Partition-Symmetrical Entropy Functions

Qi Chen joint work with Raymond W. Yeung

Institute of Network Coding
The Chinese University of Hong Kong

CAM 2016, HKU August 24, 2016

$$\blacktriangleright \ \mathcal{N} = \{1, 2, \cdots, n\}$$

$$ightharpoonup \mathcal{N} = \{1, 2, 3, 4\},$$

- $\mathcal{N} = \{1, 2, \cdots, n\}$
- $\mathbf{X}_{\mathcal{N}} = (X_i : i \in \mathcal{N}),$ $X_{\mathcal{A}} = (X_i, i \in \mathcal{A}),$ $\mathcal{A} \subset \mathcal{N}$

- $ightharpoonup \mathcal{N} = \{1, 2, 3, 4\},$
- $X_{\{1,2,3,4\}} = (X_1, X_2, X_3, X_4),$ $X_{23} = (X_2, X_3),$

- $\mathcal{N} = \{1, 2, \cdots, n\}$
- ▶ entropy function $\mathbf{h}: 2^{\mathcal{N}} \to \mathbb{R},$ $\mathbf{h}(\mathcal{A}) \triangleq H(X_{\mathcal{A}}), \ \forall \mathcal{A} \subset \mathcal{N}$ with $H(X_{\emptyset}) = 0.$

- $\mathcal{N} = \{1, 2, 3, 4\},\$
- $X_{\{1,2,3,4\}} = (X_1, X_2, X_3, X_4),$ $X_{23} = (X_2, X_3),$
- ▶ **h** = $(0, H(X_1), \dots, H(X_4), H(X_{12}), \dots, H(X_{34}), \dots, H(X_{1234}))$

- $\mathcal{N} = \{1, 2, \cdots, n\}$
- $\mathbf{X}_{\mathcal{N}} = (X_i : i \in \mathcal{N}),$ $X_{\mathcal{A}} = (X_i, i \in \mathcal{A}),$ $\mathcal{A} \subset \mathcal{N}$
- ▶ entropy function $\mathbf{h}: 2^{\mathcal{N}} \to \mathbb{R},$ $\mathbf{h}(\mathcal{A}) \triangleq H(X_{\mathcal{A}}), \ \forall \mathcal{A} \subset \mathcal{N}$ with $H(X_{\emptyset}) = 0.$
- entropy space $\mathcal{H}_n \triangleq \mathbb{R}^{2^{\mathcal{N}}}$

- $\mathcal{N} = \{1, 2, 3, 4\},\$
- $X_{\{1,2,3,4\}} = (X_1, X_2, X_3, X_4),$ $X_{23} = (X_2, X_3),$
- ▶ **h** = $(0, H(X_1), \dots, H(X_4), H(X_{12}), \dots, H(X_{34}), \dots, H(X_{1234}))$
- $ightharpoonup \mathcal{H}_4 \triangleq \mathbb{R}^{2^{\{1,2,3,4\}}}$

Entropy function

- $\mathcal{N} = \{1, 2, \cdots, n\}$
- $X_{\mathcal{N}} = (X_i : i \in \mathcal{N}),$ $X_{\mathcal{A}} = (X_i, i \in \mathcal{A}),$ $\mathcal{A} \subset \mathcal{N}$
- ▶ entropy function $\mathbf{h}: 2^{\mathcal{N}} \to \mathbb{R},$ $\mathbf{h}(\mathcal{A}) \triangleq H(X_{\mathcal{A}}), \ \forall \mathcal{A} \subset \mathcal{N}$ with $H(X_{\emptyset}) = 0.$
- entropy space $\mathcal{H}_n \triangleq \mathbb{R}^{2^{\mathcal{N}}}$

- $\mathcal{N} = \{1, 2, 3, 4\},\$
- ▶ **h** = $(0, H(X_1), \dots, H(X_4), H(X_{12}), \dots, H(X_{34}), \dots, H(X_{1234}))$
- $ightharpoonup \mathcal{H}_4 \triangleq \mathbb{R}^{2^{\{1,2,3,4\}}}$

Entropy region: Γ_n^*

 $\Gamma_n^* \triangleq \{\mathbf{h} \in \mathcal{H}_n | \exists \ \mathbf{X}_{\mathcal{N}}, \ \mathbf{h} \text{ is the entropy function of } \mathbf{X}_{\mathcal{N}} \}.$

Subjects Related to Γ_n^*

Shannon-type inequalities

For any $\mathcal{A}, \mathcal{B} \subset \mathcal{N}$,

$$H(X_{\mathcal{A}}) \ge 0,$$

 $H(X_{\mathcal{A}}) \le H(X_{\mathcal{B}}) \text{ if } \mathcal{A} \subset \mathcal{B},$
 $H(X_{\mathcal{A}}) + H(X_{\mathcal{B}}) \ge H(X_{\mathcal{A} \cap \mathcal{B}}) + H(X_{\mathcal{A} \cup \mathcal{B}}).$

Shannon-type inequalities

For any $\mathcal{A},\mathcal{B}\subset\mathcal{N}$,

$$H(X_{\mathcal{A}}) \geq 0,$$

 $H(X_{\mathcal{A}}) \leq H(X_{\mathcal{B}}) \text{ if } \mathcal{A} \subset \mathcal{B},$
 $H(X_{\mathcal{A}}) + H(X_{\mathcal{B}}) \geq H(X_{\mathcal{A} \cap \mathcal{B}}) + H(X_{\mathcal{A} \cup \mathcal{B}}).$

Polymatroidal region: Γ_n

$$\begin{split} \Gamma_n &\triangleq \{ \textbf{h} \in \mathcal{H}_n : \textbf{h}(\mathcal{A}) \geq 0, \\ \textbf{h}(\mathcal{A}) &\leq \textbf{h}(\mathcal{B}), \quad \text{if } \mathcal{A} \subset \mathcal{B}, \\ \textbf{h}(\mathcal{A}) + \textbf{h}(\mathcal{B}) &\geq \textbf{h}(\mathcal{A} \cap \mathcal{B}) + \textbf{h}(\mathcal{A} \cup \mathcal{B}) \}. \end{split}$$

Relations between Γ_n^* and Γ_n

- ▶ $\Gamma_n^* \subset \Gamma_n$, [Fujishige 78]
- $\qquad \qquad \Gamma_2^* = \Gamma_2,$
- ▶ $\Gamma_3^* \subsetneq \Gamma_3$, but $\overline{\Gamma_3^*} = \Gamma_3$,[Zhang and Yeung 97, Matúš 06, Chen and Yeung 12]
- $ightharpoonup \overline{\Gamma_n^*} = \Gamma_n, \ n \leq 3,$
- ▶ $\overline{\Gamma_n^*} \subsetneq \Gamma_n$, $n \ge 4$, due to the existence of non-Shannon-type information inequalities. [Zhang and Yeung 98]

non-Shannon-type inequalities

Z. Zhang and R. W. Yeung, On characterization of entropy function via information inequalities, IEEE Trans. Inform. Theory, vol. 44, pp. 1440-1452, Nov. 1998.

non-Shannon-type inequalities

- Z. Zhang and R. W. Yeung, On characterization of entropy function via information inequalities, IEEE Trans. Inform. Theory, vol. 44, pp. 1440-1452, Nov. 1998.
- X. Yan, R. W. Yeung and Z. Zhang, A class of non-Shannon type information inequalities and their applications, IEEE Int. Symp. Inf. Theory, Washington DC, June 2001.
- ▶ R. Doughterty, C. Freiling and K. Zeger, Six new non-Shannon information inequalities, IEEE Int. Symp. Inf. Theory, Seattle WA June 2006.
- **...**

non-Shannon-type inequalities

- Z. Zhang and R. W. Yeung, On characterization of entropy function via information inequalities, IEEE Trans. Inform. Theory, vol. 44, pp. 1440-1452, Nov. 1998.
- X. Yan, R. W. Yeung and Z. Zhang, A class of non-Shannon type information inequalities and their applications, IEEE Int. Symp. Inf. Theory, Washington DC, June 2001.
- R. Doughterty, C. Freiling and K. Zeger, Six new non-Shannon information inequalities, IEEE Int. Symp. Inf. Theory, Seattle WA June 2006.
- •
- ► F. Matúš, Infinitely many information inequalities, IEEE Int. Symp. Inf. Theory, Nice, France, June 2007.

Partition-symmetrical entropy functions and their applications to secrect-sharing¹

Permutation groups and partition groups

Permutation group

- ▶ Permutation σ : A bijection from $\mathcal{N} = \{1, \dots, n\}$ to \mathcal{N} itself
- Symmetric group S_n : The set of all permutations with composition being the binary operation
- **Permutation** group Σ : Any subgroup of the symmetric group.

Permutation groups and partition groups

Permutation group

- ▶ Permutation σ : A bijection from $\mathcal{N} = \{1, \dots, n\}$ to \mathcal{N} itself
- Symmetric group S_n : The set of all permutations with composition being the binary operation
- **Permutation** group Σ : Any subgroup of the symmetric group.

Partition group

- ▶ Partition p of \mathcal{N} : A set of disjoint subset $\{\mathcal{N}_1, \cdots, \mathcal{N}_t\}$ such that $\bigcup_{i=1}^t \mathcal{N}_i = \mathcal{N}$. Each \mathcal{N}_i is called a block of p.
- ▶ Partition group Σ_p : A permutation group whose members are all permutations that permute the members of \mathcal{N} within the same block of p, i.e.,

$$\Sigma_p = \{ \sigma \in \Sigma_n : \sigma(j) \in \mathcal{N}_i, j \in \mathcal{N}_i, i = 1, \dots, t \}.$$

Group actions

Definition (Group action)

For a set \mathcal{S} , a group Σ acts on \mathcal{S} if there exist a function $\Sigma \times \mathcal{S} \to \mathcal{S}$, called an action, denoted by $(\sigma, s) \mapsto \sigma s$, such that

- 1. $(\sigma_1\sigma_2)s = \sigma_1(\sigma_2s)$ for all $\sigma_1, \sigma_2 \in \Sigma$ and $s \in S$;
- 2. 1s = s for all $s \in \mathcal{S}$, where 1 is the identity of Σ .

Group actions

Definition (Group action)

For a set \mathcal{S} , a group Σ acts on \mathcal{S} if there exist a function $\Sigma \times \mathcal{S} \to \mathcal{S}$, called an action, denoted by $(\sigma, s) \mapsto \sigma s$, such that

- 1. $(\sigma_1\sigma_2)s = \sigma_1(\sigma_2s)$ for all $\sigma_1, \sigma_2 \in \Sigma$ and $s \in S$;
- 2. 1s = s for all $s \in S$, where 1 is the identity of Σ .

Group action $\Sigma \times \mathcal{H}_n \to \mathcal{H}_n$

For any $\sigma \in S_n$, define $\sigma : \mathcal{H}_n \to \mathcal{H}_n$ by

$$\sigma(\mathbf{h})(\mathcal{A}) = \mathbf{h}(\sigma(\mathcal{A})), \ \mathcal{A} \subset \mathcal{N}.$$

- ▶ $\sigma \times \mathbf{h} \mapsto \sigma(\mathbf{h})$ defines a group action S_n on \mathcal{H}_n
- ▶ Restricted the on a subgroup Σ , it becomes a group action Σ on \mathcal{H}_n .

Fixed set

Definition

If a group Σ acts on \mathcal{S} , the *fixed set* of the action is defined by

$$\operatorname{fix}_{\Sigma} = \{ s \in \mathcal{S} : \sigma s = s, \forall \sigma \in \Sigma \}.$$

Fixed set

Definition

If a group Σ acts on \mathcal{S} , the *fixed set* of the action is defined by

$$\operatorname{fix}_{\Sigma} = \{ s \in \mathcal{S} : \sigma s = s, \forall \sigma \in \Sigma \}.$$

Fix set of the partition group acting on \mathcal{H}_n

$$\begin{split} \operatorname{fix}_{\textit{p}} &= \operatorname{fix}_{\Sigma_{\textit{p}}} = \{ \textbf{h} \in \mathcal{H}_n: \ \textbf{h}(\mathcal{A}) = \textbf{h}(\mathcal{B}) \\ & \text{if } |\mathcal{A} \cap \mathcal{N}_i| = |\mathcal{B} \cap \mathcal{N}_i|, \ \forall i = 1, \cdots, t \}. \end{split}$$

Main theorem

Constraining Γ_n^* and Γ_n by fix_p , we obtain the *p-symmetrical* entropy region

$$\Psi_p^* = \Gamma_n^* \cap \operatorname{fix}_p$$

and p-symmetrical polymatroidal region

$$\Psi_{p} = \Gamma_{n} \cap fix_{p},$$

respectively.

Main theorem

Constraining Γ_n^* and Γ_n by fix_p , we obtain the *p-symmetrical* entropy region

$$\Psi_p^* = \Gamma_n^* \cap \operatorname{fix}_p$$

and p-symmetrical polymatroidal region

$$\Psi_{\textbf{\textit{p}}} = \Gamma_{\textbf{\textit{n}}} \cap \operatorname{fix}_{\textbf{\textit{p}}},$$

respectively.

Theorem

For $n \geq 4$ and any $p \in \mathcal{P}_n$,

$$\overline{\Psi_p^*}=\Psi_p,$$

if and only if $p = \{\mathcal{N}\}$ or $p = \{\{i\}, \mathcal{N} \setminus \{i\}\}$.

Application to secret-sharing

Consider the secret be a random variable S on K, and each share be a random variable S_j on K_j , where $j \in \mathcal{P}$, the set of participants. Then the scheme $\mathbf{S} = (S,S_j)_{p_j \in \mathcal{P}}$ is a secret-sharing scheme realizing access structure \mathcal{A} , where $\mathcal{A} \subset 2^{\mathcal{P}}$ and \mathcal{A} is monotone, if the following two conditions hold:

1. (Correctness) For any $B \in \mathcal{A}$,

$$H(S|S_B)=0$$

2. (Perfect Privacy) For any $T \notin A$,

$$H(S|S_T) = H(S)$$

Application to secret-sharing

Consider the secret be a random variable S on K, and each share be a random variable S_j on K_j , where $j \in \mathcal{P}$, the set of participants. Then the scheme $\mathbf{S} = (S, S_j)_{p_j \in \mathcal{P}}$ is a secret-sharing scheme realizing access structure \mathcal{A} , where $\mathcal{A} \subset 2^{\mathcal{P}}$ and \mathcal{A} is monotone, if the following two conditions hold:

1. (Correctness) For any $B \in \mathcal{A}$,

$$H(S|S_B)=0$$

2. (Perfect Privacy) For any $T \notin A$,

$$H(S|S_T) = H(S)$$

Information ratio

$$\rho_{\mathbf{S}} \triangleq \frac{\max_{1 \leq j \leq n} H(S_j)}{H(S)}$$

The fundamental problem of secret sharing: optimal information ratio

Let $\mathcal{N}=\{s\}\cup\mathcal{P}$ and $\Gamma_{\mathcal{N}}^*$ be the entropy region on \mathcal{N} . Let \mathcal{A} be an access structure on \mathcal{P} . Then the optimal information ratio on \mathcal{A} is

$$\rho_{\mathcal{A}} \triangleq \inf_{\mathbf{h} \in \Gamma_{\mathcal{N}}^* \cap \Phi_{\mathcal{A}}} \frac{\max_{1 \leq j \leq n} \mathbf{h}(\{p_j\})}{\mathbf{h}(\{s\})}$$

where

$$\begin{split} \Phi_{\mathcal{A}} &= \{\mathbf{h} : \mathbf{h}(\{s\} \cup B) = \mathbf{h}(B) \quad \forall B \in \mathcal{A}, \\ \mathbf{h}(\{s\} \cup T) &= \mathbf{h}(\{s\}) + \mathbf{h}(T) \quad \forall T \not\in \mathcal{A} \} \end{split}$$

Shamir's threshold scheme by entropy functions

For $1 \le t \le n$, let $\mathcal{A}_{t,n} = \{A \subset \mathcal{P} : |A| \ge t\}$. Then $\mathcal{A}_{t,n}$ is a access structure with threshold t.

For simplicity, let $\rho_{t,n}=\rho_{\mathcal{A}_{t,n}}$ and $\Phi_{t,n}=\Phi_{\mathcal{A}_{t,n}}.$ Then

$$\rho_{t,n} = \inf_{\mathbf{h} \in \Gamma_{\mathcal{N}}^* \cap \Phi_{t,n}} \frac{\max_{1 \leq j \leq n} \mathbf{h}(\{p_j\})}{\mathbf{h}(\{s\})}$$

where

$$\Phi_{t,n} = \{ \mathbf{h} : \mathbf{h}(\{s\} \cup B) = \mathbf{h}(B) \quad \text{if } |B| \ge t, \\ \mathbf{h}(\{s\} \cup B) = \mathbf{h}(\{s\}) + \mathbf{h}(B) \quad \text{if } |B| < t \}$$

Shamir's threshold scheme by entropy functions

For $1 \le t \le n$, let $\mathcal{A}_{t,n} = \{A \subset \mathcal{P} : |A| \ge t\}$. Then $\mathcal{A}_{t,n}$ is a access structure with threshold t.

For simplicity, let $\rho_{t,n}=\rho_{\mathcal{A}_{t,n}}$ and $\Phi_{t,n}=\Phi_{\mathcal{A}_{t,n}}.$ Then

$$\rho_{t,n} = \inf_{\mathbf{h} \in \Gamma_{\mathcal{N}}^* \cap \Phi_{t,n}} \frac{\max_{1 \le j \le n} \mathbf{h}(\{p_j\})}{\mathbf{h}(\{s\})}$$

where

$$\Phi_{t,n} = \{ \mathbf{h} : \mathbf{h}(\{s\} \cup B) = \mathbf{h}(B) \quad \text{if } |B| \ge t, \\ \mathbf{h}(\{s\} \cup B) = \mathbf{h}(\{s\}) + \mathbf{h}(B) \quad \text{if } |B| < t \}$$

Theorem

$$\rho_{t,n} = \inf_{\mathbf{h} \in \Psi_p^* \cap \Phi_{t,n}} \frac{\max_{1 \leq j \leq n} \mathbf{h}(\{p_j\})}{\mathbf{h}(\{s\})}$$

where
$$p = \{\{s\}, \mathcal{P}\}$$

Shamir's threshold scheme by entropy functions

Theorem

$$\rho_{t,n} = \min_{\mathbf{h} \in \Psi_{\rho} \cap \Phi_{t,n}} \frac{\max_{1 \leq j \leq n} \mathbf{h}(\{p_j\})}{\mathbf{h}(\{s\})}$$

and the solution is

$$\rho_{t,n}=1$$

and

$$arg \min \rho_{t,n} = \{ \mathbf{h} : aU_{t,n+1}, a > 0 \}$$

Further research: group-symmetrical entropy functions and their applications to other areas

From partition-symmetrical entropy functions to group-symmetrical entropy functions

Fix set induced by a partition-group Σ_p $\operatorname{fix}_p = \{\mathbf{h} \in \mathcal{H}_n: \ \mathbf{h}(\mathcal{A}) = \mathbf{h}(\mathcal{B}) \\ \text{if } |\mathcal{A} \cap \mathcal{N}_i| = |\mathcal{B} \cap \mathcal{N}_i|, \ \forall i = 1, \cdots, t \}.$

Note that \mathcal{A} and \mathcal{B} such that $|\mathcal{A} \cap \mathcal{N}_i| = |\mathcal{B} \cap \mathcal{N}_i|, \ \forall i = 1, \cdots, t$ are in the same orbit of the action Σ_p on $2^{\mathcal{N}}$ for Σ_p .

From partition-symmetrical entropy functions to group-symmetrical entropy functions

Fix set induced by a partition-group Σ_{ρ}

$$\begin{aligned} \operatorname{fix}_p &= \{\mathbf{h} \in \mathcal{H}_n: \ \mathbf{h}(\mathcal{A}) = \mathbf{h}(\mathcal{B}) \\ &\quad \text{if } |\mathcal{A} \cap \mathcal{N}_i| = |\mathcal{B} \cap \mathcal{N}_i|, \ \forall i = 1, \cdots, t\}. \end{aligned}$$

Note that \mathcal{A} and \mathcal{B} such that $|\mathcal{A} \cap \mathcal{N}_i| = |\mathcal{B} \cap \mathcal{N}_i|, \ \forall i = 1, \cdots, t$ are in the same orbit of the action Σ_p on $2^{\mathcal{N}}$ for Σ_p .

Fix set induced by an arbitary permutation group $\Sigma \leq S_n$ Let \mathfrak{D}_{Σ} be the set of all orbits of the action Σ on $2^{\mathcal{N}}$.

$$\operatorname{fix}_{\Sigma} = \{ \mathbf{h} \in \mathcal{H}_n : \ \mathbf{h}(\mathcal{A}) = \mathbf{h}(\mathcal{B}) \text{ if } \mathcal{A}, \mathcal{B} \in \mathcal{O}, \mathcal{O} \in \mathfrak{O}_{\Sigma} \}.$$

Thank you!