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» Expectation: E(Ep) = pp
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Definitions
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» N, def # symbols with multiplicity

> S, 4t sum of probabilities of symbols with multiplicity u

v

Example: distribution over {a, b, ¢, d}
» x*=adcd
No =1 (b) N1 =2 (a,c) N2 =1 (d)
So = P S1=ps+ S2 = pd
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» Unseen probability: So
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Combined-probability estimation: estimate Sg, S1,...,S,
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» S = (§o,§1, .. ,g,,) estimate of S = (Sp, S1,...,Sp)
» Optimality criteria?
» {; distance: consistency, classification

n
= def s
IS =S|l = Z |5;4 - 5u|
n=0
» KL divergence: universal compression, prediction with log-loss

D(SI15) = 3" S, log Su
n=0 5,
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» Applications
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Label-Invariant Classification

» PE requires knowing p and q in advance
» Too much power, no real classifier knows that much!
> Limit to more real classifiers

» Every real classifier is label invariant (canonical)
3 3

X y z
aab ba a
uuv vu u

» Output in both cases? Same!

» Label-invariant, canonical, classifiers

» We assume no prior knowledge, all natural classifiers canonical
» P£*(p, q) — best error of any label-invariant classifier

» Also requires knowing p, g in advance

» Can we find a uniformly-competitive canonical estimator?
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» Previous example: x3 = aab y3=cbha z=a
sz (p)

» Empirical classifier: assign to training where z appeared more
» Proxy for distribution with highest probability
> Label invariant

» Competitive?

For arbitrary n, let p = U[n] and g = U[2n]

Optimal classifier: z — p if p(z) > g(z), otherwise z — g

Recall X" ~ p, Y" ~ q

n(x") 21— p(z) =1/n  n:(y") 21— q(z) =1/(2n)

ny(x"), n,(y") > 1, optimal: z~ p

Label invariant

Pr(1 < n,(x) < n,(y¥)) > 0.03

PE"™"!(p,q) > P£"(p. q) +0.01

» Empirical classifier not competitive with label-invariant class.

VY Y VY VY VY

v
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Competitive Label-Invariant Classifier

vV vV v VY

vV V. v v v

Are there uniformly competitive label-invariant classifiers??
Relate classification to estimation over sequence-pairs
Modify new estimator for sequence-pairs

Label-invariant classifier A such that Vp, g,

P(p.0) < PE(p0) + O 1)

Independent of k!

Runs in linear time

First uniformly-optimal classifier

Omniscient oracle too powerful, compare to more realistic one
Lower bound: For any classifier C, dp, g such that

PE(p,q) > PE(p.q) + 1/3)
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Universal Compression

» X generated by unknown i.i.d. distribution
» Code designed for distribution g
» Redundancy

R = minmaxE [Iog p]
qa p q

» Compress sequences: compress dictionary + pattern
» xX>=abbac
» Dict: a— 1,b— 2,¢c — 3 and pattern: 12213
» Redundancy of patterns?
» (ADO '12): O(n/3)
» Computationally efficient sequential algorithms?
» (0SZ '03): O(n?/3)
» New bound: O(n'/?)
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Motivation

v

N,: # of symbols appearing ;. times

v

Empirical E, - NME
n

v

Multiply by a correction term c,, to improve the estimate

s u
S, =N,~c
w,

» ¢,: a function of x”

v

Ignoring constants:

|S,, — S| ~ bias + /variance
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» Best of both estimators!
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+1 E[N,+1]
New “T E[/g:]l 0 E[NM]%

v

Best of both estimators!

v

Idealized as we don't know the expectations

E[Ny11] ?

. )
How to estimate E[N,] |
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E[NJ

> Given: sequence X", estimate E[N,]
» Expected # of symbols appearing p times

Estimating

» Good-Turing: E[N,] ~ N, high variance
> Better estimators for E[N,]
> Given: X" or N, Ny,... N,
> Linear?
> 2 by
» Why should it work?
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‘Nu - E[NuH = \/E[Nu]

|E[Ny] — E[Np1], [E[N,] — E[Ny—1]| <€

» Expected # symbols appearing 100 and 101 times are close
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» Simple estimator for E[N,]: N,
» Bias = 0 variance = E[N,]

‘Nu - E[NuH = \/E[Nu]

> |E[Ny] — E[Nys1]|, [E[N,] — E[Ny—1]| <€

» Expected # symbols appearing 100 and 101 times are close
» Momentarily assume: N, 1, N,, N, 1 independent
» New Estimator

(Nu—1+ Ny + Nuy1) /3

» Bias <2¢/3<e¢
» Variance of sum = sum of variances

» o' =0/V3
\/E[N,] + €

error <

Sl
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v

N,—1, Ny, N1 are not independent
Need to show
> |E[Nu] = E[N,1]], [E[N,] — E[N, ]| < e
» Bounds on bias, variance are enough for concentration

v

v

Simple averaging does not yield optimal estimator

v

Explicit estimator such that bias and variance is optimized

» Properties of Poisson functions, distribution approximations
» Adaptively choose the # of non-zero coefficients based on X"

Converse: show that estimation is hard for some distributions

v
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Estimator Properties

> Linear estimator for E[N,]: 3_ <, hiNy+i
» Bias: ]E[NM — Z\i|§r h,'N/H_,']

s = 3 (7)ot - o

X

> Problem
» After rescaling, contribution of symbol with probability p

(o)

lij<r

> hi: scaled version of hjs

» Variance o< max; h,.2

» Set term close to (Z)p”(l — p)"~# s.t. max; h(i) is bounded
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» Approximating a polynomial with bounded co-efficients

> Let x =22 ~
o

» Minimize
r
0= max 1- hix'
x€(1—e,1+4€) iz—r I
c c
s.t. max |h;| < PR |hi — hi—1| = (r+1)?

» Y. hi=1 = §=0(e)
» By symmetry, hj = h_; = § = O(e?)
> Zi h;i2 =0, = 6= 0(64)

» > hi=1,,hji>=0, and h, = 0 uniquely represents a
second degree polynomial of the form h; = ai® 4+ Bi + ~ and
satisfies above conditions

» Choose r to minimize bias-variance tradeoff

29 /31
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» The error: bias ++/variance

» Good-Turing: \ﬁ“

» Empirical: T‘/’j

3/4

N
» New error: “T‘/ﬁ

» Adding over all multiplicities and maximizing for N, yields
6(,771/4)

> V estimator there is a distribution with error Q(n=1/4)
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» Classification

» Can't compete with oracle classifier that knows p, g
Label-invariant classifiers, or oracle kgows multisets
Proposed classifier: additional error O(n~1/%)
Independent of alphabet size

Converse: additional error Q(n'/3)

vV vy VvVvYy

» Prediction/universal compression
> Per-symbol redundancy O(n~1/2)
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