
Optimal Probability Estimation and Classification

with

Jayadev Acharya, Ashkan Jafarpour, Ananda Theertha Suresh

UC San Diego

0 / 31

Probability Estimation

I Domains

I Large alphabets
I Mixture models
I Continuous distributions

I Applications

I Compression
I Prediction
I Closeness testing
I Identity testing
I Classification

I Methodologies

I Define doable problem
I Approach limits
I Approach the best possible

1 / 31

Probability Estimation

I Domains

I Large alphabets
I Mixture models
I Continuous distributions

I Applications

I Compression
I Prediction
I Closeness testing
I Identity testing
I Classification

I Methodologies

I Define doable problem
I Approach limits
I Approach the best possible

1 / 31

Probability Estimation

I Domains
I Large alphabets

I Mixture models
I Continuous distributions

I Applications

I Compression
I Prediction
I Closeness testing
I Identity testing
I Classification

I Methodologies

I Define doable problem
I Approach limits
I Approach the best possible

1 / 31

Probability Estimation

I Domains
I Large alphabets
I Mixture models

I Continuous distributions

I Applications

I Compression
I Prediction
I Closeness testing
I Identity testing
I Classification

I Methodologies

I Define doable problem
I Approach limits
I Approach the best possible

1 / 31

Probability Estimation

I Domains
I Large alphabets
I Mixture models
I Continuous distributions

I Applications

I Compression
I Prediction
I Closeness testing
I Identity testing
I Classification

I Methodologies

I Define doable problem
I Approach limits
I Approach the best possible

1 / 31

Probability Estimation

I Domains
I Large alphabets
I Mixture models
I Continuous distributions

I Applications

I Compression
I Prediction
I Closeness testing
I Identity testing
I Classification

I Methodologies

I Define doable problem
I Approach limits
I Approach the best possible

1 / 31

Probability Estimation

I Domains
I Large alphabets
I Mixture models
I Continuous distributions

I Applications
I Compression

I Prediction
I Closeness testing
I Identity testing
I Classification

I Methodologies

I Define doable problem
I Approach limits
I Approach the best possible

1 / 31

Probability Estimation

I Domains
I Large alphabets
I Mixture models
I Continuous distributions

I Applications
I Compression
I Prediction

I Closeness testing
I Identity testing
I Classification

I Methodologies

I Define doable problem
I Approach limits
I Approach the best possible

1 / 31

Probability Estimation

I Domains
I Large alphabets
I Mixture models
I Continuous distributions

I Applications
I Compression
I Prediction
I Closeness testing

I Identity testing
I Classification

I Methodologies

I Define doable problem
I Approach limits
I Approach the best possible

1 / 31

Probability Estimation

I Domains
I Large alphabets
I Mixture models
I Continuous distributions

I Applications
I Compression
I Prediction
I Closeness testing
I Identity testing

I Classification

I Methodologies

I Define doable problem
I Approach limits
I Approach the best possible

1 / 31

Probability Estimation

I Domains
I Large alphabets
I Mixture models
I Continuous distributions

I Applications
I Compression
I Prediction
I Closeness testing
I Identity testing
I Classification

I Methodologies

I Define doable problem
I Approach limits
I Approach the best possible

1 / 31

Probability Estimation

I Domains
I Large alphabets
I Mixture models
I Continuous distributions

I Applications
I Compression
I Prediction
I Closeness testing
I Identity testing
I Classification

I Methodologies

I Define doable problem
I Approach limits
I Approach the best possible

1 / 31

Probability Estimation

I Domains
I Large alphabets
I Mixture models
I Continuous distributions

I Applications
I Compression
I Prediction
I Closeness testing
I Identity testing
I Classification

I Methodologies
I Define doable problem

I Approach limits
I Approach the best possible

1 / 31

Probability Estimation

I Domains
I Large alphabets
I Mixture models
I Continuous distributions

I Applications
I Compression
I Prediction
I Closeness testing
I Identity testing
I Classification

I Methodologies
I Define doable problem
I Approach limits

I Approach the best possible

1 / 31

Probability Estimation

I Domains
I Large alphabets
I Mixture models
I Continuous distributions

I Applications
I Compression
I Prediction
I Closeness testing
I Identity testing
I Classification

I Methodologies
I Define doable problem
I Approach limits
I Approach the best possible

1 / 31

Overview

I Probability estimation

I Motivation
I Combined probability
I Previous results
I Optimal estimator
I Proof sketch

I Classification

I Motivation
I Label-invariant classifier
I Nearly-optimal estimators

I Prediction

I Conclusion

2 / 31

Overview

I Probability estimation

I Motivation
I Combined probability
I Previous results
I Optimal estimator
I Proof sketch

I Classification

I Motivation
I Label-invariant classifier
I Nearly-optimal estimators

I Prediction

I Conclusion

2 / 31

Overview

I Probability estimation
I Motivation

I Combined probability
I Previous results
I Optimal estimator
I Proof sketch

I Classification

I Motivation
I Label-invariant classifier
I Nearly-optimal estimators

I Prediction

I Conclusion

2 / 31

Overview

I Probability estimation
I Motivation
I Combined probability

I Previous results
I Optimal estimator
I Proof sketch

I Classification

I Motivation
I Label-invariant classifier
I Nearly-optimal estimators

I Prediction

I Conclusion

2 / 31

Overview

I Probability estimation
I Motivation
I Combined probability
I Previous results

I Optimal estimator
I Proof sketch

I Classification

I Motivation
I Label-invariant classifier
I Nearly-optimal estimators

I Prediction

I Conclusion

2 / 31

Overview

I Probability estimation
I Motivation
I Combined probability
I Previous results
I Optimal estimator

I Proof sketch

I Classification

I Motivation
I Label-invariant classifier
I Nearly-optimal estimators

I Prediction

I Conclusion

2 / 31

Overview

I Probability estimation
I Motivation
I Combined probability
I Previous results
I Optimal estimator
I Proof sketch

I Classification

I Motivation
I Label-invariant classifier
I Nearly-optimal estimators

I Prediction

I Conclusion

2 / 31

Overview

I Probability estimation
I Motivation
I Combined probability
I Previous results
I Optimal estimator
I Proof sketch

I Classification

I Motivation
I Label-invariant classifier
I Nearly-optimal estimators

I Prediction

I Conclusion

2 / 31

Overview

I Probability estimation
I Motivation
I Combined probability
I Previous results
I Optimal estimator
I Proof sketch

I Classification
I Motivation

I Label-invariant classifier
I Nearly-optimal estimators

I Prediction

I Conclusion

2 / 31

Overview

I Probability estimation
I Motivation
I Combined probability
I Previous results
I Optimal estimator
I Proof sketch

I Classification
I Motivation
I Label-invariant classifier

I Nearly-optimal estimators

I Prediction

I Conclusion

2 / 31

Overview

I Probability estimation
I Motivation
I Combined probability
I Previous results
I Optimal estimator
I Proof sketch

I Classification
I Motivation
I Label-invariant classifier
I Nearly-optimal estimators

I Prediction

I Conclusion

2 / 31

Overview

I Probability estimation
I Motivation
I Combined probability
I Previous results
I Optimal estimator
I Proof sketch

I Classification
I Motivation
I Label-invariant classifier
I Nearly-optimal estimators

I Prediction

I Conclusion

2 / 31

Overview

I Probability estimation
I Motivation
I Combined probability
I Previous results
I Optimal estimator
I Proof sketch

I Classification
I Motivation
I Label-invariant classifier
I Nearly-optimal estimators

I Prediction

I Conclusion

2 / 31

Motivation

2 / 31

Original Scene

I Coin: (ph, pt) ph + pt = 1

I Flip n times, estimate ph

I Empirical frequency estimate: h appear nh times, Eh
def
= nh

n

I Law of large numbers: Eh −−−→
n→∞

ph

I Expectation: E(Eh) = ph

I Standard deviation:
√

pq
n ≤

1
2
√
n

I For |Eh − ph| < δ need n = Θ
(
1
δ2

)
I For any given difference, need constant samples

3 / 31

Original Scene

I Coin: (ph, pt) ph + pt = 1

I Flip n times, estimate ph

I Empirical frequency estimate: h appear nh times, Eh
def
= nh

n

I Law of large numbers: Eh −−−→
n→∞

ph

I Expectation: E(Eh) = ph

I Standard deviation:
√

pq
n ≤

1
2
√
n

I For |Eh − ph| < δ need n = Θ
(
1
δ2

)
I For any given difference, need constant samples

3 / 31

Original Scene

I Coin: (ph, pt) ph + pt = 1

I Flip n times, estimate ph

I Empirical frequency estimate: h appear nh times, Eh
def
= nh

n

I Law of large numbers: Eh −−−→
n→∞

ph

I Expectation: E(Eh) = ph

I Standard deviation:
√

pq
n ≤

1
2
√
n

I For |Eh − ph| < δ need n = Θ
(
1
δ2

)
I For any given difference, need constant samples

3 / 31

Original Scene

I Coin: (ph, pt) ph + pt = 1

I Flip n times, estimate ph

I Empirical frequency estimate: h appear nh times, Eh
def
= nh

n

I Law of large numbers: Eh −−−→
n→∞

ph

I Expectation: E(Eh) = ph

I Standard deviation:
√

pq
n ≤

1
2
√
n

I For |Eh − ph| < δ need n = Θ
(
1
δ2

)
I For any given difference, need constant samples

3 / 31

Original Scene

I Coin: (ph, pt) ph + pt = 1

I Flip n times, estimate ph

I Empirical frequency estimate: h appear nh times, Eh
def
= nh

n

I Law of large numbers: Eh −−−→
n→∞

ph

I Expectation: E(Eh) = ph

I Standard deviation:
√

pq
n ≤

1
2
√
n

I For |Eh − ph| < δ need n = Θ
(
1
δ2

)
I For any given difference, need constant samples

3 / 31

Original Scene

I Coin: (ph, pt) ph + pt = 1

I Flip n times, estimate ph

I Empirical frequency estimate: h appear nh times, Eh
def
= nh

n

I Law of large numbers: Eh −−−→
n→∞

ph

I Expectation: E(Eh) = ph

I Standard deviation:
√

pq
n ≤

1
2
√
n

I For |Eh − ph| < δ need n = Θ
(
1
δ2

)
I For any given difference, need constant samples

3 / 31

Original Scene

I Coin: (ph, pt) ph + pt = 1

I Flip n times, estimate ph

I Empirical frequency estimate: h appear nh times, Eh
def
= nh

n

I Law of large numbers: Eh −−−→
n→∞

ph

I Expectation: E(Eh) = ph

I Standard deviation:
√

pq
n ≤

1
2
√
n

I For |Eh − ph| < δ need n = Θ
(
1
δ2

)
I For any given difference, need constant samples

3 / 31

Original Scene

I Coin: (ph, pt) ph + pt = 1

I Flip n times, estimate ph

I Empirical frequency estimate: h appear nh times, Eh
def
= nh

n

I Law of large numbers: Eh −−−→
n→∞

ph

I Expectation: E(Eh) = ph

I Standard deviation:
√

pq
n ≤

1
2
√
n

I For |Eh − ph| < δ need n = Θ
(
1
δ2

)

I For any given difference, need constant samples

3 / 31

Original Scene

I Coin: (ph, pt) ph + pt = 1

I Flip n times, estimate ph

I Empirical frequency estimate: h appear nh times, Eh
def
= nh

n

I Law of large numbers: Eh −−−→
n→∞

ph

I Expectation: E(Eh) = ph

I Standard deviation:
√

pq
n ≤

1
2
√
n

I For |Eh − ph| < δ need n = Θ
(
1
δ2

)
I For any given difference, need constant samples

3 / 31

Large Alphabets

I Text processing (≈ 500, 000 words)

I Speech recognition
I Machine translation

I Natural language processing (bag of words)

I Text classification [McCallum Nigam ’98]
I Topic modeling [Blei Ng Jordan ’03]

I Biology

I Species estimation
I Genetics

I Online marketing

I Ad click-through
I Movies

4 / 31

Large Alphabets

I Text processing (≈ 500, 000 words)

I Speech recognition
I Machine translation

I Natural language processing (bag of words)

I Text classification [McCallum Nigam ’98]
I Topic modeling [Blei Ng Jordan ’03]

I Biology

I Species estimation
I Genetics

I Online marketing

I Ad click-through
I Movies

4 / 31

Large Alphabets

I Text processing (≈ 500, 000 words)
I Speech recognition

I Machine translation

I Natural language processing (bag of words)

I Text classification [McCallum Nigam ’98]
I Topic modeling [Blei Ng Jordan ’03]

I Biology

I Species estimation
I Genetics

I Online marketing

I Ad click-through
I Movies

4 / 31

Large Alphabets

I Text processing (≈ 500, 000 words)
I Speech recognition
I Machine translation

I Natural language processing (bag of words)

I Text classification [McCallum Nigam ’98]
I Topic modeling [Blei Ng Jordan ’03]

I Biology

I Species estimation
I Genetics

I Online marketing

I Ad click-through
I Movies

4 / 31

Large Alphabets

I Text processing (≈ 500, 000 words)
I Speech recognition
I Machine translation

I Natural language processing (bag of words)

I Text classification [McCallum Nigam ’98]
I Topic modeling [Blei Ng Jordan ’03]

I Biology

I Species estimation
I Genetics

I Online marketing

I Ad click-through
I Movies

4 / 31

Large Alphabets

I Text processing (≈ 500, 000 words)
I Speech recognition
I Machine translation

I Natural language processing (bag of words)
I Text classification [McCallum Nigam ’98]

I Topic modeling [Blei Ng Jordan ’03]

I Biology

I Species estimation
I Genetics

I Online marketing

I Ad click-through
I Movies

4 / 31

Large Alphabets

I Text processing (≈ 500, 000 words)
I Speech recognition
I Machine translation

I Natural language processing (bag of words)
I Text classification [McCallum Nigam ’98]
I Topic modeling [Blei Ng Jordan ’03]

I Biology

I Species estimation
I Genetics

I Online marketing

I Ad click-through
I Movies

4 / 31

Large Alphabets

I Text processing (≈ 500, 000 words)
I Speech recognition
I Machine translation

I Natural language processing (bag of words)
I Text classification [McCallum Nigam ’98]
I Topic modeling [Blei Ng Jordan ’03]

I Biology

I Species estimation
I Genetics

I Online marketing

I Ad click-through
I Movies

4 / 31

Large Alphabets

I Text processing (≈ 500, 000 words)
I Speech recognition
I Machine translation

I Natural language processing (bag of words)
I Text classification [McCallum Nigam ’98]
I Topic modeling [Blei Ng Jordan ’03]

I Biology
I Species estimation

I Genetics

I Online marketing

I Ad click-through
I Movies

4 / 31

Large Alphabets

I Text processing (≈ 500, 000 words)
I Speech recognition
I Machine translation

I Natural language processing (bag of words)
I Text classification [McCallum Nigam ’98]
I Topic modeling [Blei Ng Jordan ’03]

I Biology
I Species estimation
I Genetics

I Online marketing

I Ad click-through
I Movies

4 / 31

Large Alphabets

I Text processing (≈ 500, 000 words)
I Speech recognition
I Machine translation

I Natural language processing (bag of words)
I Text classification [McCallum Nigam ’98]
I Topic modeling [Blei Ng Jordan ’03]

I Biology
I Species estimation
I Genetics

I Online marketing

I Ad click-through
I Movies

4 / 31

Large Alphabets

I Text processing (≈ 500, 000 words)
I Speech recognition
I Machine translation

I Natural language processing (bag of words)
I Text classification [McCallum Nigam ’98]
I Topic modeling [Blei Ng Jordan ’03]

I Biology
I Species estimation
I Genetics

I Online marketing
I Ad click-through

I Movies

4 / 31

Large Alphabets

I Text processing (≈ 500, 000 words)
I Speech recognition
I Machine translation

I Natural language processing (bag of words)
I Text classification [McCallum Nigam ’98]
I Topic modeling [Blei Ng Jordan ’03]

I Biology
I Species estimation
I Genetics

I Online marketing
I Ad click-through
I Movies

4 / 31

Sample Complexity

I P = (p1, p2, . . . pk)

I n samples, X n ∼ p

I E : estimator

I `1 distance: ||E − p||1
def
=
∑k

i=1 |E (i)− pi |
I `1 ≤ .01 with probability ≥ .99

I Empirical: n = O(k)
I For some distributions, n = Ω(k) [Paninski ’04]

I Take arbitrary k/2-element subset of {1, , . . . ,, k}
I If n < k/4, observe ≤ k/4 values, uniform over remaining 3k/4
I ||E − p||1 ≥ 1

3

I n = Θ(k/δ2)

I k = 500, 000, δ = 0.01 → n = 50B

I KL divergence: similar, n = Θ(k)

5 / 31

Sample Complexity

I P = (p1, p2, . . . pk)

I n samples, X n ∼ p

I E : estimator

I `1 distance: ||E − p||1
def
=
∑k

i=1 |E (i)− pi |
I `1 ≤ .01 with probability ≥ .99

I Empirical: n = O(k)
I For some distributions, n = Ω(k) [Paninski ’04]

I Take arbitrary k/2-element subset of {1, , . . . ,, k}
I If n < k/4, observe ≤ k/4 values, uniform over remaining 3k/4
I ||E − p||1 ≥ 1

3

I n = Θ(k/δ2)

I k = 500, 000, δ = 0.01 → n = 50B

I KL divergence: similar, n = Θ(k)

5 / 31

Sample Complexity

I P = (p1, p2, . . . pk)

I n samples, X n ∼ p

I E : estimator

I `1 distance: ||E − p||1
def
=
∑k

i=1 |E (i)− pi |
I `1 ≤ .01 with probability ≥ .99

I Empirical: n = O(k)
I For some distributions, n = Ω(k) [Paninski ’04]

I Take arbitrary k/2-element subset of {1, , . . . ,, k}
I If n < k/4, observe ≤ k/4 values, uniform over remaining 3k/4
I ||E − p||1 ≥ 1

3

I n = Θ(k/δ2)

I k = 500, 000, δ = 0.01 → n = 50B

I KL divergence: similar, n = Θ(k)

5 / 31

Sample Complexity

I P = (p1, p2, . . . pk)

I n samples, X n ∼ p

I E : estimator

I `1 distance: ||E − p||1
def
=
∑k

i=1 |E (i)− pi |
I `1 ≤ .01 with probability ≥ .99

I Empirical: n = O(k)
I For some distributions, n = Ω(k) [Paninski ’04]

I Take arbitrary k/2-element subset of {1, , . . . ,, k}
I If n < k/4, observe ≤ k/4 values, uniform over remaining 3k/4
I ||E − p||1 ≥ 1

3

I n = Θ(k/δ2)

I k = 500, 000, δ = 0.01 → n = 50B

I KL divergence: similar, n = Θ(k)

5 / 31

Sample Complexity

I P = (p1, p2, . . . pk)

I n samples, X n ∼ p

I E : estimator

I `1 distance: ||E − p||1
def
=
∑k

i=1 |E (i)− pi |

I `1 ≤ .01 with probability ≥ .99

I Empirical: n = O(k)
I For some distributions, n = Ω(k) [Paninski ’04]

I Take arbitrary k/2-element subset of {1, , . . . ,, k}
I If n < k/4, observe ≤ k/4 values, uniform over remaining 3k/4
I ||E − p||1 ≥ 1

3

I n = Θ(k/δ2)

I k = 500, 000, δ = 0.01 → n = 50B

I KL divergence: similar, n = Θ(k)

5 / 31

Sample Complexity

I P = (p1, p2, . . . pk)

I n samples, X n ∼ p

I E : estimator

I `1 distance: ||E − p||1
def
=
∑k

i=1 |E (i)− pi |
I `1 ≤ .01 with probability ≥ .99

I Empirical: n = O(k)
I For some distributions, n = Ω(k) [Paninski ’04]

I Take arbitrary k/2-element subset of {1, , . . . ,, k}
I If n < k/4, observe ≤ k/4 values, uniform over remaining 3k/4
I ||E − p||1 ≥ 1

3

I n = Θ(k/δ2)

I k = 500, 000, δ = 0.01 → n = 50B

I KL divergence: similar, n = Θ(k)

5 / 31

Sample Complexity

I P = (p1, p2, . . . pk)

I n samples, X n ∼ p

I E : estimator

I `1 distance: ||E − p||1
def
=
∑k

i=1 |E (i)− pi |
I `1 ≤ .01 with probability ≥ .99

I Empirical: n = O(k)

I For some distributions, n = Ω(k) [Paninski ’04]

I Take arbitrary k/2-element subset of {1, , . . . ,, k}
I If n < k/4, observe ≤ k/4 values, uniform over remaining 3k/4
I ||E − p||1 ≥ 1

3

I n = Θ(k/δ2)

I k = 500, 000, δ = 0.01 → n = 50B

I KL divergence: similar, n = Θ(k)

5 / 31

Sample Complexity

I P = (p1, p2, . . . pk)

I n samples, X n ∼ p

I E : estimator

I `1 distance: ||E − p||1
def
=
∑k

i=1 |E (i)− pi |
I `1 ≤ .01 with probability ≥ .99

I Empirical: n = O(k)
I For some distributions, n = Ω(k) [Paninski ’04]

I Take arbitrary k/2-element subset of {1, , . . . ,, k}
I If n < k/4, observe ≤ k/4 values, uniform over remaining 3k/4
I ||E − p||1 ≥ 1

3

I n = Θ(k/δ2)

I k = 500, 000, δ = 0.01 → n = 50B

I KL divergence: similar, n = Θ(k)

5 / 31

Sample Complexity

I P = (p1, p2, . . . pk)

I n samples, X n ∼ p

I E : estimator

I `1 distance: ||E − p||1
def
=
∑k

i=1 |E (i)− pi |
I `1 ≤ .01 with probability ≥ .99

I Empirical: n = O(k)
I For some distributions, n = Ω(k) [Paninski ’04]

I Take arbitrary k/2-element subset of {1, , . . . ,, k}

I If n < k/4, observe ≤ k/4 values, uniform over remaining 3k/4
I ||E − p||1 ≥ 1

3

I n = Θ(k/δ2)

I k = 500, 000, δ = 0.01 → n = 50B

I KL divergence: similar, n = Θ(k)

5 / 31

Sample Complexity

I P = (p1, p2, . . . pk)

I n samples, X n ∼ p

I E : estimator

I `1 distance: ||E − p||1
def
=
∑k

i=1 |E (i)− pi |
I `1 ≤ .01 with probability ≥ .99

I Empirical: n = O(k)
I For some distributions, n = Ω(k) [Paninski ’04]

I Take arbitrary k/2-element subset of {1, , . . . ,, k}
I If n < k/4, observe ≤ k/4 values, uniform over remaining 3k/4

I ||E − p||1 ≥ 1
3

I n = Θ(k/δ2)

I k = 500, 000, δ = 0.01 → n = 50B

I KL divergence: similar, n = Θ(k)

5 / 31

Sample Complexity

I P = (p1, p2, . . . pk)

I n samples, X n ∼ p

I E : estimator

I `1 distance: ||E − p||1
def
=
∑k

i=1 |E (i)− pi |
I `1 ≤ .01 with probability ≥ .99

I Empirical: n = O(k)
I For some distributions, n = Ω(k) [Paninski ’04]

I Take arbitrary k/2-element subset of {1, , . . . ,, k}
I If n < k/4, observe ≤ k/4 values, uniform over remaining 3k/4
I ||E − p||1 ≥ 1

3

I n = Θ(k/δ2)

I k = 500, 000, δ = 0.01 → n = 50B

I KL divergence: similar, n = Θ(k)

5 / 31

Sample Complexity

I P = (p1, p2, . . . pk)

I n samples, X n ∼ p

I E : estimator

I `1 distance: ||E − p||1
def
=
∑k

i=1 |E (i)− pi |
I `1 ≤ .01 with probability ≥ .99

I Empirical: n = O(k)
I For some distributions, n = Ω(k) [Paninski ’04]

I Take arbitrary k/2-element subset of {1, , . . . ,, k}
I If n < k/4, observe ≤ k/4 values, uniform over remaining 3k/4
I ||E − p||1 ≥ 1

3

I n = Θ(k/δ2)

I k = 500, 000, δ = 0.01 → n = 50B

I KL divergence: similar, n = Θ(k)

5 / 31

Sample Complexity

I P = (p1, p2, . . . pk)

I n samples, X n ∼ p

I E : estimator

I `1 distance: ||E − p||1
def
=
∑k

i=1 |E (i)− pi |
I `1 ≤ .01 with probability ≥ .99

I Empirical: n = O(k)
I For some distributions, n = Ω(k) [Paninski ’04]

I Take arbitrary k/2-element subset of {1, , . . . ,, k}
I If n < k/4, observe ≤ k/4 values, uniform over remaining 3k/4
I ||E − p||1 ≥ 1

3

I n = Θ(k/δ2)

I k = 500, 000, δ = 0.01 → n = 50B

I KL divergence: similar, n = Θ(k)

5 / 31

Sample Complexity

I P = (p1, p2, . . . pk)

I n samples, X n ∼ p

I E : estimator

I `1 distance: ||E − p||1
def
=
∑k

i=1 |E (i)− pi |
I `1 ≤ .01 with probability ≥ .99

I Empirical: n = O(k)
I For some distributions, n = Ω(k) [Paninski ’04]

I Take arbitrary k/2-element subset of {1, , . . . ,, k}
I If n < k/4, observe ≤ k/4 values, uniform over remaining 3k/4
I ||E − p||1 ≥ 1

3

I n = Θ(k/δ2)

I k = 500, 000, δ = 0.01 → n = 50B

I KL divergence: similar, n = Θ(k)

5 / 31

Previous Approaches

I Properties of p

I ∀i pi > 1/k, estimate support size, entropy

I n = Θ
(

k
log k

)
[Valiant Valiant ’11]

I Factor of log k improvement

I Assumptions on p

I p is monotone (or m-modal) over [k]
I n = polylog(k) [Daskalakis, Diaconikolas, Servedio ’12]

I Our approach

I General distributions
I Best anyone can do
I Natural estimators

6 / 31

Previous Approaches

I Properties of p
I ∀i pi > 1/k, estimate support size, entropy

I n = Θ
(

k
log k

)
[Valiant Valiant ’11]

I Factor of log k improvement

I Assumptions on p

I p is monotone (or m-modal) over [k]
I n = polylog(k) [Daskalakis, Diaconikolas, Servedio ’12]

I Our approach

I General distributions
I Best anyone can do
I Natural estimators

6 / 31

Previous Approaches

I Properties of p
I ∀i pi > 1/k, estimate support size, entropy

I n = Θ
(

k
log k

)
[Valiant Valiant ’11]

I Factor of log k improvement

I Assumptions on p

I p is monotone (or m-modal) over [k]
I n = polylog(k) [Daskalakis, Diaconikolas, Servedio ’12]

I Our approach

I General distributions
I Best anyone can do
I Natural estimators

6 / 31

Previous Approaches

I Properties of p
I ∀i pi > 1/k, estimate support size, entropy

I n = Θ
(

k
log k

)
[Valiant Valiant ’11]

I Factor of log k improvement

I Assumptions on p

I p is monotone (or m-modal) over [k]
I n = polylog(k) [Daskalakis, Diaconikolas, Servedio ’12]

I Our approach

I General distributions
I Best anyone can do
I Natural estimators

6 / 31

Previous Approaches

I Properties of p
I ∀i pi > 1/k, estimate support size, entropy

I n = Θ
(

k
log k

)
[Valiant Valiant ’11]

I Factor of log k improvement

I Assumptions on p

I p is monotone (or m-modal) over [k]
I n = polylog(k) [Daskalakis, Diaconikolas, Servedio ’12]

I Our approach

I General distributions
I Best anyone can do
I Natural estimators

6 / 31

Previous Approaches

I Properties of p
I ∀i pi > 1/k, estimate support size, entropy

I n = Θ
(

k
log k

)
[Valiant Valiant ’11]

I Factor of log k improvement

I Assumptions on p
I p is monotone (or m-modal) over [k]

I n = polylog(k) [Daskalakis, Diaconikolas, Servedio ’12]

I Our approach

I General distributions
I Best anyone can do
I Natural estimators

6 / 31

Previous Approaches

I Properties of p
I ∀i pi > 1/k, estimate support size, entropy

I n = Θ
(

k
log k

)
[Valiant Valiant ’11]

I Factor of log k improvement

I Assumptions on p
I p is monotone (or m-modal) over [k]
I n = polylog(k) [Daskalakis, Diaconikolas, Servedio ’12]

I Our approach

I General distributions
I Best anyone can do
I Natural estimators

6 / 31

Previous Approaches

I Properties of p
I ∀i pi > 1/k, estimate support size, entropy

I n = Θ
(

k
log k

)
[Valiant Valiant ’11]

I Factor of log k improvement

I Assumptions on p
I p is monotone (or m-modal) over [k]
I n = polylog(k) [Daskalakis, Diaconikolas, Servedio ’12]

I Our approach

I General distributions
I Best anyone can do
I Natural estimators

6 / 31

Previous Approaches

I Properties of p
I ∀i pi > 1/k, estimate support size, entropy

I n = Θ
(

k
log k

)
[Valiant Valiant ’11]

I Factor of log k improvement

I Assumptions on p
I p is monotone (or m-modal) over [k]
I n = polylog(k) [Daskalakis, Diaconikolas, Servedio ’12]

I Our approach
I General distributions

I Best anyone can do
I Natural estimators

6 / 31

Previous Approaches

I Properties of p
I ∀i pi > 1/k, estimate support size, entropy

I n = Θ
(

k
log k

)
[Valiant Valiant ’11]

I Factor of log k improvement

I Assumptions on p
I p is monotone (or m-modal) over [k]
I n = polylog(k) [Daskalakis, Diaconikolas, Servedio ’12]

I Our approach
I General distributions
I Best anyone can do

I Natural estimators

6 / 31

Previous Approaches

I Properties of p
I ∀i pi > 1/k, estimate support size, entropy

I n = Θ
(

k
log k

)
[Valiant Valiant ’11]

I Factor of log k improvement

I Assumptions on p
I p is monotone (or m-modal) over [k]
I n = polylog(k) [Daskalakis, Diaconikolas, Servedio ’12]

I Our approach
I General distributions
I Best anyone can do
I Natural estimators

6 / 31

Combined-Probability Estimation

6 / 31

Natural Estimators

I Distribution over {a, b, c , d , e, f }
I x5 = a b b a c
I pa, pb?

I Both appeared twice

I Without prior knowledge, for every natural estimator p̂

p̂a = p̂b

I If symbols have appeared same # of times

I Assign same probability
I Similarly for unseen symbols

7 / 31

Natural Estimators

I Distribution over {a, b, c , d , e, f }

I x5 = a b b a c
I pa, pb?

I Both appeared twice

I Without prior knowledge, for every natural estimator p̂

p̂a = p̂b

I If symbols have appeared same # of times

I Assign same probability
I Similarly for unseen symbols

7 / 31

Natural Estimators

I Distribution over {a, b, c , d , e, f }
I x5 = a b b a c

I pa, pb?

I Both appeared twice

I Without prior knowledge, for every natural estimator p̂

p̂a = p̂b

I If symbols have appeared same # of times

I Assign same probability
I Similarly for unseen symbols

7 / 31

Natural Estimators

I Distribution over {a, b, c , d , e, f }
I x5 = a b b a c
I pa, pb?

I Both appeared twice

I Without prior knowledge, for every natural estimator p̂

p̂a = p̂b

I If symbols have appeared same # of times

I Assign same probability
I Similarly for unseen symbols

7 / 31

Natural Estimators

I Distribution over {a, b, c , d , e, f }
I x5 = a b b a c
I pa, pb?

I Both appeared twice

I Without prior knowledge, for every natural estimator p̂

p̂a = p̂b

I If symbols have appeared same # of times

I Assign same probability
I Similarly for unseen symbols

7 / 31

Natural Estimators

I Distribution over {a, b, c , d , e, f }
I x5 = a b b a c
I pa, pb?

I Both appeared twice

I Without prior knowledge, for every natural estimator p̂

p̂a = p̂b

I If symbols have appeared same # of times

I Assign same probability
I Similarly for unseen symbols

7 / 31

Natural Estimators

I Distribution over {a, b, c , d , e, f }
I x5 = a b b a c
I pa, pb?

I Both appeared twice

I Without prior knowledge, for every natural estimator p̂

p̂a = p̂b

I If symbols have appeared same # of times

I Assign same probability
I Similarly for unseen symbols

7 / 31

Natural Estimators

I Distribution over {a, b, c , d , e, f }
I x5 = a b b a c
I pa, pb?

I Both appeared twice

I Without prior knowledge, for every natural estimator p̂

p̂a = p̂b

I If symbols have appeared same # of times
I Assign same probability

I Similarly for unseen symbols

7 / 31

Natural Estimators

I Distribution over {a, b, c , d , e, f }
I x5 = a b b a c
I pa, pb?

I Both appeared twice

I Without prior knowledge, for every natural estimator p̂

p̂a = p̂b

I If symbols have appeared same # of times
I Assign same probability
I Similarly for unseen symbols

7 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}

I x4 = a d c d
N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)
S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0,S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}

I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)
S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0,S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}

I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)
S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0,S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}

I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)
S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0,S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}

I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)
S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0, S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}
I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)
S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0, S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}
I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)
S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0, S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}
I x4 = a d c d

N0 = 1 (b)

N1 = 2 (a,c) N2 = 1 (d)
S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0, S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}
I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c)

N2 = 1 (d)
S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0, S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}
I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)

S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0,S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}
I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)
S0 = pb

S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0,S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}
I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)
S0 = pb S1 = pa + pc

S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0,S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}
I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)
S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0,S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}
I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)
S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0,S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}
I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)
S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0,S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}
I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)
S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0

I Combined-probability estimation: estimate S0,S1, . . . ,Sn

8 / 31

Definitions

I µ: multiplicity, number of occurrences of a symbol

I Nµ
def
= # symbols with multiplicity µ

I Sµ
def
= sum of probabilities of symbols with multiplicity µ

I Example: distribution over {a, b, c , d}
I x4 = a d c d

N0 = 1 (b) N1 = 2 (a,c) N2 = 1 (d)
S0 = pb S1 = pa + pc S2 = pd

I If symbol x appeared µ ≥ 1 times, qx =
Sµ
Nµ

I qa = qc = S1

N1
= S1

2

I Unseen probability: S0
I Combined-probability estimation: estimate S0, S1, . . . ,Sn

8 / 31

Distance Measures

I Ŝ = (Ŝ0, Ŝ1, . . . ,Ŝn) estimate of S = (S0,S1, . . . ,Sn)
I Optimality criteria?

I `1 distance: consistency, classification

||S − Ŝ ||1
def
=

n∑
µ=0

|Sµ − Ŝµ|

I KL divergence: universal compression, prediction with log-loss

D(S ||Ŝ)
def
=

n∑
µ=0

Sµ log
Sµ

Ŝµ

9 / 31

Distance Measures

I Ŝ = (Ŝ0, Ŝ1, . . . ,Ŝn) estimate of S = (S0,S1, . . . ,Sn)

I Optimality criteria?

I `1 distance: consistency, classification

||S − Ŝ ||1
def
=

n∑
µ=0

|Sµ − Ŝµ|

I KL divergence: universal compression, prediction with log-loss

D(S ||Ŝ)
def
=

n∑
µ=0

Sµ log
Sµ

Ŝµ

9 / 31

Distance Measures

I Ŝ = (Ŝ0, Ŝ1, . . . ,Ŝn) estimate of S = (S0,S1, . . . ,Sn)
I Optimality criteria?

I `1 distance: consistency, classification

||S − Ŝ ||1
def
=

n∑
µ=0

|Sµ − Ŝµ|

I KL divergence: universal compression, prediction with log-loss

D(S ||Ŝ)
def
=

n∑
µ=0

Sµ log
Sµ

Ŝµ

9 / 31

Distance Measures

I Ŝ = (Ŝ0, Ŝ1, . . . ,Ŝn) estimate of S = (S0,S1, . . . ,Sn)
I Optimality criteria?

I `1 distance: consistency, classification

||S − Ŝ ||1
def
=

n∑
µ=0

|Sµ − Ŝµ|

I KL divergence: universal compression, prediction with log-loss

D(S ||Ŝ)
def
=

n∑
µ=0

Sµ log
Sµ

Ŝµ

9 / 31

Distance Measures

I Ŝ = (Ŝ0, Ŝ1, . . . ,Ŝn) estimate of S = (S0,S1, . . . ,Sn)
I Optimality criteria?

I `1 distance: consistency, classification

||S − Ŝ ||1
def
=

n∑
µ=0

|Sµ − Ŝµ|

I KL divergence: universal compression, prediction with log-loss

D(S ||Ŝ)
def
=

n∑
µ=0

Sµ log
Sµ

Ŝµ

9 / 31

Empirical Frequency

I x9 = a b e b c a d c c

I S2 = pa + pb
I Empirical frequency: E2 = 2/9 + 2/9 = 4/9

I Recall: Nµ = # of symbols appearing µ times

Eµ = Nµ
µ

n

I # of samples for `1 ≤ 0.01 with probability ≥ 0.99

I E0 = 0 always
I U{1, . . . ,k}, n = 0.98k

S0 > 0.02

I n > 0.98k

10 / 31

Empirical Frequency

I x9 = a b e b c a d c c

I S2 = pa + pb
I Empirical frequency: E2 = 2/9 + 2/9 = 4/9

I Recall: Nµ = # of symbols appearing µ times

Eµ = Nµ
µ

n

I # of samples for `1 ≤ 0.01 with probability ≥ 0.99

I E0 = 0 always
I U{1, . . . ,k}, n = 0.98k

S0 > 0.02

I n > 0.98k

10 / 31

Empirical Frequency

I x9 = a b e b c a d c c

I S2 = pa + pb

I Empirical frequency: E2 = 2/9 + 2/9 = 4/9

I Recall: Nµ = # of symbols appearing µ times

Eµ = Nµ
µ

n

I # of samples for `1 ≤ 0.01 with probability ≥ 0.99

I E0 = 0 always
I U{1, . . . ,k}, n = 0.98k

S0 > 0.02

I n > 0.98k

10 / 31

Empirical Frequency

I x9 = a b e b c a d c c

I S2 = pa + pb
I Empirical frequency: E2 = 2/9 + 2/9 = 4/9

I Recall: Nµ = # of symbols appearing µ times

Eµ = Nµ
µ

n

I # of samples for `1 ≤ 0.01 with probability ≥ 0.99

I E0 = 0 always
I U{1, . . . ,k}, n = 0.98k

S0 > 0.02

I n > 0.98k

10 / 31

Empirical Frequency

I x9 = a b e b c a d c c

I S2 = pa + pb
I Empirical frequency: E2 = 2/9 + 2/9 = 4/9

I Recall: Nµ = # of symbols appearing µ times

Eµ = Nµ
µ

n

I # of samples for `1 ≤ 0.01 with probability ≥ 0.99

I E0 = 0 always
I U{1, . . . ,k}, n = 0.98k

S0 > 0.02

I n > 0.98k

10 / 31

Empirical Frequency

I x9 = a b e b c a d c c

I S2 = pa + pb
I Empirical frequency: E2 = 2/9 + 2/9 = 4/9

I Recall: Nµ = # of symbols appearing µ times

Eµ = Nµ
µ

n

I # of samples for `1 ≤ 0.01 with probability ≥ 0.99

I E0 = 0 always
I U{1, . . . ,k}, n = 0.98k

S0 > 0.02

I n > 0.98k

10 / 31

Empirical Frequency

I x9 = a b e b c a d c c

I S2 = pa + pb
I Empirical frequency: E2 = 2/9 + 2/9 = 4/9

I Recall: Nµ = # of symbols appearing µ times

Eµ = Nµ
µ

n

I # of samples for `1 ≤ 0.01 with probability ≥ 0.99
I E0 = 0 always

I U{1, . . . ,k}, n = 0.98k

S0 > 0.02

I n > 0.98k

10 / 31

Empirical Frequency

I x9 = a b e b c a d c c

I S2 = pa + pb
I Empirical frequency: E2 = 2/9 + 2/9 = 4/9

I Recall: Nµ = # of symbols appearing µ times

Eµ = Nµ
µ

n

I # of samples for `1 ≤ 0.01 with probability ≥ 0.99
I E0 = 0 always
I U{1, . . . ,k}, n = 0.98k

S0 > 0.02

I n > 0.98k

10 / 31

Empirical Frequency

I x9 = a b e b c a d c c

I S2 = pa + pb
I Empirical frequency: E2 = 2/9 + 2/9 = 4/9

I Recall: Nµ = # of symbols appearing µ times

Eµ = Nµ
µ

n

I # of samples for `1 ≤ 0.01 with probability ≥ 0.99
I E0 = 0 always
I U{1, . . . ,k}, n = 0.98k

S0 > 0.02

I n > 0.98k

10 / 31

Good Turing

I Nµ+1: # symbols appearing µ+ 1 times

I For µ = 0, 1, . . .

Gµ = Nµ+1
µ+ 1

n

I Unbiased
E[Gµ] = E[Sµ]

I Probability of unseen mass

I E0 = 0
I G0 = N1

n

I Basic tool in NLP [Church Gale ’81]

I Performance guarantee?

11 / 31

Good Turing

I Nµ+1: # symbols appearing µ+ 1 times

I For µ = 0, 1, . . .

Gµ = Nµ+1
µ+ 1

n

I Unbiased
E[Gµ] = E[Sµ]

I Probability of unseen mass

I E0 = 0
I G0 = N1

n

I Basic tool in NLP [Church Gale ’81]

I Performance guarantee?

11 / 31

Good Turing

I Nµ+1: # symbols appearing µ+ 1 times

I For µ = 0, 1, . . .

Gµ = Nµ+1
µ+ 1

n

I Unbiased
E[Gµ] = E[Sµ]

I Probability of unseen mass

I E0 = 0
I G0 = N1

n

I Basic tool in NLP [Church Gale ’81]

I Performance guarantee?

11 / 31

Good Turing

I Nµ+1: # symbols appearing µ+ 1 times

I For µ = 0, 1, . . .

Gµ = Nµ+1
µ+ 1

n

I Unbiased
E[Gµ] = E[Sµ]

I Probability of unseen mass

I E0 = 0
I G0 = N1

n

I Basic tool in NLP [Church Gale ’81]

I Performance guarantee?

11 / 31

Good Turing

I Nµ+1: # symbols appearing µ+ 1 times

I For µ = 0, 1, . . .

Gµ = Nµ+1
µ+ 1

n

I Unbiased
E[Gµ] = E[Sµ]

I Probability of unseen mass

I E0 = 0
I G0 = N1

n

I Basic tool in NLP [Church Gale ’81]

I Performance guarantee?

11 / 31

Good Turing

I Nµ+1: # symbols appearing µ+ 1 times

I For µ = 0, 1, . . .

Gµ = Nµ+1
µ+ 1

n

I Unbiased
E[Gµ] = E[Sµ]

I Probability of unseen mass
I E0 = 0

I G0 = N1

n

I Basic tool in NLP [Church Gale ’81]

I Performance guarantee?

11 / 31

Good Turing

I Nµ+1: # symbols appearing µ+ 1 times

I For µ = 0, 1, . . .

Gµ = Nµ+1
µ+ 1

n

I Unbiased
E[Gµ] = E[Sµ]

I Probability of unseen mass
I E0 = 0
I G0 = N1

n

I Basic tool in NLP [Church Gale ’81]

I Performance guarantee?

11 / 31

Good Turing

I Nµ+1: # symbols appearing µ+ 1 times

I For µ = 0, 1, . . .

Gµ = Nµ+1
µ+ 1

n

I Unbiased
E[Gµ] = E[Sµ]

I Probability of unseen mass
I E0 = 0
I G0 = N1

n

I Basic tool in NLP [Church Gale ’81]

I Performance guarantee?

11 / 31

Good Turing

I Nµ+1: # symbols appearing µ+ 1 times

I For µ = 0, 1, . . .

Gµ = Nµ+1
µ+ 1

n

I Unbiased
E[Gµ] = E[Sµ]

I Probability of unseen mass
I E0 = 0
I G0 = N1

n

I Basic tool in NLP [Church Gale ’81]

I Performance guarantee?

11 / 31

Previous results

I w.h.p.: with probability ≥ 1− 1/poly(n)

I Õ: up-to polylogarithmic factors
I [McAllester Schapire ’00]

I w.h.p., ∀µ

|Sµ − Gµ| = Õ
(
µ+ 1√

n

)

I Holds for all distributions, regardless of support size!

I Good if µ is small
I ||S − G ||1 → 0?

I No, µ >
√
n?

I Fix?

12 / 31

Previous results

I w.h.p.: with probability ≥ 1− 1/poly(n)

I Õ: up-to polylogarithmic factors
I [McAllester Schapire ’00]

I w.h.p., ∀µ

|Sµ − Gµ| = Õ
(
µ+ 1√

n

)

I Holds for all distributions, regardless of support size!

I Good if µ is small
I ||S − G ||1 → 0?

I No, µ >
√
n?

I Fix?

12 / 31

Previous results

I w.h.p.: with probability ≥ 1− 1/poly(n)

I Õ: up-to polylogarithmic factors

I [McAllester Schapire ’00]

I w.h.p., ∀µ

|Sµ − Gµ| = Õ
(
µ+ 1√

n

)

I Holds for all distributions, regardless of support size!

I Good if µ is small
I ||S − G ||1 → 0?

I No, µ >
√
n?

I Fix?

12 / 31

Previous results

I w.h.p.: with probability ≥ 1− 1/poly(n)

I Õ: up-to polylogarithmic factors
I [McAllester Schapire ’00]

I w.h.p., ∀µ

|Sµ − Gµ| = Õ
(
µ+ 1√

n

)

I Holds for all distributions, regardless of support size!

I Good if µ is small
I ||S − G ||1 → 0?

I No, µ >
√
n?

I Fix?

12 / 31

Previous results

I w.h.p.: with probability ≥ 1− 1/poly(n)

I Õ: up-to polylogarithmic factors
I [McAllester Schapire ’00]

I w.h.p., ∀µ

|Sµ − Gµ| = Õ
(
µ+ 1√

n

)

I Holds for all distributions, regardless of support size!

I Good if µ is small
I ||S − G ||1 → 0?

I No, µ >
√
n?

I Fix?

12 / 31

Previous results

I w.h.p.: with probability ≥ 1− 1/poly(n)

I Õ: up-to polylogarithmic factors
I [McAllester Schapire ’00]

I w.h.p., ∀µ

|Sµ − Gµ| = Õ
(
µ+ 1√

n

)

I Holds for all distributions, regardless of support size!

I Good if µ is small
I ||S − G ||1 → 0?

I No, µ >
√
n?

I Fix?

12 / 31

Previous results

I w.h.p.: with probability ≥ 1− 1/poly(n)

I Õ: up-to polylogarithmic factors
I [McAllester Schapire ’00]

I w.h.p., ∀µ

|Sµ − Gµ| = Õ
(
µ+ 1√

n

)

I Holds for all distributions, regardless of support size!

I Good if µ is small

I ||S − G ||1 → 0?

I No, µ >
√
n?

I Fix?

12 / 31

Previous results

I w.h.p.: with probability ≥ 1− 1/poly(n)

I Õ: up-to polylogarithmic factors
I [McAllester Schapire ’00]

I w.h.p., ∀µ

|Sµ − Gµ| = Õ
(
µ+ 1√

n

)

I Holds for all distributions, regardless of support size!

I Good if µ is small
I ||S − G ||1 → 0?

I No, µ >
√
n?

I Fix?

12 / 31

Previous results

I w.h.p.: with probability ≥ 1− 1/poly(n)

I Õ: up-to polylogarithmic factors
I [McAllester Schapire ’00]

I w.h.p., ∀µ

|Sµ − Gµ| = Õ
(
µ+ 1√

n

)

I Holds for all distributions, regardless of support size!

I Good if µ is small
I ||S − G ||1 → 0?

I No, µ >
√
n?

I Fix?

12 / 31

Previous results

I w.h.p.: with probability ≥ 1− 1/poly(n)

I Õ: up-to polylogarithmic factors
I [McAllester Schapire ’00]

I w.h.p., ∀µ

|Sµ − Gµ| = Õ
(
µ+ 1√

n

)

I Holds for all distributions, regardless of support size!

I Good if µ is small
I ||S − G ||1 → 0?

I No, µ >
√
n?

I Fix?

12 / 31

[Drukh Mansour ’05]

I Combined Good-Turing and empirical estimator: Cµ

I If µ > n0.4 use empirical estimator
I If µ ≤ n0.4 use Good-Turing estimator

||S − C ||1 = Õ
(

1

n1/6

)
and D(S ||C) = Õ

(
1

n1/3

)
I Independent of k!
I # of samples for `1 ≤ 0.1 with probability ≥ 0.99

I n ≈ 1M

I Optimal?

13 / 31

[Drukh Mansour ’05]

I Combined Good-Turing and empirical estimator: Cµ

I If µ > n0.4 use empirical estimator
I If µ ≤ n0.4 use Good-Turing estimator

||S − C ||1 = Õ
(

1

n1/6

)
and D(S ||C) = Õ

(
1

n1/3

)

I Independent of k!
I # of samples for `1 ≤ 0.1 with probability ≥ 0.99

I n ≈ 1M

I Optimal?

13 / 31

[Drukh Mansour ’05]

I Combined Good-Turing and empirical estimator: Cµ
I If µ > n0.4 use empirical estimator

I If µ ≤ n0.4 use Good-Turing estimator

||S − C ||1 = Õ
(

1

n1/6

)
and D(S ||C) = Õ

(
1

n1/3

)

I Independent of k!
I # of samples for `1 ≤ 0.1 with probability ≥ 0.99

I n ≈ 1M

I Optimal?

13 / 31

[Drukh Mansour ’05]

I Combined Good-Turing and empirical estimator: Cµ
I If µ > n0.4 use empirical estimator
I If µ ≤ n0.4 use Good-Turing estimator

||S − C ||1 = Õ
(

1

n1/6

)
and D(S ||C) = Õ

(
1

n1/3

)

I Independent of k!
I # of samples for `1 ≤ 0.1 with probability ≥ 0.99

I n ≈ 1M

I Optimal?

13 / 31

[Drukh Mansour ’05]

I Combined Good-Turing and empirical estimator: Cµ
I If µ > n0.4 use empirical estimator
I If µ ≤ n0.4 use Good-Turing estimator

||S − C ||1 = Õ
(

1

n1/6

)
and D(S ||C) = Õ

(
1

n1/3

)

I Independent of k!
I # of samples for `1 ≤ 0.1 with probability ≥ 0.99

I n ≈ 1M

I Optimal?

13 / 31

[Drukh Mansour ’05]

I Combined Good-Turing and empirical estimator: Cµ
I If µ > n0.4 use empirical estimator
I If µ ≤ n0.4 use Good-Turing estimator

||S − C ||1 = Õ
(

1

n1/6

)
and D(S ||C) = Õ

(
1

n1/3

)
I Independent of k!

I # of samples for `1 ≤ 0.1 with probability ≥ 0.99

I n ≈ 1M

I Optimal?

13 / 31

[Drukh Mansour ’05]

I Combined Good-Turing and empirical estimator: Cµ
I If µ > n0.4 use empirical estimator
I If µ ≤ n0.4 use Good-Turing estimator

||S − C ||1 = Õ
(

1

n1/6

)
and D(S ||C) = Õ

(
1

n1/3

)
I Independent of k!
I # of samples for `1 ≤ 0.1 with probability ≥ 0.99

I n ≈ 1M

I Optimal?

13 / 31

[Drukh Mansour ’05]

I Combined Good-Turing and empirical estimator: Cµ
I If µ > n0.4 use empirical estimator
I If µ ≤ n0.4 use Good-Turing estimator

||S − C ||1 = Õ
(

1

n1/6

)
and D(S ||C) = Õ

(
1

n1/3

)
I Independent of k!
I # of samples for `1 ≤ 0.1 with probability ≥ 0.99

I n ≈ 1M

I Optimal?

13 / 31

[Drukh Mansour ’05]

I Combined Good-Turing and empirical estimator: Cµ
I If µ > n0.4 use empirical estimator
I If µ ≤ n0.4 use Good-Turing estimator

||S − C ||1 = Õ
(

1

n1/6

)
and D(S ||C) = Õ

(
1

n1/3

)
I Independent of k!
I # of samples for `1 ≤ 0.1 with probability ≥ 0.99

I n ≈ 1M

I Optimal?

13 / 31

New Results

I Improve Good-Turing/empirical combination bounds?

I No: ∃ p such that w.h.p.

||S − C ||1 = Ω̃

(
1

n1/6

)
and D(S ||C) = Ω̃

(
1

n1/3

)
I Estimator with better performance?
I Yes: new estimator F such that w.h.p.

||S − F ||1 = Õ
(

1

n1/4

)
and D(S ||F) = Õ

(
1

n1/2

)
I Optimal?
I Yes: For any Ŝ , ∃ p such that w.h.p.

||S − Ŝ ||1 = Ω̃

(
1

n1/4

)
and D(S ||Ŝ) = Ω̃

(
1

n1/2

)

14 / 31

New Results

I Improve Good-Turing/empirical combination bounds?
I No: ∃ p such that w.h.p.

||S − C ||1 = Ω̃

(
1

n1/6

)

and D(S ||C) = Ω̃

(
1

n1/3

)
I Estimator with better performance?
I Yes: new estimator F such that w.h.p.

||S − F ||1 = Õ
(

1

n1/4

)
and D(S ||F) = Õ

(
1

n1/2

)
I Optimal?
I Yes: For any Ŝ , ∃ p such that w.h.p.

||S − Ŝ ||1 = Ω̃

(
1

n1/4

)
and D(S ||Ŝ) = Ω̃

(
1

n1/2

)

14 / 31

New Results

I Improve Good-Turing/empirical combination bounds?
I No: ∃ p such that w.h.p.

||S − C ||1 = Ω̃

(
1

n1/6

)

and D(S ||C) = Ω̃

(
1

n1/3

)

I Estimator with better performance?

I Yes: new estimator F such that w.h.p.

||S − F ||1 = Õ
(

1

n1/4

)
and D(S ||F) = Õ

(
1

n1/2

)
I Optimal?
I Yes: For any Ŝ , ∃ p such that w.h.p.

||S − Ŝ ||1 = Ω̃

(
1

n1/4

)
and D(S ||Ŝ) = Ω̃

(
1

n1/2

)

14 / 31

New Results

I Improve Good-Turing/empirical combination bounds?
I No: ∃ p such that w.h.p.

||S − C ||1 = Ω̃

(
1

n1/6

)

and D(S ||C) = Ω̃

(
1

n1/3

)

I Estimator with better performance?
I Yes: new estimator F such that w.h.p.

||S − F ||1 = Õ
(

1

n1/4

)

and D(S ||F) = Õ
(

1

n1/2

)
I Optimal?
I Yes: For any Ŝ , ∃ p such that w.h.p.

||S − Ŝ ||1 = Ω̃

(
1

n1/4

)
and D(S ||Ŝ) = Ω̃

(
1

n1/2

)

14 / 31

New Results

I Improve Good-Turing/empirical combination bounds?
I No: ∃ p such that w.h.p.

||S − C ||1 = Ω̃

(
1

n1/6

)

and D(S ||C) = Ω̃

(
1

n1/3

)

I Estimator with better performance?
I Yes: new estimator F such that w.h.p.

||S − F ||1 = Õ
(

1

n1/4

)

and D(S ||F) = Õ
(

1

n1/2

)

I Optimal?

I Yes: For any Ŝ , ∃ p such that w.h.p.

||S − Ŝ ||1 = Ω̃

(
1

n1/4

)
and D(S ||Ŝ) = Ω̃

(
1

n1/2

)

14 / 31

New Results

I Improve Good-Turing/empirical combination bounds?
I No: ∃ p such that w.h.p.

||S − C ||1 = Ω̃

(
1

n1/6

)

and D(S ||C) = Ω̃

(
1

n1/3

)

I Estimator with better performance?
I Yes: new estimator F such that w.h.p.

||S − F ||1 = Õ
(

1

n1/4

)

and D(S ||F) = Õ
(

1

n1/2

)

I Optimal?
I Yes: For any Ŝ , ∃ p such that w.h.p.

||S − Ŝ ||1 = Ω̃

(
1

n1/4

)

and D(S ||Ŝ) = Ω̃

(
1

n1/2

)

14 / 31

New Results

I Improve Good-Turing/empirical combination bounds?
I No: ∃ p such that w.h.p.

||S − C ||1 = Ω̃

(
1

n1/6

)
and D(S ||C) = Ω̃

(
1

n1/3

)
I Estimator with better performance?
I Yes: new estimator F such that w.h.p.

||S − F ||1 = Õ
(

1

n1/4

)
and D(S ||F) = Õ

(
1

n1/2

)
I Optimal?
I Yes: For any Ŝ , ∃ p such that w.h.p.

||S − Ŝ ||1 = Ω̃

(
1

n1/4

)
and D(S ||Ŝ) = Ω̃

(
1

n1/2

)
14 / 31

Observations

I Hold for any k

I Optimal

I Difference between Θ(n1/3) and Θ(n1/2)?

I Suppose constants are of the same order : NOT shown
I Estimate within KL divergence δ ≈ (0.01)

I Good-Turing and empirical: δ−3 ≈ (1M)
I Our approach: δ−2 ≈ (10, 000)

I Computationally efficient: linear time complexity

I Applications?

15 / 31

Observations

I Hold for any k

I Optimal

I Difference between Θ(n1/3) and Θ(n1/2)?

I Suppose constants are of the same order : NOT shown
I Estimate within KL divergence δ ≈ (0.01)

I Good-Turing and empirical: δ−3 ≈ (1M)
I Our approach: δ−2 ≈ (10, 000)

I Computationally efficient: linear time complexity

I Applications?

15 / 31

Observations

I Hold for any k

I Optimal

I Difference between Θ(n1/3) and Θ(n1/2)?

I Suppose constants are of the same order : NOT shown
I Estimate within KL divergence δ ≈ (0.01)

I Good-Turing and empirical: δ−3 ≈ (1M)
I Our approach: δ−2 ≈ (10, 000)

I Computationally efficient: linear time complexity

I Applications?

15 / 31

Observations

I Hold for any k

I Optimal

I Difference between Θ(n1/3) and Θ(n1/2)?

I Suppose constants are of the same order : NOT shown
I Estimate within KL divergence δ ≈ (0.01)

I Good-Turing and empirical: δ−3 ≈ (1M)
I Our approach: δ−2 ≈ (10, 000)

I Computationally efficient: linear time complexity

I Applications?

15 / 31

Observations

I Hold for any k

I Optimal

I Difference between Θ(n1/3) and Θ(n1/2)?

I Suppose constants are of the same order : NOT shown

I Estimate within KL divergence δ ≈ (0.01)
I Good-Turing and empirical: δ−3 ≈ (1M)
I Our approach: δ−2 ≈ (10, 000)

I Computationally efficient: linear time complexity

I Applications?

15 / 31

Observations

I Hold for any k

I Optimal

I Difference between Θ(n1/3) and Θ(n1/2)?

I Suppose constants are of the same order : NOT shown
I Estimate within KL divergence δ ≈ (0.01)

I Good-Turing and empirical: δ−3 ≈ (1M)
I Our approach: δ−2 ≈ (10, 000)

I Computationally efficient: linear time complexity

I Applications?

15 / 31

Observations

I Hold for any k

I Optimal

I Difference between Θ(n1/3) and Θ(n1/2)?

I Suppose constants are of the same order : NOT shown
I Estimate within KL divergence δ ≈ (0.01)

I Good-Turing and empirical: δ−3 ≈ (1M)

I Our approach: δ−2 ≈ (10, 000)

I Computationally efficient: linear time complexity

I Applications?

15 / 31

Observations

I Hold for any k

I Optimal

I Difference between Θ(n1/3) and Θ(n1/2)?

I Suppose constants are of the same order : NOT shown
I Estimate within KL divergence δ ≈ (0.01)

I Good-Turing and empirical: δ−3 ≈ (1M)
I Our approach: δ−2 ≈ (10, 000)

I Computationally efficient: linear time complexity

I Applications?

15 / 31

Observations

I Hold for any k

I Optimal

I Difference between Θ(n1/3) and Θ(n1/2)?

I Suppose constants are of the same order : NOT shown
I Estimate within KL divergence δ ≈ (0.01)

I Good-Turing and empirical: δ−3 ≈ (1M)
I Our approach: δ−2 ≈ (10, 000)

I Computationally efficient: linear time complexity

I Applications?

15 / 31

Classification

15 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q

I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q

I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q

I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.

a a b b c b a x3 (p)
b y3 (q)
c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b

b c b a x3 (p)
b y3 (q)
c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b

a x3 (p)
b y3 (q)
c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a

x3 (p)
b y3 (q)
c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b

y3 (q)
c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)

c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c

y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)

d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d

either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications

I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications
I Spam filtering

I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications
I Spam filtering
I Movie selection

I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications
I Spam filtering
I Movie selection
I Medical diagnosis

I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications
I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation

I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications
I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...

I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications
I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life

: everything based on experience

16 / 31

Classification

I Unknown discrete distributions: p, q
I Training: X n ∼ p and Y n ∼ q
I Test Z : ∼ p or q
I For simplicity p, q equally likely

p → x3 q → y3 z class.
a a b b c b a x3 (p)

b y3 (q)
c y3 (q)
d either

I Applications
I Spam filtering
I Movie selection
I Medical diagnosis
I Stock recommendation
I ...
I Life: everything based on experience

16 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance

(ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance

(ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance

(ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance

(ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance

(ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance

(ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance (ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance (ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance (ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance (ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k

I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance (ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance (ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n

I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance (ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance (ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance (ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2

I PA
E ≥ 1/4 for any A

I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance (ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A

I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance (ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E =

0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance (ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E = 0

(for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance (ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E = 0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Competitive Classification

I Optimal classifier?

I Unfortunately, no “entropy”

I Competitive classifier — (nearly) as well as best

I P∗E (p, q) - lowest error of any classifier for (p, q)

I Requires knowing p, q in advance (ignores training X n, Y n)

I Classifier A is ε-competitive if PA
E (p, q) ≤ P∗E (p, q) + ε ∀p, q

I Typically ε = εn,k

I A is uniformly competitive if εn → 0, regardless of k
I Are there uniformly-competitive classifiers?

I Given any n (however large), take k = 4n
I p, q: uniform over disjoint k/2 element subsets of {1, . . . ,k}

- e.g. p = U[1, . . . ,k/2], q = U[k/2 + 1, . . . ,k]

I n = k/4 → Pr (z does not appear in xn or yn) ≥ 1/2
I PA

E ≥ 1/4 for any A
I P∗E = 0 (for any n)

I No uniformly-competitive classifiers!

17 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power,

no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z
a a b c b a a
u u v w v u u

I Output in both cases?

Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power,

no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z

a a b c b a a
u u v w v u u

I Output in both cases?

Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power,

no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z

a a b c b a a
u u v w v u u

I Output in both cases?

Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power, no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z

a a b c b a a
u u v w v u u

I Output in both cases?

Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power, no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z

a a b c b a a
u u v w v u u

I Output in both cases?

Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power, no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z

a a b c b a a
u u v w v u u

I Output in both cases?

Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power, no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z

a a b c b a a
u u v w v u u

I Output in both cases?

Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power, no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z

a a b c b a a
u u v w v u u

I Output in both cases?

Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power, no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z
a a b c b a a

u u v w v u u

I Output in both cases?

Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power, no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z
a a b c b a a
u u v w v u u

I Output in both cases?

Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power, no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z
a a b c b a a
u u v w v u u

I Output in both cases?

Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power, no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z
a a b c b a a
u u v w v u u

I Output in both cases? Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power, no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z
a a b c b a a
u u v w v u u

I Output in both cases? Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power, no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z
a a b c b a a
u u v w v u u

I Output in both cases? Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power, no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z
a a b c b a a
u u v w v u u

I Output in both cases? Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power, no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z
a a b c b a a
u u v w v u u

I Output in both cases? Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Label-Invariant Classification

I P∗E requires knowing p and q in advance

I Too much power, no real classifier knows that much!

I Limit to more real classifiers

I Every real classifier is label invariant (canonical)

x3 y3 z
a a b c b a a
u u v w v u u

I Output in both cases? Same!

I Label-invariant, canonical, classifiers

I We assume no prior knowledge, all natural classifiers canonical

I P∗∗E (p, q) — best error of any label-invariant classifier

I Also requires knowing p, q in advance

I Can we find a uniformly-competitive canonical estimator?

18 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a

I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more

I Proxy for distribution with highest probability
I Label invariant

I Competitive?

I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a

I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more

I Proxy for distribution with highest probability
I Label invariant

I Competitive?

I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a
I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more

I Proxy for distribution with highest probability
I Label invariant

I Competitive?

I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a
I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more

I Proxy for distribution with highest probability
I Label invariant

I Competitive?

I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a
I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more
I Proxy for distribution with highest probability

I Label invariant

I Competitive?

I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a
I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more
I Proxy for distribution with highest probability
I Label invariant

I Competitive?

I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a
I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more
I Proxy for distribution with highest probability
I Label invariant

I Competitive?

I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a
I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more
I Proxy for distribution with highest probability
I Label invariant

I Competitive?
I For arbitrary n, let p = U[n] and q = U[2n]

I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a
I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more
I Proxy for distribution with highest probability
I Label invariant

I Competitive?
I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q

I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a
I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more
I Proxy for distribution with highest probability
I Label invariant

I Competitive?
I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q

I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a
I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more
I Proxy for distribution with highest probability
I Label invariant

I Competitive?
I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)

I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a
I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more
I Proxy for distribution with highest probability
I Label invariant

I Competitive?
I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p

I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a
I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more
I Proxy for distribution with highest probability
I Label invariant

I Competitive?
I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant

I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a
I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more
I Proxy for distribution with highest probability
I Label invariant

I Competitive?
I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03

I Pempirical
E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a
I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more
I Proxy for distribution with highest probability
I Label invariant

I Competitive?
I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Empirical Classifier

I Previous example: x3 = a a b y3 = c b a z = a
I z ∼ x3 (p)

I Empirical classifier: assign to training where z appeared more
I Proxy for distribution with highest probability
I Label invariant

I Competitive?
I For arbitrary n, let p = U[n] and q = U[2n]
I Optimal classifier: z → p if p(z) > q(z), otherwise z → q
I Recall X n ∼ p, Y n ∼ q
I nz(xn) ≥ 1→ p(z) = 1/n nz(yn) ≥ 1→ q(z) = 1/(2n)
I nz(xn), nz(yn) ≥ 1, optimal: z ∼ p
I Label invariant
I Pr (1 ≤ nz(x) < nz(y)) > 0.03
I Pempirical

E (p, q) > P∗∗E (p, q) + 0.01

I Empirical classifier not competitive with label-invariant class.

19 / 31

Competitive Label-Invariant Classifier

I Are there uniformly competitive label-invariant classifiers??

I Relate classification to estimation over sequence-pairs

I Modify new estimator for sequence-pairs

I Label-invariant classifier A such that ∀p, q,

PA
E (p, q) ≤ P∗∗E (p, q) + Õ

(
1

n1/5

)
I Independent of k!

I Runs in linear time

I First uniformly-optimal classifier

I Omniscient oracle too powerful, compare to more realistic one

I Lower bound: For any classifier C , ∃p, q such that

PC
E (p, q) ≥ P∗∗E (p, q) + Ω̃(

1

n1/3
)

20 / 31

Competitive Label-Invariant Classifier

I Are there uniformly competitive label-invariant classifiers??

I Relate classification to estimation over sequence-pairs

I Modify new estimator for sequence-pairs

I Label-invariant classifier A such that ∀p, q,

PA
E (p, q) ≤ P∗∗E (p, q) + Õ

(
1

n1/5

)
I Independent of k!

I Runs in linear time

I First uniformly-optimal classifier

I Omniscient oracle too powerful, compare to more realistic one

I Lower bound: For any classifier C , ∃p, q such that

PC
E (p, q) ≥ P∗∗E (p, q) + Ω̃(

1

n1/3
)

20 / 31

Competitive Label-Invariant Classifier

I Are there uniformly competitive label-invariant classifiers??

I Relate classification to estimation over sequence-pairs

I Modify new estimator for sequence-pairs

I Label-invariant classifier A such that ∀p, q,

PA
E (p, q) ≤ P∗∗E (p, q) + Õ

(
1

n1/5

)
I Independent of k!

I Runs in linear time

I First uniformly-optimal classifier

I Omniscient oracle too powerful, compare to more realistic one

I Lower bound: For any classifier C , ∃p, q such that

PC
E (p, q) ≥ P∗∗E (p, q) + Ω̃(

1

n1/3
)

20 / 31

Competitive Label-Invariant Classifier

I Are there uniformly competitive label-invariant classifiers??

I Relate classification to estimation over sequence-pairs

I Modify new estimator for sequence-pairs

I Label-invariant classifier A such that ∀p, q,

PA
E (p, q) ≤ P∗∗E (p, q) + Õ

(
1

n1/5

)
I Independent of k!

I Runs in linear time

I First uniformly-optimal classifier

I Omniscient oracle too powerful, compare to more realistic one

I Lower bound: For any classifier C , ∃p, q such that

PC
E (p, q) ≥ P∗∗E (p, q) + Ω̃(

1

n1/3
)

20 / 31

Competitive Label-Invariant Classifier

I Are there uniformly competitive label-invariant classifiers??

I Relate classification to estimation over sequence-pairs

I Modify new estimator for sequence-pairs

I Label-invariant classifier A such that ∀p, q,

PA
E (p, q) ≤ P∗∗E (p, q) + Õ

(
1

n1/5

)

I Independent of k!

I Runs in linear time

I First uniformly-optimal classifier

I Omniscient oracle too powerful, compare to more realistic one

I Lower bound: For any classifier C , ∃p, q such that

PC
E (p, q) ≥ P∗∗E (p, q) + Ω̃(

1

n1/3
)

20 / 31

Competitive Label-Invariant Classifier

I Are there uniformly competitive label-invariant classifiers??

I Relate classification to estimation over sequence-pairs

I Modify new estimator for sequence-pairs

I Label-invariant classifier A such that ∀p, q,

PA
E (p, q) ≤ P∗∗E (p, q) + Õ

(
1

n1/5

)
I Independent of k!

I Runs in linear time

I First uniformly-optimal classifier

I Omniscient oracle too powerful, compare to more realistic one

I Lower bound: For any classifier C , ∃p, q such that

PC
E (p, q) ≥ P∗∗E (p, q) + Ω̃(

1

n1/3
)

20 / 31

Competitive Label-Invariant Classifier

I Are there uniformly competitive label-invariant classifiers??

I Relate classification to estimation over sequence-pairs

I Modify new estimator for sequence-pairs

I Label-invariant classifier A such that ∀p, q,

PA
E (p, q) ≤ P∗∗E (p, q) + Õ

(
1

n1/5

)
I Independent of k!

I Runs in linear time

I First uniformly-optimal classifier

I Omniscient oracle too powerful, compare to more realistic one

I Lower bound: For any classifier C , ∃p, q such that

PC
E (p, q) ≥ P∗∗E (p, q) + Ω̃(

1

n1/3
)

20 / 31

Competitive Label-Invariant Classifier

I Are there uniformly competitive label-invariant classifiers??

I Relate classification to estimation over sequence-pairs

I Modify new estimator for sequence-pairs

I Label-invariant classifier A such that ∀p, q,

PA
E (p, q) ≤ P∗∗E (p, q) + Õ

(
1

n1/5

)
I Independent of k!

I Runs in linear time

I First uniformly-optimal classifier

I Omniscient oracle too powerful, compare to more realistic one

I Lower bound: For any classifier C , ∃p, q such that

PC
E (p, q) ≥ P∗∗E (p, q) + Ω̃(

1

n1/3
)

20 / 31

Competitive Label-Invariant Classifier

I Are there uniformly competitive label-invariant classifiers??

I Relate classification to estimation over sequence-pairs

I Modify new estimator for sequence-pairs

I Label-invariant classifier A such that ∀p, q,

PA
E (p, q) ≤ P∗∗E (p, q) + Õ

(
1

n1/5

)
I Independent of k!

I Runs in linear time

I First uniformly-optimal classifier

I Omniscient oracle too powerful, compare to more realistic one

I Lower bound: For any classifier C , ∃p, q such that

PC
E (p, q) ≥ P∗∗E (p, q) + Ω̃(

1

n1/3
)

20 / 31

Competitive Label-Invariant Classifier

I Are there uniformly competitive label-invariant classifiers??

I Relate classification to estimation over sequence-pairs

I Modify new estimator for sequence-pairs

I Label-invariant classifier A such that ∀p, q,

PA
E (p, q) ≤ P∗∗E (p, q) + Õ

(
1

n1/5

)
I Independent of k!

I Runs in linear time

I First uniformly-optimal classifier

I Omniscient oracle too powerful, compare to more realistic one

I Lower bound: For any classifier C , ∃p, q such that

PC
E (p, q) ≥ P∗∗E (p, q) + Ω̃(

1

n1/3
)

20 / 31

Experiments

I Netflix challenge: 10% → $1M

I Zipf distributions pi ∝ i−s , s = 1 and s = 1.5, k = 100

0 20 40 60 80 100 120 140 160 180 200
0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

E
rr

o
r

p
ro

b
a

b
ili

ty

Number of samples n

Empirical

Proposed

21 / 31

Experiments

I Netflix challenge: 10% → $1M

I Zipf distributions pi ∝ i−s , s = 1 and s = 1.5, k = 100

0 20 40 60 80 100 120 140 160 180 200
0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

E
rr

o
r

p
ro

b
a

b
ili

ty

Number of samples n

Empirical

Proposed

21 / 31

Experiments

I Netflix challenge: 10% → $1M

I Zipf distributions pi ∝ i−s , s = 1 and s = 1.5, k = 100

0 20 40 60 80 100 120 140 160 180 200
0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

E
rr

o
r

p
ro

b
a

b
ili

ty

Number of samples n

Empirical

Proposed

21 / 31

Experiments

I Netflix challenge: 10% → $1M

I Zipf distributions pi ∝ i−s , s = 1 and s = 1.5, k = 100

0 20 40 60 80 100 120 140 160 180 200
0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

E
rr

o
r

p
ro

b
a

b
ili

ty

Number of samples n

Empirical

Proposed

21 / 31

Experiments

I Netflix challenge: 10% → $1M

I Zipf distributions pi ∝ i−s , s = 1 and s = 1.5, k = 100

0 20 40 60 80 100 120 140 160 180 200
0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

E
rr

o
r

p
ro

b
a
b
ili

ty

Number of samples n

Empirical

Proposed

21 / 31

Prediction / Universal Compression

21 / 31

Universal Compression

I X n: generated by unknown i.i.d. distribution

I Code designed for distribution q

I Redundancy

R = min
q

max
p

E
[

log
p

q

]
I Compress sequences: compress dictionary + pattern

I x5 = a b b a c

I Dict: a→ 1, b → 2, c → 3 and pattern: 1 2 2 1 3
I Redundancy of patterns?

I (ADO ’12): Õ(n1/3)

I Computationally efficient sequential algorithms?
I (OSZ ’03): O(n2/3)

I New bound: Õ(n1/2)

22 / 31

Universal Compression

I X n: generated by unknown i.i.d. distribution

I Code designed for distribution q

I Redundancy

R = min
q

max
p

E
[

log
p

q

]
I Compress sequences: compress dictionary + pattern

I x5 = a b b a c

I Dict: a→ 1, b → 2, c → 3 and pattern: 1 2 2 1 3
I Redundancy of patterns?

I (ADO ’12): Õ(n1/3)

I Computationally efficient sequential algorithms?
I (OSZ ’03): O(n2/3)

I New bound: Õ(n1/2)

22 / 31

Universal Compression

I X n: generated by unknown i.i.d. distribution

I Code designed for distribution q

I Redundancy

R = min
q

max
p

E
[

log
p

q

]

I Compress sequences: compress dictionary + pattern

I x5 = a b b a c

I Dict: a→ 1, b → 2, c → 3 and pattern: 1 2 2 1 3
I Redundancy of patterns?

I (ADO ’12): Õ(n1/3)

I Computationally efficient sequential algorithms?
I (OSZ ’03): O(n2/3)

I New bound: Õ(n1/2)

22 / 31

Universal Compression

I X n: generated by unknown i.i.d. distribution

I Code designed for distribution q

I Redundancy

R = min
q

max
p

E
[

log
p

q

]
I Compress sequences: compress dictionary + pattern

I x5 = a b b a c

I Dict: a→ 1, b → 2, c → 3 and pattern: 1 2 2 1 3
I Redundancy of patterns?

I (ADO ’12): Õ(n1/3)

I Computationally efficient sequential algorithms?
I (OSZ ’03): O(n2/3)

I New bound: Õ(n1/2)

22 / 31

Universal Compression

I X n: generated by unknown i.i.d. distribution

I Code designed for distribution q

I Redundancy

R = min
q

max
p

E
[

log
p

q

]
I Compress sequences: compress dictionary + pattern

I x5 = a b b a c

I Dict: a→ 1, b → 2, c → 3 and pattern: 1 2 2 1 3
I Redundancy of patterns?

I (ADO ’12): Õ(n1/3)

I Computationally efficient sequential algorithms?
I (OSZ ’03): O(n2/3)

I New bound: Õ(n1/2)

22 / 31

Universal Compression

I X n: generated by unknown i.i.d. distribution

I Code designed for distribution q

I Redundancy

R = min
q

max
p

E
[

log
p

q

]
I Compress sequences: compress dictionary + pattern

I x5 = a b b a c

I Dict: a→ 1, b → 2, c → 3 and pattern: 1 2 2 1 3

I Redundancy of patterns?
I (ADO ’12): Õ(n1/3)

I Computationally efficient sequential algorithms?
I (OSZ ’03): O(n2/3)

I New bound: Õ(n1/2)

22 / 31

Universal Compression

I X n: generated by unknown i.i.d. distribution

I Code designed for distribution q

I Redundancy

R = min
q

max
p

E
[

log
p

q

]
I Compress sequences: compress dictionary + pattern

I x5 = a b b a c

I Dict: a→ 1, b → 2, c → 3 and pattern: 1 2 2 1 3
I Redundancy of patterns?

I (ADO ’12): Õ(n1/3)

I Computationally efficient sequential algorithms?
I (OSZ ’03): O(n2/3)

I New bound: Õ(n1/2)

22 / 31

Universal Compression

I X n: generated by unknown i.i.d. distribution

I Code designed for distribution q

I Redundancy

R = min
q

max
p

E
[

log
p

q

]
I Compress sequences: compress dictionary + pattern

I x5 = a b b a c

I Dict: a→ 1, b → 2, c → 3 and pattern: 1 2 2 1 3
I Redundancy of patterns?

I (ADO ’12): Õ(n1/3)

I Computationally efficient sequential algorithms?
I (OSZ ’03): O(n2/3)

I New bound: Õ(n1/2)

22 / 31

Universal Compression

I X n: generated by unknown i.i.d. distribution

I Code designed for distribution q

I Redundancy

R = min
q

max
p

E
[

log
p

q

]
I Compress sequences: compress dictionary + pattern

I x5 = a b b a c

I Dict: a→ 1, b → 2, c → 3 and pattern: 1 2 2 1 3
I Redundancy of patterns?

I (ADO ’12): Õ(n1/3)

I Computationally efficient sequential algorithms?

I (OSZ ’03): O(n2/3)

I New bound: Õ(n1/2)

22 / 31

Universal Compression

I X n: generated by unknown i.i.d. distribution

I Code designed for distribution q

I Redundancy

R = min
q

max
p

E
[

log
p

q

]
I Compress sequences: compress dictionary + pattern

I x5 = a b b a c

I Dict: a→ 1, b → 2, c → 3 and pattern: 1 2 2 1 3
I Redundancy of patterns?

I (ADO ’12): Õ(n1/3)

I Computationally efficient sequential algorithms?
I (OSZ ’03): O(n2/3)

I New bound: Õ(n1/2)

22 / 31

Universal Compression

I X n: generated by unknown i.i.d. distribution

I Code designed for distribution q

I Redundancy

R = min
q

max
p

E
[

log
p

q

]
I Compress sequences: compress dictionary + pattern

I x5 = a b b a c

I Dict: a→ 1, b → 2, c → 3 and pattern: 1 2 2 1 3
I Redundancy of patterns?

I (ADO ’12): Õ(n1/3)

I Computationally efficient sequential algorithms?
I (OSZ ’03): O(n2/3)

I New bound: Õ(n1/2)

22 / 31

Proof Sketch

22 / 31

Motivation

I Nµ: # of symbols appearing µ times

I Empirical
Eµ = Nµ

µ

n

I Multiply by a correction term cµ to improve the estimate

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

I Ignoring constants:

|Sµ − Ŝµ| ≈ bias +
√

variance

23 / 31

Motivation

I Nµ: # of symbols appearing µ times

I Empirical
Eµ = Nµ

µ

n

I Multiply by a correction term cµ to improve the estimate

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

I Ignoring constants:

|Sµ − Ŝµ| ≈ bias +
√

variance

23 / 31

Motivation

I Nµ: # of symbols appearing µ times

I Empirical
Eµ = Nµ

µ

n

I Multiply by a correction term cµ to improve the estimate

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

I Ignoring constants:

|Sµ − Ŝµ| ≈ bias +
√

variance

23 / 31

Motivation

I Nµ: # of symbols appearing µ times

I Empirical
Eµ = Nµ

µ

n

I Multiply by a correction term cµ to improve the estimate

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

I Ignoring constants:

|Sµ − Ŝµ| ≈ bias +
√

variance

23 / 31

Motivation

I Nµ: # of symbols appearing µ times

I Empirical
Eµ = Nµ

µ

n

I Multiply by a correction term cµ to improve the estimate

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

I Ignoring constants:

|Sµ − Ŝµ| ≈ bias +
√

variance

23 / 31

Motivation

I Nµ: # of symbols appearing µ times

I Empirical
Eµ = Nµ

µ

n

I Multiply by a correction term cµ to improve the estimate

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

I Ignoring constants:

|Sµ − Ŝµ| ≈ bias +
√

variance

23 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical

1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1

E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing

µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ

0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New

µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ]

0 E[Nµ] µ
n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

New estimator

Ŝµ = Nµ
µ

n
cµ

I cµ: a function of xn

Estimator cµ Bias Variance

Empirical 1 E[Nµ]
√
µ
n E[Nµ] µ

n2

Good-Turing µ+1
µ

Nµ+1

Nµ
0 E[Nµ] (µ+1)2

n2

New µ+1
µ

E[Nµ+1]
E[Nµ] 0 E[Nµ] µ

n2

I Best of both estimators!

I Idealized as we don’t know the expectations

I How to estimate
E[Nµ+1]
E[Nµ] ?

24 / 31

Estimating
E[Nµ+1]
E[Nµ]

I Given: sequence X n, estimate E[Nµ]

I Expected # of symbols appearing µ times

I Good-Turing: E[Nµ] ∼ Nµ, high variance

I Better estimators for E[Nµ]

I Given: X n or N0,N1, . . .Nn

I Linear?

I
∑
µ hµNµ

I Why should it work?

25 / 31

Estimating
E[Nµ+1]
E[Nµ]

I Given: sequence X n, estimate E[Nµ]

I Expected # of symbols appearing µ times

I Good-Turing: E[Nµ] ∼ Nµ, high variance

I Better estimators for E[Nµ]

I Given: X n or N0,N1, . . .Nn

I Linear?

I
∑
µ hµNµ

I Why should it work?

25 / 31

Estimating
E[Nµ+1]
E[Nµ]

I Given: sequence X n, estimate E[Nµ]
I Expected # of symbols appearing µ times

I Good-Turing: E[Nµ] ∼ Nµ, high variance

I Better estimators for E[Nµ]

I Given: X n or N0,N1, . . .Nn

I Linear?

I
∑
µ hµNµ

I Why should it work?

25 / 31

Estimating
E[Nµ+1]
E[Nµ]

I Given: sequence X n, estimate E[Nµ]
I Expected # of symbols appearing µ times

I Good-Turing: E[Nµ] ∼ Nµ, high variance

I Better estimators for E[Nµ]

I Given: X n or N0,N1, . . .Nn

I Linear?

I
∑
µ hµNµ

I Why should it work?

25 / 31

Estimating
E[Nµ+1]
E[Nµ]

I Given: sequence X n, estimate E[Nµ]
I Expected # of symbols appearing µ times

I Good-Turing: E[Nµ] ∼ Nµ, high variance

I Better estimators for E[Nµ]

I Given: X n or N0,N1, . . .Nn

I Linear?

I
∑
µ hµNµ

I Why should it work?

25 / 31

Estimating
E[Nµ+1]
E[Nµ]

I Given: sequence X n, estimate E[Nµ]
I Expected # of symbols appearing µ times

I Good-Turing: E[Nµ] ∼ Nµ, high variance

I Better estimators for E[Nµ]

I Given: X n or N0,N1, . . .Nn

I Linear?

I
∑
µ hµNµ

I Why should it work?

25 / 31

Estimating
E[Nµ+1]
E[Nµ]

I Given: sequence X n, estimate E[Nµ]
I Expected # of symbols appearing µ times

I Good-Turing: E[Nµ] ∼ Nµ, high variance

I Better estimators for E[Nµ]

I Given: X n or N0,N1, . . .Nn

I Linear?

I
∑
µ hµNµ

I Why should it work?

25 / 31

Estimating
E[Nµ+1]
E[Nµ]

I Given: sequence X n, estimate E[Nµ]
I Expected # of symbols appearing µ times

I Good-Turing: E[Nµ] ∼ Nµ, high variance

I Better estimators for E[Nµ]

I Given: X n or N0,N1, . . .Nn

I Linear?
I
∑
µ hµNµ

I Why should it work?

25 / 31

Estimating
E[Nµ+1]
E[Nµ]

I Given: sequence X n, estimate E[Nµ]
I Expected # of symbols appearing µ times

I Good-Turing: E[Nµ] ∼ Nµ, high variance

I Better estimators for E[Nµ]

I Given: X n or N0,N1, . . .Nn

I Linear?
I
∑
µ hµNµ

I Why should it work?

25 / 31

Linear estimator

I Simple estimator for E[Nµ]: Nµ
I Bias = 0 variance = E[Nµ]

|Nµ − E[Nµ]| =
√

E[Nµ]

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε

I Expected # symbols appearing 100 and 101 times are close

I Momentarily assume: Nµ−1,Nµ, Nµ+1 independent
I New Estimator

(Nµ−1 + Nµ + Nµ+1) /3

I Bias ≤ 2ε/3 ≤ ε
I Variance of sum = sum of variances
I σ′ = σ/

√
3

error ≤ 1√
3

√
E[Nµ] + ε

I Improvement

26 / 31

Linear estimator

I Simple estimator for E[Nµ]: Nµ

I Bias = 0 variance = E[Nµ]

|Nµ − E[Nµ]| =
√

E[Nµ]

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε

I Expected # symbols appearing 100 and 101 times are close

I Momentarily assume: Nµ−1,Nµ, Nµ+1 independent
I New Estimator

(Nµ−1 + Nµ + Nµ+1) /3

I Bias ≤ 2ε/3 ≤ ε
I Variance of sum = sum of variances
I σ′ = σ/

√
3

error ≤ 1√
3

√
E[Nµ] + ε

I Improvement

26 / 31

Linear estimator

I Simple estimator for E[Nµ]: Nµ
I Bias = 0 variance = E[Nµ]

|Nµ − E[Nµ]| =
√

E[Nµ]

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε

I Expected # symbols appearing 100 and 101 times are close

I Momentarily assume: Nµ−1,Nµ, Nµ+1 independent
I New Estimator

(Nµ−1 + Nµ + Nµ+1) /3

I Bias ≤ 2ε/3 ≤ ε
I Variance of sum = sum of variances
I σ′ = σ/

√
3

error ≤ 1√
3

√
E[Nµ] + ε

I Improvement

26 / 31

Linear estimator

I Simple estimator for E[Nµ]: Nµ
I Bias = 0 variance = E[Nµ]

|Nµ − E[Nµ]| =
√

E[Nµ]

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε

I Expected # symbols appearing 100 and 101 times are close

I Momentarily assume: Nµ−1,Nµ, Nµ+1 independent
I New Estimator

(Nµ−1 + Nµ + Nµ+1) /3

I Bias ≤ 2ε/3 ≤ ε
I Variance of sum = sum of variances
I σ′ = σ/

√
3

error ≤ 1√
3

√
E[Nµ] + ε

I Improvement

26 / 31

Linear estimator

I Simple estimator for E[Nµ]: Nµ
I Bias = 0 variance = E[Nµ]

|Nµ − E[Nµ]| =
√

E[Nµ]

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Expected # symbols appearing 100 and 101 times are close

I Momentarily assume: Nµ−1,Nµ, Nµ+1 independent
I New Estimator

(Nµ−1 + Nµ + Nµ+1) /3

I Bias ≤ 2ε/3 ≤ ε
I Variance of sum = sum of variances
I σ′ = σ/

√
3

error ≤ 1√
3

√
E[Nµ] + ε

I Improvement

26 / 31

Linear estimator

I Simple estimator for E[Nµ]: Nµ
I Bias = 0 variance = E[Nµ]

|Nµ − E[Nµ]| =
√

E[Nµ]

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Expected # symbols appearing 100 and 101 times are close

I Momentarily assume: Nµ−1,Nµ, Nµ+1 independent

I New Estimator

(Nµ−1 + Nµ + Nµ+1) /3

I Bias ≤ 2ε/3 ≤ ε
I Variance of sum = sum of variances
I σ′ = σ/

√
3

error ≤ 1√
3

√
E[Nµ] + ε

I Improvement

26 / 31

Linear estimator

I Simple estimator for E[Nµ]: Nµ
I Bias = 0 variance = E[Nµ]

|Nµ − E[Nµ]| =
√

E[Nµ]

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Expected # symbols appearing 100 and 101 times are close

I Momentarily assume: Nµ−1,Nµ, Nµ+1 independent
I New Estimator

(Nµ−1 + Nµ + Nµ+1) /3

I Bias ≤ 2ε/3 ≤ ε
I Variance of sum = sum of variances
I σ′ = σ/

√
3

error ≤ 1√
3

√
E[Nµ] + ε

I Improvement

26 / 31

Linear estimator

I Simple estimator for E[Nµ]: Nµ
I Bias = 0 variance = E[Nµ]

|Nµ − E[Nµ]| =
√

E[Nµ]

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Expected # symbols appearing 100 and 101 times are close

I Momentarily assume: Nµ−1,Nµ, Nµ+1 independent
I New Estimator

(Nµ−1 + Nµ + Nµ+1) /3

I Bias ≤ 2ε/3 ≤ ε

I Variance of sum = sum of variances
I σ′ = σ/

√
3

error ≤ 1√
3

√
E[Nµ] + ε

I Improvement

26 / 31

Linear estimator

I Simple estimator for E[Nµ]: Nµ
I Bias = 0 variance = E[Nµ]

|Nµ − E[Nµ]| =
√

E[Nµ]

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Expected # symbols appearing 100 and 101 times are close

I Momentarily assume: Nµ−1,Nµ, Nµ+1 independent
I New Estimator

(Nµ−1 + Nµ + Nµ+1) /3

I Bias ≤ 2ε/3 ≤ ε
I Variance of sum = sum of variances

I σ′ = σ/
√

3

error ≤ 1√
3

√
E[Nµ] + ε

I Improvement

26 / 31

Linear estimator

I Simple estimator for E[Nµ]: Nµ
I Bias = 0 variance = E[Nµ]

|Nµ − E[Nµ]| =
√

E[Nµ]

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Expected # symbols appearing 100 and 101 times are close

I Momentarily assume: Nµ−1,Nµ, Nµ+1 independent
I New Estimator

(Nµ−1 + Nµ + Nµ+1) /3

I Bias ≤ 2ε/3 ≤ ε
I Variance of sum = sum of variances
I σ′ = σ/

√
3

error ≤ 1√
3

√
E[Nµ] + ε

I Improvement

26 / 31

Linear estimator

I Simple estimator for E[Nµ]: Nµ
I Bias = 0 variance = E[Nµ]

|Nµ − E[Nµ]| =
√

E[Nµ]

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Expected # symbols appearing 100 and 101 times are close

I Momentarily assume: Nµ−1,Nµ, Nµ+1 independent
I New Estimator

(Nµ−1 + Nµ + Nµ+1) /3

I Bias ≤ 2ε/3 ≤ ε
I Variance of sum = sum of variances
I σ′ = σ/

√
3

error ≤ 1√
3

√
E[Nµ] + ε

I Improvement

26 / 31

Technical Details

I Nµ−1, Nµ, Nµ+1 are not independent
I Need to show

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Bounds on bias, variance are enough for concentration

I Simple averaging does not yield optimal estimator
I Explicit estimator such that bias and variance is optimized

I Properties of Poisson functions, distribution approximations
I Adaptively choose the # of non-zero coefficients based on X n

I Converse: show that estimation is hard for some distributions

27 / 31

Technical Details

I Nµ−1, Nµ, Nµ+1 are not independent

I Need to show

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Bounds on bias, variance are enough for concentration

I Simple averaging does not yield optimal estimator
I Explicit estimator such that bias and variance is optimized

I Properties of Poisson functions, distribution approximations
I Adaptively choose the # of non-zero coefficients based on X n

I Converse: show that estimation is hard for some distributions

27 / 31

Technical Details

I Nµ−1, Nµ, Nµ+1 are not independent
I Need to show

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Bounds on bias, variance are enough for concentration

I Simple averaging does not yield optimal estimator
I Explicit estimator such that bias and variance is optimized

I Properties of Poisson functions, distribution approximations
I Adaptively choose the # of non-zero coefficients based on X n

I Converse: show that estimation is hard for some distributions

27 / 31

Technical Details

I Nµ−1, Nµ, Nµ+1 are not independent
I Need to show

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε

I Bounds on bias, variance are enough for concentration

I Simple averaging does not yield optimal estimator
I Explicit estimator such that bias and variance is optimized

I Properties of Poisson functions, distribution approximations
I Adaptively choose the # of non-zero coefficients based on X n

I Converse: show that estimation is hard for some distributions

27 / 31

Technical Details

I Nµ−1, Nµ, Nµ+1 are not independent
I Need to show

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Bounds on bias, variance are enough for concentration

I Simple averaging does not yield optimal estimator
I Explicit estimator such that bias and variance is optimized

I Properties of Poisson functions, distribution approximations
I Adaptively choose the # of non-zero coefficients based on X n

I Converse: show that estimation is hard for some distributions

27 / 31

Technical Details

I Nµ−1, Nµ, Nµ+1 are not independent
I Need to show

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Bounds on bias, variance are enough for concentration

I Simple averaging does not yield optimal estimator

I Explicit estimator such that bias and variance is optimized

I Properties of Poisson functions, distribution approximations
I Adaptively choose the # of non-zero coefficients based on X n

I Converse: show that estimation is hard for some distributions

27 / 31

Technical Details

I Nµ−1, Nµ, Nµ+1 are not independent
I Need to show

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Bounds on bias, variance are enough for concentration

I Simple averaging does not yield optimal estimator
I Explicit estimator such that bias and variance is optimized

I Properties of Poisson functions, distribution approximations
I Adaptively choose the # of non-zero coefficients based on X n

I Converse: show that estimation is hard for some distributions

27 / 31

Technical Details

I Nµ−1, Nµ, Nµ+1 are not independent
I Need to show

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Bounds on bias, variance are enough for concentration

I Simple averaging does not yield optimal estimator
I Explicit estimator such that bias and variance is optimized

I Properties of Poisson functions, distribution approximations

I Adaptively choose the # of non-zero coefficients based on X n

I Converse: show that estimation is hard for some distributions

27 / 31

Technical Details

I Nµ−1, Nµ, Nµ+1 are not independent
I Need to show

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Bounds on bias, variance are enough for concentration

I Simple averaging does not yield optimal estimator
I Explicit estimator such that bias and variance is optimized

I Properties of Poisson functions, distribution approximations
I Adaptively choose the # of non-zero coefficients based on X n

I Converse: show that estimation is hard for some distributions

27 / 31

Technical Details

I Nµ−1, Nµ, Nµ+1 are not independent
I Need to show

I |E[Nµ]− E[Nµ+1]|, |E[Nµ]− E[Nµ−1]| ≤ ε
I Bounds on bias, variance are enough for concentration

I Simple averaging does not yield optimal estimator
I Explicit estimator such that bias and variance is optimized

I Properties of Poisson functions, distribution approximations
I Adaptively choose the # of non-zero coefficients based on X n

I Converse: show that estimation is hard for some distributions

27 / 31

Estimator Properties

I Linear estimator for E[Nµ]:
∑
|i |≤r hiNµ+i

I Bias: E[Nµ −
∑
|i |≤r hiNµ+i]

E[Nµ] =
∑
x

(
n

µ

)
pµx (1− px)n−µ

I Problem

I After rescaling, contribution of symbol with probability p(
n

µ

)
pµ(1− p)n−µ

∑
|i|≤r

h′i

(
np

µ

)i

I h′
i : scaled version of hi s

I Variance ∝ maxi h
2
i

I Set term close to
(
n
µ

)
pµ(1− p)n−µ s.t. maxi h(i) is bounded

28 / 31

Estimator Properties

I Linear estimator for E[Nµ]:
∑
|i |≤r hiNµ+i

I Bias: E[Nµ −
∑
|i |≤r hiNµ+i]

E[Nµ] =
∑
x

(
n

µ

)
pµx (1− px)n−µ

I Problem

I After rescaling, contribution of symbol with probability p(
n

µ

)
pµ(1− p)n−µ

∑
|i|≤r

h′i

(
np

µ

)i

I h′
i : scaled version of hi s

I Variance ∝ maxi h
2
i

I Set term close to
(
n
µ

)
pµ(1− p)n−µ s.t. maxi h(i) is bounded

28 / 31

Estimator Properties

I Linear estimator for E[Nµ]:
∑
|i |≤r hiNµ+i

I Bias: E[Nµ −
∑
|i |≤r hiNµ+i]

E[Nµ] =
∑
x

(
n

µ

)
pµx (1− px)n−µ

I Problem

I After rescaling, contribution of symbol with probability p(
n

µ

)
pµ(1− p)n−µ

∑
|i|≤r

h′i

(
np

µ

)i

I h′
i : scaled version of hi s

I Variance ∝ maxi h
2
i

I Set term close to
(
n
µ

)
pµ(1− p)n−µ s.t. maxi h(i) is bounded

28 / 31

Estimator Properties

I Linear estimator for E[Nµ]:
∑
|i |≤r hiNµ+i

I Bias: E[Nµ −
∑
|i |≤r hiNµ+i]

E[Nµ] =
∑
x

(
n

µ

)
pµx (1− px)n−µ

I Problem

I After rescaling, contribution of symbol with probability p(
n

µ

)
pµ(1− p)n−µ

∑
|i|≤r

h′i

(
np

µ

)i

I h′
i : scaled version of hi s

I Variance ∝ maxi h
2
i

I Set term close to
(
n
µ

)
pµ(1− p)n−µ s.t. maxi h(i) is bounded

28 / 31

Estimator Properties

I Linear estimator for E[Nµ]:
∑
|i |≤r hiNµ+i

I Bias: E[Nµ −
∑
|i |≤r hiNµ+i]

E[Nµ] =
∑
x

(
n

µ

)
pµx (1− px)n−µ

I Problem
I After rescaling, contribution of symbol with probability p(

n

µ

)
pµ(1− p)n−µ

∑
|i|≤r

h′i

(
np

µ

)i

I h′
i : scaled version of hi s

I Variance ∝ maxi h
2
i

I Set term close to
(
n
µ

)
pµ(1− p)n−µ s.t. maxi h(i) is bounded

28 / 31

Estimator Properties

I Linear estimator for E[Nµ]:
∑
|i |≤r hiNµ+i

I Bias: E[Nµ −
∑
|i |≤r hiNµ+i]

E[Nµ] =
∑
x

(
n

µ

)
pµx (1− px)n−µ

I Problem
I After rescaling, contribution of symbol with probability p(

n

µ

)
pµ(1− p)n−µ

∑
|i|≤r

h′i

(
np

µ

)i

I h′
i : scaled version of hi s

I Variance ∝ maxi h
2
i

I Set term close to
(
n
µ

)
pµ(1− p)n−µ s.t. maxi h(i) is bounded

28 / 31

Estimator Properties

I Linear estimator for E[Nµ]:
∑
|i |≤r hiNµ+i

I Bias: E[Nµ −
∑
|i |≤r hiNµ+i]

E[Nµ] =
∑
x

(
n

µ

)
pµx (1− px)n−µ

I Problem
I After rescaling, contribution of symbol with probability p(

n

µ

)
pµ(1− p)n−µ

∑
|i|≤r

h′i

(
np

µ

)i

I h′
i : scaled version of hi s

I Variance ∝ maxi h
2
i

I Set term close to
(
n
µ

)
pµ(1− p)n−µ s.t. maxi h(i) is bounded

28 / 31

Estimator Properties

I Linear estimator for E[Nµ]:
∑
|i |≤r hiNµ+i

I Bias: E[Nµ −
∑
|i |≤r hiNµ+i]

E[Nµ] =
∑
x

(
n

µ

)
pµx (1− px)n−µ

I Problem
I After rescaling, contribution of symbol with probability p(

n

µ

)
pµ(1− p)n−µ

∑
|i|≤r

h′i

(
np

µ

)i

I h′
i : scaled version of hi s

I Variance ∝ maxi h
2
i

I Set term close to
(
n
µ

)
pµ(1− p)n−µ s.t. maxi h(i) is bounded

28 / 31

A polynomial problem

I Approximating a polynomial with bounded co-efficients

I Let x = np
µ ≈ 1

I Minimize

δ = max
x∈(1−ε,1+ε)

∣∣∣∣∣1−
r∑

i=−r
hix

i

∣∣∣∣∣
s.t. max |hi | ≤

c

r + 1
, |hi − hi−1| =

c

(r + 1)2

I
∑

i hi = 1 =⇒ δ = O(ε)
I By symmetry, hi = h−i =⇒ δ = O(ε2)
I
∑

i hi i
2 = 0, =⇒ δ = O(ε4)

I
∑

i hi = 1,
∑

i hi i
2 = 0, and hr = 0 uniquely represents a

second degree polynomial of the form hi = αi2 + βi + γ and
satisfies above conditions

I Choose r to minimize bias-variance tradeoff

29 / 31

A polynomial problem

I Approximating a polynomial with bounded co-efficients

I Let x = np
µ ≈ 1

I Minimize

δ = max
x∈(1−ε,1+ε)

∣∣∣∣∣1−
r∑

i=−r
hix

i

∣∣∣∣∣
s.t. max |hi | ≤

c

r + 1
, |hi − hi−1| =

c

(r + 1)2

I
∑

i hi = 1 =⇒ δ = O(ε)
I By symmetry, hi = h−i =⇒ δ = O(ε2)
I
∑

i hi i
2 = 0, =⇒ δ = O(ε4)

I
∑

i hi = 1,
∑

i hi i
2 = 0, and hr = 0 uniquely represents a

second degree polynomial of the form hi = αi2 + βi + γ and
satisfies above conditions

I Choose r to minimize bias-variance tradeoff

29 / 31

A polynomial problem

I Approximating a polynomial with bounded co-efficients

I Let x = np
µ ≈ 1

I Minimize

δ = max
x∈(1−ε,1+ε)

∣∣∣∣∣1−
r∑

i=−r
hix

i

∣∣∣∣∣
s.t. max |hi | ≤

c

r + 1
, |hi − hi−1| =

c

(r + 1)2

I
∑

i hi = 1 =⇒ δ = O(ε)
I By symmetry, hi = h−i =⇒ δ = O(ε2)
I
∑

i hi i
2 = 0, =⇒ δ = O(ε4)

I
∑

i hi = 1,
∑

i hi i
2 = 0, and hr = 0 uniquely represents a

second degree polynomial of the form hi = αi2 + βi + γ and
satisfies above conditions

I Choose r to minimize bias-variance tradeoff

29 / 31

A polynomial problem

I Approximating a polynomial with bounded co-efficients

I Let x = np
µ ≈ 1

I Minimize

δ = max
x∈(1−ε,1+ε)

∣∣∣∣∣1−
r∑

i=−r
hix

i

∣∣∣∣∣
s.t. max |hi | ≤

c

r + 1
, |hi − hi−1| =

c

(r + 1)2

I
∑

i hi = 1 =⇒ δ = O(ε)
I By symmetry, hi = h−i =⇒ δ = O(ε2)
I
∑

i hi i
2 = 0, =⇒ δ = O(ε4)

I
∑

i hi = 1,
∑

i hi i
2 = 0, and hr = 0 uniquely represents a

second degree polynomial of the form hi = αi2 + βi + γ and
satisfies above conditions

I Choose r to minimize bias-variance tradeoff

29 / 31

A polynomial problem

I Approximating a polynomial with bounded co-efficients

I Let x = np
µ ≈ 1

I Minimize

δ = max
x∈(1−ε,1+ε)

∣∣∣∣∣1−
r∑

i=−r
hix

i

∣∣∣∣∣
s.t. max |hi | ≤

c

r + 1
, |hi − hi−1| =

c

(r + 1)2

I
∑

i hi = 1 =⇒ δ = O(ε)

I By symmetry, hi = h−i =⇒ δ = O(ε2)
I
∑

i hi i
2 = 0, =⇒ δ = O(ε4)

I
∑

i hi = 1,
∑

i hi i
2 = 0, and hr = 0 uniquely represents a

second degree polynomial of the form hi = αi2 + βi + γ and
satisfies above conditions

I Choose r to minimize bias-variance tradeoff

29 / 31

A polynomial problem

I Approximating a polynomial with bounded co-efficients

I Let x = np
µ ≈ 1

I Minimize

δ = max
x∈(1−ε,1+ε)

∣∣∣∣∣1−
r∑

i=−r
hix

i

∣∣∣∣∣
s.t. max |hi | ≤

c

r + 1
, |hi − hi−1| =

c

(r + 1)2

I
∑

i hi = 1 =⇒ δ = O(ε)
I By symmetry, hi = h−i =⇒ δ = O(ε2)

I
∑

i hi i
2 = 0, =⇒ δ = O(ε4)

I
∑

i hi = 1,
∑

i hi i
2 = 0, and hr = 0 uniquely represents a

second degree polynomial of the form hi = αi2 + βi + γ and
satisfies above conditions

I Choose r to minimize bias-variance tradeoff

29 / 31

A polynomial problem

I Approximating a polynomial with bounded co-efficients

I Let x = np
µ ≈ 1

I Minimize

δ = max
x∈(1−ε,1+ε)

∣∣∣∣∣1−
r∑

i=−r
hix

i

∣∣∣∣∣
s.t. max |hi | ≤

c

r + 1
, |hi − hi−1| =

c

(r + 1)2

I
∑

i hi = 1 =⇒ δ = O(ε)
I By symmetry, hi = h−i =⇒ δ = O(ε2)
I
∑

i hi i
2 = 0, =⇒ δ = O(ε4)

I
∑

i hi = 1,
∑

i hi i
2 = 0, and hr = 0 uniquely represents a

second degree polynomial of the form hi = αi2 + βi + γ and
satisfies above conditions

I Choose r to minimize bias-variance tradeoff

29 / 31

A polynomial problem

I Approximating a polynomial with bounded co-efficients

I Let x = np
µ ≈ 1

I Minimize

δ = max
x∈(1−ε,1+ε)

∣∣∣∣∣1−
r∑

i=−r
hix

i

∣∣∣∣∣
s.t. max |hi | ≤

c

r + 1
, |hi − hi−1| =

c

(r + 1)2

I
∑

i hi = 1 =⇒ δ = O(ε)
I By symmetry, hi = h−i =⇒ δ = O(ε2)
I
∑

i hi i
2 = 0, =⇒ δ = O(ε4)

I
∑

i hi = 1,
∑

i hi i
2 = 0, and hr = 0 uniquely represents a

second degree polynomial of the form hi = αi2 + βi + γ and
satisfies above conditions

I Choose r to minimize bias-variance tradeoff

29 / 31

A polynomial problem

I Approximating a polynomial with bounded co-efficients

I Let x = np
µ ≈ 1

I Minimize

δ = max
x∈(1−ε,1+ε)

∣∣∣∣∣1−
r∑

i=−r
hix

i

∣∣∣∣∣
s.t. max |hi | ≤

c

r + 1
, |hi − hi−1| =

c

(r + 1)2

I
∑

i hi = 1 =⇒ δ = O(ε)
I By symmetry, hi = h−i =⇒ δ = O(ε2)
I
∑

i hi i
2 = 0, =⇒ δ = O(ε4)

I
∑

i hi = 1,
∑

i hi i
2 = 0, and hr = 0 uniquely represents a

second degree polynomial of the form hi = αi2 + βi + γ and
satisfies above conditions

I Choose r to minimize bias-variance tradeoff

29 / 31

Putting pieces back together

I The error: bias +
√

variance

I Good-Turing:

√
Nµµ

n

I Empirical:
Nµ
√
µ

n

I New error:
N

3/4
µ
√
µ

n

I Adding over all multiplicities and maximizing for Nµ yields

Õ(n−1/4)

I ∀ estimator there is a distribution with error Ω̃(n−1/4)

30 / 31

Putting pieces back together

I The error: bias +
√

variance

I Good-Turing:

√
Nµµ

n

I Empirical:
Nµ
√
µ

n

I New error:
N

3/4
µ
√
µ

n

I Adding over all multiplicities and maximizing for Nµ yields

Õ(n−1/4)

I ∀ estimator there is a distribution with error Ω̃(n−1/4)

30 / 31

Putting pieces back together

I The error: bias +
√

variance

I Good-Turing:

√
Nµµ

n

I Empirical:
Nµ
√
µ

n

I New error:
N

3/4
µ
√
µ

n

I Adding over all multiplicities and maximizing for Nµ yields

Õ(n−1/4)

I ∀ estimator there is a distribution with error Ω̃(n−1/4)

30 / 31

Putting pieces back together

I The error: bias +
√

variance

I Good-Turing:

√
Nµµ

n

I Empirical:
Nµ
√
µ

n

I New error:
N

3/4
µ
√
µ

n

I Adding over all multiplicities and maximizing for Nµ yields

Õ(n−1/4)

I ∀ estimator there is a distribution with error Ω̃(n−1/4)

30 / 31

Putting pieces back together

I The error: bias +
√

variance

I Good-Turing:

√
Nµµ

n

I Empirical:
Nµ
√
µ

n

I New error:
N

3/4
µ
√
µ

n

I Adding over all multiplicities and maximizing for Nµ yields

Õ(n−1/4)

I ∀ estimator there is a distribution with error Ω̃(n−1/4)

30 / 31

Putting pieces back together

I The error: bias +
√

variance

I Good-Turing:

√
Nµµ

n

I Empirical:
Nµ
√
µ

n

I New error:
N

3/4
µ
√
µ

n

I Adding over all multiplicities and maximizing for Nµ yields

Õ(n−1/4)

I ∀ estimator there is a distribution with error Ω̃(n−1/4)

30 / 31

Putting pieces back together

I The error: bias +
√

variance

I Good-Turing:

√
Nµµ

n

I Empirical:
Nµ
√
µ

n

I New error:
N

3/4
µ
√
µ

n

I Adding over all multiplicities and maximizing for Nµ yields

Õ(n−1/4)

I ∀ estimator there is a distribution with error Ω̃(n−1/4)

30 / 31

Summary

I Probability estimation

I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification

I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation

I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification

I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)

I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification

I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k

I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification

I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples

I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification

I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)

I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification

I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)

I Optimal
I Linear-time complexity

I Classification

I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal

I Linear-time complexity

I Classification

I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification

I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification

I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification
I Can’t compete with oracle classifier that knows p, q

I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification
I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets

I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification
I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)

I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification
I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size

I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification
I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification
I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

Summary

I Probability estimation
I Estimating px requires n = Θ(k)
I Estimating Sµ independent of k
I `1 distance as function of # samples
I Good-Turing: Õ(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear-time complexity

I Classification
I Can’t compete with oracle classifier that knows p, q
I Label-invariant classifiers, or oracle knows multisets
I Proposed classifier: additional error Õ(n−1/5)
I Independent of alphabet size
I Converse: additional error Ω̃(n−1/3)

I Prediction/universal compression

I Per-symbol redundancy Õ(n−1/2)

31 / 31

31 / 31

Xie Xie

31 / 31

