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Cover and Thomas, 2nd Edition, Problem 4.16

@ Consider binary strings constrained to have at least one 0
and at most two Os between any pair of 1s.

@ What is the growth rate of the number of such sequences
(assuming we start with a 1, for instance)?



Cover and Thomas, 2nd Edition, Problem 4.16

Xi(n)
@ Let X(n) = | Xz(n) |, where Xj(n) is the number of paths
Xs(n)
of length n ending in state /.
@ Then
1
X(n) = AX(n—-1) = A2X(n-2)=... = A" 'X(1)=A"| 0 | ,
0
where
01 1
A=1|110 0].
010
@ Solution :

log p, where p is the Perron-Frobenius eigenvalue of A.



Perron-Frobenius eigenvalue

Every irreducible nonnegative square matrix A has an
eigenvalue p, called its Perron-Frobenius eigenvalue such that:

@ p > 0 (in particular p is real);

@ pis at least as big as the absolute value of any eigenvalue
of A;

@ p admits left and right eigenvectors that are unique up to
scaling and can be chosen to have strictly positive
coordinates;

@ log p is the “growth rate” of A".



Courant-Fischer formula

@ Let A € R9%9 be a positive definite matrix.
@ lts largest eigenvalue is given by
xTAx

p= max ——.
xeRd x£0 XTx



Courant-Fischer formula

@ Let A € R9%9 be a positive definite matrix.
@ lts largest eigenvalue is given by

xT Ax

p= max ——.
xeRd x£0 XTx

@ |s there an analogous characterization of the
Perron-Frobenius eigenvalue of an irreducible nonnegative
matrix?



Collatz-Wielandt formula

Let A be an irreducible nonnegative d x d matrix. Then its
Perron-Frobenius eigenvalue p satisfies:

oy alij)x()
p = sup min —/———~——~
X : x(i)>0vi 1<i<d x(f)
and
. >y ai, f)x()
p = inf max ———~— .
x 1 x(i)>0vi 1<i<d x(f)

But Problem 4.16 goes on a different tack.



Entropy and Problem 4.16 of Cover and Thomas

@ Consider all Markov chains compatible with the directed
graph giving rise to A with Perron-Frobenius eigenvalue .

0 1 0
@ Transition probability matrix { a 0 1-«a ] for some
10 O

0<a<.
@ Maximize the entropy rate of this Markov chain over all .
@ Problem 4.16 asks you to verify that this equals log p.



Entropy and relative entropy

@ Entropy:
H(P) == P(i)log P(i) .

@ Properties: H(P) > 0, concave in P, maximized at the
uniform distribution.
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Entropy and relative entropy

@ Entropy:

—> " P(i)log P(i)

@ Properties: H(P) > 0, concave in P, maximized at the
uniform distribution.

@ Relative entropy:

I
D(Q||P) = ZQ IogPI)

@ Properties: D(Q||P) > 0, jointly convex in (Q, P), equal to
0iff Q= P.

11/47



Entropy rate of a Markov chain

@ Consider an irreducible finite state Markov chain with
transition probabilities p(j|i/) and stationary distribution 7(-).
@ The entropy rate of the Markov chain is

N 1
%:W(’)P(/V) |Ogm :

@ Example:

11—« [ o
P=( 8 1—.8) 1-::3;"__‘::—2

I
Entropy rate = Lh( )+ a h(3)
Py a+p « a—+p ’

where h(p) := plog } + (1 — p)log 115.
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@ Given A, an irreducible nonnegative d x d matrix, with
Perron-Frobenius eigenvalue p, we will choose to write it
as

a(i,j) = e'p(jli), forall i, ,

where p(j|i) are transition probabilities.
@ Py : probability distributions on {1,...,d}.

@ Py«g : probability distributions on {1,...,d} x {1,...,d}.
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Donsker-Varadhan characterization of the Perron-Frobenius eigenvalue

@ A, irreducible nonnegative d x d with P-F eigenvalue p.

@ Then

log p = sup | > (i, j)r(i Zno Zm(/\ log |‘))

neg f,j

where n(i, j) = no(i)n1(Jj|7) is a probability distribution, and
G denotes the set of such probability distributions for which

2_in(iJ) = no())-

@ Taking p(j|i) =
Problem 4.16.

deg( for all j such that i — j solves

)
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Cumulant generating function and conjugate duality

Let Q = (Q(i),1 < i < d) be a probability distribution.
Let® = (6(1),...,0(d))" be a real vector.
Then

log( Z Q(i)e’M) = = sup (Ze - Z P(i)log ggg) .
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Cumulant generating function and conjugate duality

Let Q = (Q(i),1 < i < d) be a probability distribution.
Let® = (6(1),...,0(d))" be a real vector.
Then

log( Z Q(i)e’M) = = sup (Ze - Z P(i)log ggg) .

There is an iceberg below the little tip of this formula:
e log(3>; Q(i)e’M) is log E[e?"X], where P(X = &) = Q(i).
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Cumulant generating function and conjugate duality

Let Q = (Q(i),1 < i < d) be a probability distribution.
Let® = (6(1),...,0(d))" be a real vector.
Then

log( Z Q(i)e’M) = = sup (Ze - Z P(i)log ggg) .

There is an iceberg below the little tip of this formula:
o log(>"; Q(i)e’ Y is log E[e?"X], where P(X = &;) = Q(i).
@ Given a convex function f(z) for z € RY,

f(9) := sup <QTz - f(z))
is convex, and
f(z) = sup (zTe - ?(e)) .
0
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Minimax theorem

Let f(x, y) be a function on X x ), where:

@ X is a compact convex subset of some Euclidean space.
@ ) is a convex subset of some Euclidean space.

@ fis concave in x for each fixed y.

@ fis convexin y for each fixed x.

Then
supinff(x,y) =infsupf(x,y) .
x Y Y x
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Donsker-Varadhan from Collatz-Wielandt (1)

@ So

x

><

><

inf

|nf
x(1)>0vi

inf
2 x(1)>0Vvi

>0 alij)x()

max

L x(i)>0vi 1<i<d x(f) ’

supz iy e e pUlX)

'yE’Pd (’)

d d
sup (i P(j|l)e (i,f)+log x(j)—log x(i)
YEPd ; 121

d
logp = inf sup log( 227 p(j|i)e :D+ul-u(y

ucRrd ~EPy

i=1 j=1
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Donsker-Varadhan from Collatz-Wielandt (2)

log p

d
inf suplogz ~(D)p(j|i)e D +ul)—u(y |

UER? yePy i=1 j=1

inf  sup sup {Z”(’f (1,/) + u(j) — u(i))

UER? yePynEPgy g
B n(i,J)
Z” 9 lhp (u)]

sup sup inf {Z” i, ))(r(i,j) + u(j) — u(i))

YEP NE€Pyx g UER? i

—Zﬁo |09n0() Z??o Zn I)'OQ?E((jjii))l




Donsker-Varadhan from Collatz-Wielandt (3)

logp = sup inf [Zn(i,f)(f(i,f)ﬂw(j)u(i))
i

NEPgxq UER?

, o m(li
—Zi:no(l)%:m(l”) 1091 ]
= sup {Zn i, j)r(i,j) — Zﬂo 2771 (J]i)log 72((1_/'/"))] .

neg ij
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Average reward Markov decision problem

@ LetS:={1,...,d} and let U be a finite set.
@ [p(j|i, u)]: transition probabilities from S to S for u € U.
@ Assume irreducibility for convenience.
@ r(i,u,j): one-step reward for transition from i to j under u.
@ Aim:
sipllmlnfﬁz (Xms Zms Xm11)

where A is the set of causal randomized control strategies.

@ Call this growth rate .

22/47



Ergodic characterization of the optimal reward

@ Write probability distributions (i, u,j) as
n(i, u,j) = no(Nm (ulnz(1i, u) -

@ Let G denote the set of n satisfying
> (i, u,)) =no(j) , forallj.

@ Then

A =sup S (i, u,f)r(i, )
r]Eg U

@ This is based on linear programming duality, starting from
the average cost dynamic programming equation:

A+ h(i) mapr )i, u) (r(i, u,j) + h(j))
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Risk-sensitivity (1)

@ Consider a random reward R, whose distribution depends
on some choices.

@ One can incorporate sensitivity to risk by posing the
problem of maximizing E[R] — %QVar(R).

0 >0« Risk-averse
6 <0<« Risk-seeking

@ In a framework with Markovian dynamics, it is easier to
work with a criterion more aligned to large deviations
theory than the variance.
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Risk-sensitivity (2)

@ Write
2
E[e~"] = e EIRIE[g~0(A~ElAD] ~ g~ 0EIA] (1 + 62Var(Fz’)> .

@ Hence
1 _oR 1 02
~g log E[e™""] ~ E[R]— 7 log(1 + EVar(H))

~ E[R] - gVar(R) .

Risk-averse < 6>0=  Minimize E[e %]
Risk-seeking < 6 < 0= Maximize E[e~?f].

@ The risk-seeking case corresponds to portfolio growth rate
maximization.
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Risk-sensitive control problem

@ LetS:={1,...,d} and let U be a finite set.
@ [p(jli, u)]: transition probabilities from S to S for u € U.
@ Assume irreducibility for convenience.
@ r(i,u,j): one-step reward for transition from i to j under u.
@ Aim:
o1 - ;
max sup liminf — log E [92%:3 "X Zm Xt 1) | X = |
i 4 N—oo
where A is the set of causal randomized control strategies.

@ Call this growth rate \.
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Statement of the problem
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Formal problem statement

@ Let S and U be compact metric spaces.

@ Letp(dy|x,u) : S x U~ P(S) be a prescribed kernel.
Here P(S) is the set of probability distributions on S with
the topology of weak convergence.

@ Letr(x,u,y) : SxUxS — [—o00,00). This is the
per-stage reward function.

@ Causal control strategies are defined in terms of kernels
¢o(dulxo) and

¢n+1 (du‘(X()) U0)7 R (Xm Un); Xn+1) , N Z 0.
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@ Aim:
1 .
sup sup liminf — log E [ezﬁ:é "X Zm Xmi1)| X = x|
x A N—ooo

where A is the set of causal randomized control strategies.

@ Call this growth rate .
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Technical assumptions

@ (A0): e'UY) € C(S x U x S).

@ (A1): The maps (x,u) — [ f(y)p(dy|x,u), f € C(S) with
|Ifll <1, are equicontinuous.

This case where (A0) and (A1) hold is developed by a limiting
argument starting with the case with the stronger assumptions:

@ (A0+): Condition (A0) holds and we also have e X:t¥) > 0
for all (x, u, y).

@ (A1+): Condition (A1) holds and we also have p(dy|x, u)
having full support for all (x, u).
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The first main result (1)

@ Define the operator T : C(S) — C(S) by

‘= sup //p dy|x, u)p(du)e’*UNf(y) .
$eP(U

@ Let CT(S) := {f e C(S) : f(x) > 0Vx} denote the cone of
nonnegative functions in C(S).

@ Theorem: Under assumptions (A0+) and (A1+) there
exists a unique p > 0 and ¢ € int(C*(S)) such that

B(X) = sup //pdylxu (du)e 4 Ny(y) .

pEP(V)

@ Thus p may be considered the Perron-Frobenius
eigenvalue of T. Note that T is a nonlinear operator.

31/47



The first main result (2)

Let M™(S) denote the set of positive measure on S. We have
the following characterizations of the Perron-Frobenius

eigenvalue.
° Tt d
p= . inf sup M .
reint(c+(s) per(sy J F)u(dx)
°

Tf d
p= Sup |nf M .
reint(c+(s) M () [ F(x)u(dx)
@ These formulae can be viewed as a version of the

Collatz-Wielandt formula for the Perron-Frobenius
eigenvalue of the nonlinear operator T.

@ Finally, we have \ = log p.
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The second main result

@ Theorem: Under assumptions (AQ) and (A1) we have

_ sgg</// (dx, du, dy)r(x, u, y)
_ / / fi(dx, du)D(nz(dy|x, u)||p(dy|x, U))> ;

where 7j(dx, du) := no(dx)n1(du|x).

@ This is a generalization of the Donsker-Varadhan formula
to characterize the growth rate of reward in risk-sensitive
control.
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Structure of the proof
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Structure of the proof

@ The Collatz-Wielandt formula for the Perron-Frobenius
eigenvalue p of the nonlinear operator T comes from an
application of the nonlinear Krein-Rutman theorem of
Ogiwara.
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Structure of the proof

@ The Collatz-Wielandt formula for the Perron-Frobenius
eigenvalue p of the nonlinear operator T comes from an
application of the nonlinear Krein-Rutman theorem of
Ogiwara.

@ The identification of log p with A comes from observing that
iterates of T form the Bellman-Nisio semigroup , so that
the eigenvalue problem for T expresses the abstract
dynamic programming principle.
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Structure of the proof

@ The Collatz-Wielandt formula for the Perron-Frobenius
eigenvalue p of the nonlinear operator T comes from an
application of the nonlinear Krein-Rutman theorem of
Ogiwara.

@ The identification of log p with A comes from observing that
iterates of T form the Bellman-Nisio semigroup , so that
the eigenvalue problem for T expresses the abstract
dynamic programming principle.

@ The generalized Donsker-Varadhan formula under the
assumptions (A0+) and (A1+) comes from a calculation
analogous to the one giving the usual Donsker-Varadhan
formula from the usual Collatz-Wielandt formula.
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Structure of the proof

@ The Collatz-Wielandt formula for the Perron-Frobenius
eigenvalue p of the nonlinear operator T comes from an
application of the nonlinear Krein-Rutman theorem of
Ogiwara.

@ The identification of log p with A comes from observing that
iterates of T form the Bellman-Nisio semigroup , so that
the eigenvalue problem for T expresses the abstract
dynamic programming principle.

@ The generalized Donsker-Varadhan formula under the
assumptions (A0+) and (A1+) comes from a calculation
analogous to the one giving the usual Donsker-Varadhan
formula from the usual Collatz-Wielandt formula.

@ The generalized Donsker-Varadhan formula under the
assumptions (A0) and (A1) comes from taking the limit in a
perturbation argument.
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Nonlinear Krein-Rutman theorem of Ogiwara Preliminaries

@ Let B be a real Banach space and B* a closed convex
cone in B with vertex at 0, satisfying B* N (—B*) = {0},
and having nonempty interior.

@ Forx,yeB,writex>yifx—ye B, x> yif
x—yeBt—{0},and x> yif x — y €int(B").

e T : B+ B, mapping BT into itself is called:

e strongly positive if x > y = Tx > Ty;
e positively homogeneous if T(ax) = aTx if x € BT and
a > 0.

@ Let T(" denote the n-fold iteration of T.
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Nonlinear Krein-Rutman theorem of Ogiwara

@ Theorem (Ogiwara) : For a compact, strongly positive,
positively homogeneous map T from an ordered Banach
space (B, B+) to itself, lim,_.. || T |7 exists, and is
strictly positive, is an eigenvalue of T, is the only positive
eigenvalue of T, and admits an eigenvector in the interior
of BT that is unique up to multiplication by a positive
constant.
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An application

@ For each u € U, afinite set, let G, be a directed graph on
S :={1,...,d}, with each vertex having positive outdegree
for each u.

@ We wish to maximize the growth rate of the number of
paths, starting from 1 say, where we also get to choose
which graph to use at each time (possibly randomized).

@ Result:
Among all stationary S x U-valued Markov chains (X, Zp)
such that if the transition from (/, u) to (J, v) has positive
probability then i — j is in Gy, maximize H(X1| Xy, Up).
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Another application (preliminaries)

@ LetS:={1,...,d} and let U be a finite set.

@ [p(j|i, u)]: transition probabilities from S to S for u € U.
@ Let Sp C S and Sy := S§ be nonempty.

@ Assume [p(j|i, u)] is irreducible for each w.

® Assume d(i,u) := > ;cq P(jli,u) > 0 forall i € Sy.

@ Define

2o Pyl u) .
q(li,u) :== a0, o) forie S1.ueU.
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Another application (result)

@ Aim:

o1
max sup liminf —

maxsuplimint 5 log P(7 > N) .

where T is the first hitting time of Sp.

@ Can be solved based on the observation that

P(r > N) = E[eXm=0109(d(XmZm))]
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The most obvious open questions

@ How does one remove the compactness assumptions on §
and U?

@ What about continuous time?

(There is a version of the generalized Collatz-Wielandt
formula for reflected controlled diffusions in a bounded
domain, due to Araposthasis, Borkar, and Suresh Kumar:
http://arxiv.org/abs/1312.5834 )
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