Optimal Probability Estimation and Classification

with

Jayadev Acharya, Ashkan Jafarpour, Ananda Theertha Suresh

UC San Diego

Domains

- Domains
 - Large alphabets

- Domains
 - Large alphabets
 - Mixture models

- Domains
 - Large alphabets
 - Mixture models
 - Continuous distributions

- Domains
 - Large alphabets
 - Mixture models
 - Continuous distributions
- Applications

- Domains
 - Large alphabets
 - Mixture models
 - Continuous distributions
- Applications
 - Compression

- Domains
 - Large alphabets
 - Mixture models
 - Continuous distributions
- Applications
 - Compression
 - Prediction

- Domains
 - Large alphabets
 - Mixture models
 - Continuous distributions

- Applications
 - Compression
 - Prediction
 - Closeness testing

- Domains
 - Large alphabets
 - Mixture models
 - Continuous distributions

- Applications
 - Compression
 - Prediction
 - Closeness testing
 - Identity testing

- Domains
 - Large alphabets
 - Mixture models
 - Continuous distributions
- Applications
 - Compression
 - Prediction
 - Closeness testing
 - Identity testing
 - Classification

- Domains
 - Large alphabets
 - Mixture models
 - Continuous distributions

- Applications
 - Compression
 - Prediction
 - Closeness testing
 - Identity testing
 - Classification
- Methodologies

- Domains
 - Large alphabets
 - Mixture models
 - Continuous distributions
- Applications
 - Compression
 - Prediction
 - Closeness testing
 - Identity testing
 - Classification
- Methodologies
 - Define doable problem

イロン イヨン イヨン イヨン 三日

- Domains
 - Large alphabets
 - Mixture models
 - Continuous distributions
- Applications
 - Compression
 - Prediction
 - Closeness testing
 - Identity testing
 - Classification
- Methodologies
 - Define doable problem

1/31

Approach limits

- Domains
 - Large alphabets
 - Mixture models
 - Continuous distributions
- Applications
 - Compression
 - Prediction
 - Closeness testing
 - Identity testing
 - Classification
- Methodologies
 - Define doable problem
 - Approach limits
 - Approach the best possible

イロト 不得下 イヨト イヨト 二日

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Probability estimation
 - Motivation

- Probability estimation
 - Motivation
 - Combined probability

- Probability estimation
 - Motivation
 - Combined probability
 - Previous results

- Probability estimation
 - Motivation
 - Combined probability
 - Previous results
 - Optimal estimator

- Probability estimation
 - Motivation
 - Combined probability
 - Previous results
 - Optimal estimator
 - Proof sketch

- Probability estimation
 - Motivation
 - Combined probability
 - Previous results
 - Optimal estimator
 - Proof sketch
- Classification

- Probability estimation
 - Motivation
 - Combined probability

- Previous results
- Optimal estimator
- Proof sketch
- Classification
 - Motivation

- Probability estimation
 - Motivation
 - Combined probability
 - Previous results
 - Optimal estimator
 - Proof sketch
- Classification
 - Motivation
 - Label-invariant classifier

- Probability estimation
 - Motivation
 - Combined probability
 - Previous results
 - Optimal estimator
 - Proof sketch
- Classification
 - Motivation
 - Label-invariant classifier
 - Nearly-optimal estimators

- Probability estimation
 - Motivation
 - Combined probability
 - Previous results
 - Optimal estimator
 - Proof sketch
- Classification
 - Motivation
 - Label-invariant classifier
 - Nearly-optimal estimators

2/31

Prediction

- Probability estimation
 - Motivation
 - Combined probability
 - Previous results
 - Optimal estimator
 - Proof sketch
- Classification
 - Motivation
 - Label-invariant classifier
 - Nearly-optimal estimators

- Prediction
- Conclusion

Motivation

• Coin:
$$(p_h, p_t)$$
 $p_h + p_t = 1$

- Coin: (p_h, p_t) $p_h + p_t = 1$
- Flip n times, estimate p_h

- Coin: (p_h, p_t) $p_h + p_t = 1$
- Flip n times, estimate p_h
- Empirical frequency estimate: *h* appear n_h times, $E_h \stackrel{\text{def}}{=} \frac{n_h}{n}$

- Coin: (p_h, p_t) $p_h + p_t = 1$
- Flip n times, estimate p_h
- Empirical frequency estimate: *h* appear n_h times, $E_h \stackrel{\text{def}}{=} \frac{n_h}{n}$
- Law of large numbers: $E_h \xrightarrow[n \to \infty]{} p_h$

- Coin: (p_h, p_t) $p_h + p_t = 1$
- Flip n times, estimate p_h
- Empirical frequency estimate: *h* appear n_h times, $E_h \stackrel{\text{def}}{=} \frac{n_h}{n}$
- Law of large numbers: $E_h \xrightarrow[n \to \infty]{} p_h$
- Expectation: $\mathbb{E}(E_h) = p_h$

Original Scene

- Coin: (p_h, p_t) $p_h + p_t = 1$
- Flip n times, estimate p_h
- Empirical frequency estimate: *h* appear n_h times, $E_h \stackrel{\text{def}}{=} \frac{n_h}{n}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

- Law of large numbers: $E_h \xrightarrow[n \to \infty]{} p_h$
- Expectation: $\mathbb{E}(E_h) = p_h$
- Standard deviation: $\sqrt{\frac{pq}{n}} \le \frac{1}{2\sqrt{n}}$

Original Scene

- Coin: (p_h, p_t) $p_h + p_t = 1$
- Flip n times, estimate p_h
- Empirical frequency estimate: *h* appear n_h times, $E_h \stackrel{\text{def}}{=} \frac{n_h}{n}$
- Law of large numbers: $E_h \xrightarrow[n \to \infty]{} p_h$
- Expectation: $\mathbb{E}(E_h) = p_h$
- Standard deviation: $\sqrt{\frac{pq}{n}} \le \frac{1}{2\sqrt{n}}$
- For $|E_h p_h| < \delta$ need $n = \Theta(\frac{1}{\delta^2})$

Original Scene

- Coin: (p_h, p_t) $p_h + p_t = 1$
- Flip n times, estimate p_h
- Empirical frequency estimate: *h* appear n_h times, $E_h \stackrel{\text{def}}{=} \frac{n_h}{n}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

- Law of large numbers: $E_h \xrightarrow[n \to \infty]{} p_h$
- Expectation: $\mathbb{E}(E_h) = p_h$
- Standard deviation: $\sqrt{\frac{pq}{n}} \le \frac{1}{2\sqrt{n}}$
- For $|E_h p_h| < \delta$ need $n = \Theta(\frac{1}{\delta^2})$
- For any given difference, need constant samples

• Text processing (\approx 500,000 words)

- Text processing (\approx 500,000 words)
 - Speech recognition

- Text processing (\approx 500,000 words)
 - Speech recognition
 - Machine translation

- Text processing (\approx 500,000 words)
 - Speech recognition
 - Machine translation
- Natural language processing (bag of words)

- Text processing (\approx 500,000 words)
 - Speech recognition
 - Machine translation
- Natural language processing (bag of words)
 - ▶ Text classification [McCallum Nigam '98]

- Text processing (\approx 500,000 words)
 - Speech recognition
 - Machine translation
- Natural language processing (bag of words)
 - Text classification [McCallum Nigam '98]
 - Topic modeling [Blei Ng Jordan '03]

- Text processing (\approx 500,000 words)
 - Speech recognition
 - Machine translation
- Natural language processing (bag of words)
 - ▶ Text classification [McCallum Nigam '98]

イロト 不得下 イヨト イヨト 二日

4/31

Topic modeling [Blei Ng Jordan '03]

Biology

- Text processing (\approx 500,000 words)
 - Speech recognition
 - Machine translation
- Natural language processing (bag of words)
 - Text classification [McCallum Nigam '98]

イロト 不得下 イヨト イヨト 二日

- Topic modeling [Blei Ng Jordan '03]
- Biology
 - Species estimation

- Text processing (\approx 500,000 words)
 - Speech recognition
 - Machine translation
- Natural language processing (bag of words)
 - Text classification [McCallum Nigam '98]

イロト 不得下 イヨト イヨト 二日

- Topic modeling [Blei Ng Jordan '03]
- Biology
 - Species estimation
 - Genetics

- Text processing (\approx 500,000 words)
 - Speech recognition
 - Machine translation
- Natural language processing (bag of words)
 - Text classification [McCallum Nigam '98]

イロト 不得下 イヨト イヨト 二日

- Topic modeling [Blei Ng Jordan '03]
- Biology
 - Species estimation
 - Genetics
- Online marketing

- Text processing (\approx 500,000 words)
 - Speech recognition
 - Machine translation
- Natural language processing (bag of words)
 - Text classification [McCallum Nigam '98]

イロト 不得下 イヨト イヨト 二日

- Topic modeling [Blei Ng Jordan '03]
- Biology
 - Species estimation
 - Genetics
- Online marketing
 - Ad click-through

- Text processing (\approx 500,000 words)
 - Speech recognition
 - Machine translation
- Natural language processing (bag of words)
 - Text classification [McCallum Nigam '98]

イロト 不得下 イヨト イヨト 二日

- Topic modeling [Blei Ng Jordan '03]
- Biology
 - Species estimation
 - Genetics
- Online marketing
 - Ad click-through
 - Movies

$$\blacktriangleright P = (p_1, p_2, \dots p_k)$$

- $\blacktriangleright P = (p_1, p_2, \dots p_k)$
- ▶ *n* samples, $X^n \sim p$

- $\blacktriangleright P = (p_1, p_2, \dots p_k)$
- *n* samples, $X^n \sim p$
- E: estimator

- $\blacktriangleright P = (p_1, p_2, \dots p_k)$
- *n* samples, $X^n \sim p$
- E: estimator
- ℓ_1 distance: $||E p||_1 \stackrel{\text{def}}{=} \sum_{i=1}^k |E(i) p_i|$

- $\blacktriangleright P = (p_1, p_2, \dots p_k)$
- *n* samples, $X^n \sim p$
- E: estimator
- ℓ_1 distance: $||E p||_1 \stackrel{\text{def}}{=} \sum_{i=1}^k |E(i) p_i|$
- $\ell_1 \leq .01$ with probability $\geq .99$

- $\blacktriangleright P = (p_1, p_2, \dots p_k)$
- *n* samples, $X^n \sim p$
- E: estimator
- ℓ_1 distance: $||E p||_1 \stackrel{\text{def}}{=} \sum_{i=1}^k |E(i) p_i|$

(日) (四) (三) (三) (三)

- $\ell_1 \leq .01$ with probability $\geq .99$
- Empirical: n = O(k)

- $\blacktriangleright P = (p_1, p_2, \dots p_k)$
- *n* samples, $X^n \sim p$
- E: estimator
- ℓ_1 distance: $||E p||_1 \stackrel{\text{def}}{=} \sum_{i=1}^k |E(i) p_i|$
- $\ell_1 \leq .01$ with probability $\geq .99$
- Empirical: n = O(k)
- For some distributions, $n = \Omega(k)$ [Paninski '04]

・ロン ・四 ・ ・ ヨン ・ ヨン … ヨ

- $\blacktriangleright P = (p_1, p_2, \dots p_k)$
- *n* samples, $X^n \sim p$
- E: estimator
- ℓ_1 distance: $||E p||_1 \stackrel{\text{def}}{=} \sum_{i=1}^k |E(i) p_i|$
- $\ell_1 \leq .01$ with probability $\geq .99$
- Empirical: n = O(k)
- For some distributions, $n = \Omega(k)$ [Paninski '04]
 - Take arbitrary k/2-element subset of $\{1, \ldots, k\}$

- $\blacktriangleright P = (p_1, p_2, \dots p_k)$
- *n* samples, $X^n \sim p$
- E: estimator
- ℓ_1 distance: $||E p||_1 \stackrel{\text{def}}{=} \sum_{i=1}^k |E(i) p_i|$
- $\ell_1 \leq .01$ with probability $\geq .99$
- Empirical: n = O(k)
- For some distributions, $n = \Omega(k)$ [Paninski '04]
 - ► Take arbitrary k/2-element subset of {1, ..., k}
 - If n < k/4, observe $\leq k/4$ values, uniform over remaining 3k/4

- $\blacktriangleright P = (p_1, p_2, \dots p_k)$
- *n* samples, $X^n \sim p$
- E: estimator
- ℓ_1 distance: $||E p||_1 \stackrel{\text{def}}{=} \sum_{i=1}^k |E(i) p_i|$
- $\ell_1 \leq .01$ with probability $\geq .99$
- Empirical: n = O(k)
- For some distributions, $n = \Omega(k)$ [Paninski '04]
 - ► Take arbitrary k/2-element subset of {1, ..., k}
 - If n < k/4, observe $\le k/4$ values, uniform over remaining 3k/4

$$||E - p||_1 \ge \frac{1}{3}$$

- $\blacktriangleright P = (p_1, p_2, \dots p_k)$
- *n* samples, $X^n \sim p$
- E: estimator
- ℓ_1 distance: $||E p||_1 \stackrel{\text{def}}{=} \sum_{i=1}^k |E(i) p_i|$
- $\ell_1 \leq .01$ with probability $\geq .99$
- Empirical: n = O(k)
- For some distributions, $n = \Omega(k)$ [Paninski '04]
 - ► Take arbitrary k/2-element subset of {1, ..., k}
 - If n < k/4, observe $\leq k/4$ values, uniform over remaining 3k/4

$$||E - p||_1 \ge \frac{1}{3}$$

• $n = \Theta(k/\delta^2)$

- $\blacktriangleright P = (p_1, p_2, \dots p_k)$
- *n* samples, $X^n \sim p$
- E: estimator
- ℓ_1 distance: $||E p||_1 \stackrel{\text{def}}{=} \sum_{i=1}^k |E(i) p_i|$
- $\ell_1 \leq .01$ with probability $\geq .99$
- Empirical: n = O(k)
- For some distributions, $n = \Omega(k)$ [Paninski '04]
 - ► Take arbitrary k/2-element subset of {1, ..., k}
 - If n < k/4, observe $\le k/4$ values, uniform over remaining 3k/4

$$||E - p||_1 \ge \frac{1}{3}$$

•
$$n = \Theta(k/\delta^2)$$

• k=500,000, $\delta=0.01$ ightarrow n=50B

- $\blacktriangleright P = (p_1, p_2, \dots p_k)$
- *n* samples, $X^n \sim p$
- E: estimator
- ℓ_1 distance: $||E p||_1 \stackrel{\text{def}}{=} \sum_{i=1}^k |E(i) p_i|$
- $\ell_1 \leq .01$ with probability $\geq .99$
- Empirical: n = O(k)
- For some distributions, $n = \Omega(k)$ [Paninski '04]
 - ► Take arbitrary k/2-element subset of {1, ..., k}
 - If n < k/4, observe $\le k/4$ values, uniform over remaining 3k/4

$$||E - p||_1 \ge \frac{1}{3}$$

- $n = \Theta(k/\delta^2)$
- k=500,000, $\delta=0.01$ ightarrow n=50B
- KL divergence: similar, $n = \Theta(k)$

• Properties of p

- Properties of p
 - $\forall i \ p_i > 1/k$, estimate support size, entropy

- Properties of p
 - ▶ $\forall i \ p_i > 1/k$, estimate support size, entropy
 - $n = \Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]

- Properties of p
 - ▶ $\forall i \ p_i > 1/k$, estimate support size, entropy
 - $n = \Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
 - Factor of log k improvement

- Properties of p
 - $\forall i \ p_i > 1/k$, estimate support size, entropy
 - $n = \Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
 - Factor of log k improvement
- Assumptions on p

- Properties of p
 - ▶ $\forall i \ p_i > 1/k$, estimate support size, entropy
 - $n = \Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
 - Factor of log k improvement
- Assumptions on p
 - p is monotone (or m-modal) over [k]

- Properties of p
 - ▶ $\forall i \ p_i > 1/k$, estimate support size, entropy
 - $n = \Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
 - Factor of log k improvement
- Assumptions on p
 - p is monotone (or m-modal) over [k]
 - ▶ n = polylog(k) [Daskalakis, Diaconikolas, Servedio '12]

- Properties of p
 - ▶ $\forall i \ p_i > 1/k$, estimate support size, entropy
 - $n = \Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
 - Factor of log k improvement
- Assumptions on p
 - p is monotone (or m-modal) over [k]
 - ▶ n = polylog(k) [Daskalakis, Diaconikolas, Servedio '12]

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

6/31

Our approach

- Properties of p
 - ▶ $\forall i \ p_i > 1/k$, estimate support size, entropy
 - $n = \Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
 - Factor of log k improvement
- Assumptions on p
 - p is monotone (or m-modal) over [k]
 - ▶ n = polylog(k) [Daskalakis, Diaconikolas, Servedio '12]
- Our approach
 - General distributions

- Properties of p
 - ▶ $\forall i \ p_i > 1/k$, estimate support size, entropy
 - $n = \Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
 - Factor of log k improvement
- Assumptions on p
 - p is monotone (or m-modal) over [k]
 - ▶ n = polylog(k) [Daskalakis, Diaconikolas, Servedio '12]

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

- Our approach
 - General distributions
 - Best anyone can do

- Properties of p
 - ▶ $\forall i \ p_i > 1/k$, estimate support size, entropy
 - $n = \Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
 - Factor of log k improvement
- Assumptions on p
 - p is monotone (or m-modal) over [k]
 - ▶ n = polylog(k) [Daskalakis, Diaconikolas, Servedio '12]
- Our approach
 - General distributions
 - Best anyone can do
 - Natural estimators

Combined-Probability Estimation

▶ Distribution over {*a*, *b*, *c*, *d*, *e*, *f*}

- ▶ Distribution over {*a*, *b*, *c*, *d*, *e*, *f*}
- ▶ x⁵ = a b b a c

- ▶ Distribution over {*a*, *b*, *c*, *d*, *e*, *f*}
- ▶ x⁵ = abbac
- ► *p*_a, *p*_b?

- ▶ Distribution over {*a*, *b*, *c*, *d*, *e*, *f*}
- ▶ x⁵ = a b b a c
- ► *p*_a, *p*_b?
 - Both appeared twice

- ▶ Distribution over {*a*, *b*, *c*, *d*, *e*, *f*}
- ▶ x⁵ = abbac
- ► *p*_a, *p*_b?
 - Both appeared twice
- Without prior knowledge, for every natural estimator \hat{p}

 $\hat{p}_a = \hat{p}_b$

- ▶ Distribution over {*a*, *b*, *c*, *d*, *e*, *f*}
- ▶ x⁵ = abbac
- ▶ *p*_a, *p*_b?
 - Both appeared twice
- Without prior knowledge, for every natural estimator \hat{p}

 $\hat{p}_a = \hat{p}_b$

► If symbols have appeared same # of times

- ▶ Distribution over {*a*, *b*, *c*, *d*, *e*, *f*}
- ▶ x⁵ = abbac
- ▶ *p*_a, *p*_b?
 - Both appeared twice
- Without prior knowledge, for every natural estimator \hat{p}

 $\hat{p}_a = \hat{p}_b$

イロン イヨン イヨン イヨン 三日

- If symbols have appeared same # of times
 - Assign same probability

- ▶ Distribution over {*a*, *b*, *c*, *d*, *e*, *f*}
- ▶ x⁵ = abbac
- ▶ *p*_a, *p*_b?
 - Both appeared twice
- Without prior knowledge, for every natural estimator \hat{p}

 $\hat{p}_a = \hat{p}_b$

- ► If symbols have appeared same # of times
 - Assign same probability
 - Similarly for unseen symbols

• μ : multiplicity, number of occurrences of a symbol

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\mathrm{def}}{=}$ sum of probabilities of symbols with multiplicity μ

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\mathrm{def}}{=}$ sum of probabilities of symbols with multiplicity μ
- ► Example: distribution over {*a*, *b*, *c*, *d*}

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{
 m def}{=}$ sum of probabilities of symbols with multiplicity μ
- ► Example: distribution over {*a*, *b*, *c*, *d*}

• $x^4 = a d c d$

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{
 m def}{=}$ sum of probabilities of symbols with multiplicity μ
- ► Example: distribution over {*a*, *b*, *c*, *d*}

• $x^4 = a d c d$

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\mathrm{def}}{=}$ sum of probabilities of symbols with multiplicity μ
- ► Example: distribution over {*a*, *b*, *c*, *d*}

•
$$x^4 = \frac{a}{a} d c d$$

 $N_0 = 1$ (b

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\mathrm{def}}{=}$ sum of probabilities of symbols with multiplicity μ

8/31

► Example: distribution over {*a*, *b*, *c*, *d*}

►
$$x^4 = a d c d$$

 $N_0 = 1$ (b) $N_1 = 2$ (a,c)

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\mathrm{def}}{=}$ sum of probabilities of symbols with multiplicity μ
- ► Example: distribution over {*a*, *b*, *c*, *d*}

►
$$x^4 = a d c d$$

 $N_0 = 1$ (b) $N_1 = 2$ (a,c) $N_2 = 1$ (d)

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\mathrm{def}}{=}$ sum of probabilities of symbols with multiplicity μ
- ► Example: distribution over {*a*, *b*, *c*, *d*}

►
$$x^4 = a d c d$$

 $N_0 = 1 (b)$ $N_1 = 2 (a,c)$ $N_2 = 1 (d)$
 $S_0 = p_b$

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\mathrm{def}}{=}$ sum of probabilities of symbols with multiplicity μ
- ► Example: distribution over {*a*, *b*, *c*, *d*}

►
$$x^4 = a d c d$$

 $N_0 = 1 (b)$ $N_1 = 2 (a,c)$ $N_2 = 1 (d)$
 $S_0 = p_b$ $S_1 = p_a + p_c$

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\mathrm{def}}{=}$ sum of probabilities of symbols with multiplicity μ
- ► Example: distribution over {*a*, *b*, *c*, *d*}

►
$$x^4 = a d c d$$

 $N_0 = 1 (b)$ $N_1 = 2 (a,c)$ $N_2 = 1 (d)$
 $S_0 = p_b$ $S_1 = p_a + p_c$ $S_2 = p_d$

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{
 m def}{=}$ sum of probabilities of symbols with multiplicity μ
- ► Example: distribution over {*a*, *b*, *c*, *d*}

►
$$x^4 = a d c d$$

 $N_0 = 1 (b)$ $N_1 = 2 (a,c)$ $N_2 = 1 (d)$
 $S_0 = p_b$ $S_1 = p_a + p_c$ $S_2 = p_d$

▶ If symbol x appeared $\mu \ge 1$ times, $q_x = \frac{S_{\mu}}{N_{\mu}}$

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{
 m def}{=}$ sum of probabilities of symbols with multiplicity μ
- ► Example: distribution over {*a*, *b*, *c*, *d*}

►
$$x^4 = a d c d$$

 $N_0 = 1 (b)$ $N_1 = 2 (a,c)$ $N_2 = 1 (d)$
 $S_0 = p_b$ $S_1 = p_a + p_c$ $S_2 = p_d$
► If symbol x appeared $\mu \ge 1$ times, $q_x = \frac{S_\mu}{N_\mu}$

$$\bullet \ q_a = q_c = \frac{S_1}{N_1} = \frac{S_1}{2}$$

h

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{
 m def}{=}$ sum of probabilities of symbols with multiplicity μ
- ► Example: distribution over {*a*, *b*, *c*, *d*}

$$X^{4} = a d c d N_{0} = 1 (b) \quad N_{1} = 2 (a,c) \quad N_{2} = 1 (d) S_{0} = p_{b} \quad S_{1} = p_{a} + p_{c} \quad S_{2} = p_{d}$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

• If symbol x appeared $\mu \geq 1$ times, $q_x = \frac{S_{\mu}}{N_{\mu}}$

•
$$q_a = q_c = \frac{S_1}{N_1} = \frac{S_1}{2}$$

• Unseen probability: S_0

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text{def}}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{
 m def}{=}$ sum of probabilities of symbols with multiplicity μ
- ► Example: distribution over {*a*, *b*, *c*, *d*}

• If symbol x appeared $\mu \ge 1$ times, $q_x = \frac{S_{\mu}}{N_{\mu}}$

•
$$q_a = q_c = \frac{S_1}{N_1} = \frac{S_1}{2}$$

- Unseen probability: S₀
- ► Combined-probability estimation: estimate *S*₀, *S*₁,..., *S*_n

<ロト <回 > < 臣 > < 臣 > 王 の Q () 9/31

•
$$\widehat{S} = (\widehat{S}_0, \widehat{S}_1, \dots, \widehat{S}_n)$$
 estimate of $S = (S_0, S_1, \dots, S_n)$

•
$$\widehat{S} = (\widehat{S}_0, \widehat{S}_1, \dots, \widehat{S}_n)$$
 estimate of $S = (S_0, S_1, \dots, S_n)$

Optimality criteria?

•
$$\widehat{S} = (\widehat{S}_0, \widehat{S}_1, \dots, \widehat{S}_n)$$
 estimate of $S = (S_0, S_1, \dots, S_n)$

Optimality criteria?

• ℓ_1 distance: consistency, classification

$$||S-\widehat{S}||_1 \stackrel{ ext{def}}{=} \sum_{\mu=0}^n |S_\mu - \widehat{S}_\mu|$$

Distance Measures

•
$$\widehat{S} = (\widehat{S}_0, \widehat{S}_1, \dots, \widehat{S}_n)$$
 estimate of $S = (S_0, S_1, \dots, S_n)$

Optimality criteria?

• ℓ_1 distance: consistency, classification

$$||S - \widehat{S}||_1 \stackrel{\text{def}}{=} \sum_{\mu=0}^n |S_\mu - \widehat{S}_\mu|$$

► KL divergence: universal compression, prediction with log-loss

$$D(S||\widehat{S}) \stackrel{ ext{def}}{=} \sum_{\mu=0}^n S_\mu \log rac{S_\mu}{\widehat{S}_\mu}$$

9/31

► x⁹ = a b e b c a d c c

- ► x⁹ = a b e b c a d c c
- $\blacktriangleright S_2 = p_a + p_b$

- ▶ x⁹ = a b e b c a d c c
- $\blacktriangleright S_2 = p_a + p_b$
- Empirical frequency: $E_2 = \frac{2}{9} + \frac{2}{9} = \frac{4}{9}$

- ▶ x⁹ = a b e b c a d c c
- $\blacktriangleright S_2 = p_a + p_b$
- Empirical frequency: $E_2 = 2/9 + 2/9 = 4/9$
 - Recall: $N_{\mu} = \#$ of symbols appearing μ times

$$E_{\mu} = N_{\mu} \frac{\mu}{n}$$

- ▶ x⁹ = a b e b c a d c c
- $\blacktriangleright S_2 = p_a + p_b$
- Empirical frequency: $E_2 = 2/9 + 2/9 = 4/9$
 - Recall: $N_{\mu} = \#$ of symbols appearing μ times

$$E_{\mu} = N_{\mu} \frac{\mu}{n}$$

• # of samples for $\ell_1 \leq 0.01$ with probability ≥ 0.99

- ▶ x⁹ = a b e b c a d c c
- $\blacktriangleright S_2 = p_a + p_b$
- Empirical frequency: $E_2 = 2/9 + 2/9 = 4/9$
 - Recall: $N_{\mu} = \#$ of symbols appearing μ times

$$E_{\mu} = N_{\mu} \frac{\mu}{n}$$

• # of samples for $\ell_1 \leq 0.01$ with probability ≥ 0.99

•
$$E_0 = 0$$
 always

- ▶ x⁹ = a b e b c a d c c
- $\blacktriangleright S_2 = p_a + p_b$
- Empirical frequency: $E_2 = 2/9 + 2/9 = 4/9$
 - Recall: $N_{\mu} = \#$ of symbols appearing μ times

$$E_{\mu} = N_{\mu} \frac{\mu}{n}$$

• # of samples for $\ell_1 \leq 0.01$ with probability ≥ 0.99

•
$$E_0 = 0$$
 always

•
$$U\{1,\ldots,k\}, n = 0.98k$$

 $S_0 > 0.02$

- ▶ x⁹ = a b e b c a d c c
- $\blacktriangleright S_2 = p_a + p_b$
- Empirical frequency: $E_2 = 2/9 + 2/9 = 4/9$
 - Recall: $N_{\mu} = \#$ of symbols appearing μ times

$$E_{\mu} = N_{\mu} \frac{\mu}{n}$$

• # of samples for $\ell_1 \leq 0.01$ with probability ≥ 0.99

•
$$E_0 = 0$$
 always

•
$$U\{1,\ldots,k\}, n = 0.98k$$

$$S_0 > 0.02$$

(日) (同) (日) (日) (日) (日) (0)

▶ *n* > 0.98*k*

• $N_{\mu+1}$: # symbols appearing $\mu + 1$ times

- $N_{\mu+1}$: # symbols appearing $\mu + 1$ times
- For $\mu = 0, 1, \ldots$

$$G_{\mu} = N_{\mu+1} \frac{\mu+1}{n}$$

- $N_{\mu+1}$: # symbols appearing $\mu + 1$ times
- $\blacktriangleright \ \, {\rm For} \ \mu=0,1,\ldots$

$$G_{\mu} = N_{\mu+1} rac{\mu+1}{n}$$

Unbiased

$$\mathbb{E}[G_{\mu}] = \mathbb{E}[S_{\mu}]$$

- $N_{\mu+1}$: # symbols appearing $\mu + 1$ times
- For $\mu = 0, 1, \ldots$

$$\mathit{G}_{\mu} = \mathit{N}_{\mu+1} rac{\mu+1}{n}$$

Unbiased

$$\mathbb{E}[G_{\mu}] = \mathbb{E}[S_{\mu}]$$

- $N_{\mu+1}$: # symbols appearing $\mu + 1$ times
- For $\mu = 0, 1, \ldots$

$$\mathit{G}_{\mu} = \mathit{N}_{\mu+1} rac{\mu+1}{n}$$

Unbiased

$$\mathbb{E}[G_{\mu}] = \mathbb{E}[S_{\mu}]$$

•
$$E_0 = 0$$

- $N_{\mu+1}$: # symbols appearing $\mu + 1$ times
- For $\mu = 0, 1, \ldots$

$$\mathit{G}_{\mu} = \mathit{N}_{\mu+1} rac{\mu+1}{n}$$

Unbiased

$$\mathbb{E}[G_{\mu}] = \mathbb{E}[S_{\mu}]$$

•
$$E_0 = 0$$

• $G_0 = \frac{N_1}{n}$

- $N_{\mu+1}$: # symbols appearing $\mu + 1$ times
- For $\mu = 0, 1, ...$

$$\mathit{G}_{\mu} = \mathit{N}_{\mu+1} rac{\mu+1}{n}$$

Unbiased

$$\mathbb{E}[G_{\mu}] = \mathbb{E}[S_{\mu}]$$

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○ ○

Probability of unseen mass

$$E_0 = 0 G_0 = \frac{N_1}{n}$$

Basic tool in NLP [Church Gale '81]

- $N_{\mu+1}$: # symbols appearing $\mu + 1$ times
- For $\mu = 0, 1, ...$

$${\it G}_{\mu}={\it N}_{\mu+1}rac{\mu+1}{n}$$

Unbiased

$$\mathbb{E}[G_{\mu}] = \mathbb{E}[S_{\mu}]$$

•
$$E_0 = 0$$

• $G_0 = \frac{N_1}{n}$

- Basic tool in NLP [Church Gale '81]
- Performance guarantee?

<ロ><合><合><き><き><き><き><き><き><き><き><き><12/31

• w.h.p.: with probability $\geq 1 - 1/poly(n)$

- w.h.p.: with probability $\geq 1 1/poly(n)$
- $\widetilde{\mathcal{O}}$: up-to polylogarithmic factors

- w.h.p.: with probability $\geq 1 1/poly(n)$
- $\widetilde{\mathcal{O}}$: up-to polylogarithmic factors
- ► [McAllester Schapire '00]

- w.h.p.: with probability $\geq 1 1/poly(n)$
- ▶ Õ: up-to polylogarithmic factors
- ▶ [McAllester Schapire '00]
 - ▶ w.h.p., $\forall \mu$

$$|S_{\mu}-G_{\mu}|=\widetilde{\mathcal{O}}\left(rac{\mu+1}{\sqrt{n}}
ight)$$

- w.h.p.: with probability $\geq 1 1/poly(n)$
- ▶ Õ: up-to polylogarithmic factors
- ▶ [McAllester Schapire '00]
 - ▶ w.h.p., $\forall \mu$

$$|S_{\mu} - G_{\mu}| = \widetilde{\mathcal{O}}\left(\frac{\mu + 1}{\sqrt{n}}\right)$$

Holds for all distributions, regardless of support size!

- w.h.p.: with probability $\geq 1 1/poly(n)$
- ▶ Õ: up-to polylogarithmic factors
- ▶ [McAllester Schapire '00]
 - w.h.p., $\forall \mu$

$$|S_{\mu} - G_{\mu}| = \widetilde{\mathcal{O}}\left(rac{\mu+1}{\sqrt{n}}
ight)$$

- Holds for all distributions, regardless of support size!
- Good if µ is small

- w.h.p.: with probability $\geq 1 1/poly(n)$
- ▶ Õ: up-to polylogarithmic factors
- ▶ [McAllester Schapire '00]
 - w.h.p., $\forall \mu$

$$|S_{\mu} - G_{\mu}| = \widetilde{\mathcal{O}}\left(rac{\mu+1}{\sqrt{n}}
ight)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへの

- Holds for all distributions, regardless of support size!
- Good if µ is small
- ► $||S G||_1 \rightarrow 0?$

- w.h.p.: with probability $\geq 1 1/poly(n)$
- ▶ Õ: up-to polylogarithmic factors
- ▶ [McAllester Schapire '00]
 - w.h.p., $\forall \mu$

$$|S_{\mu} - G_{\mu}| = \widetilde{\mathcal{O}}\left(rac{\mu+1}{\sqrt{n}}
ight)$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

- Holds for all distributions, regardless of support size!
- Good if µ is small
- ► $||S G||_1 \to 0?$
 - No, $\mu > \sqrt{n}$?

- w.h.p.: with probability $\geq 1 1/poly(n)$
- ▶ Õ: up-to polylogarithmic factors
- ▶ [McAllester Schapire '00]
 - w.h.p., $\forall \mu$

$$|S_{\mu} - G_{\mu}| = \widetilde{\mathcal{O}}\left(rac{\mu+1}{\sqrt{n}}
ight)$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

- Holds for all distributions, regardless of support size!
- Good if µ is small
- ► $||S G||_1 \rightarrow 0?$
 - No, $\mu > \sqrt{n}$?
- ► Fix?

<ロ><合><合><き><き><き><き><き><き><き><き><き><13/31</td>

• Combined Good-Turing and empirical estimator: C_{μ}

- Combined Good-Turing and empirical estimator: C_μ
 - If $\mu > n^{0.4}$ use empirical estimator

- Combined Good-Turing and empirical estimator: C_μ
 - If $\mu > n^{0.4}$ use empirical estimator
 - If $\mu \leq n^{0.4}$ use Good-Turing estimator

- Combined Good-Turing and empirical estimator: C_μ
 - If $\mu > n^{0.4}$ use empirical estimator
 - If $\mu \leq n^{0.4}$ use Good-Turing estimator

- Combined Good-Turing and empirical estimator: C_μ
 - If $\mu > n^{0.4}$ use empirical estimator
 - If $\mu \leq n^{0.4}$ use Good-Turing estimator

$$||S - C||_1 = \widetilde{\mathcal{O}}\left(rac{1}{n^{1/6}}
ight)$$
 and $D(S||C) = \widetilde{\mathcal{O}}\left(rac{1}{n^{1/3}}
ight)$

Independent of k!

- Combined Good-Turing and empirical estimator: C_μ
 - If $\mu > n^{0.4}$ use empirical estimator
 - If $\mu \leq n^{0.4}$ use Good-Turing estimator

$$||S - C||_1 = \widetilde{\mathcal{O}}\left(rac{1}{n^{1/6}}
ight)$$
 and $D(S||C) = \widetilde{\mathcal{O}}\left(rac{1}{n^{1/3}}
ight)$

- ► Independent of *k*!
- # of samples for $\ell_1 \leq 0.1$ with probability ≥ 0.99

[Drukh Mansour '05]

- Combined Good-Turing and empirical estimator: C_μ
 - If $\mu > n^{0.4}$ use empirical estimator
 - If $\mu \leq n^{0.4}$ use Good-Turing estimator

$$||S - C||_1 = \widetilde{\mathcal{O}}\left(rac{1}{n^{1/6}}
ight)$$
 and $D(S||C) = \widetilde{\mathcal{O}}\left(rac{1}{n^{1/3}}
ight)$

- ► Independent of *k*!
- # of samples for $\ell_1 \leq 0.1$ with probability ≥ 0.99 • $n \approx 1M$

[Drukh Mansour '05]

- Combined Good-Turing and empirical estimator: C_μ
 - If $\mu > n^{0.4}$ use empirical estimator
 - If $\mu \leq n^{0.4}$ use Good-Turing estimator

$$||S - C||_1 = \widetilde{\mathcal{O}}\left(rac{1}{n^{1/6}}
ight)$$
 and $D(S||C) = \widetilde{\mathcal{O}}\left(rac{1}{n^{1/3}}
ight)$

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

- ► Independent of *k*!
- ▶ # of samples for $\ell_1 \le 0.1$ with probability ≥ 0.99 ▶ $n \approx 1M$
- Optimal?

Improve Good-Turing/empirical combination bounds?

- Improve Good-Turing/empirical combination bounds?
- ▶ No: $\exists p$ such that w.h.p.

$$||S - C||_1 = \widetilde{\Omega}\left(\frac{1}{n^{1/6}}\right)$$

- Improve Good-Turing/empirical combination bounds?
- ▶ No: $\exists p$ such that w.h.p.

$$||S-C||_1 = \widetilde{\Omega}\left(\frac{1}{n^{1/6}}\right)$$

Estimator with better performance?

- Improve Good-Turing/empirical combination bounds?
- ▶ No: $\exists p$ such that w.h.p.

$$||S-C||_1 = \widetilde{\Omega}\left(\frac{1}{n^{1/6}}\right)$$

- Estimator with better performance?
- Yes: new estimator F such that w.h.p.

$$||S - F||_1 = \widetilde{\mathcal{O}}\left(\frac{1}{n^{1/4}}\right)$$

Improve Good-Turing/empirical combination bounds?

14/31

▶ No: $\exists p$ such that w.h.p.

$$||S-C||_1 = \widetilde{\Omega}\left(\frac{1}{n^{1/6}}\right)$$

- Estimator with better performance?
- Yes: new estimator F such that w.h.p.

$$||S - F||_1 = \widetilde{\mathcal{O}}\left(\frac{1}{n^{1/4}}\right)$$

Optimal?

- Improve Good-Turing/empirical combination bounds?
- ▶ No: $\exists p$ such that w.h.p.

$$||S-C||_1 = \widetilde{\Omega}\left(\frac{1}{n^{1/6}}\right)$$

- Estimator with better performance?
- Yes: new estimator F such that w.h.p.

$$||S - F||_1 = \widetilde{\mathcal{O}}\left(\frac{1}{n^{1/4}}\right)$$

- Optimal?
- Yes: For any \widehat{S} , $\exists p$ such that w.h.p.

$$||S - \widehat{S}||_1 = \widetilde{\Omega}\left(\frac{1}{n^{1/4}}\right)$$

- Improve Good-Turing/empirical combination bounds?
- ▶ No: $\exists p$ such that w.h.p.

$$||S - C||_1 = \widetilde{\Omega}\left(rac{1}{n^{1/6}}
ight)$$
 and $D(S||C) = \widetilde{\Omega}\left(rac{1}{n^{1/3}}
ight)$

- Estimator with better performance?
- Yes: new estimator F such that w.h.p.

$$||S - F||_1 = \widetilde{\mathcal{O}}\left(rac{1}{n^{1/4}}
ight)$$
 and $D(S||F) = \widetilde{\mathcal{O}}\left(rac{1}{n^{1/2}}
ight)$

- Optimal?
- Yes: For any \widehat{S} , $\exists p$ such that w.h.p.

$$||S - \widehat{S}||_1 = \widetilde{\Omega}\left(\frac{1}{n^{1/4}}\right)$$
 and $D(S||\widehat{S}) = \widetilde{\Omega}\left(\frac{1}{n^{1/2}}\right)$

14/31

イロト 不得下 イヨト イヨト 二日

< □ > < □ > < ≧ > < ≧ > < ≧ > ≧ < ◇ Q (~ 15/31

► Hold for any *k*

- ► Hold for any *k*
- ► Optimal

- ► Hold for any *k*
- Optimal
- Difference between $\Theta(n^{1/3})$ and $\Theta(n^{1/2})$?

- ► Hold for any *k*
- Optimal
- Difference between $\Theta(n^{1/3})$ and $\Theta(n^{1/2})$?
- Suppose constants are of the same order : NOT shown

- ► Hold for any *k*
- ► Optimal
- Difference between $\Theta(n^{1/3})$ and $\Theta(n^{1/2})$?
- Suppose constants are of the same order : NOT shown
- Estimate within KL divergence $\delta \approx (0.01)$

- ► Hold for any *k*
- Optimal
- Difference between $\Theta(n^{1/3})$ and $\Theta(n^{1/2})$?
- Suppose constants are of the same order : NOT shown
- Estimate within KL divergence $\delta \approx (0.01)$
 - Good-Turing and empirical: $\delta^{-3} \approx (1M)$

- ► Hold for any *k*
- Optimal
- Difference between $\Theta(n^{1/3})$ and $\Theta(n^{1/2})$?
- Suppose constants are of the same order : NOT shown
- Estimate within KL divergence $\delta \approx (0.01)$
 - Good-Turing and empirical: $\delta^{-3} \approx (1M)$
 - Our approach: $\delta^{-2} \approx (10,000)$
- Computationally efficient: linear time complexity

- ► Hold for any *k*
- Optimal
- Difference between $\Theta(n^{1/3})$ and $\Theta(n^{1/2})$?
- Suppose constants are of the same order : NOT shown

15/31

- Estimate within KL divergence $\delta \approx (0.01)$
 - Good-Turing and empirical: $\delta^{-3} \approx (1M)$
 - Our approach: $\delta^{-2} \approx (10,000)$
- Computationally efficient: linear time complexity
- Applications?

<ロ><合><合><き><き><き><き><き><き><き><き><き><16/31

Unknown discrete distributions: p, q

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- ► Test Z: ~ p or q

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

$$p
ightarrow x^3 \quad q
ightarrow y^3 \quad z \quad {
m class.}$$

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

$$p \rightarrow x^3 \quad q \rightarrow y^3 \quad z \quad \text{class.}$$

a b

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

$$p \rightarrow x^3$$
 $q \rightarrow y^3$ z class
a b b c b

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

$$p \rightarrow x^3$$
 $q \rightarrow y^3$ z class
a a b b c b a

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

$$p \rightarrow x^3$$
 $q \rightarrow y^3$ z class.
 $a a b$ $b c b$ a $x^3 (p)$

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

$$\begin{array}{ccccc} p \rightarrow x^3 & q \rightarrow y^3 & z & \text{class.} \\ \hline a & a & b & b & c & b & a & x^3 & (p) \\ & & & b & y^3 & (q) \end{array}$$

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

$$\begin{array}{cccccc} p \rightarrow x^3 & q \rightarrow y^3 & z & \text{class.} \\ \hline a & b & b & c & b & a & x^3 & (p) \\ & & & b & y^3 & (q) \end{array}$$

С

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

$$\begin{array}{cccccc} p \rightarrow x^3 & q \rightarrow y^3 & z & \text{class.} \\ \hline a & b & b & c & b & a & x^3 & (p) \\ & & b & y^3 & (q) \\ & & c & y^3 & (q) \end{array}$$

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

$$p \rightarrow x^{3} \quad q \rightarrow y^{3} \quad z \quad \text{class.}$$

$$a a b \qquad b c b \qquad a \qquad x^{3} \quad (p)$$

$$b \qquad y^{3} \quad (q)$$

$$c \qquad y^{3} \quad (q)$$

$$d$$

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

$$p \rightarrow x^{3} \quad q \rightarrow y^{3} \quad z \quad \text{class.}$$

$$a a b \qquad b c b \qquad a \qquad x^{3} (p)$$

$$b \qquad y^{3} (q)$$

$$c \qquad y^{3} (q)$$

$$d \qquad \text{either}$$

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

$$p \rightarrow x^{3} \quad q \rightarrow y^{3} \quad z \quad \text{class.}$$

$$a a b \qquad b c b \qquad a \qquad x^{3} (p)$$

$$b \qquad y^{3} (q)$$

$$c \qquad y^{3} (q)$$

$$d \quad \text{either}$$

16/31

Applications

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

$$p \rightarrow x^{3} \quad q \rightarrow y^{3} \quad z \quad \text{class.}$$

$$a a b \qquad b c b \qquad a \qquad x^{3} (p)$$

$$b \qquad y^{3} (q)$$

$$c \qquad y^{3} (q)$$

$$d \quad \text{either}$$

16/31

- Applications
 - Spam filtering

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- ► For simplicity *p*, *q* equally likely

$$p \rightarrow x^{3} \quad q \rightarrow y^{3} \quad z \quad \text{class.}$$

$$a a b \qquad b c b \qquad a \qquad x^{3} (p)$$

$$b \qquad y^{3} (q)$$

$$c \qquad y^{3} (q)$$

$$d \quad \text{either}$$

16/31

- Applications
 - Spam filtering
 - Movie selection

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$p \rightarrow x^{3} \quad q \rightarrow y^{3} \quad z \quad \text{class.}$$

$$a a b \qquad b c b \qquad a \qquad x^{3} (p)$$

$$b \qquad y^{3} (q)$$

$$c \qquad y^{3} (q)$$

$$d \qquad \text{either}$$

- Applications
 - Spam filtering
 - Movie selection
 - Medical diagnosis

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$p \rightarrow x^{3} \quad q \rightarrow y^{3} \quad z \quad \text{class.}$$

$$a a b \qquad b c b \qquad a \qquad x^{3} (p)$$

$$b \qquad y^{3} (q)$$

$$c \qquad y^{3} (q)$$

$$d \qquad \text{either}$$

- Applications
 - Spam filtering
 - Movie selection
 - Medical diagnosis
 - Stock recommendation

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$p \rightarrow x^{3} \quad q \rightarrow y^{3} \quad z \quad \text{class.}$$

$$a a b \qquad b c b \qquad a \qquad x^{3} (p)$$

$$b \qquad y^{3} (q)$$

$$c \qquad y^{3} (q)$$

$$d \qquad \text{either}$$

イロト 不得 とくほと くほとう ほ

16/31

- Applications
 - Spam filtering
 - Movie selection
 - Medical diagnosis
 - Stock recommendation
 - ▶ ...

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$p \rightarrow x^{3} \quad q \rightarrow y^{3} \quad z \quad \text{class.}$$

$$a a b \qquad b c b \qquad a \qquad x^{3} (p)$$

$$b \qquad y^{3} (q)$$

$$c \qquad y^{3} (q)$$

$$d \qquad \text{either}$$

イロト 不得 とくほと くほとう ほ

16/31

- Applications
 - Spam filtering
 - Movie selection
 - Medical diagnosis
 - Stock recommendation
 - Þ ...
 - Life

- Unknown discrete distributions: p, q
- Training: $X^n \sim p$ and $Y^n \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$p \rightarrow x^{3} \quad q \rightarrow y^{3} \quad z \quad \text{class.}$$

$$a a b \qquad b c b \qquad a \qquad x^{3} (p)$$

$$b \qquad y^{3} (q)$$

$$c \qquad y^{3} (q)$$

$$d \qquad \text{either}$$

- Applications
 - Spam filtering
 - Movie selection
 - Medical diagnosis
 - Stock recommendation
 - Þ ...
 - Life: everything based on experience

←□ → < □ → < □ → < □ → < □ → □ ≥ < ○ < ○
 </p>

 17 / 31

Optimal classifier?

- Optimal classifier?
- Unfortunately, no "entropy"

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance (ignores training X^n, Y^n)

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance (ignores training X^n, Y^n)
- ► Classifier A is ϵ -competitive if $P_E^A(p,q) \le P_E^*(p,q) + \epsilon \quad \forall p,q$

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance (ignores training X^n, Y^n)
- ► Classifier A is ϵ -competitive if $P_E^A(p,q) \le P_E^*(p,q) + \epsilon \quad \forall p,q$
 - Typically $\epsilon = \epsilon_{n,k}$

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance (ignores training X^n, Y^n)
- ► Classifier A is ϵ -competitive if $P_E^A(p,q) \le P_E^*(p,q) + \epsilon \quad \forall p,q$
 - Typically $\epsilon = \epsilon_{n,k}$
- A is uniformly competitive if $\epsilon_n \rightarrow 0$, regardless of k

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance (ignores training X^n, Y^n)
- ► Classifier A is ϵ -competitive if $P_E^A(p,q) \le P_E^*(p,q) + \epsilon \quad \forall p,q$
 - Typically $\epsilon = \epsilon_{n,k}$
- A is uniformly competitive if $\epsilon_n \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance (ignores training X^n, Y^n)
- ► Classifier A is ϵ -competitive if $P_E^A(p,q) \le P_E^*(p,q) + \epsilon \quad \forall p,q$

(日) (四) (三) (三) (三)

- Typically $\epsilon = \epsilon_{n,k}$
- A is uniformly competitive if $\epsilon_n \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
 - Given any *n* (however large), take k = 4n

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance (ignores training X^n, Y^n)
- ► Classifier A is ϵ -competitive if $P_E^A(p,q) \le P_E^*(p,q) + \epsilon \quad \forall p,q$
 - Typically $\epsilon = \epsilon_{n,k}$
- A is uniformly competitive if $\epsilon_n \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
 - Given any n (however large), take k = 4n
 - ▶ p, q: uniform over disjoint k/2 element subsets of $\{1, \ldots, k\}$

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance (ignores training X^n, Y^n)
- ► Classifier A is ϵ -competitive if $P_E^A(p,q) \le P_E^*(p,q) + \epsilon \quad \forall p,q$
 - Typically $\epsilon = \epsilon_{n,k}$
- A is uniformly competitive if $\epsilon_n \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
 - Given any n (however large), take k = 4n
 - ▶ p, q: uniform over disjoint k/2 element subsets of $\{1, \ldots, k\}$
 - e.g. $p = U[1, ..., k/2], \quad q = U[k/2 + 1, ..., k]$

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance (ignores training X^n, Y^n)
- ► Classifier A is ϵ -competitive if $P_E^A(p,q) \le P_E^*(p,q) + \epsilon \quad \forall p,q$
 - Typically $\epsilon = \epsilon_{n,k}$
- A is uniformly competitive if $\epsilon_n \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
 - Given any n (however large), take k = 4n
 - ▶ p,q: uniform over disjoint k/2 element subsets of $\{1, \ldots, k\}$
 - e.g. $p = U[1, ..., k/2], \quad q = U[k/2 + 1, ..., k]$
 - n = k/4 \rightarrow $\Pr(z \text{ does not appear in } x^n \text{ or } y^n) \ge 1/2$

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance (ignores training X^n, Y^n)
- ► Classifier A is ϵ -competitive if $P_E^A(p,q) \le P_E^*(p,q) + \epsilon \quad \forall p,q$
 - Typically $\epsilon = \epsilon_{n,k}$
- A is uniformly competitive if $\epsilon_n \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
 - Given any n (however large), take k = 4n
 - ▶ p,q: uniform over disjoint k/2 element subsets of $\{1, \ldots, k\}$

- e.g. $p = U[1, ..., k/2], \quad q = U[k/2 + 1, ..., k]$

• $n = k/4 \rightarrow \Pr(z \text{ does not appear in } x^n \text{ or } y^n) \ge 1/2$

•
$$P_E^A \ge 1/4$$
 for any A

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance (ignores training X^n, Y^n)
- ► Classifier A is ϵ -competitive if $P_E^A(p,q) \le P_E^*(p,q) + \epsilon \quad \forall p,q$
 - Typically $\epsilon = \epsilon_{n,k}$
- A is uniformly competitive if $\epsilon_n \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
 - Given any *n* (however large), take k = 4n
 - ▶ p,q: uniform over disjoint k/2 element subsets of $\{1, \ldots, k\}$
 - e.g. p = U[1, ..., k/2], q = U[k/2 + 1, ..., k]
 - n = k/4 \rightarrow $\Pr(z \text{ does not appear in } x^n \text{ or } y^n) \ge 1/2$
 - $P_E^A \ge 1/4$ for any A
 - ► $P_E^* =$

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance (ignores training X^n, Y^n)
- ► Classifier A is ϵ -competitive if $P_E^A(p,q) \le P_E^*(p,q) + \epsilon \quad \forall p,q$
 - Typically $\epsilon = \epsilon_{n,k}$
- A is uniformly competitive if $\epsilon_n \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
 - Given any *n* (however large), take k = 4n
 - ▶ p,q: uniform over disjoint k/2 element subsets of $\{1, \ldots, k\}$
 - e.g. p = U[1, ..., k/2], q = U[k/2 + 1, ..., k]
 - n = k/4 \rightarrow $\Pr(z \text{ does not appear in } x^n \text{ or } y^n) \ge 1/2$
 - $P_E^A \ge 1/4$ for any A
 - ► $P_E^* = 0$

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance (ignores training X^n, Y^n)
- ► Classifier A is ϵ -competitive if $P_E^A(p,q) \le P_E^*(p,q) + \epsilon \quad \forall p,q$
 - Typically $\epsilon = \epsilon_{n,k}$
- A is uniformly competitive if $\epsilon_n \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
 - Given any n (however large), take k = 4n
 - ▶ p,q: uniform over disjoint k/2 element subsets of $\{1, \ldots, k\}$
 - e.g. p = U[1, ..., k/2], q = U[k/2 + 1, ..., k]
 - n = k/4 \rightarrow $\Pr(z \text{ does not appear in } x^n \text{ or } y^n) \ge 1/2$

•
$$P_E^A \ge 1/4$$
 for any A

 $P_E^* = 0 (for any n)$

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier (nearly) as well as best
- $P_E^*(p,q)$ lowest error of any classifier for (p,q)
- Requires knowing p, q in advance (ignores training X^n, Y^n)
- ► Classifier A is ϵ -competitive if $P_E^A(p,q) \le P_E^*(p,q) + \epsilon \quad \forall p,q$
 - Typically $\epsilon = \epsilon_{n,k}$
- A is uniformly competitive if $\epsilon_n \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
 - Given any n (however large), take k = 4n
 - ▶ p,q: uniform over disjoint k/2 element subsets of $\{1, \ldots, k\}$
 - e.g. $p = U[1, ..., k/2], \quad q = U[k/2 + 1, ..., k]$
 - n = k/4 \rightarrow $\Pr(z \text{ does not appear in } x^n \text{ or } y^n) \ge 1/2$
 - $P_E^A \ge 1/4$ for any A
 - $P_E^{\overline{*}} = 0 \qquad (\text{for any } n)$
- No uniformly-competitive classifiers!

• P_E^* requires knowing p and q in advance

- P_E^* requires knowing p and q in advance
- Too much power,

- P_E^* requires knowing p and q in advance
- ► Too much power, no real classifier knows that much!

- P_E^* requires knowing p and q in advance
- ► Too much power, no real classifier knows that much!
- Limit to more real classifiers

- P_E^* requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

- P_E^* requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

$$x^3$$
 y^3 z

- P_E^* requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

$$x^3$$
 y^3 z

- P_E^* requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

x³ y³ z aab cba a

- P_E^* requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

- P_E^* requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

x³ y³ z aab cba a uuv wvu u

Output in both cases?

- P_E^* requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

x³ y³ z aab cba a uuv wvu u

Output in both cases? Same!

- P_E^* requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

x³ y³ z aab cba a uuv wvu u

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

18/31

- Output in both cases? Same!
- Label-invariant, canonical, classifiers

- P_E^* requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

- Output in both cases? Same!
- Label-invariant, canonical, classifiers
- ▶ We assume no prior knowledge, all natural classifiers canonical

- P_E^* requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

- Output in both cases? Same!
- Label-invariant, canonical, classifiers
- ▶ We assume no prior knowledge, all natural classifiers canonical
- ▶ $P_E^{**}(p,q)$ best error of any label-invariant classifier

- P_E^* requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

- Output in both cases? Same!
- Label-invariant, canonical, classifiers
- We assume no prior knowledge, all natural classifiers canonical
- ▶ P^{**}_E(p,q) best error of any label-invariant classifier
- Also requires knowing p, q in advance

- P_E^* requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

- Output in both cases? Same!
- Label-invariant, canonical, classifiers
- We assume no prior knowledge, all natural classifiers canonical
- ▶ P^{**}_E(p,q) best error of any label-invariant classifier
- Also requires knowing p, q in advance
- Can we find a uniformly-competitive canonical estimator?

• Previous example:
$$x^3 = a a b$$
 $y^3 = c b a$ $z = a$

Previous example:
$$x^3 = a a b$$

$$y^3 = c b a$$

$$z = a$$

$$z \sim x^3 \quad (p)$$

Previous example: $x^3 = a a b$ $y^3 = c b a$ z = a z = a a b

Empirical classifier: assign to training where z appeared more

- Previous example: $x^3 = a a b$ $y^3 = c b a$ z = a z = a a b
- ▶ Empirical classifier: assign to training where *z* appeared more
 - Proxy for distribution with highest probability

- ► Previous example: $x^3 = a a b$ $y^3 = c b a$ z = a
 - $z \sim x^3$ (p)
- ▶ Empirical classifier: assign to training where *z* appeared more
 - Proxy for distribution with highest probability
 - Label invariant

- ► Previous example: $x^3 = a a b$ $y^3 = c b a$ z = a
 - $z \sim x^3$ (p)
- ▶ Empirical classifier: assign to training where *z* appeared more
 - Proxy for distribution with highest probability
 - Label invariant
- Competitive?

- Previous example: $x^3 = a a b$ $y^3 = c b a$ z = a
 - $z \sim x^3$ (p)

▶ Empirical classifier: assign to training where *z* appeared more

- Proxy for distribution with highest probability
- Label invariant
- Competitive?
 - For arbitrary n, let p = U[n] and q = U[2n]

- ► Previous example: $x^3 = a a b$ $y^3 = c b a$ z = a
 - $z \sim x^3$ (p)

▶ Empirical classifier: assign to training where *z* appeared more

- Proxy for distribution with highest probability
- Label invariant
- Competitive?
 - For arbitrary *n*, let p = U[n] and q = U[2n]
 - Optimal classifier: $z \to p$ if p(z) > q(z), otherwise $z \to q$

・ロト ・団ト ・ヨト ・ヨト ・ シュー のへの

19/31

- ► Previous example: $x^3 = a a b$ $y^3 = c b a$ z = a
 - $z \sim x^3$ (p)
- ▶ Empirical classifier: assign to training where *z* appeared more
 - Proxy for distribution with highest probability
 - Label invariant
- Competitive?
 - For arbitrary *n*, let p = U[n] and q = U[2n]
 - ▶ Optimal classifier: $z \to p$ if p(z) > q(z), otherwise $z \to q$
 - Recall $X^n \sim p$, $Y^n \sim q$

- ► Previous example: $x^3 = a a b$ $y^3 = c b a$ z = a
 - $z \sim x^3$ (p)

▶ Empirical classifier: assign to training where *z* appeared more

- Proxy for distribution with highest probability
- Label invariant
- Competitive?
 - For arbitrary n, let p = U[n] and q = U[2n]
 - ▶ Optimal classifier: $z \to p$ if p(z) > q(z), otherwise $z \to q$
 - Recall $X^n \sim p$, $Y^n \sim q$
 - ▶ $n_z(x^n) \ge 1 \to p(z) = 1/n$ $n_z(y^n) \ge 1 \to q(z) = 1/(2n)$

- ► Previous example: $x^3 = a a b$ $y^3 = c b a$ z = a
 - $z \sim x^3$ (p)
- ▶ Empirical classifier: assign to training where *z* appeared more
 - Proxy for distribution with highest probability
 - Label invariant
- Competitive?
 - For arbitrary *n*, let p = U[n] and q = U[2n]
 - ▶ Optimal classifier: $z \to p$ if p(z) > q(z), otherwise $z \to q$
 - Recall $X^n \sim p$, $Y^n \sim q$
 - ▶ $n_z(x^n) \ge 1 \rightarrow p(z) = 1/n$ $n_z(y^n) \ge 1 \rightarrow q(z) = 1/(2n)$

(日) (同) (日) (日) (日) (日) (0)

19/31

• $n_z(x^n), n_z(y^n) \ge 1$, optimal: $z \sim p$

- ► Previous example: $x^3 = a a b$ $y^3 = c b a$ z = a
 - $z \sim x^3$ (p)
- ▶ Empirical classifier: assign to training where *z* appeared more
 - Proxy for distribution with highest probability
 - Label invariant
- Competitive?
 - For arbitrary *n*, let p = U[n] and q = U[2n]
 - ▶ Optimal classifier: $z \to p$ if p(z) > q(z), otherwise $z \to q$
 - Recall $X^n \sim p$, $Y^n \sim q$
 - $n_z(x^n) \ge 1 \to p(z) = 1/n \qquad n_z(y^n) \ge 1 \to q(z) = 1/(2n)$

(日) (同) (日) (日) (日) (日) (0)

19/31

- $n_z(x^n), n_z(y^n) \ge 1$, optimal: $z \sim p$
- Label invariant

► Previous example: $x^3 = a a b$ $y^3 = c b a$ z = a

• $z \sim x^3$ (p)

▶ Empirical classifier: assign to training where *z* appeared more

- Proxy for distribution with highest probability
- Label invariant
- Competitive?
 - For arbitrary *n*, let p = U[n] and q = U[2n]
 - ▶ Optimal classifier: $z \to p$ if p(z) > q(z), otherwise $z \to q$

• Recall
$$X^n \sim p$$
, $Y^n \sim q$

$$n_z(x^n) \ge 1 \to p(z) = 1/n \qquad n_z(y^n) \ge 1 \to q(z) = 1/(2n)$$

・ロト ・団ト ・ヨト ・ヨト ・ シュー のへの

19/31

- $n_z(x^n), n_z(y^n) \ge 1$, optimal: $z \sim p$
- Label invariant
- $\Pr\left(1 \le n_z(\overline{x}) < n_z(\overline{y})\right) > 0.03$

► Previous example: $x^3 = a a b$ $y^3 = c b a$ z = a

• $z \sim x^3$ (p)

▶ Empirical classifier: assign to training where *z* appeared more

- Proxy for distribution with highest probability
- Label invariant
- Competitive?
 - For arbitrary *n*, let p = U[n] and q = U[2n]
 - ▶ Optimal classifier: $z \to p$ if p(z) > q(z), otherwise $z \to q$

• Recall
$$X^n \sim p$$
, $Y^n \sim q$

- ► $n_z(x^n) \ge 1 \rightarrow p(z) = 1/n$ $n_z(y^n) \ge 1 \rightarrow q(z) = 1/(2n)$
- $n_z(x^n), n_z(y^n) \ge 1$, optimal: $z \sim p$
- Label invariant
- $\Pr\left(1 \le n_z(\overline{x}) < n_z(\overline{y})\right) > 0.03$
- $P_E^{\text{empirical}}(p,q) > P_E^{**}(p,q) + 0.01$

- ► Previous example: $x^3 = a a b$ $y^3 = c b a$ z = a
 - $z \sim x^3$ (p)

▶ Empirical classifier: assign to training where *z* appeared more

- Proxy for distribution with highest probability
- Label invariant
- Competitive?
 - For arbitrary *n*, let p = U[n] and q = U[2n]
 - ▶ Optimal classifier: $z \to p$ if p(z) > q(z), otherwise $z \to q$

• Recall
$$X^n \sim p$$
, $Y^n \sim q$

- ▶ $n_z(x^n) \ge 1 \to p(z) = 1/n$ $n_z(y^n) \ge 1 \to q(z) = 1/(2n)$
- $n_z(x^n), n_z(y^n) \ge 1$, optimal: $z \sim p$
- Label invariant
- $\Pr\left(1 \le n_z(\overline{x}) < n_z(\overline{y})\right) > 0.03$
- $\blacktriangleright \ P_E^{\text{empirical}}(p,q) > P_E^{**}(p,q) + 0.01$

Empirical classifier not competitive with label-invariant class.

<ロト < 部ト < 目ト < 目ト 目 の Q (C 20 / 31

Are there uniformly competitive label-invariant classifiers??

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs
- Modify new estimator for sequence-pairs

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs
- Modify new estimator for sequence-pairs
- Label-invariant classifier A such that $\forall p, q$,

$$P_E^A(p,q) \leq P_E^{**}(p,q) + \widetilde{\mathcal{O}}\left(rac{1}{n^{1/5}}
ight)$$

イロン イロン イヨン イヨン 三日

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs
- Modify new estimator for sequence-pairs
- Label-invariant classifier A such that $\forall p, q$,

$$P^{A}_{E}(p,q) \leq P^{**}_{E}(p,q) + \widetilde{\mathcal{O}}\left(rac{1}{n^{1/5}}
ight)$$

Independent of k!

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs
- Modify new estimator for sequence-pairs
- Label-invariant classifier A such that $\forall p, q$,

$$P_E^A(p,q) \leq P_E^{**}(p,q) + \widetilde{\mathcal{O}}\left(rac{1}{n^{1/5}}
ight)$$

- Independent of k!
- Runs in linear time

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs
- Modify new estimator for sequence-pairs
- Label-invariant classifier A such that $\forall p, q$,

$$P_E^A(p,q) \leq P_E^{**}(p,q) + \widetilde{\mathcal{O}}\left(rac{1}{n^{1/5}}
ight)$$

イロト 不得下 イヨト イヨト 二日

20/31

- Independent of k!
- Runs in linear time
- First uniformly-optimal classifier

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs
- Modify new estimator for sequence-pairs
- Label-invariant classifier A such that $\forall p, q$,

$$P_E^A(p,q) \leq P_E^{**}(p,q) + \widetilde{\mathcal{O}}\left(rac{1}{n^{1/5}}
ight)$$

- Independent of k!
- Runs in linear time
- First uniformly-optimal classifier
- Omniscient oracle too powerful, compare to more realistic one

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs
- Modify new estimator for sequence-pairs
- Label-invariant classifier A such that $\forall p, q$,

$$P_E^A(p,q) \leq P_E^{**}(p,q) + \widetilde{\mathcal{O}}\left(rac{1}{n^{1/5}}
ight)$$

- Independent of k!
- Runs in linear time
- First uniformly-optimal classifier
- Omniscient oracle too powerful, compare to more realistic one
- Lower bound: For any classifier C, $\exists p, q$ such that

$$P_E^{\mathsf{C}}(p,q) \geq P_E^{**}(p,q) + \widetilde{\Omega}(rac{1}{n^{1/3}})$$

Experiments

• Netflix challenge: $10\% \rightarrow \$1M$

- Netflix challenge: $10\% \rightarrow \$1M$
- Zipf distributions $p_i \propto i^{-s}$, s = 1 and s = 1.5, k = 100

- Netflix challenge: $10\% \rightarrow \$1M$
- Zipf distributions $p_i \propto i^{-s}$, s = 1 and s = 1.5, k = 100

- Netflix challenge: $10\% \rightarrow \$1M$
- Zipf distributions $p_i \propto i^{-s}$, s = 1 and s = 1.5, k = 100

 Prediction / Universal Compression

► Xⁿ: generated by unknown *i.i.d.* distribution

- ► Xⁿ: generated by unknown *i.i.d.* distribution
- Code designed for distribution q

- ► Xⁿ: generated by unknown *i.i.d.* distribution
- Code designed for distribution q
- Redundancy

$$R = \min_{q} \max_{p} \mathbb{E}\left[\log rac{p}{q}
ight]$$

- ► Xⁿ: generated by unknown *i.i.d.* distribution
- Code designed for distribution q
- Redundancy

$$R = \min_{q} \max_{p} \mathbb{E}\left[\log \frac{p}{q}
ight]$$

- ► Xⁿ: generated by unknown *i.i.d.* distribution
- Code designed for distribution q
- Redundancy

$$R = \min_{q} \max_{p} \mathbb{E}\left[\log \frac{p}{q}\right]$$

Compress sequences: compress dictionary + pattern
 x⁵ = a b b a c

- ► Xⁿ: generated by unknown *i.i.d.* distribution
- Code designed for distribution q
- Redundancy

$$R = \min_{q} \max_{p} \mathbb{E}\left[\log \frac{p}{q}\right]$$

Compress sequences: compress dictionary + pattern

• Dict: $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3$ and pattern: 12213

- ► Xⁿ: generated by unknown *i.i.d.* distribution
- Code designed for distribution q
- Redundancy

$$R = \min_{q} \max_{p} \mathbb{E}\left[\log \frac{p}{q}\right]$$

- Dict: $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3$ and pattern: 12213
- Redundancy of patterns?

- ► Xⁿ: generated by unknown *i.i.d.* distribution
- Code designed for distribution q
- Redundancy

$$R = \min_{q} \max_{p} \mathbb{E}\left[\log \frac{p}{q}\right]$$

- Dict: $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3$ and pattern: 12213
- Redundancy of patterns?
 - ► (ADO '12): Õ(n^{1/3})

- ► Xⁿ: generated by unknown *i.i.d.* distribution
- Code designed for distribution q
- Redundancy

$$R = \min_{q} \max_{p} \mathbb{E}\left[\log \frac{p}{q}\right]$$

- Dict: $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3$ and pattern: 12213
- Redundancy of patterns?
 - ► (ADO '12): *O*(n^{1/3})
- Computationally efficient sequential algorithms?

- ► Xⁿ: generated by unknown *i.i.d.* distribution
- Code designed for distribution q
- Redundancy

$$R = \min_{q} \max_{p} \mathbb{E}\left[\log \frac{p}{q}\right]$$

- Compress sequences: compress dictionary + pattern
- ▶ x⁵ = abbac
- Dict: $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3$ and pattern: 12213
- Redundancy of patterns?
 - ► (ADO '12): Õ(n^{1/3})
- Computationally efficient sequential algorithms?
 - ▶ (OSZ '03): $O(n^{2/3})$

- ► Xⁿ: generated by unknown *i.i.d.* distribution
- Code designed for distribution q
- Redundancy

$$R = \min_{q} \max_{p} \mathbb{E}\left[\log \frac{p}{q}\right]$$

- Dict: $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3$ and pattern: 12213
- Redundancy of patterns?
 - ► (ADO '12): Õ(n^{1/3})
- Computationally efficient sequential algorithms?
 - ▶ (OSZ '03): $O(n^{2/3})$
- ▶ New bound: Õ(n^{1/2})

Proof Sketch

<ロ><合><合><き><き><き><き><き><き><き><き><23/31</td>

• N_{μ} : # of symbols appearing μ times

- N_{μ} : # of symbols appearing μ times
- Empirical

$$E_{\mu} = N_{\mu} \frac{\mu}{n}$$

- N_{μ} : # of symbols appearing μ times
- Empirical $E_{\mu} = N_{\mu} \frac{\mu}{n}$
- Multiply by a correction term c_{μ} to improve the estimate

$$\widehat{S}_{\mu} = N_{\mu} rac{\mu}{n} c_{\mu}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- N_{μ} : # of symbols appearing μ times
- Empirical $E_{\mu} = N_{\mu} \frac{\mu}{n}$
- Multiply by a correction term c_{μ} to improve the estimate

$$\widehat{S}_{\mu} = N_{\mu} rac{\mu}{n} c_{\mu}$$

(日) (四) (三) (三) (三)

- N_{μ} : # of symbols appearing μ times
- Empirical $E_{\mu} = N_{\mu} \frac{\mu}{n}$
- Multiply by a correction term c_{μ} to improve the estimate

$$\widehat{S}_{\mu} = N_{\mu} rac{\mu}{n} c_{\mu}$$

• c_{μ} : a function of x^n

Ignoring constants:

$$|S_{\mu} - \widehat{S}_{\mu}| pprox \,$$
 bias $+ \, \sqrt{ ext{variance}}$

$$\widehat{S}_{\mu} = N_{\mu} rac{\mu}{n} c_{\mu}$$

$$\widehat{S}_{\mu} = N_{\mu} rac{\mu}{n} c_{\mu}$$

$$\widehat{S}_{\mu} = N_{\mu} \frac{\mu}{n} c_{\mu}$$

• c_{μ} : a function of x^n

Estimator c_{μ} Bias Variance

$$\widehat{S}_{\mu} = N_{\mu} rac{\mu}{n} c_{\mu}$$

Estimator
$$c_{\mu}$$
 Bias Variance Empirical

$$\widehat{S}_{\mu} = N_{\mu} rac{\mu}{n} c_{\mu}$$

$$egin{array}{ccc} {\sf Estimator} & c_{\mu} & {\sf Bias} & {\sf Variance} \ {\sf Empirical} & 1 \end{array}$$

$$\widehat{S}_{\mu} = N_{\mu} rac{\mu}{n} c_{\mu}$$

Estimator
$$c_{\mu}$$
BiasVarianceEmpirical1 $\mathbb{E}[N_{\mu}] \frac{\sqrt{\mu}}{n}$ $\mathbb{E}[N_{\mu}] \frac{\mu}{n^2}$

$$\widehat{S}_{\mu} = N_{\mu} \frac{\mu}{n} c_{\mu}$$

• c_{μ} : a function of x^n

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}[N_{\mu}]rac{\sqrt{\mu}}{n}$	$\mathbb{E}[N_{\mu}]rac{\mu}{n^2}$

Good-Turing

$$\widehat{S}_{\mu}=\mathit{N}_{\mu}rac{\mu}{n}c_{\mu}$$

• c_{μ} : a function of x^n

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}[N_{\mu}]\frac{\sqrt{\mu}}{n}$	$\mathbb{E}[N_{\mu}]\frac{\mu}{n^2}$
Good-Turing	$rac{\mu+1}{\mu}rac{ extsf{N}_{\mu+1}}{ extsf{N}_{\mu}}$		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

24/31

$$\widehat{S}_{\mu} = N_{\mu} rac{\mu}{n} c_{\mu}$$

• c_{μ} : a function of x^n

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}[N_{\mu}]\frac{\sqrt{\mu}}{n}$	$\mathbb{E}[N_{\mu}]\frac{\mu}{n^2}$
Good-Turing	$rac{\mu+1}{\mu}rac{ extsf{N}_{\mu+1}}{ extsf{N}_{\mu}}$	0	$\mathbb{E}[N_{\mu}]rac{(\mu+1)^2}{n^2}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

24/31

$$\widehat{S}_{\mu} = N_{\mu} \frac{\mu}{n} c_{\mu}$$

• c_{μ} : a function of x^n

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}[N_{\mu}]\frac{\sqrt{\mu}}{n}$	$\mathbb{E}[N_{\mu}]\frac{\mu}{n^2}$
Good-Turing	$rac{\mu+1}{\mu}rac{N_{\mu+1}}{N_{\mu}}$	0	$\mathbb{E}[N_{\mu}]rac{(\mu+1)^2}{n^2}$
NL.			

New

$$\widehat{S}_{\mu} = N_{\mu} rac{\mu}{n} c_{\mu}$$

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}[N_{\mu}]rac{\sqrt{\mu}}{n}$	$\mathbb{E}[N_{\mu}]\frac{\mu}{n^2}$
Good-Turing	$rac{\mu+1}{\mu}rac{ extsf{N}_{\mu+1}}{ extsf{N}_{\mu}}$	0	$\mathbb{E}[N_{\mu}]rac{(\mu+1)^2}{n^2}$
New	$rac{\mu+1}{\mu}rac{\mathbb{E}[\textit{N}_{\mu+1}]}{\mathbb{E}[\textit{N}_{\mu}]}$		

$$\widehat{S}_{\mu} = N_{\mu} rac{\mu}{n} c_{\mu}$$

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}[N_{\mu}]rac{\sqrt{\mu}}{n}$	$\mathbb{E}[N_{\mu}]\frac{\mu}{n^2}$
Good-Turing	$rac{\mu+1}{\mu}rac{ extsf{N}_{\mu+1}}{ extsf{N}_{\mu}}$	0	$\mathbb{E}[N_{\mu}] rac{(\mu+1)^2}{n^2}$
New	$rac{\mu+1}{\mu}rac{\mathbb{E}[\mathcal{N}_{\mu+1}]}{\mathbb{E}[\mathcal{N}_{\mu}]}$	0	$\mathbb{E}[N_{\mu}]rac{\mu}{n^{2}}$

New estimator

$$\widehat{S}_{\mu} = N_{\mu} \frac{\mu}{n} c_{\mu}$$

• c_{μ} : a function of x^n

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}[N_{\mu}]rac{\sqrt{\mu}}{n}$	$\mathbb{E}[N_{\mu}]\frac{\mu}{n^2}$
Good-Turing	$rac{\mu+1}{\mu}rac{ extsf{N}_{\mu+1}}{ extsf{N}_{\mu}}$	0	$\mathbb{E}[N_{\mu}] rac{(\mu+1)^2}{n^2}$
New	$rac{\mu+1}{\mu} rac{\mathbb{E}[\textit{N}_{\mu+1}]}{\mathbb{E}[\textit{N}_{\mu}]}$	0	$\mathbb{E}[N_{\mu}]rac{\mu}{n^2}$

Best of both estimators!

New estimator

$$\widehat{S}_{\mu} = N_{\mu} rac{\mu}{n} c_{\mu}$$

• c_{μ} : a function of x^n

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}[N_{\mu}]rac{\sqrt{\mu}}{n}$	$\mathbb{E}[N_{\mu}]\frac{\mu}{n^2}$
Good-Turing	$rac{\mu+1}{\mu}rac{ extsf{N}_{\mu+1}}{ extsf{N}_{\mu}}$	0	$\mathbb{E}[N_{\mu}]rac{(\mu+1)^2}{n^2}$
New	$rac{\mu+1}{\mu}rac{\mathbb{E}[\mathcal{N}_{\mu+1}]}{\mathbb{E}[\mathcal{N}_{\mu}]}$	0	$\mathbb{E}[N_{\mu}]rac{\mu}{n^{2}}$

- Best of both estimators!
- Idealized as we don't know the expectations

New estimator

$$\widehat{S}_{\mu} = N_{\mu} rac{\mu}{n} c_{\mu}$$

• c_{μ} : a function of x^n

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}[N_{\mu}]rac{\sqrt{\mu}}{n}$	$\mathbb{E}[N_{\mu}]\frac{\mu}{n^2}$
Good-Turing	$rac{\mu+1}{\mu}rac{ extsf{N}_{\mu+1}}{ extsf{N}_{\mu}}$	0	$\mathbb{E}[N_{\mu}]rac{(\mu+1)^2}{n^2}$
New	$rac{\mu+1}{\mu} rac{\mathbb{E}[\mathcal{N}_{\mu+1}]}{\mathbb{E}[\mathcal{N}_{\mu}]}$	0	$\mathbb{E}[N_{\mu}]rac{\mu}{n^{2}}$

- Best of both estimators!
- Idealized as we don't know the expectations
- How to estimate $\frac{\mathbb{E}[N_{\mu+1}]}{\mathbb{E}[N_{\mu}]}$?

• Given: sequence X^n , estimate $\mathbb{E}[N_{\mu}]$

• Given: sequence X^n , estimate $\mathbb{E}[N_{\mu}]$

 \blacktriangleright Expected # of symbols appearing μ times

- Given: sequence X^n , estimate $\mathbb{E}[N_{\mu}]$
 - \blacktriangleright Expected # of symbols appearing μ times
- Good-Turing: $\mathbb{E}[N_{\mu}] \sim N_{\mu}$, high variance

- Given: sequence X^n , estimate $\mathbb{E}[N_{\mu}]$
 - \blacktriangleright Expected # of symbols appearing μ times
- Good-Turing: $\mathbb{E}[N_{\mu}] \sim N_{\mu}$, high variance
- Better estimators for $\mathbb{E}[N_{\mu}]$

- Given: sequence X^n , estimate $\mathbb{E}[N_{\mu}]$
 - \blacktriangleright Expected # of symbols appearing μ times
- Good-Turing: $\mathbb{E}[N_{\mu}] \sim N_{\mu}$, high variance
- Better estimators for $\mathbb{E}[N_{\mu}]$
- Given: X^n or N_0, N_1, \ldots, N_n

- Given: sequence X^n , estimate $\mathbb{E}[N_{\mu}]$
 - \blacktriangleright Expected # of symbols appearing μ times

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

25/31

- Good-Turing: $\mathbb{E}[N_{\mu}] \sim N_{\mu}$, high variance
- Better estimators for $\mathbb{E}[N_{\mu}]$
- Given: X^n or N_0, N_1, \ldots, N_n
- ► Linear?

- Given: sequence X^n , estimate $\mathbb{E}[N_{\mu}]$
 - \blacktriangleright Expected # of symbols appearing μ times

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

25/31

- Good-Turing: $\mathbb{E}[N_{\mu}] \sim N_{\mu}$, high variance
- Better estimators for $\mathbb{E}[N_{\mu}]$
- Given: X^n or $N_0, N_1, \ldots N_n$
- ► Linear?
 - $\sum_{\mu} h_{\mu} N_{\mu}$

- Given: sequence X^n , estimate $\mathbb{E}[N_{\mu}]$
 - \blacktriangleright Expected # of symbols appearing μ times
- Good-Turing: $\mathbb{E}[N_{\mu}] \sim N_{\mu}$, high variance
- Better estimators for $\mathbb{E}[N_{\mu}]$
- Given: X^n or N_0, N_1, \ldots, N_n
- ► Linear?
 - $\sum_{\mu} h_{\mu} N_{\mu}$
- Why should it work?

• Simple estimator for $\mathbb{E}[N_{\mu}]$: N_{μ}

- Simple estimator for $\mathbb{E}[N_{\mu}]$: N_{μ}
- Bias = 0 variance = $\mathbb{E}[N_{\mu}]$

$$|N_{\mu} - \mathbb{E}[N_{\mu}]| = \sqrt{\mathbb{E}[N_{\mu}]}$$

- Simple estimator for $\mathbb{E}[N_{\mu}]$: N_{μ}
- Bias = 0 variance = $\mathbb{E}[N_{\mu}]$

$$|N_{\mu} - \mathbb{E}[N_{\mu}]| = \sqrt{\mathbb{E}[N_{\mu}]}$$

 $\blacktriangleright |\mathbb{E}[N_{\mu}] - \mathbb{E}[N_{\mu+1}]|, |\mathbb{E}[N_{\mu}] - \mathbb{E}[N_{\mu-1}]| \le \epsilon$

- Simple estimator for $\mathbb{E}[N_{\mu}]$: N_{μ}
- Bias = 0 variance = $\mathbb{E}[N_{\mu}]$

$$|\mathsf{N}_{\mu} - \mathbb{E}[\mathsf{N}_{\mu}]| = \sqrt{\mathbb{E}[\mathsf{N}_{\mu}]}$$

|E[N_µ] - E[N_{µ+1}]|, |E[N_µ] - E[N_{µ-1}]| ≤ ϵ
 Expected # symbols appearing 100 and 101 times are close

- Simple estimator for $\mathbb{E}[N_{\mu}]$: N_{μ}
- Bias = 0 variance = $\mathbb{E}[N_{\mu}]$

$$|N_{\mu} - \mathbb{E}[N_{\mu}]| = \sqrt{\mathbb{E}[N_{\mu}]}$$

- $\models |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu+1}]|, |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu-1}]| \le \epsilon$
 - Expected # symbols appearing 100 and 101 times are close

(日) (四) (三) (三) (三)

26/31

▶ Momentarily assume: $N_{\mu-1}$, N_{μ} , $N_{\mu+1}$ independent

- Simple estimator for $\mathbb{E}[N_{\mu}]$: N_{μ}
- Bias = 0 variance = $\mathbb{E}[N_{\mu}]$

$$|N_{\mu} - \mathbb{E}[N_{\mu}]| = \sqrt{\mathbb{E}[N_{\mu}]}$$

- $\models |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu+1}]|, |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu-1}]| \le \epsilon$
 - \blacktriangleright Expected # symbols appearing 100 and 101 times are close
- ▶ Momentarily assume: $N_{\mu-1}$, N_{μ} , $N_{\mu+1}$ independent
- New Estimator

$$(N_{\mu-1} + N_{\mu} + N_{\mu+1})/3$$

- Simple estimator for $\mathbb{E}[N_{\mu}]$: N_{μ}
- Bias = 0 variance = $\mathbb{E}[N_{\mu}]$

$$|N_{\mu} - \mathbb{E}[N_{\mu}]| = \sqrt{\mathbb{E}[N_{\mu}]}$$

- $\models |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu+1}]|, |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu-1}]| \le \epsilon$
 - \blacktriangleright Expected # symbols appearing 100 and 101 times are close
- Momentarily assume: $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ independent
- New Estimator

$$(N_{\mu-1} + N_{\mu} + N_{\mu+1})/3$$

26/31

• Bias $\leq 2\epsilon/3 \leq \epsilon$

- Simple estimator for $\mathbb{E}[N_{\mu}]$: N_{μ}
- Bias = 0 variance = $\mathbb{E}[N_{\mu}]$

$$|N_{\mu} - \mathbb{E}[N_{\mu}]| = \sqrt{\mathbb{E}[N_{\mu}]}$$

- $\models |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu+1}]|, |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu-1}]| \le \epsilon$
 - \blacktriangleright Expected # symbols appearing 100 and 101 times are close
- ▶ Momentarily assume: $N_{\mu-1}$, N_{μ} , $N_{\mu+1}$ independent
- New Estimator

$$(N_{\mu-1} + N_{\mu} + N_{\mu+1})/3$$

- Bias $\leq 2\epsilon/3 \leq \epsilon$
- Variance of sum = sum of variances

- Simple estimator for $\mathbb{E}[N_{\mu}]$: N_{μ}
- Bias = 0 variance = $\mathbb{E}[N_{\mu}]$

$$|N_{\mu} - \mathbb{E}[N_{\mu}]| = \sqrt{\mathbb{E}[N_{\mu}]}$$

- $\models |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu+1}]|, |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu-1}]| \le \epsilon$
 - \blacktriangleright Expected # symbols appearing 100 and 101 times are close
- Momentarily assume: $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ independent
- New Estimator

$$(N_{\mu-1} + N_{\mu} + N_{\mu+1})/3$$

- Bias $\leq 2\epsilon/3 \leq \epsilon$
- Variance of sum = sum of variances
- $\sigma' = \sigma/\sqrt{3}$

error
$$\leq \frac{1}{\sqrt{3}}\sqrt{\mathbb{E}[N_{\mu}]} + \epsilon$$

- Simple estimator for $\mathbb{E}[N_{\mu}]$: N_{μ}
- Bias = 0 variance = $\mathbb{E}[N_{\mu}]$

$$|N_{\mu} - \mathbb{E}[N_{\mu}]| = \sqrt{\mathbb{E}[N_{\mu}]}$$

- $\models |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu+1}]|, |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu-1}]| \le \epsilon$
 - \blacktriangleright Expected # symbols appearing 100 and 101 times are close
- Momentarily assume: $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ independent
- New Estimator

$$(N_{\mu-1} + N_{\mu} + N_{\mu+1})/3$$

- Bias $\leq 2\epsilon/3 \leq \epsilon$
- Variance of sum = sum of variances
- $\sigma' = \sigma/\sqrt{3}$

error
$$\leq \frac{1}{\sqrt{3}}\sqrt{\mathbb{E}[N_{\mu}]} + \epsilon$$

Improvement

•
$$N_{\mu-1}$$
, N_{μ} , $N_{\mu+1}$ are not independent

- $N_{\mu-1}$, N_{μ} , $N_{\mu+1}$ are not independent
- Need to show

- $N_{\mu-1}$, N_{μ} , $N_{\mu+1}$ are not independent
- Need to show
 - $\triangleright \quad |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu+1}]|, |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu-1}]| \le \epsilon$

- $N_{\mu-1}$, N_{μ} , $N_{\mu+1}$ are not independent
- Need to show
 - $\triangleright ||\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu+1}]|, |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu-1}]| \le \epsilon$
 - Bounds on bias, variance are enough for concentration

- $N_{\mu-1}$, N_{μ} , $N_{\mu+1}$ are not independent
- Need to show
 - $\models |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu+1}]|, |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu-1}]| \le \epsilon$
 - Bounds on bias, variance are enough for concentration
- Simple averaging does not yield optimal estimator

- $N_{\mu-1}$, N_{μ} , $N_{\mu+1}$ are not independent
- Need to show
 - $\triangleright ||\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu+1}]|, |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu-1}]| \le \epsilon$
 - Bounds on bias, variance are enough for concentration
- Simple averaging does not yield optimal estimator
- Explicit estimator such that bias and variance is optimized

- $N_{\mu-1}$, N_{μ} , $N_{\mu+1}$ are not independent
- Need to show
 - $\models |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu+1}]|, |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu-1}]| \le \epsilon$
 - Bounds on bias, variance are enough for concentration
- Simple averaging does not yield optimal estimator
- Explicit estimator such that bias and variance is optimized
 - Properties of Poisson functions, distribution approximations

- $N_{\mu-1}$, N_{μ} , $N_{\mu+1}$ are not independent
- Need to show
 - $\models |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu+1}]|, |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu-1}]| \le \epsilon$
 - Bounds on bias, variance are enough for concentration
- Simple averaging does not yield optimal estimator
- Explicit estimator such that bias and variance is optimized
 - Properties of Poisson functions, distribution approximations
 - Adaptively choose the # of non-zero coefficients based on X^n

- $N_{\mu-1}$, N_{μ} , $N_{\mu+1}$ are not independent
- Need to show
 - $\models |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu+1}]|, |\mathbb{E}[N_{\mu}] \mathbb{E}[N_{\mu-1}]| \le \epsilon$
 - Bounds on bias, variance are enough for concentration
- Simple averaging does not yield optimal estimator
- Explicit estimator such that bias and variance is optimized
 - Properties of Poisson functions, distribution approximations
 - Adaptively choose the # of non-zero coefficients based on X^n
- Converse: show that estimation is hard for some distributions

Estimator Properties

<ロト < 部 、 < 注 、 < 注 ト < 注 ト 注 の < C 28 / 31

Estimator Properties

• Linear estimator for $\mathbb{E}[N_{\mu}]$: $\sum_{|i| \leq r} h_i N_{\mu+i}$

Estimator Properties

- Linear estimator for $\mathbb{E}[N_{\mu}]$: $\sum_{|i| \leq r} h_i N_{\mu+i}$
- Bias: $\mathbb{E}[N_{\mu} \sum_{|i| \leq r} h_i N_{\mu+i}]$

$$\mathbb{E}[N_{\mu}] = \sum_{x} \binom{n}{\mu} p_{x}^{\mu} (1 - p_{x})^{n-\mu}$$

- Linear estimator for $\mathbb{E}[N_{\mu}]$: $\sum_{|i| < r} h_i N_{\mu+i}$
- Bias: $\mathbb{E}[N_{\mu} \sum_{|i| \leq r} h_i N_{\mu+i}]$

$$\mathbb{E}[N_{\mu}] = \sum_{x} \binom{n}{\mu} p_{x}^{\mu} (1 - p_{x})^{n-\mu}$$

► Problem

- Linear estimator for $\mathbb{E}[N_{\mu}]$: $\sum_{|i| < r} h_i N_{\mu+i}$
- Bias: $\mathbb{E}[N_{\mu} \sum_{|i| \leq r} h_i N_{\mu+i}]$

$$\mathbb{E}[N_{\mu}] = \sum_{x} \binom{n}{\mu} p_{x}^{\mu} (1 - p_{x})^{n-\mu}$$

Problem

After rescaling, contribution of symbol with probability p

$$\binom{n}{\mu} p^{\mu} (1-p)^{n-\mu} \sum_{|i| \leq r} h'_i \left(\frac{np}{\mu}\right)^i$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへの

28/31

- Linear estimator for $\mathbb{E}[N_{\mu}]$: $\sum_{|i| < r} h_i N_{\mu+i}$
- Bias: $\mathbb{E}[N_{\mu} \sum_{|i| \leq r} h_i N_{\mu+i}]$

$$\mathbb{E}[N_{\mu}] = \sum_{x} \binom{n}{\mu} p_{x}^{\mu} (1 - p_{x})^{n-\mu}$$

Problem

After rescaling, contribution of symbol with probability p

$$\binom{n}{\mu}p^{\mu}(1-p)^{n-\mu}\sum_{|i|\leq r}h'_{i}\left(\frac{np}{\mu}\right)^{i}$$

h'_i: scaled version of h_is

- Linear estimator for $\mathbb{E}[N_{\mu}]$: $\sum_{|i| < r} h_i N_{\mu+i}$
- Bias: $\mathbb{E}[N_{\mu} \sum_{|i| \leq r} h_i N_{\mu+i}]$

$$\mathbb{E}[N_{\mu}] = \sum_{x} \binom{n}{\mu} p_{x}^{\mu} (1 - p_{x})^{n-\mu}$$

Problem

After rescaling, contribution of symbol with probability p

$$\binom{n}{\mu} p^{\mu} (1-p)^{n-\mu} \sum_{|i| \leq r} h'_i \left(\frac{np}{\mu}\right)^{i}$$

▶ h'_i: scaled version of h_is

• Variance $\propto \max_i h_i^2$

- Linear estimator for $\mathbb{E}[N_{\mu}]$: $\sum_{|i| < r} h_i N_{\mu+i}$
- Bias: $\mathbb{E}[N_{\mu} \sum_{|i| \leq r} h_i N_{\mu+i}]$

$$\mathbb{E}[N_{\mu}] = \sum_{x} \binom{n}{\mu} p_{x}^{\mu} (1 - p_{x})^{n-\mu}$$

Problem

After rescaling, contribution of symbol with probability p

$$\binom{n}{\mu}p^{\mu}(1-p)^{n-\mu}\sum_{|i|\leq r}h'_i\left(\frac{np}{\mu}\right)^{n-\mu}$$

- h'_i: scaled version of h_is
- Variance $\propto \max_i h_i^2$
- Set term close to $\binom{n}{\mu}p^{\mu}(1-p)^{n-\mu}$ s.t. max_i h(i) is bounded

Approximating a polynomial with bounded co-efficients

Approximating a polynomial with bounded co-efficients

• Let
$$x = \frac{np}{\mu} \approx 1$$

- Approximating a polynomial with bounded co-efficients
- Let $x = \frac{np}{\mu} \approx 1$
- Minimize

$$\delta = \max_{x \in (1-\epsilon, 1+\epsilon)} \left| 1 - \sum_{i=-r}^{r} h_i x^i \right|$$

s.t. $\max |h_i| \le \frac{c}{r+1}, \quad |h_i - h_{i-1}| = \frac{c}{(r+1)^2}$

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

29/31

- Approximating a polynomial with bounded co-efficients
- Let $x = \frac{np}{\mu} \approx 1$
- Minimize

$$\delta = \max_{x \in (1-\epsilon, 1+\epsilon)} \left| 1 - \sum_{i=-r}^{r} h_i x^i \right|$$

s.t. $\max |h_i| \le \frac{c}{r+1}, \quad |h_i - h_{i-1}| = \frac{c}{(r+1)^2}$

•
$$\sum_i h_i = 1 \implies \delta = \mathcal{O}(\epsilon)$$

- Approximating a polynomial with bounded co-efficients
- Let $x = \frac{np}{\mu} \approx 1$
- Minimize

$$\delta = \max_{x \in (1-\epsilon, 1+\epsilon)} \left| 1 - \sum_{i=-r}^{r} h_i x^i \right|$$

s.t. $\max |h_i| \le \frac{c}{r+1}, \quad |h_i - h_{i-1}| = \frac{c}{(r+1)^2}$

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

29/31

►
$$\sum_i h_i = 1 \implies \delta = \mathcal{O}(\epsilon)$$

► By symmetry, $h_i = h_{-i} \implies \delta = \mathcal{O}(\epsilon^2)$

- Approximating a polynomial with bounded co-efficients
- Let $x = \frac{np}{\mu} \approx 1$
- Minimize

$$\delta = \max_{x \in (1-\epsilon, 1+\epsilon)} \left| 1 - \sum_{i=-r}^{r} h_i x^i \right|$$

s.t. $\max |h_i| \le \frac{c}{r+1}, \quad |h_i - h_{i-1}| = \frac{c}{(r+1)^2}$

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

29/31

- Approximating a polynomial with bounded co-efficients
- Let $x = \frac{np}{\mu} \approx 1$
- Minimize

$$\delta = \max_{x \in (1-\epsilon, 1+\epsilon)} \left| 1 - \sum_{i=-r}^{r} h_i x^i \right|$$

s.t. $\max |h_i| \le \frac{c}{r+1}, \quad |h_i - h_{i-1}| = \frac{c}{(r+1)^2}$

► $\sum_i h_i = 1$, $\sum_i h_i i^2 = 0$, and $h_r = 0$ uniquely represents a second degree polynomial of the form $h_i = \alpha i^2 + \beta i + \gamma$ and satisfies above conditions

- Approximating a polynomial with bounded co-efficients
- Let $x = \frac{np}{\mu} \approx 1$
- Minimize

$$\delta = \max_{x \in (1-\epsilon, 1+\epsilon)} \left| 1 - \sum_{i=-r}^{r} h_i x^i \right|$$

s.t. $\max |h_i| \le \frac{c}{r+1}, \quad |h_i - h_{i-1}| = \frac{c}{(r+1)^2}$

•
$$\sum_{i} h_{i} = 1 \implies \delta = \mathcal{O}(\epsilon)$$

• By symmetry, $h_{i} = h_{-i} \implies \delta = \mathcal{O}(\epsilon^{2})$
• $\sum_{i} h_{i}i^{2} = 0, \implies \delta = \mathcal{O}(\epsilon^{4})$

► $\sum_i h_i = 1$, $\sum_i h_i i^2 = 0$, and $h_r = 0$ uniquely represents a second degree polynomial of the form $h_i = \alpha i^2 + \beta i + \gamma$ and satisfies above conditions

► Choose *r* to minimize bias-variance tradeoff

• The error: bias $+\sqrt{\text{variance}}$

- The error: bias $+\sqrt{\text{variance}}$
 - Good-Turing: $\frac{\sqrt{N_{\mu}}\mu}{n}$

- The error: bias $+\sqrt{\text{variance}}$
 - Good-Turing: $\frac{\sqrt{N_{\mu}\mu}}{n}$ Empirical: $\frac{N_{\mu}\sqrt{\mu}}{n}$

The error: bias +√variance
 Good-Turing: √Nµμ/n
 Empirical: Nµ√µ/n
 New error: Nµ/√µ/n

- The error: bias $+\sqrt{\text{variance}}$
 - Good-Turing: $\frac{\sqrt{N_{\mu}\mu}}{n}$ Empirical: $\frac{N_{\mu}\sqrt{\mu}}{n}$
- New error: $\frac{N_{\mu}^{3/4}\sqrt{\mu}}{r}$
- Adding over all multiplicities and maximizing for N_{μ} yields

 $\widetilde{\mathcal{O}}(n^{-1/4})$

- The error: bias $+\sqrt{\text{variance}}$
 - Good-Turing: $\frac{\sqrt{N_{\mu}\mu}}{n}$ • Empirical: $\frac{N_{\mu}\sqrt{\mu}}{n}$
- New error: $\frac{N_{\mu}^{3/4}\sqrt{\mu}}{n}$
- Adding over all multiplicities and maximizing for N_{μ} yields

 $\widetilde{\mathcal{O}}(n^{-1/4})$

• \forall estimator there is a distribution with error $\widetilde{\Omega}(n^{-1/4})$

Probability estimation

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$
 - Estimating S_{μ} independent of k

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$
 - Estimating S_{μ} independent of k
 - ℓ_1 distance as function of # samples

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$
 - Estimating S_{μ} independent of k
 - ℓ_1 distance as function of # samples
 - Good-Turing: $\widetilde{\mathcal{O}}(n^{-1/6})$

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$
 - Estimating S_{μ} independent of k
 - ℓ_1 distance as function of # samples
 - Good-Turing: $\widetilde{\mathcal{O}}(n^{-1/6})$
 - Proposed estimator: $\widetilde{\mathcal{O}}(n^{-1/4})$

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$
 - Estimating S_{μ} independent of k
 - ℓ_1 distance as function of # samples
 - Good-Turing: $\widetilde{\mathcal{O}}(n^{-1/6})$
 - Proposed estimator: $\widetilde{\mathcal{O}}(n^{-1/4})$
 - Optimal

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$
 - Estimating S_{μ} independent of k
 - ℓ_1 distance as function of # samples
 - Good-Turing: $\widetilde{\mathcal{O}}(n^{-1/6})$
 - Proposed estimator: $\widetilde{\mathcal{O}}(n^{-1/4})$
 - Optimal
 - Linear-time complexity

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$
 - Estimating S_{μ} independent of k
 - ℓ_1 distance as function of # samples
 - Good-Turing: $\widetilde{\mathcal{O}}(n^{-1/6})$
 - Proposed estimator: $\widetilde{\mathcal{O}}(n^{-1/4})$
 - Optimal
 - Linear-time complexity
- Classification

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$
 - Estimating S_{μ} independent of k
 - ℓ_1 distance as function of # samples
 - Good-Turing: $\widetilde{\mathcal{O}}(n^{-1/6})$
 - Proposed estimator: $\widetilde{\mathcal{O}}(n^{-1/4})$
 - Optimal
 - Linear-time complexity
- Classification
 - Can't compete with oracle classifier that knows p, q

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$
 - Estimating S_{μ} independent of k
 - ℓ_1 distance as function of # samples
 - Good-Turing: $\widetilde{\mathcal{O}}(n^{-1/6})$
 - Proposed estimator: $\widetilde{\mathcal{O}}(n^{-1/4})$
 - Optimal
 - Linear-time complexity
- Classification
 - ► Can't compete with oracle classifier that knows *p*, *q*
 - Label-invariant classifiers, or oracle knows multisets

イロト 不得 とくほと くほとう ほ

31/31

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$
 - Estimating S_{μ} independent of k
 - ℓ_1 distance as function of # samples
 - Good-Turing: $\widetilde{\mathcal{O}}(n^{-1/6})$
 - Proposed estimator: $\widetilde{\mathcal{O}}(n^{-1/4})$
 - Optimal
 - Linear-time complexity
- Classification
 - Can't compete with oracle classifier that knows p, q
 - Label-invariant classifiers, or oracle knows multisets

イロト 不得下 イヨト イヨト 二日

31/31

• Proposed classifier: additional error $\widetilde{\mathcal{O}}(n^{-1/5})$

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$
 - Estimating S_{μ} independent of k
 - ℓ_1 distance as function of # samples
 - Good-Turing: $\widetilde{\mathcal{O}}(n^{-1/6})$
 - Proposed estimator: $\widetilde{\mathcal{O}}(n^{-1/4})$
 - Optimal
 - Linear-time complexity
- Classification
 - Can't compete with oracle classifier that knows p, q
 - Label-invariant classifiers, or oracle knows multisets

イロト 不得 とくほと くほとう ほ

31/31

- Proposed classifier: additional error $\widetilde{\mathcal{O}}(n^{-1/5})$
- Independent of alphabet size

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$
 - Estimating S_{μ} independent of k
 - ℓ_1 distance as function of # samples
 - Good-Turing: $\widetilde{\mathcal{O}}(n^{-1/6})$
 - Proposed estimator: $\widetilde{\mathcal{O}}(n^{-1/4})$
 - Optimal
 - Linear-time complexity
- Classification
 - Can't compete with oracle classifier that knows p, q
 - Label-invariant classifiers, or oracle knows multisets
 - Proposed classifier: additional error $\widetilde{\mathcal{O}}(n^{-1/5})$
 - Independent of alphabet size
 - Converse: additional error $\widetilde{\Omega}(n^{-1/3})$

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$
 - Estimating S_{μ} independent of k
 - ℓ_1 distance as function of # samples
 - Good-Turing: $\widetilde{\mathcal{O}}(n^{-1/6})$
 - Proposed estimator: $\widetilde{\mathcal{O}}(n^{-1/4})$
 - Optimal
 - Linear-time complexity
- Classification
 - Can't compete with oracle classifier that knows p, q
 - Label-invariant classifiers, or oracle knows multisets
 - Proposed classifier: additional error $\widetilde{\mathcal{O}}(n^{-1/5})$
 - Independent of alphabet size
 - Converse: additional error $\widetilde{\Omega}(n^{-1/3})$
- Prediction/universal compression

- Probability estimation
 - Estimating p_x requires $n = \Theta(k)$
 - Estimating S_{μ} independent of k
 - ℓ_1 distance as function of # samples
 - Good-Turing: $\widetilde{\mathcal{O}}(n^{-1/6})$
 - Proposed estimator: $\widetilde{\mathcal{O}}(n^{-1/4})$
 - Optimal
 - Linear-time complexity
- Classification
 - Can't compete with oracle classifier that knows p, q
 - Label-invariant classifiers, or oracle knows multisets
 - Proposed classifier: additional error $\widetilde{\mathcal{O}}(n^{-1/5})$
 - Independent of alphabet size
 - Converse: additional error $\widetilde{\Omega}(n^{-1/3})$
- Prediction/universal compression
 - Per-symbol redundancy $\widetilde{\mathcal{O}}(n^{-1/2})$

< □ > < □ > < 直 > < 直 > < 直 > < 直 > 31/31

Xie Xie