\mathbf{x}) = \frac{1}{Z} \exp(-E(\mathbf{x}))$$
.

Gibbs Free Energy

Define the energy of a configuration $\mathbf{x} \in \{0,1\}^{m \times n}$ to be

$$E(\mathbf{x}) = -\sum_{i \sim j} \log f(x_i, x_j)$$

so that $p(\mathbf{x}) = \frac{1}{Z} \exp(-E(\mathbf{x}))$.

For an arbitrary probability distribution $b(\mathbf{x})$ on $\{0,1\}^{m\times n}$, define

▶ the average energy

$$U(b) = \sum_{\mathbf{x}} b(\mathbf{x}) E(\mathbf{x})$$

the entropy

$$H(b) = -\sum_{\mathbf{x}} b(\mathbf{x}) \log b(\mathbf{x})$$

the Gibbs free energy

$$F(b) = U(b) - H(b)$$

A Variational Principle

$$-\log Z = \min_b F(b)$$

Proof: Write

$$F(b) = -\log Z + \sum_{\mathbf{x}} b(\mathbf{x}) \log \frac{b(\mathbf{x})}{p(\mathbf{x})}$$
$$= -\log Z + D(b \parallel p)$$

The Bethe Free Energy

Let $(b_{i,j}(x_i,x_j))$ and $(b_i(x_i))$ be "beliefs" defined for all edges $i \sim j$ and vertices i, respectively. These must satisfy the following:

- ▶ the $b_{i,j}$ s and b_i s are probability mass functions on $\{0,1\}^2$ and $\{0,1\}$, respectively

The Bethe Free Energy

Let $(b_{i,j}(x_i,x_j))$ and $(b_i(x_i))$ be "beliefs" defined for all edges $i \sim j$ and vertices i, respectively. These must satisfy the following:

- ▶ the $b_{i,j}$ s and b_i s are probability mass functions on $\{0,1\}^2$ and $\{0,1\}$, respectively

We then define

▶ the Bethe average energy

$$U_{\mathrm{B}}(\{b_{i,j}\},\{b_i\}) = \sum_{i \sim j} \sum_{(a,b) \in \{0,1\}^2} b_{i,j}(a,b) \log f(a,b)$$

▶ the Bethe entropy

$$H_{\mathsf{B}}(\{b_{i,j}\},\{b_i\}) = \sum_{i \sim j} H(b_{i,j}) - \sum_{i} (d_i - 1)H(b_i)$$

where d_i denotes the degree of the vertex i.

▶ the Bethe free energy

$$F_{B}(\{b_{i,j}\},\{b_{i}\}) = U_{B}(\{b_{i,j}\},\{b_{i}\}) - H_{B}(\{b_{i,j}\},\{b_{i}\})$$

The Bethe Approximation

$$-\log Z_{\mathrm{B}} := \min_{\{b_{i,j}\},\{b_i\}} F_{\mathrm{B}}(\{b_{i,j}\},\{b_i\})$$

The Bethe Approximation

$$-\log Z_{\mathrm{B}} := \min_{\{b_{i,j}\},\{b_i\}} F_{\mathrm{B}}(\{b_{i,j}\},\{b_i\})$$

Theorem (Yedidia, Freeman and Weiss, 2001)

Stationary points of the Bethe free energy functional correspond to the beliefs at fixed points of the belief propagation algorithm.

Belief Propagation (The Sum-Product Algorithm)

Message update rules:

- $ightharpoonup m_{a
 ightarrow i}(x_i) = \sum_{x_j} f(x_i, x_j) m_{j
 ightarrow a}(x_j)$

Beliefs:

- \blacktriangleright $b_i(x_i) \propto \prod_{a \in N(i)} m_{a \to i}(x_i)$
- $b_a(x_i, x_j) \propto f(x_i, x_j) m_{i \to a}(x_i) m_{j \to a}(x_j)$

(the use of \propto indicates that the beliefs must be normalized to sum to 1)

How Good is the Bethe Approximation?

For beliefs $\{b_{i,j}\}$ and $\{b_i\}$ at a fixed point of the BP algorithm, define

$$Z_{\mathrm{BP}}(\{b_{i,j}\},\{b_i\}) := \exp(-F_{\mathrm{B}}(\{b_{i,j}\},\{b_i\}))$$

Theorem (Wainwright, Jaakkola and Willsky, 2003) At any fixed point of the BP algorithm,

$$\frac{Z}{Z_{\text{BP}}(\{b_{i,j}\},\{b_i\})} \; = \; \sum_{\mathbf{x}} \frac{\prod_{i \sim j} b_{i,j}(x_i,x_j)}{\prod_{i} b_i(x_i)^{d_i-1}}$$

How Good is the Bethe Approximation?

For beliefs $\{b_{i,j}\}$ and $\{b_i\}$ at a fixed point of the BP algorithm, define

$$Z_{\mathrm{BP}}(\{b_{i,j}\},\{b_i\}) := \exp(-F_{\mathrm{B}}(\{b_{i,j}\},\{b_i\}))$$

Theorem (Wainwright, Jaakkola and Willsky, 2003) At any fixed point of the BP algorithm,

$$\frac{Z}{Z_{\text{BP}}(\{b_{i,j}\},\{b_i\})} \; = \; \sum_{\mathbf{x}} \frac{\prod_{i \sim j} b_{i,j}(x_i,x_j)}{\prod_{i} b_i(x_i)^{d_i-1}}$$

Theorem (Chertkov and Chernyak, 2006)

At any fixed point of the BP algorithm,

$$\frac{Z}{Z_{\text{BP}}(\{b_{i,j}\},\{b_i\})} = 1 + a \text{ finite series of correction terms}$$

How Good is the Bethe Approximation?

Theorem (Ruozzi, 2012)

For the binary Ising model considered here,

$$Z \geq Z_{\rm B}$$
.

Numerical Results for the Hard-Square Model

Recall: $\eta = 0.58789116...$

[Plot above is from Sabato and Molkaraie, 2012]

Regions and Region Graphs

$\mathcal{R} = \mathcal{R}_0 \cup \mathcal{R}_1 \cup \mathcal{R}_2$, where

- $ightharpoonup \mathcal{R}_0$: all the 2x2 subgrids
- $ightharpoonup \mathcal{R}_1$: all the non-boundary edges (intersections of regions in \mathcal{R}_0)
- $ightharpoonup \mathcal{R}_2$: all the non-boundary vertices (intersections of regions in \mathcal{R}_1)

Region-Based Beliefs

Beliefs $b_R(\mathbf{x}_R)$ are defined for all regions $R \in \mathcal{R}$. These must satisfy the following:

- ▶ each b_R is a probability mass function on $\{0,1\}^{|R|}$, where |R| denotes the size (number of vertices) of the region R;
- ▶ for regions $P \subset R$, we have $\sum_{\mathbf{x}_{R} \setminus P} b_R(\mathbf{x}_R) = b_P(\mathbf{x}_P)$ (consistency)

Region-Based Free Energy

Given a set of beliefs $\{b_R : R \in \mathcal{R}\}$, we define for each region $R \in \mathcal{R}$:

▶ the average energy of *R*

$$U_R = \sum_{\mathbf{x}_R \in \{0,1\}^{|R|}} \sum_{i,j \in R: i \sim j} b_R(\mathbf{x}_R) \log f(x_i, x_j)$$

 \blacktriangleright the entropy of b_R

$$H_R = -\sum_{\mathbf{x}_R} b_R(\mathbf{x}_R) \log b_R(\mathbf{x}_R)$$

▶ the free energy of *R*

$$F_R = U_R - H_R$$

Region-Based Free Energy

Given a set of beliefs $\{b_R : R \in \mathcal{R}\}$, we define for each region $R \in \mathcal{R}$:

▶ the average energy of *R*

$$U_R = \sum_{\mathbf{x}_R \in \{0,1\}^{|R|}} \sum_{i,j \in R: i \sim j} b_R(\mathbf{x}_R) \log f(x_i, x_j)$$

 \blacktriangleright the entropy of b_R

$$H_R = -\sum_{\mathbf{x}_R} b_R(\mathbf{x}_R) \log b_R(\mathbf{x}_R)$$

▶ the free energy of *R*

$$F_R = U_R - H_R$$

The region-based free energy of the model $(\mathcal{R},\{b_R\})$ is defined as

$$F_{\mathcal{R}}(\{b_R\}) = \sum_{R \in \mathcal{R}_0} F_R - \sum_{R \in \mathcal{R}_1} F_R + \sum_{R \in \mathcal{R}_2} F_R$$

The Kikuchi Approximation

$$-\log Z_{\mathcal{R}} = \min_{\{b_R\}} F_{\mathcal{R}}(\{b_R\})$$

The Kikuchi Approximation

$$-\log Z_{\mathcal{R}} = \min_{\{b_R\}} F_{\mathcal{R}}(\{b_R\})$$

Theorem (Yedidia, Freeman and Weiss, 2001)

Stationary points of the region-based free energy functional correspond to the beliefs at fixed points of a generalized belief propagation (GBP) algorithm.

The Kikuchi Approximation

$$-\log Z_{\mathcal{R}} = \min_{\{b_R\}} F_{\mathcal{R}}(\{b_R\})$$

Theorem (Yedidia, Freeman and Weiss, 2001)

Stationary points of the region-based free energy functional correspond to the beliefs at fixed points of a generalized belief propagation (GBP) algorithm.

GBP Message Updates (The Parent-to-Child Algorithm)

$$m_{(4,5,8,9)\to(5,9)}(x_5,x_9) = \frac{\sum_{x_4,x_8} f(x_4,x_5)f(x_4,x_8)f(x_8,x_9) \prod \text{(red messages)}}{\prod \text{(green messages)}}$$

GBP Message Updates (The Parent-to-Child Algorithm)

$$m_{(4,5)\to(5)}(x_5) = \sum_{x_4} f(x_4, x_5) \prod \text{(red messages)}$$

GBP Beliefs (The Parent-to-Child Algorithm)

$$b_{(4,5,8,9)}(x_4,x_5,x_8,x_9) \propto f(x_4,x_5)f(x_4,x_8)f(x_5,x_9)f(x_8,x_9) \prod \text{(red messages)}$$

GBP Beliefs (The Parent-to-Child Algorithm)

$$b_{(4,5)}(x_4,x_5) \propto f(x_4,x_5) \prod \text{(red messages)}$$

GBP Beliefs (The Parent-to-Child Algorithm)

$$b_{(5)}(x_5) \propto \prod \text{(red messages)}$$

How Good is the Kikuchi Approximation?

Looking at the hard-square model again . . .

Recall: $\eta = 0.58789116...$

[Plot above is from Sabato and Molkaraie, 2012]

What We Conjecture

Conjecture (Chan et al., ISIT'14)

For the binary Ising model considered here,

$$\frac{1}{mn}\log Z - \frac{1}{mn}\log Z_{\mathcal{R}} = o(1)$$

where o(1) is a positive term that goes to 0 as $m, n \to \infty$.

In other words, we conjecture that

$$\frac{Z}{Z_{\mathcal{R}}} = \exp(mn \, o(1)).$$

Attacking the Conjecture: The Opening Gambit

For beliefs $\{b_R\}$ at a fixed point of the GBP algorithm, define

$$Z_{\mathrm{GBP}}(\{b_R\}) := \exp(-F_{\mathcal{R}}(\{b_R\}))$$

Theorem (Chan et al., ISIT'14)

At a fixed point of the GBP algorithm,

$$\frac{Z}{Z_{\text{GBP}}(\{b_R\})} = \sum_{\mathbf{x}} \frac{\prod_{R \in \mathcal{R}_0 \cup \mathcal{R}_2} b_R(\mathbf{x}_R)}{\prod_{R \in \mathcal{R}_1} b_R(\mathbf{x}_R)}$$

Attacking the Conjecture: The Opening Gambit

For beliefs $\{b_R\}$ at a fixed point of the GBP algorithm, define

$$Z_{\text{GBP}}(\{b_R\}) := \exp(-F_{\mathcal{R}}(\{b_R\}))$$

Theorem (Chan et al., ISIT'14)

At a fixed point of the GBP algorithm,

$$\frac{Z}{Z_{\text{GBP}}(\{b_R\})} = \sum_{\mathbf{x}} \frac{\prod_{R \in \mathcal{R}_0 \cup \mathcal{R}_2} b_R(\mathbf{x}_R)}{\prod_{R \in \mathcal{R}_1} b_R(\mathbf{x}_R)}$$

Compare this with

Theorem (Wainwright, Jaakkola and Willsky, 2003) At any fixed point of the BP algorithm,

$$\frac{Z}{Z_{\text{BP}}(\{b_{i,j}\},\{b_i\})} \; = \; \sum_{\mathbf{x}} \frac{\prod_{i \sim j} b_{i,j}(x_i,x_j)}{\prod_{i} b_i(x_i)^{d_i-1}}$$

Question to be Addressed

Question

For the binary Ising model considered here, is it true that the beliefs $\{b_R\}$ at a fixed point of GBP satisfy

$$\frac{1}{mn}\log\sum_{\mathbf{x}}\frac{\prod_{R\in\mathcal{R}_0\cup\mathcal{R}_2}b_R(\mathbf{x}_R)}{\prod_{R\in\mathcal{R}_1}b_R(\mathbf{x}_R)}=o(1)$$

where o(1) is a positive term that goes to 0 as $m, n \to \infty$?

What We Can Prove ...

Theorem (Chan et al., ISIT'14)

For a binary Ising model of size at most 5×5 , or size equal to $3 \times n$ (or $n \times 3$) we have

$$\sum_{\mathbf{x}} \frac{\prod_{R \in \mathcal{R}_0 \cup \mathcal{R}_2} b_R(\mathbf{x}_R)}{\prod_{R \in \mathcal{R}_1} b_R(\mathbf{x}_R)} \geq 1$$

at any fixed point of GBP. Consequently,

$$Z \geq Z_{GBP}(\{b_R\})$$

at any fixed point of GBP.

A Key Tool: Log-Supermodularity

A function $g:\{0,1\}^k o \mathbb{R}_+$ is called log-supermodular if

$$g(\mathbf{x})g(\mathbf{y}) \leq g(\mathbf{x} \vee \mathbf{y})g(\mathbf{x} \wedge \mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in \{0, 1\}^k$.

A Key Tool: Log-Supermodularity

A function $g:\{0,1\}^k o\mathbb{R}_+$ is called log-supermodular if $g(\mathbf{x})g(\mathbf{y})\leq g(\mathbf{x}\vee\mathbf{y})g(\mathbf{x}\wedge\mathbf{y})$

for all $\mathbf{x}, \mathbf{y} \in \{0, 1\}^k$.

Log-supermodularity is preserved under

- ightharpoonup multiplication: g_1,g_2 log-supermodular $\implies g_1g_2$ log-supermodular
- ightharpoonup marginalization: g log-supermodular $\Longrightarrow \sum_{x_1} g(\mathbf{x})$ log-supermod (this follows from the Ahlswede-Daykin four functions theorem)

Log-Supermodularity of Functions with Binary Inputs

lacksquare A function $f:\{0,1\}^2 o \mathbb{R}_+$ is log-supermodular iff

$$f(01)f(10) \le f(00)f(11)$$

▶ If $f:\{0,1\}^2 \to \mathbb{R}_+$ is **not** log-supermodular, then the function

$$\bar{f}(a,b) = f(a,1-b)$$

is log-supermodular.

A Local Transformation

A binary Ising model defined by local functions f is equivalent to a binary Ising model defined by \bar{f} :

- ▶ The partition functions are equal: $Z(f) = Z(\overline{f})$
- ▶ For each set of beliefs $\{b_R\}$, there exists a corresponding $\{\bar{b}_R\}$ such that

$$\sum_{\mathbf{x}} \frac{\prod_{R \in \mathcal{R}_0 \cup \mathcal{R}_2} b_R(\mathbf{x}_R)}{\prod_{R \in \mathcal{R}_1} b_R(\mathbf{x}_R)} = \sum_{\mathbf{x}} \frac{\prod_{R \in \mathcal{R}_0 \cup \mathcal{R}_2} \bar{b}_R(\mathbf{x}_R)}{\prod_{R \in \mathcal{R}_1} \bar{b}_R(\mathbf{x}_R)}$$

Ising Models with Log-Supermodular Local Functions

Lemma

In a binary Ising model with log-supermodular local functions, the BP and GBP message update rules preserve log-supermodularity of messages.

Thus, if BP and GBP are initialized with log-supermodular messages, then

- ► the messages in subsequent iterations of BP and GBP remain log-supermodular, and
- ▶ the BP-based beliefs $b_{i,j}$, b_i and the GBP-based beliefs b_R are all log-supermodular.

The 2×2 Grid

The Kikuchi approximation is exact: $Z_{\mathcal{R}} = Z$.

The 2×2 Grid

The Kikuchi approximation is exact: $Z_{\mathcal{R}} = Z$.

Theorem

For the 2×2 grid, at any fixed point of BP, we have

$$\frac{Z}{Z_{\mathrm{BP}}\big(\{b_{i,j}\},\{b_i\}\big)} \ = \ 1 + \frac{\Delta_{1,2}\Delta_{2,3}\Delta_{3,4}\Delta_{4,1}}{\prod_i b_i(0)b_i(1)},$$

where $\Delta_{i,j} = b_{i,j}(00)b_{i,j}(11) - b_{i,j}(01)b_{i,j}(10)$.

Proof of 2 × 2 Theorem

Start with Wainwright-Jaakkola-Willsky:

$$\begin{split} \frac{Z}{Z_{\text{BP}}(\{b_{i,j}\},\{b_{i}\})} &= \sum_{x_{1},...,x_{4}} \frac{\prod_{i \sim j} b_{i,j}(x_{i},x_{j})}{\prod_{i} b_{i}(x_{i})} \\ &= \sum_{x_{1},...,x_{4}} \prod_{i} b_{i}(x_{i}) \prod_{i \sim j} \frac{b_{i,j}(x_{i},x_{j})}{b_{i}(x_{i})b_{j}(x_{j})} \end{split}$$

Verify that

$$\frac{b_{i,j}(x_i,x_j)}{b_i(x_i)b_j(x_j)}=1+\frac{s(x_i)s(x_j)\Delta_{ij}}{b_i(x_i)b_j(x_j)},$$
 where $s(0)=-1$ and $s(1)=+1$.

► Hence,

$$\frac{Z}{Z_{\mathrm{BP}}(\{b_{i,j}\},\{b_i\})} = \sum_{x_1,\dots,x_4} \prod_i b_i(x_i) \prod_{i \sim j} \left(1 + \frac{s(x_i)s(x_j)\Delta_{ij}}{b_i(x_i)b_j(x_j)}\right)$$

Proof (cont'd)

► Expand out the product $\prod_{i \sim j} \left(1 + \frac{s(x_i)s(x_j)\Delta_{ij}}{b_i(x_i)b_i(x_i)}\right)$:

$$\frac{Z}{Z_{\mathrm{BP}}} = \sum_{x_1, \dots, x_d} \prod_i b_i(x_i) \left(1 + \dots + \frac{\prod_{i \sim j} \Delta_{i,j}}{\prod_i b_i(x_i)^2}\right)$$

► Note that

$$\sum_{x_1,\ldots,x_d}\prod_i b_i(x_i) = \prod_i \sum_{x_i} b_i(x_i) = 1.$$

and

$$\sum_{x_1,\dots,x_4} \prod_i b_i(x_i) \frac{\prod_{i \sim j} \Delta_{i,j}}{\prod_i b_i(x_i)^2} = \prod_{i \sim j} \Delta_{i,j} \sum_{x_1,\dots,x_4} \frac{1}{\prod_i b_i(x_i)}$$

$$= \prod_{i \sim j} \Delta_{i,j} \prod_i \sum_{x_i} \frac{1}{b_i(x_i)}$$

$$= \prod_{i \sim j} \Delta_{i,j} \prod_i \frac{1}{b_i(0)b_i(1)}$$

All other terms $\sum \prod b_i(x_i)(\cdots)$ vanish.

 X_1, \dots, X_4 i

The 3×3 Grid

Theorem

For the 3 \times 3 grid, at any fixed point of GBP, the ratio $Z/Z_{\rm GBP}(\{b_R\})$ is given by

$$1+b_5(0)igg(rac{\Delta(0)}{b_{51}(00)b_{51}(01)}igg)^4+b_5(1)igg(rac{\Delta(1)}{b_{51}(10)b_{51}(11)}igg)^4,$$

where $\Delta(x) = b_{512}(x00)b_{512}(x11) - b_{512}(x01)b_{512}(x10)$.

Proof of 3 × 3 Theorem

Start with

$$\frac{Z}{Z_{\text{GBP}}(\{b_R\})} = \sum_{x_1, \dots, x_9} \frac{b(x_{1526})b(x_{1537})b(x_{2548})b(x_{3549})b(x_5)}{b(x_{15})b(x_{25})b(x_{35})b(x_{45})}$$

▶ Marginalize out x_6, x_7, x_8, x_9 :

$$\frac{Z}{Z_{\text{GBP}}(\{b_R\})} = \sum_{x_1, \dots, x_5} \frac{b(x_{152})b(x_{153})b(x_{254})b(x_{354})b(x_5)}{b(x_{15})b(x_{25})b(x_{35})b(x_{45})}$$

Proof (cont'd)

▶ Now, define

$$B(\mathbf{x}) = \frac{b(x_{15})b(x_{25})b(x_{35})b(x_{45})}{b(x_5)^3}$$

and write $\frac{Z}{Z_{GBP}(\{b_R\})}$ as

$$\sum_{\mathsf{x}_1,\ldots,\mathsf{x}_5} B(\mathbf{x}) \cdot \frac{b(\mathsf{x}_{152})b(\mathsf{x}_5)}{b(\mathsf{x}_{15})b(\mathsf{x}_{25})} \cdot \frac{b(\mathsf{x}_{153})b(\mathsf{x}_5)}{b(\mathsf{x}_{15})b(\mathsf{x}_{35})} \cdot \frac{b(\mathsf{x}_{254})b(\mathsf{x}_5)}{b(\mathsf{x}_{25})b(\mathsf{x}_{45})} \cdot \frac{b(\mathsf{x}_{354})b(\mathsf{x}_5)}{b(\mathsf{x}_{35})b(\mathsf{x}_{45})}$$

▶ Next, verify that

$$\frac{b(x_{i5j})b(x_5)}{b(x_{i5})b(x_{j5})} = 1 + \frac{s(x_i)s(x_j)\Delta_{5ij}(x_5)}{b(x_{i5})b(x_{j5})}$$

where s(0) = -1 and s(1) = +1.

Plug this back into the expression for $\frac{Z}{Z_{GBP}(\{b_R\})}$ and simplify.

Proof (cont'd)

Upon simplification, we obtain

$$\frac{Z}{Z_{\text{GBP}}(\{b_R\})} = 1 + \sum_{x_5} \frac{\Delta(x_5)^4}{b(x_5)^3} \sum_{x_1, \dots, x_4} \prod_{i=1}^4 \frac{1}{b(x_{i5})}$$

► This further simplifies to

$$egin{aligned} rac{Z}{Z_{ ext{GBP}}(\{b_R\})} &= 1 + \sum_{x_5} rac{\Delta(x_5)^4}{b(x_5)^3} \left(rac{1}{b(x_50)} + rac{1}{b(x_51)}
ight)^4 \ &= 1 + \sum_{x_5} b(x_5) \left(rac{\Delta(x_5)}{b(x_50)b(x_51)}
ight)^4 \end{aligned}$$

40 / 41

References

- Chun Lam Chan, Estimating the Partition Function of Binary Pairwise Graphical Models Using Generalized Belief Propagation, M. Phil. Thesis, Dept. Information Engg., Chinese University of Hong Kong, Aug. 2015.
- [2] C.L. Chan, M. Jafari Siavoshani, S. Jaggi, N. Kashyap, and P.O. Vontobel, "Generalized Belief Propagation for Estimating the Partition Function of the 2D Ising Model," in *Proc. 2015 IEEE Int. Symp. Inf. Theory (ISIT 2015)*, Hong Kong, China, June 2015.