Optimal Probability Estimation and Classification

with

Jayadev Acharya, Ashkan Jafarpour, Ananda Theertha Suresh

UC San Diego

Probability Estimation

Probability Estimation

- Domains

Probability Estimation

- Domains
- Large alphabets

Probability Estimation

- Domains
- Large alphabets
- Mixture models

Probability Estimation

- Domains
- Large alphabets
- Mixture models
- Continuous distributions

Probability Estimation

- Domains
- Large alphabets
- Mixture models
- Continuous distributions
- Applications

Probability Estimation

- Domains
- Large alphabets
- Mixture models
- Continuous distributions
- Applications
- Compression

Probability Estimation

- Domains
- Large alphabets
- Mixture models
- Continuous distributions
- Applications
- Compression
- Prediction

Probability Estimation

- Domains
- Large alphabets
- Mixture models
- Continuous distributions
- Applications
- Compression
- Prediction
- Closeness testing

Probability Estimation

- Domains
- Large alphabets
- Mixture models
- Continuous distributions
- Applications
- Compression
- Prediction
- Closeness testing
- Identity testing

Probability Estimation

- Domains
- Large alphabets
- Mixture models
- Continuous distributions
- Applications
- Compression
- Prediction
- Closeness testing
- Identity testing
- Classification

Probability Estimation

- Domains
- Large alphabets
- Mixture models
- Continuous distributions
- Applications
- Compression
- Prediction
- Closeness testing
- Identity testing
- Classification
- Methodologies

Probability Estimation

- Domains
- Large alphabets
- Mixture models
- Continuous distributions
- Applications
- Compression
- Prediction
- Closeness testing
- Identity testing
- Classification
- Methodologies
- Define doable problem

Probability Estimation

- Domains
- Large alphabets
- Mixture models
- Continuous distributions
- Applications
- Compression
- Prediction
- Closeness testing
- Identity testing
- Classification
- Methodologies
- Define doable problem
- Approach limits

Probability Estimation

- Domains
- Large alphabets
- Mixture models
- Continuous distributions
- Applications
- Compression
- Prediction
- Closeness testing
- Identity testing
- Classification
- Methodologies
- Define doable problem
- Approach limits
- Approach the best possible

Overview

Overview

- Probability estimation

Overview

- Probability estimation
- Motivation

Overview

- Probability estimation
- Motivation
- Combined probability

Overview

- Probability estimation
- Motivation
- Combined probability
- Previous results

Overview

- Probability estimation
- Motivation
- Combined probability
- Previous results
- Optimal estimator

Overview

- Probability estimation
- Motivation
- Combined probability
- Previous results
- Optimal estimator
- Proof sketch

Overview

- Probability estimation
- Motivation
- Combined probability
- Previous results
- Optimal estimator
- Proof sketch
- Classification

Overview

- Probability estimation
- Motivation
- Combined probability
- Previous results
- Optimal estimator
- Proof sketch
- Classification
- Motivation

Overview

- Probability estimation
- Motivation
- Combined probability
- Previous results
- Optimal estimator
- Proof sketch
- Classification
- Motivation
- Label-invariant classifier

Overview

- Probability estimation
- Motivation
- Combined probability
- Previous results
- Optimal estimator
- Proof sketch
- Classification
- Motivation
- Label-invariant classifier
- Nearly-optimal estimators

Overview

- Probability estimation
- Motivation
- Combined probability
- Previous results
- Optimal estimator
- Proof sketch
- Classification
- Motivation
- Label-invariant classifier
- Nearly-optimal estimators
- Prediction

Overview

- Probability estimation
- Motivation
- Combined probability
- Previous results
- Optimal estimator
- Proof sketch
- Classification
- Motivation
- Label-invariant classifier
- Nearly-optimal estimators
- Prediction
- Conclusion

Motivation

Original Scene

Original Scene

- Coin: $\left(p_{h}, p_{t}\right) \quad p_{h}+p_{t}=1$

Original Scene

- Coin: $\left(p_{h}, p_{t}\right) \quad p_{h}+p_{t}=1$
- Flip n times, estimate p_{h}

Original Scene

- Coin: $\left(p_{h}, p_{t}\right) \quad p_{h}+p_{t}=1$
- Flip n times, estimate p_{h}
- Empirical frequency estimate: h appear n_{h} times, $E_{h} \stackrel{\text { def }}{=} \frac{n_{h}}{n}$

Original Scene

- Coin: $\left(p_{h}, p_{t}\right) \quad p_{h}+p_{t}=1$
- Flip n times, estimate p_{h}
- Empirical frequency estimate: h appear n_{h} times, $E_{h} \stackrel{\text { def }}{=} \frac{n_{h}}{n}$
- Law of large numbers: $E_{h} \xrightarrow[n \rightarrow \infty]{ } p_{h}$

Original Scene

- Coin: $\left(p_{h}, p_{t}\right) \quad p_{h}+p_{t}=1$
- Flip n times, estimate p_{h}
- Empirical frequency estimate: h appear n_{h} times, $E_{h} \stackrel{\text { def }}{=} \frac{n_{h}}{n}$
- Law of large numbers: $E_{h} \xrightarrow[n \rightarrow \infty]{ } p_{h}$
- Expectation: $\mathbb{E}\left(E_{h}\right)=p_{h}$

Original Scene

- Coin: $\left(p_{h}, p_{t}\right) \quad p_{h}+p_{t}=1$
- Flip n times, estimate p_{h}
- Empirical frequency estimate: h appear n_{h} times, $E_{h} \stackrel{\text { def }}{=} \frac{n_{h}}{n}$
- Law of large numbers: $E_{h} \xrightarrow[n \rightarrow \infty]{ } p_{h}$
- Expectation: $\mathbb{E}\left(E_{h}\right)=p_{h}$
- Standard deviation: $\sqrt{\frac{p q}{n}} \leq \frac{1}{2 \sqrt{n}}$

Original Scene

- Coin: $\left(p_{h}, p_{t}\right) \quad p_{h}+p_{t}=1$
- Flip n times, estimate p_{h}
- Empirical frequency estimate: h appear n_{h} times, $E_{h} \stackrel{\text { def }}{=} \frac{n_{h}}{n}$
- Law of large numbers: $E_{h} \xrightarrow[n \rightarrow \infty]{ } p_{h}$
- Expectation: $\mathbb{E}\left(E_{h}\right)=p_{h}$
- Standard deviation: $\sqrt{\frac{p q}{n}} \leq \frac{1}{2 \sqrt{n}}$
- For $\left|E_{h}-p_{h}\right|<\delta$ need $n=\Theta\left(\frac{1}{\delta^{2}}\right)$

Original Scene

- Coin: $\left(p_{h}, p_{t}\right) \quad p_{h}+p_{t}=1$
- Flip n times, estimate p_{h}
- Empirical frequency estimate: h appear n_{h} times, $E_{h} \stackrel{\text { def }}{=} \frac{n_{h}}{n}$
- Law of large numbers: $E_{h} \xrightarrow[n \rightarrow \infty]{ } p_{h}$
- Expectation: $\mathbb{E}\left(E_{h}\right)=p_{h}$
- Standard deviation: $\sqrt{\frac{p q}{n}} \leq \frac{1}{2 \sqrt{n}}$
- For $\left|E_{h}-p_{h}\right|<\delta$ need $n=\Theta\left(\frac{1}{\delta^{2}}\right)$
- For any given difference, need constant samples

Large Alphabets

Large Alphabets

- Text processing ($\approx 500,000$ words)

Large Alphabets

- Text processing ($\approx 500,000$ words)
- Speech recognition

Large Alphabets

- Text processing ($\approx 500,000$ words)
- Speech recognition
- Machine translation

Large Alphabets

- Text processing ($\approx 500,000$ words)
- Speech recognition
- Machine translation
- Natural language processing (bag of words)

Large Alphabets

- Text processing ($\approx 500,000$ words)
- Speech recognition
- Machine translation
- Natural language processing (bag of words)
- Text classification [McCallum Nigam '98]

Large Alphabets

- Text processing ($\approx 500,000$ words)
- Speech recognition
- Machine translation
- Natural language processing (bag of words)
- Text classification [McCallum Nigam '98]
- Topic modeling [Blei Ng Jordan '03]

Large Alphabets

- Text processing ($\approx 500,000$ words)
- Speech recognition
- Machine translation
- Natural language processing (bag of words)
- Text classification [McCallum Nigam '98]
- Topic modeling [Blei Ng Jordan '03]
- Biology

Large Alphabets

- Text processing ($\approx 500,000$ words)
- Speech recognition
- Machine translation
- Natural language processing (bag of words)
- Text classification [McCallum Nigam '98]
- Topic modeling [Blei Ng Jordan '03]
- Biology
- Species estimation

Large Alphabets

- Text processing ($\approx 500,000$ words)
- Speech recognition
- Machine translation
- Natural language processing (bag of words)
- Text classification [McCallum Nigam '98]
- Topic modeling [Blei Ng Jordan '03]
- Biology
- Species estimation
- Genetics

Large Alphabets

- Text processing ($\approx 500,000$ words)
- Speech recognition
- Machine translation
- Natural language processing (bag of words)
- Text classification [McCallum Nigam '98]
- Topic modeling [Blei Ng Jordan '03]
- Biology
- Species estimation
- Genetics
- Online marketing

Large Alphabets

- Text processing ($\approx 500,000$ words)
- Speech recognition
- Machine translation
- Natural language processing (bag of words)
- Text classification [McCallum Nigam '98]
- Topic modeling [Blei Ng Jordan '03]
- Biology
- Species estimation
- Genetics
- Online marketing
- Ad click-through

Large Alphabets

- Text processing ($\approx 500,000$ words)
- Speech recognition
- Machine translation
- Natural language processing (bag of words)
- Text classification [McCallum Nigam '98]
- Topic modeling [Blei Ng Jordan '03]
- Biology
- Species estimation
- Genetics
- Online marketing
- Ad click-through
- Movies

Sample Complexity

Sample Complexity

$$
\text { - } P=\left(p_{1}, p_{2}, \ldots p_{k}\right)
$$

Sample Complexity

- $P=\left(p_{1}, p_{2}, \ldots p_{k}\right)$
- n samples, $X^{n} \sim p$

Sample Complexity

- $P=\left(p_{1}, p_{2}, \ldots p_{k}\right)$
- n samples, $X^{n} \sim p$
- E : estimator

Sample Complexity

- $P=\left(p_{1}, p_{2}, \ldots p_{k}\right)$
- n samples, $X^{n} \sim p$
- E : estimator
- ℓ_{1} distance: $\|E-p\|_{1} \stackrel{\text { def }}{=} \sum_{i=1}^{k}\left|E(i)-p_{i}\right|$

Sample Complexity

- $P=\left(p_{1}, p_{2}, \ldots p_{k}\right)$
- n samples, $X^{n} \sim p$
- E : estimator
- ℓ_{1} distance: $\|E-p\|_{1} \stackrel{\text { def }}{=} \sum_{i=1}^{k}\left|E(i)-p_{i}\right|$
- $\ell_{1} \leq .01$ with probability $\geq .99$

Sample Complexity

- $P=\left(p_{1}, p_{2}, \ldots p_{k}\right)$
- n samples, $X^{n} \sim p$
- E: estimator
- ℓ_{1} distance: $\|E-p\|_{1} \stackrel{\text { def }}{=} \sum_{i=1}^{k}\left|E(i)-p_{i}\right|$
- $\ell_{1} \leq .01$ with probability $\geq .99$
- Empirical: $n=\mathcal{O}(k)$

Sample Complexity

- $P=\left(p_{1}, p_{2}, \ldots p_{k}\right)$
- n samples, $X^{n} \sim p$
- E : estimator
- ℓ_{1} distance: $\|E-p\|_{1} \stackrel{\text { def }}{=} \sum_{i=1}^{k}\left|E(i)-p_{i}\right|$
- $\ell_{1} \leq .01$ with probability $\geq .99$
- Empirical: $n=\mathcal{O}(k)$
- For some distributions, $n=\Omega(k)$ [Paninski '04]

Sample Complexity

- $P=\left(p_{1}, p_{2}, \ldots p_{k}\right)$
- n samples, $X^{n} \sim p$
- E : estimator
- ℓ_{1} distance: $\|E-p\|_{1} \stackrel{\text { def }}{=} \sum_{i=1}^{k}\left|E(i)-p_{i}\right|$
- $\ell_{1} \leq .01$ with probability $\geq .99$
- Empirical: $n=\mathcal{O}(k)$
- For some distributions, $n=\Omega(k)$ [Paninski '04]
- Take arbitrary $k / 2$-element subset of $\{1,, \ldots, k\}$

Sample Complexity

- $P=\left(p_{1}, p_{2}, \ldots p_{k}\right)$
- n samples, $X^{n} \sim p$
- E : estimator
- ℓ_{1} distance: $\|E-p\|_{1} \stackrel{\text { def }}{=} \sum_{i=1}^{k}\left|E(i)-p_{i}\right|$
- $\ell_{1} \leq .01$ with probability $\geq .99$
- Empirical: $n=\mathcal{O}(k)$
- For some distributions, $n=\Omega(k)$ [Paninski '04]
- Take arbitrary $k / 2$-element subset of $\{1,, \ldots, k\}$
- If $n<k / 4$, observe $\leq k / 4$ values, uniform over remaining $3 k / 4$

Sample Complexity

- $P=\left(p_{1}, p_{2}, \ldots p_{k}\right)$
- n samples, $X^{n} \sim p$
- E : estimator
- ℓ_{1} distance: $\|E-p\|_{1} \stackrel{\text { def }}{=} \sum_{i=1}^{k}\left|E(i)-p_{i}\right|$
- $\ell_{1} \leq .01$ with probability $\geq .99$
- Empirical: $n=\mathcal{O}(k)$
- For some distributions, $n=\Omega(k)$ [Paninski '04]
- Take arbitrary $k / 2$-element subset of $\{1,, \ldots, k\}$
- If $n<k / 4$, observe $\leq k / 4$ values, uniform over remaining $3 k / 4$
- $\|E-p\|_{1} \geq \frac{1}{3}$

Sample Complexity

- $P=\left(p_{1}, p_{2}, \ldots p_{k}\right)$
- n samples, $X^{n} \sim p$
- E : estimator
- ℓ_{1} distance: $\|E-p\|_{1} \stackrel{\text { def }}{=} \sum_{i=1}^{k}\left|E(i)-p_{i}\right|$
- $\ell_{1} \leq .01$ with probability $\geq .99$
- Empirical: $n=\mathcal{O}(k)$
- For some distributions, $n=\Omega(k)$ [Paninski '04]
- Take arbitrary $k / 2$-element subset of $\{1,, \ldots, k\}$
- If $n<k / 4$, observe $\leq k / 4$ values, uniform over remaining $3 k / 4$
- $\|E-p\|_{1} \geq \frac{1}{3}$
- $n=\Theta\left(k / \delta^{2}\right)$

Sample Complexity

- $P=\left(p_{1}, p_{2}, \ldots p_{k}\right)$
- n samples, $X^{n} \sim p$
- E : estimator
- ℓ_{1} distance: $\|E-p\|_{1} \stackrel{\text { def }}{=} \sum_{i=1}^{k}\left|E(i)-p_{i}\right|$
- $\ell_{1} \leq .01$ with probability $\geq .99$
- Empirical: $n=\mathcal{O}(k)$
- For some distributions, $n=\Omega(k)$ [Paninski '04]
- Take arbitrary $k / 2$-element subset of $\{1,, \ldots, k\}$
- If $n<k / 4$, observe $\leq k / 4$ values, uniform over remaining $3 k / 4$
- $\|E-p\|_{1} \geq \frac{1}{3}$
- $n=\Theta\left(k / \delta^{2}\right)$
- $k=500,000, \delta=0.01 \rightarrow n=50 \mathrm{~B}$

Sample Complexity

- $P=\left(p_{1}, p_{2}, \ldots p_{k}\right)$
- n samples, $X^{n} \sim p$
- E : estimator
- ℓ_{1} distance: $\|E-p\|_{1} \stackrel{\text { def }}{=} \sum_{i=1}^{k}\left|E(i)-p_{i}\right|$
- $\ell_{1} \leq .01$ with probability $\geq .99$
- Empirical: $n=\mathcal{O}(k)$
- For some distributions, $n=\Omega(k)$ [Paninski '04]
- Take arbitrary $k / 2$-element subset of $\{1,, \ldots, k\}$
- If $n<k / 4$, observe $\leq k / 4$ values, uniform over remaining $3 k / 4$
- $\|E-p\|_{1} \geq \frac{1}{3}$
- $n=\Theta\left(k / \delta^{2}\right)$
- $k=500,000, \delta=0.01 \rightarrow n=50 \mathrm{~B}$
- KL divergence: similar, $n=\Theta(k)$

Previous Approaches

- Properties of p

Previous Approaches

- Properties of p
- $\forall i p_{i}>1 / k$, estimate support size, entropy

Previous Approaches

- Properties of p
- $\forall i p_{i}>1 / k$, estimate support size, entropy
- $n=\Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]

Previous Approaches

- Properties of p
- $\forall i p_{i}>1 / k$, estimate support size, entropy
- $n=\Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
- Factor of $\log k$ improvement

Previous Approaches

- Properties of p
- $\forall i p_{i}>1 / k$, estimate support size, entropy
- $n=\Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
- Factor of $\log k$ improvement
- Assumptions on p

Previous Approaches

- Properties of p
- $\forall i p_{i}>1 / k$, estimate support size, entropy
- $n=\Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
- Factor of $\log k$ improvement
- Assumptions on p
- p is monotone (or m-modal) over [k]

Previous Approaches

- Properties of p
- $\forall i p_{i}>1 / k$, estimate support size, entropy
- $n=\Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
- Factor of $\log k$ improvement
- Assumptions on p
- p is monotone (or m-modal) over [k]
- $n=\operatorname{polylog}(k)$ [Daskalakis, Diaconikolas, Servedio '12]

Previous Approaches

- Properties of p
- $\forall i p_{i}>1 / k$, estimate support size, entropy
- $n=\Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
- Factor of $\log k$ improvement
- Assumptions on p
- p is monotone (or m-modal) over [k]
- $n=\operatorname{polylog}(k)$ [Daskalakis, Diaconikolas, Servedio '12]
- Our approach

Previous Approaches

- Properties of p
- $\forall i p_{i}>1 / k$, estimate support size, entropy
- $n=\Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
- Factor of $\log k$ improvement
- Assumptions on p
- p is monotone (or m-modal) over [k]
- $n=\operatorname{polylog}(k)$ [Daskalakis, Diaconikolas, Servedio '12]
- Our approach
- General distributions

Previous Approaches

- Properties of p
- $\forall i p_{i}>1 / k$, estimate support size, entropy
- $n=\Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
- Factor of $\log k$ improvement
- Assumptions on p
- p is monotone (or m-modal) over [k]
- $n=\operatorname{polylog}(k)$ [Daskalakis, Diaconikolas, Servedio '12]
- Our approach
- General distributions
- Best anyone can do

Previous Approaches

- Properties of p
- $\forall i p_{i}>1 / k$, estimate support size, entropy
- $n=\Theta\left(\frac{k}{\log k}\right)$ [Valiant Valiant '11]
- Factor of $\log k$ improvement
- Assumptions on p
- p is monotone (or m-modal) over [k]
- $n=\operatorname{polylog}(k)$ [Daskalakis, Diaconikolas, Servedio '12]
- Our approach
- General distributions
- Best anyone can do
- Natural estimators

Combined-Probability Estimation

Natural Estimators

Natural Estimators

- Distribution over $\{a, b, c, d, e, f\}$

Natural Estimators

- Distribution over $\{a, b, c, d, e, f\}$
- $x^{5}=a b b a c$

Natural Estimators

- Distribution over $\{a, b, c, d, e, f\}$
- $x^{5}=a b b a c$
- p_{a}, p_{b} ?

Natural Estimators

- Distribution over $\{a, b, c, d, e, f\}$
- $x^{5}=a b b a c$
- p_{a}, p_{b} ?
- Both appeared twice

Natural Estimators

- Distribution over $\{a, b, c, d, e, f\}$
- $x^{5}=a b b a c$
- p_{a}, p_{b} ?
- Both appeared twice
- Without prior knowledge, for every natural estimator \hat{p}

$$
\hat{p}_{a}=\hat{p}_{b}
$$

Natural Estimators

- Distribution over $\{a, b, c, d, e, f\}$
- $x^{5}=a b b a c$
- p_{a}, p_{b} ?
- Both appeared twice
- Without prior knowledge, for every natural estimator \hat{p}

$$
\hat{p}_{a}=\hat{p}_{b}
$$

- If symbols have appeared same \# of times

Natural Estimators

- Distribution over $\{a, b, c, d, e, f\}$
- $x^{5}=a b b a c$
- p_{a}, p_{b} ?
- Both appeared twice
- Without prior knowledge, for every natural estimator \hat{p}

$$
\hat{p}_{a}=\hat{p}_{b}
$$

- If symbols have appeared same \# of times
- Assign same probability

Natural Estimators

- Distribution over $\{a, b, c, d, e, f\}$
- $x^{5}=a b b a c$
- p_{a}, p_{b} ?
- Both appeared twice
- Without prior knowledge, for every natural estimator \hat{p}

$$
\hat{p}_{a}=\hat{p}_{b}
$$

- If symbols have appeared same \# of times
- Assign same probability
- Similarly for unseen symbols

Definitions

Definitions

- μ : multiplicity, number of occurrences of a symbol

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\text { def }}{=}$ sum of probabilities of symbols with multiplicity μ

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\text { def }}{=}$ sum of probabilities of symbols with multiplicity μ
- Example: distribution over $\{a, b, c, d\}$

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\text { def }}{=}$ sum of probabilities of symbols with multiplicity μ
- Example: distribution over $\{a, b, c, d\}$
- $x^{4}=a d c d$

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\text { def }}{=}$ sum of probabilities of symbols with multiplicity μ
- Example: distribution over $\{a, b, c, d\}$
- $x^{4}=a d c d$

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\text { def }}{=}$ sum of probabilities of symbols with multiplicity μ
- Example: distribution over $\{a, b, c, d\}$
- $x^{4}=a d c d$

$$
N_{0}=1(b)
$$

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\text { def }}{=}$ sum of probabilities of symbols with multiplicity μ
- Example: distribution over $\{a, b, c, d\}$
- $x^{4}=a d c d$

$$
N_{0}=1(\mathrm{~b}) \quad N_{1}=2(\mathrm{a}, \mathrm{c})
$$

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\text { def }}{=}$ sum of probabilities of symbols with multiplicity μ
- Example: distribution over $\{a, b, c, d\}$
- $x^{4}=a d c d$

$$
N_{0}=1(\mathrm{~b}) \quad N_{1}=2(\mathrm{a}, \mathrm{c}) \quad N_{2}=1(\mathrm{~d})
$$

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\text { def }}{=}$ sum of probabilities of symbols with multiplicity μ
- Example: distribution over $\{a, b, c, d\}$
- $x^{4}=a d c d$

$$
\begin{aligned}
& N_{0}=1(\mathrm{~b}) \quad N_{1}=2(\mathrm{a}, \mathrm{c}) \quad N_{2}=1(\mathrm{~d}) \\
& S_{0}=p_{b}
\end{aligned}
$$

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\text { def }}{=}$ sum of probabilities of symbols with multiplicity μ
- Example: distribution over $\{a, b, c, d\}$
- $x^{4}=a d c d$

$$
\begin{array}{ll}
N_{0}=1(\mathrm{~b}) & N_{1}=2(\mathrm{a}, \mathrm{c}) \quad N_{2}=1(\mathrm{~d}) \\
S_{0}=p_{b} & S_{1}=p_{a}+p_{c}
\end{array}
$$

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\text { def }}{=}$ sum of probabilities of symbols with multiplicity μ
- Example: distribution over $\{a, b, c, d\}$
- $x^{4}=a d c d$

$$
\begin{array}{lll}
N_{0}=1(\mathrm{~b}) & N_{1}=2(\mathrm{a}, \mathrm{c}) & N_{2}=1(\mathrm{~d}) \\
S_{0}=p_{b} & S_{1}=p_{a}+p_{c} & S_{2}=p_{d}
\end{array}
$$

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\text { def }}{=}$ sum of probabilities of symbols with multiplicity μ
- Example: distribution over $\{a, b, c, d\}$
- $x^{4}=a d c d$

$$
\begin{array}{lll}
N_{0}=1(\mathrm{~b}) & N_{1}=2(\mathrm{a}, \mathrm{c}) & N_{2}=1(\mathrm{~d}) \\
S_{0}=p_{b} & S_{1}=p_{a}+p_{c} & S_{2}=p_{d}
\end{array}
$$

- If symbol x appeared $\mu \geq 1$ times, $q_{x}=\frac{S_{\mu}}{N_{\mu}}$

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\text { def }}{=}$ sum of probabilities of symbols with multiplicity μ
- Example: distribution over $\{a, b, c, d\}$
- $x^{4}=a d c d$

$$
\begin{array}{lll}
N_{0}=1(\mathrm{~b}) & N_{1}=2(\mathrm{a}, \mathrm{c}) & N_{2}=1(\mathrm{~d}) \\
S_{0}=p_{b} & S_{1}=p_{a}+p_{c} & S_{2}=p_{d}
\end{array}
$$

- If symbol x appeared $\mu \geq 1$ times, $q_{x}=\frac{S_{\mu}}{N_{\mu}}$
- $q_{a}=q_{c}=\frac{S_{1}}{N_{1}}=\frac{S_{1}}{2}$

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\text { def }}{=}$ sum of probabilities of symbols with multiplicity μ
- Example: distribution over $\{a, b, c, d\}$
- $x^{4}=a d c d$

$$
\begin{array}{lll}
N_{0}=1(\mathrm{~b}) & N_{1}=2(\mathrm{a}, \mathrm{c}) & N_{2}=1(\mathrm{~d}) \\
S_{0}=p_{b} & S_{1}=p_{a}+p_{c} & S_{2}=p_{d}
\end{array}
$$

- If symbol x appeared $\mu \geq 1$ times, $q_{x}=\frac{S_{\mu}}{N_{\mu}}$
- $q_{a}=q_{c}=\frac{S_{1}}{N_{1}}=\frac{S_{1}}{2}$
- Unseen probability: S_{0}

Definitions

- μ : multiplicity, number of occurrences of a symbol
- $N_{\mu} \stackrel{\text { def }}{=} \#$ symbols with multiplicity μ
- $S_{\mu} \stackrel{\text { def }}{=}$ sum of probabilities of symbols with multiplicity μ
- Example: distribution over $\{a, b, c, d\}$
- $x^{4}=a d c d$

$$
\begin{array}{lll}
N_{0}=1(\mathrm{~b}) & N_{1}=2(\mathrm{a}, \mathrm{c}) & N_{2}=1(\mathrm{~d}) \\
S_{0}=p_{b} & S_{1}=p_{\mathrm{a}}+p_{c} & S_{2}=p_{d}
\end{array}
$$

- If symbol x appeared $\mu \geq 1$ times, $q_{x}=\frac{S_{\mu}}{N_{\mu}}$

$$
\text { - } q_{a}=q_{c}=\frac{S_{1}}{N_{1}}=\frac{S_{1}}{2}
$$

- Unseen probability: S_{0}
- Combined-probability estimation: estimate $S_{0}, S_{1}, \ldots, S_{n}$

Distance Measures

Distance Measures

- $\widehat{S}=\left(\widehat{S}_{0}, \widehat{S}_{1}, \ldots, \widehat{S}_{n}\right)$ estimate of $S=\left(S_{0}, S_{1}, \ldots, S_{n}\right)$

Distance Measures

- $\widehat{S}=\left(\widehat{S}_{0}, \widehat{S}_{1}, \ldots, \widehat{S}_{n}\right)$ estimate of $S=\left(S_{0}, S_{1}, \ldots, S_{n}\right)$
- Optimality criteria?

Distance Measures

- $\widehat{S}=\left(\widehat{S}_{0}, \widehat{S}_{1}, \ldots, \widehat{S}_{n}\right)$ estimate of $S=\left(S_{0}, S_{1}, \ldots, S_{n}\right)$
- Optimality criteria?
- ℓ_{1} distance: consistency, classification

$$
\|S-\widehat{S}\|_{1} \stackrel{\text { def }}{=} \sum_{\mu=0}^{n}\left|S_{\mu}-\widehat{S}_{\mu}\right|
$$

Distance Measures

- $\widehat{S}=\left(\widehat{S}_{0}, \widehat{S}_{1}, \ldots, \widehat{S}_{n}\right)$ estimate of $S=\left(S_{0}, S_{1}, \ldots, S_{n}\right)$
- Optimality criteria?
- ℓ_{1} distance: consistency, classification

$$
\|S-\widehat{S}\|_{1} \stackrel{\text { def }}{=} \sum_{\mu=0}^{n}\left|S_{\mu}-\widehat{S}_{\mu}\right|
$$

- KL divergence: universal compression, prediction with log-loss

$$
D(S \| \widehat{S}) \stackrel{\text { def }}{=} \sum_{\mu=0}^{n} S_{\mu} \log \frac{S_{\mu}}{\widehat{S}_{\mu}}
$$

Empirical Frequency

Empirical Frequency

- $x^{9}=a b e b c a d c c$

Empirical Frequency

- $x^{9}=a b e b c a d c c$
- $S_{2}=p_{a}+p_{b}$

Empirical Frequency

- $x^{9}=a b e b c a d c c$
- $S_{2}=p_{a}+p_{b}$
- Empirical frequency: $E_{2}=2 / 9+2 / 9=4 / 9$

Empirical Frequency

- $x^{9}=a b e b c a d c c$
- $S_{2}=p_{a}+p_{b}$
- Empirical frequency: $E_{2}=2 / 9+2 / 9=4 / 9$
- Recall: $N_{\mu}=\#$ of symbols appearing μ times

$$
E_{\mu}=N_{\mu} \frac{\mu}{n}
$$

Empirical Frequency

- $x^{9}=a b e b c a d c c$
- $S_{2}=p_{a}+p_{b}$
- Empirical frequency: $E_{2}=2 / 9+2 / 9=4 / 9$
- Recall: $N_{\mu}=\#$ of symbols appearing μ times

$$
E_{\mu}=N_{\mu} \frac{\mu}{n}
$$

- \# of samples for $\ell_{1} \leq 0.01$ with probability ≥ 0.99

Empirical Frequency

- $x^{9}=a b e b c a d c c$
- $S_{2}=p_{a}+p_{b}$
- Empirical frequency: $E_{2}=2 / 9+2 / 9=4 / 9$
- Recall: $N_{\mu}=\#$ of symbols appearing μ times

$$
E_{\mu}=N_{\mu} \frac{\mu}{n}
$$

- \# of samples for $\ell_{1} \leq 0.01$ with probability ≥ 0.99
- $E_{0}=0$ always

Empirical Frequency

- $x^{9}=a b e b c a d c c$
- $S_{2}=p_{a}+p_{b}$
- Empirical frequency: $E_{2}=2 / 9+2 / 9=4 / 9$
- Recall: $N_{\mu}=\#$ of symbols appearing μ times

$$
E_{\mu}=N_{\mu} \frac{\mu}{n}
$$

- \# of samples for $\ell_{1} \leq 0.01$ with probability ≥ 0.99
- $E_{0}=0$ always
- $U\{1, \ldots, k\}, n=0.98 k$

$$
S_{0}>0.02
$$

Empirical Frequency

- $x^{9}=a b e b c a d c c$
- $S_{2}=p_{a}+p_{b}$
- Empirical frequency: $E_{2}=2 / 9+2 / 9=4 / 9$
- Recall: $N_{\mu}=\#$ of symbols appearing μ times

$$
E_{\mu}=N_{\mu} \frac{\mu}{n}
$$

- \# of samples for $\ell_{1} \leq 0.01$ with probability ≥ 0.99
- $E_{0}=0$ always
- $U\{1, \ldots, k\}, n=0.98 k$

$$
S_{0}>0.02
$$

- $n>0.98 k$

Good Turing

Good Turing

- $N_{\mu+1}$: \# symbols appearing $\mu+1$ times

Good Turing

- $N_{\mu+1}$: \# symbols appearing $\mu+1$ times
- For $\mu=0,1, \ldots$

$$
G_{\mu}=N_{\mu+1} \frac{\mu+1}{n}
$$

Good Turing

- $N_{\mu+1}$: \# symbols appearing $\mu+1$ times
- For $\mu=0,1, \ldots$

$$
G_{\mu}=N_{\mu+1} \frac{\mu+1}{n}
$$

- Unbiased

$$
\mathbb{E}\left[G_{\mu}\right]=\mathbb{E}\left[S_{\mu}\right]
$$

Good Turing

- $N_{\mu+1}$: \# symbols appearing $\mu+1$ times
- For $\mu=0,1, \ldots$.

$$
G_{\mu}=N_{\mu+1} \frac{\mu+1}{n}
$$

- Unbiased

$$
\mathbb{E}\left[G_{\mu}\right]=\mathbb{E}\left[S_{\mu}\right]
$$

- Probability of unseen mass

Good Turing

- $N_{\mu+1}$: \# symbols appearing $\mu+1$ times
- For $\mu=0,1, \ldots$

$$
G_{\mu}=N_{\mu+1} \frac{\mu+1}{n}
$$

- Unbiased

$$
\mathbb{E}\left[G_{\mu}\right]=\mathbb{E}\left[S_{\mu}\right]
$$

- Probability of unseen mass
- $E_{0}=0$

Good Turing

- $N_{\mu+1}$: \# symbols appearing $\mu+1$ times
- For $\mu=0,1, \ldots$.

$$
G_{\mu}=N_{\mu+1} \frac{\mu+1}{n}
$$

- Unbiased

$$
\mathbb{E}\left[G_{\mu}\right]=\mathbb{E}\left[S_{\mu}\right]
$$

- Probability of unseen mass
- $E_{0}=0$
- $G_{0}=\frac{N_{1}}{n}$

Good Turing

- $N_{\mu+1}$: \# symbols appearing $\mu+1$ times
- For $\mu=0,1, \ldots$

$$
G_{\mu}=N_{\mu+1} \frac{\mu+1}{n}
$$

- Unbiased

$$
\mathbb{E}\left[G_{\mu}\right]=\mathbb{E}\left[S_{\mu}\right]
$$

- Probability of unseen mass
- $E_{0}=0$
- $G_{0}=\frac{N_{1}}{n}$
- Basic tool in NLP [Church Gale '81]

Good Turing

- $N_{\mu+1}$: \# symbols appearing $\mu+1$ times
- For $\mu=0,1, \ldots$.

$$
G_{\mu}=N_{\mu+1} \frac{\mu+1}{n}
$$

- Unbiased

$$
\mathbb{E}\left[G_{\mu}\right]=\mathbb{E}\left[S_{\mu}\right]
$$

- Probability of unseen mass
- $E_{0}=0$
- $G_{0}=\frac{N_{1}}{n}$
- Basic tool in NLP [Church Gale '81]
- Performance guarantee?

Previous results

Previous results

- w.h.p.: with probability $\geq 1-1 / \operatorname{poly}(n)$

Previous results

- w.h.p.: with probability $\geq 1-1 / \operatorname{poly}(n)$
- $\widetilde{\mathcal{O}}$: up-to polylogarithmic factors

Previous results

- w.h.p.: with probability $\geq 1-1 / \operatorname{poly}(n)$
- $\widetilde{\mathcal{O}}$: up-to polylogarithmic factors
- [McAllester Schapire '00]

Previous results

- w.h.p.: with probability $\geq 1-1 / \operatorname{poly}(n)$
- $\widetilde{\mathcal{O}}$: up-to polylogarithmic factors
- [McAllester Schapire '00]
- w.h.p., $\forall \mu$

$$
\left|S_{\mu}-G_{\mu}\right|=\widetilde{\mathcal{O}}\left(\frac{\mu+1}{\sqrt{n}}\right)
$$

Previous results

- w.h.p.: with probability $\geq 1-1 / \operatorname{poly}(n)$
- $\widetilde{\mathcal{O}}$: up-to polylogarithmic factors
- [McAllester Schapire '00]
- w.h.p., $\forall \mu$

$$
\left|S_{\mu}-G_{\mu}\right|=\widetilde{\mathcal{O}}\left(\frac{\mu+1}{\sqrt{n}}\right)
$$

- Holds for all distributions, regardless of support size!

Previous results

- w.h.p.: with probability $\geq 1-1 / \operatorname{poly}(n)$
- $\widetilde{\mathcal{O}}$: up-to polylogarithmic factors
- [McAllester Schapire '00]
- w.h.p., $\forall \mu$

$$
\left|S_{\mu}-G_{\mu}\right|=\widetilde{\mathcal{O}}\left(\frac{\mu+1}{\sqrt{n}}\right)
$$

- Holds for all distributions, regardless of support size!
- Good if μ is small

Previous results

- w.h.p.: with probability $\geq 1-1 / \operatorname{poly}(n)$
- $\widetilde{\mathcal{O}}$: up-to polylogarithmic factors
- [McAllester Schapire '00]
- w.h.p., $\forall \mu$

$$
\left|S_{\mu}-G_{\mu}\right|=\widetilde{\mathcal{O}}\left(\frac{\mu+1}{\sqrt{n}}\right)
$$

- Holds for all distributions, regardless of support size!
- Good if μ is small
- $\|S-G\|_{1} \rightarrow 0$?

Previous results

- w.h.p.: with probability $\geq 1-1 / \operatorname{poly}(n)$
- $\widetilde{\mathcal{O}}$: up-to polylogarithmic factors
- [McAllester Schapire '00]
- w.h.p., $\forall \mu$

$$
\left|S_{\mu}-G_{\mu}\right|=\widetilde{\mathcal{O}}\left(\frac{\mu+1}{\sqrt{n}}\right)
$$

- Holds for all distributions, regardless of support size!
- Good if μ is small
- $\|S-G\|_{1} \rightarrow 0$?
- No, $\mu>\sqrt{n}$?

Previous results

- w.h.p.: with probability $\geq 1-1 / \operatorname{poly}(n)$
- $\widetilde{\mathcal{O}}$: up-to polylogarithmic factors
- [McAllester Schapire '00]
- w.h.p., $\forall \mu$

$$
\left|S_{\mu}-G_{\mu}\right|=\widetilde{\mathcal{O}}\left(\frac{\mu+1}{\sqrt{n}}\right)
$$

- Holds for all distributions, regardless of support size!
- Good if μ is small
- $\|S-G\|_{1} \rightarrow 0$?
- No, $\mu>\sqrt{n}$?
- Fix?

[Drukh Mansour '05]

[Drukh Mansour '05]

- Combined Good-Turing and empirical estimator: C_{μ}

[Drukh Mansour '05]

- Combined Good-Turing and empirical estimator: C_{μ}
- If $\mu>n^{0.4}$ use empirical estimator

[Drukh Mansour '05]

- Combined Good-Turing and empirical estimator: C_{μ}
- If $\mu>n^{0.4}$ use empirical estimator
- If $\mu \leq n^{0.4}$ use Good-Turing estimator

[Drukh Mansour '05]

- Combined Good-Turing and empirical estimator: C_{μ}
- If $\mu>n^{0.4}$ use empirical estimator
- If $\mu \leq n^{0.4}$ use Good-Turing estimator

[Drukh Mansour '05]

- Combined Good-Turing and empirical estimator: C_{μ}
- If $\mu>n^{0.4}$ use empirical estimator
- If $\mu \leq n^{0.4}$ use Good-Turing estimator

$$
\|S-C\|_{1}=\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 6}}\right) \quad \text { and } \quad D(S \| C)=\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 3}}\right)
$$

- Independent of k !

[Drukh Mansour '05]

- Combined Good-Turing and empirical estimator: C_{μ}
- If $\mu>n^{0.4}$ use empirical estimator
- If $\mu \leq n^{0.4}$ use Good-Turing estimator

$$
\|S-C\|_{1}=\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 6}}\right) \quad \text { and } \quad D(S \| C)=\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 3}}\right)
$$

- Independent of k !
- \# of samples for $\ell_{1} \leq 0.1$ with probability ≥ 0.99

[Drukh Mansour '05]

- Combined Good-Turing and empirical estimator: C_{μ}
- If $\mu>n^{0.4}$ use empirical estimator
- If $\mu \leq n^{0.4}$ use Good-Turing estimator

$$
\|S-C\|_{1}=\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 6}}\right) \quad \text { and } \quad D(S \| C)=\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 3}}\right)
$$

- Independent of k !
- \# of samples for $\ell_{1} \leq 0.1$ with probability ≥ 0.99
- $n \approx 1 M$

[Drukh Mansour '05]

- Combined Good-Turing and empirical estimator: C_{μ}
- If $\mu>n^{0.4}$ use empirical estimator
- If $\mu \leq n^{0.4}$ use Good-Turing estimator

$$
\|S-C\|_{1}=\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 6}}\right) \quad \text { and } \quad D(S \| C)=\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 3}}\right)
$$

- Independent of k !
- \# of samples for $\ell_{1} \leq 0.1$ with probability ≥ 0.99
- $n \approx 1 M$
- Optimal?

New Results

- Improve Good-Turing/empirical combination bounds?

New Results

- Improve Good-Turing/empirical combination bounds?
- No: $\exists p$ such that w.h.p.

$$
\|S-C\|_{1}=\widetilde{\Omega}\left(\frac{1}{n^{1 / 6}}\right)
$$

New Results

- Improve Good-Turing/empirical combination bounds?
- No: $\exists p$ such that w.h.p.

$$
\|S-C\|_{1}=\widetilde{\Omega}\left(\frac{1}{n^{1 / 6}}\right)
$$

- Estimator with better performance?

New Results

- Improve Good-Turing/empirical combination bounds?
- No: $\exists p$ such that w.h.p.

$$
\|S-C\|_{1}=\widetilde{\Omega}\left(\frac{1}{n^{1 / 6}}\right)
$$

- Estimator with better performance?
- Yes: new estimator F such that w.h.p.

$$
\|S-F\|_{1}=\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 4}}\right)
$$

New Results

- Improve Good-Turing/empirical combination bounds?
- No: $\exists p$ such that w.h.p.

$$
\|S-C\|_{1}=\widetilde{\Omega}\left(\frac{1}{n^{1 / 6}}\right)
$$

- Estimator with better performance?
- Yes: new estimator F such that w.h.p.

$$
\|S-F\|_{1}=\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 4}}\right)
$$

- Optimal?

New Results

- Improve Good-Turing/empirical combination bounds?
- No: $\exists p$ such that w.h.p.

$$
\|S-C\|_{1}=\widetilde{\Omega}\left(\frac{1}{n^{1 / 6}}\right)
$$

- Estimator with better performance?
- Yes: new estimator F such that w.h.p.

$$
\|S-F\|_{1}=\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 4}}\right)
$$

- Optimal?
- Yes: For any $\widehat{S}, \exists p$ such that w.h.p.

$$
\|S-\widehat{S}\|_{1}=\widetilde{\Omega}\left(\frac{1}{n^{1 / 4}}\right)
$$

New Results

- Improve Good-Turing/empirical combination bounds?
- No: $\exists p$ such that w.h.p.

$$
\|S-C\|_{1}=\widetilde{\Omega}\left(\frac{1}{n^{1 / 6}}\right) \text { and } \quad D(S \| C)=\widetilde{\Omega}\left(\frac{1}{n^{1 / 3}}\right)
$$

- Estimator with better performance?
- Yes: new estimator F such that w.h.p.

$$
\|S-F\|_{1}=\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 4}}\right) \quad \text { and } \quad D(S \| F)=\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 2}}\right)
$$

- Optimal?
- Yes: For any $\widehat{S}, \exists p$ such that w.h.p.

$$
\|S-\widehat{S}\|_{1}=\widetilde{\Omega}\left(\frac{1}{n^{1 / 4}}\right) \text { and } \quad D(S \| \widehat{S})=\widetilde{\Omega}\left(\frac{1}{n^{1 / 2}}\right)
$$

Observations

Observations

- Hold for any k

Observations

- Hold for any k
- Optimal

Observations

- Hold for any k
- Optimal
- Difference between $\Theta\left(n^{1 / 3}\right)$ and $\Theta\left(n^{1 / 2}\right)$?

Observations

- Hold for any k
- Optimal
- Difference between $\Theta\left(n^{1 / 3}\right)$ and $\Theta\left(n^{1 / 2}\right)$?
- Suppose constants are of the same order: NOT shown

Observations

- Hold for any k
- Optimal
- Difference between $\Theta\left(n^{1 / 3}\right)$ and $\Theta\left(n^{1 / 2}\right)$?
- Suppose constants are of the same order: NOT shown
- Estimate within KL divergence $\delta \approx(0.01)$

Observations

- Hold for any k
- Optimal
- Difference between $\Theta\left(n^{1 / 3}\right)$ and $\Theta\left(n^{1 / 2}\right)$?
- Suppose constants are of the same order: NOT shown
- Estimate within KL divergence $\delta \approx(0.01)$
- Good-Turing and empirical: $\delta^{-3} \approx(1 M)$

Observations

- Hold for any k
- Optimal
- Difference between $\Theta\left(n^{1 / 3}\right)$ and $\Theta\left(n^{1 / 2}\right)$?
- Suppose constants are of the same order: NOT shown
- Estimate within KL divergence $\delta \approx(0.01)$
- Good-Turing and empirical: $\delta^{-3} \approx(1 M)$
- Our approach: $\delta^{-2} \approx(10,000)$
- Computationally efficient: linear time complexity

Observations

- Hold for any k
- Optimal
- Difference between $\Theta\left(n^{1 / 3}\right)$ and $\Theta\left(n^{1 / 2}\right)$?
- Suppose constants are of the same order: NOT shown
- Estimate within KL divergence $\delta \approx(0.01)$
- Good-Turing and empirical: $\delta^{-3} \approx(1 M)$
- Our approach: $\delta^{-2} \approx(10,000)$
- Computationally efficient: linear time complexity
- Applications?

Classification

Classification

Classification

- Unknown discrete distributions: p, q

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
p \rightarrow x^{3} \quad q \rightarrow y^{3} \quad z \quad \text { class. }
$$

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{gathered}
p \rightarrow x^{3} \quad q \rightarrow y^{3} \quad z \quad \text { class. } \\
a \operatorname{ab} b
\end{gathered}
$$

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} \quad z \quad \text { class. } \\
a a b & b c b &
\end{array}
$$

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a &
\end{array}
$$

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p)
\end{array}
$$

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p) \\
& & b &
\end{array}
$$

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p) \\
& & b & y^{3}(q)
\end{array}
$$

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p) \\
& & b & y^{3}(q) \\
& & c &
\end{array}
$$

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p) \\
& & b & y^{3}(q) \\
& & c & y^{3}(q)
\end{array}
$$

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p) \\
& & b & y^{3}(q) \\
& & c & y^{3}(q)
\end{array}
$$

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p) \\
& & b & y^{3}(q) \\
& & c & y^{3}(q) \\
& & d & \text { either }
\end{array}
$$

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p) \\
& & b & y^{3}(q) \\
& & c & y^{3}(q) \\
& & d & \text { either }
\end{array}
$$

- Applications

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p) \\
& & b & y^{3}(q) \\
& & c & y^{3}(q) \\
& & d & \text { either }
\end{array}
$$

- Applications
- Spam filtering

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p) \\
& & b & y^{3}(q) \\
& & c & y^{3}(q) \\
& & d & \text { either }
\end{array}
$$

- Applications
- Spam filtering
- Movie selection

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p) \\
& & b & y^{3}(q) \\
& & c & y^{3}(q) \\
& & d & \text { either }
\end{array}
$$

- Applications
- Spam filtering
- Movie selection
- Medical diagnosis

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p) \\
& & b & y^{3}(q) \\
& & c & y^{3}(q) \\
& & d & \text { either }
\end{array}
$$

- Applications
- Spam filtering
- Movie selection
- Medical diagnosis
- Stock recommendation

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p) \\
& & b & y^{3}(q) \\
& & c & y^{3}(q) \\
& & d & \text { either }
\end{array}
$$

- Applications
- Spam filtering
- Movie selection
- Medical diagnosis
- Stock recommendation
- ...

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p) \\
& & b & y^{3}(q) \\
& & c & y^{3}(q) \\
& & d & \text { either }
\end{array}
$$

- Applications
- Spam filtering
- Movie selection
- Medical diagnosis
- Stock recommendation
- ...
- Life

Classification

- Unknown discrete distributions: p, q
- Training: $X^{n} \sim p$ and $Y^{n} \sim q$
- Test $Z: \sim p$ or q
- For simplicity p, q equally likely

$$
\begin{array}{cccc}
p \rightarrow x^{3} & q \rightarrow y^{3} & z & \text { class. } \\
a a b & b c b & a & x^{3}(p) \\
& & b & y^{3}(q) \\
& & c & y^{3}(q) \\
& & d & \text { either }
\end{array}
$$

- Applications
- Spam filtering
- Movie selection
- Medical diagnosis
- Stock recommendation
- ...
- Life: everything based on experience

Competitive Classification

Competitive Classification

- Optimal classifier?

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance (ignores training X^{n}, Y^{n})

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance (ignores training X^{n}, Y^{n})
- Classifier A is ϵ-competitive if $P_{E}^{A}(p, q) \leq P_{E}^{*}(p, q)+\epsilon \quad \forall p, q$

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance (ignores training X^{n}, Y^{n})
- Classifier A is ϵ-competitive if $P_{E}^{A}(p, q) \leq P_{E}^{*}(p, q)+\epsilon \quad \forall p, q$
- Typically $\epsilon=\epsilon_{n, k}$

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance (ignores training X^{n}, Y^{n})
- Classifier A is ϵ-competitive if $P_{E}^{A}(p, q) \leq P_{E}^{*}(p, q)+\epsilon \quad \forall p, q$
- Typically $\epsilon=\epsilon_{n, k}$
- A is uniformly competitive if $\epsilon_{n} \rightarrow 0$, regardless of k

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance (ignores training X^{n}, Y^{n})
- Classifier A is ϵ-competitive if $P_{E}^{A}(p, q) \leq P_{E}^{*}(p, q)+\epsilon \quad \forall p, q$
- Typically $\epsilon=\epsilon_{n, k}$
- A is uniformly competitive if $\epsilon_{n} \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance (ignores training X^{n}, Y^{n})
- Classifier A is ϵ-competitive if $P_{E}^{A}(p, q) \leq P_{E}^{*}(p, q)+\epsilon \quad \forall p, q$
- Typically $\epsilon=\epsilon_{n, k}$
- A is uniformly competitive if $\epsilon_{n} \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
- Given any n (however large), take $k=4 n$

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance (ignores training X^{n}, Y^{n})
- Classifier A is ϵ-competitive if $P_{E}^{A}(p, q) \leq P_{E}^{*}(p, q)+\epsilon \quad \forall p, q$
- Typically $\epsilon=\epsilon_{n, k}$
- A is uniformly competitive if $\epsilon_{n} \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
- Given any n (however large), take $k=4 n$
- p, q : uniform over disjoint $k / 2$ element subsets of $\{1, \ldots, k\}$

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance (ignores training X^{n}, Y^{n})
- Classifier A is ϵ-competitive if $P_{E}^{A}(p, q) \leq P_{E}^{*}(p, q)+\epsilon \quad \forall p, q$
- Typically $\epsilon=\epsilon_{n, k}$
- A is uniformly competitive if $\epsilon_{n} \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
- Given any n (however large), take $k=4 n$
- p, q : uniform over disjoint $k / 2$ element subsets of $\{1, \ldots, k\}$
- e.g. $p=U[1, \ldots, k / 2], \quad q=U[k / 2+1, \ldots, k]$

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance (ignores training X^{n}, Y^{n})
- Classifier A is ϵ-competitive if $P_{E}^{A}(p, q) \leq P_{E}^{*}(p, q)+\epsilon \quad \forall p, q$
- Typically $\epsilon=\epsilon_{n, k}$
- A is uniformly competitive if $\epsilon_{n} \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
- Given any n (however large), take $k=4 n$
- p, q : uniform over disjoint $k / 2$ element subsets of $\{1, \ldots, k\}$

$$
\text { - e.g. } p=U[1, \ldots, k / 2], \quad q=U[k / 2+1, \ldots, k]
$$

- $n=k / 4 \rightarrow \operatorname{Pr}\left(z\right.$ does not appear in x^{n} or $\left.y^{n}\right) \geq 1 / 2$

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance (ignores training X^{n}, Y^{n})
- Classifier A is ϵ-competitive if $P_{E}^{A}(p, q) \leq P_{E}^{*}(p, q)+\epsilon \quad \forall p, q$
- Typically $\epsilon=\epsilon_{n, k}$
- A is uniformly competitive if $\epsilon_{n} \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
- Given any n (however large), take $k=4 n$
- p, q : uniform over disjoint $k / 2$ element subsets of $\{1, \ldots, k\}$

$$
\text { - e.g. } p=U[1, \ldots, k / 2], \quad q=U[k / 2+1, \ldots, k]
$$

- $n=k / 4 \rightarrow \operatorname{Pr}\left(z\right.$ does not appear in x^{n} or $\left.y^{n}\right) \geq 1 / 2$
- $P_{E}^{A} \geq 1 / 4$ for any A

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance (ignores training X^{n}, Y^{n})
- Classifier A is ϵ-competitive if $P_{E}^{A}(p, q) \leq P_{E}^{*}(p, q)+\epsilon \quad \forall p, q$
- Typically $\epsilon=\epsilon_{n, k}$
- A is uniformly competitive if $\epsilon_{n} \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
- Given any n (however large), take $k=4 n$
- p, q : uniform over disjoint $k / 2$ element subsets of $\{1, \ldots, k\}$

$$
\text { - e.g. } p=U[1, \ldots, k / 2], \quad q=U[k / 2+1, \ldots, k]
$$

- $n=k / 4 \rightarrow \operatorname{Pr}\left(z\right.$ does not appear in x^{n} or $\left.y^{n}\right) \geq 1 / 2$
- $P_{E}^{A} \geq 1 / 4$ for any A
- $P_{E}^{*}=$

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance (ignores training X^{n}, Y^{n})
- Classifier A is ϵ-competitive if $P_{E}^{A}(p, q) \leq P_{E}^{*}(p, q)+\epsilon \quad \forall p, q$
- Typically $\epsilon=\epsilon_{n, k}$
- A is uniformly competitive if $\epsilon_{n} \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
- Given any n (however large), take $k=4 n$
- p, q : uniform over disjoint $k / 2$ element subsets of $\{1, \ldots, k\}$

$$
\text { - e.g. } p=U[1, \ldots, k / 2], \quad q=U[k / 2+1, \ldots, k]
$$

- $n=k / 4 \rightarrow \operatorname{Pr}\left(z\right.$ does not appear in x^{n} or $\left.y^{n}\right) \geq 1 / 2$
- $P_{E}^{A} \geq 1 / 4$ for any A
- $P_{E}^{*}=0$

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance (ignores training X^{n}, Y^{n})
- Classifier A is ϵ-competitive if $P_{E}^{A}(p, q) \leq P_{E}^{*}(p, q)+\epsilon \quad \forall p, q$
- Typically $\epsilon=\epsilon_{n, k}$
- A is uniformly competitive if $\epsilon_{n} \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
- Given any n (however large), take $k=4 n$
- p, q : uniform over disjoint $k / 2$ element subsets of $\{1, \ldots, k\}$

$$
\text { - e.g. } p=U[1, \ldots, k / 2], \quad q=U[k / 2+1, \ldots, k]
$$

- $n=k / 4 \rightarrow \operatorname{Pr}\left(z\right.$ does not appear in x^{n} or $\left.y^{n}\right) \geq 1 / 2$
- $P_{E}^{A} \geq 1 / 4$ for any A
- $P_{E}^{*}=0 \quad($ for any $n)$

Competitive Classification

- Optimal classifier?
- Unfortunately, no "entropy"
- Competitive classifier - (nearly) as well as best
- $P_{E}^{*}(p, q)$ - lowest error of any classifier for (p, q)
- Requires knowing p, q in advance (ignores training X^{n}, Y^{n})
- Classifier A is ϵ-competitive if $P_{E}^{A}(p, q) \leq P_{E}^{*}(p, q)+\epsilon \quad \forall p, q$
- Typically $\epsilon=\epsilon_{n, k}$
- A is uniformly competitive if $\epsilon_{n} \rightarrow 0$, regardless of k
- Are there uniformly-competitive classifiers?
- Given any n (however large), take $k=4 n$
- p, q : uniform over disjoint $k / 2$ element subsets of $\{1, \ldots, k\}$

$$
\text { - e.g. } p=U[1, \ldots, k / 2], \quad q=U[k / 2+1, \ldots, k]
$$

- $n=k / 4 \rightarrow \operatorname{Pr}\left(z\right.$ does not appear in x^{n} or $\left.y^{n}\right) \geq 1 / 2$
- $P_{E}^{A} \geq 1 / 4$ for any A
- $P_{E}^{*}=0 \quad$ (for any n)
- No uniformly-competitive classifiers!

Label-Invariant Classification

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power,

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power, no real classifier knows that much!

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

$$
x^{3} \quad y^{3} \quad z
$$

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

$$
x^{3} \quad y^{3} \quad z
$$

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

$$
\begin{array}{ccc}
x^{3} & y^{3} & z \\
a a b & c b a & a
\end{array}
$$

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

$$
\begin{array}{ccc}
x^{3} & y^{3} & z \\
a a b & c b a & a \\
u u v & w v u & u
\end{array}
$$

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

x^{3}	y^{3}	z
a ab	$c b a$	a
uиv	wvu	u

- Output in both cases?

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

x^{3}	y^{3}	z
$a a b$	$c b a$	a
$u u v$	$w v u$	u

- Output in both cases? Same!

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

x^{3}	y^{3}	z
$a a b$	$c b a$	a
$u u v$	$w v u$	u

- Output in both cases? Same!
- Label-invariant, canonical, classifiers

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

x^{3}	y^{3}	z
$a a b$	$c b a$	a
$u u v$	$w v u$	u

- Output in both cases? Same!
- Label-invariant, canonical, classifiers
- We assume no prior knowledge, all natural classifiers canonical

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

x^{3}	y^{3}	z
$a a b$	$c b a$	a
$u u v$	$w v u$	u

- Output in both cases? Same!
- Label-invariant, canonical, classifiers
- We assume no prior knowledge, all natural classifiers canonical
- $P_{E}^{* *}(p, q)$ - best error of any label-invariant classifier

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

x^{3}	y^{3}	z
$a a b$	$c b a$	a
$u u v$	$w v u$	u

- Output in both cases? Same!
- Label-invariant, canonical, classifiers
- We assume no prior knowledge, all natural classifiers canonical
- $P_{E}^{* *}(p, q)$ - best error of any label-invariant classifier
- Also requires knowing p, q in advance

Label-Invariant Classification

- P_{E}^{*} requires knowing p and q in advance
- Too much power, no real classifier knows that much!
- Limit to more real classifiers
- Every real classifier is label invariant (canonical)

x^{3}	y^{3}	z
$a a b$	$c b a$	a
$u u v$	$w v u$	u

- Output in both cases? Same!
- Label-invariant, canonical, classifiers
- We assume no prior knowledge, all natural classifiers canonical
- $P_{E}^{* *}(p, q)$ - best error of any label-invariant classifier
- Also requires knowing p, q in advance
- Can we find a uniformly-competitive canonical estimator?

Empirical Classifier

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$
- $z \sim x^{3} \quad(p)$

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$
- $z \sim x^{3} \quad(p)$
- Empirical classifier: assign to training where z appeared more

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$
- $z \sim x^{3} \quad(p)$
- Empirical classifier: assign to training where z appeared more
- Proxy for distribution with highest probability

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$
- $z \sim x^{3} \quad(p)$
- Empirical classifier: assign to training where z appeared more
- Proxy for distribution with highest probability
- Label invariant

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$
- $z \sim x^{3} \quad(p)$
- Empirical classifier: assign to training where z appeared more
- Proxy for distribution with highest probability
- Label invariant
- Competitive?

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$
- $z \sim x^{3} \quad(p)$
- Empirical classifier: assign to training where z appeared more
- Proxy for distribution with highest probability
- Label invariant
- Competitive?
- For arbitrary n, let $p=U[n]$ and $q=U[2 n]$

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$
- $z \sim x^{3} \quad(p)$
- Empirical classifier: assign to training where z appeared more
- Proxy for distribution with highest probability
- Label invariant
- Competitive?
- For arbitrary n, let $p=U[n]$ and $q=U[2 n]$
- Optimal classifier: $z \rightarrow p$ if $p(z)>q(z)$, otherwise $z \rightarrow q$

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$
- $z \sim x^{3} \quad(p)$
- Empirical classifier: assign to training where z appeared more
- Proxy for distribution with highest probability
- Label invariant
- Competitive?
- For arbitrary n, let $p=U[n]$ and $q=U[2 n]$
- Optimal classifier: $z \rightarrow p$ if $p(z)>q(z)$, otherwise $z \rightarrow q$
- Recall $X^{n} \sim p, Y^{n} \sim q$

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$
- $z \sim x^{3} \quad(p)$
- Empirical classifier: assign to training where z appeared more
- Proxy for distribution with highest probability
- Label invariant
- Competitive?
- For arbitrary n, let $p=U[n]$ and $q=U[2 n]$
- Optimal classifier: $z \rightarrow p$ if $p(z)>q(z)$, otherwise $z \rightarrow q$
- Recall $X^{n} \sim p, Y^{n} \sim q$
- $n_{z}\left(x^{n}\right) \geq 1 \rightarrow p(z)=1 / n \quad n_{z}\left(y^{n}\right) \geq 1 \rightarrow q(z)=1 /(2 n)$

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$
- $z \sim x^{3} \quad(p)$
- Empirical classifier: assign to training where z appeared more
- Proxy for distribution with highest probability
- Label invariant
- Competitive?
- For arbitrary n, let $p=U[n]$ and $q=U[2 n]$
- Optimal classifier: $z \rightarrow p$ if $p(z)>q(z)$, otherwise $z \rightarrow q$
- Recall $X^{n} \sim p, Y^{n} \sim q$
- $n_{z}\left(x^{n}\right) \geq 1 \rightarrow p(z)=1 / n \quad n_{z}\left(y^{n}\right) \geq 1 \rightarrow q(z)=1 /(2 n)$
- $n_{z}\left(x^{n}\right), n_{z}\left(y^{n}\right) \geq 1$, optimal: $z \sim p$

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$
- $z \sim x^{3} \quad(p)$
- Empirical classifier: assign to training where z appeared more
- Proxy for distribution with highest probability
- Label invariant
- Competitive?
- For arbitrary n, let $p=U[n]$ and $q=U[2 n]$
- Optimal classifier: $z \rightarrow p$ if $p(z)>q(z)$, otherwise $z \rightarrow q$
- Recall $X^{n} \sim p, Y^{n} \sim q$
- $n_{z}\left(x^{n}\right) \geq 1 \rightarrow p(z)=1 / n \quad n_{z}\left(y^{n}\right) \geq 1 \rightarrow q(z)=1 /(2 n)$
- $n_{z}\left(x^{n}\right), n_{z}\left(y^{n}\right) \geq 1$, optimal: $z \sim p$
- Label invariant

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$
- $z \sim x^{3} \quad(p)$
- Empirical classifier: assign to training where z appeared more
- Proxy for distribution with highest probability
- Label invariant
- Competitive?
- For arbitrary n, let $p=U[n]$ and $q=U[2 n]$
- Optimal classifier: $z \rightarrow p$ if $p(z)>q(z)$, otherwise $z \rightarrow q$
- Recall $X^{n} \sim p, Y^{n} \sim q$
- $n_{z}\left(x^{n}\right) \geq 1 \rightarrow p(z)=1 / n \quad n_{z}\left(y^{n}\right) \geq 1 \rightarrow q(z)=1 /(2 n)$
- $n_{z}\left(x^{n}\right), n_{z}\left(y^{n}\right) \geq 1$, optimal: $z \sim p$
- Label invariant
- $\operatorname{Pr}\left(1 \leq n_{z}(\bar{x})<n_{z}(\bar{y})\right)>0.03$

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$
- $z \sim x^{3} \quad(p)$
- Empirical classifier: assign to training where z appeared more
- Proxy for distribution with highest probability
- Label invariant
- Competitive?
- For arbitrary n, let $p=U[n]$ and $q=U[2 n]$
- Optimal classifier: $z \rightarrow p$ if $p(z)>q(z)$, otherwise $z \rightarrow q$
- Recall $X^{n} \sim p, Y^{n} \sim q$
- $n_{z}\left(x^{n}\right) \geq 1 \rightarrow p(z)=1 / n \quad n_{z}\left(y^{n}\right) \geq 1 \rightarrow q(z)=1 /(2 n)$
- $n_{z}\left(x^{n}\right), n_{z}\left(y^{n}\right) \geq 1$, optimal: $z \sim p$
- Label invariant
- $\operatorname{Pr}\left(1 \leq n_{z}(\bar{x})<n_{z}(\bar{y})\right)>0.03$
- $P_{E}^{\text {empirical }}(p, q)>P_{E}^{* *}(p, q)+0.01$

Empirical Classifier

- Previous example: $x^{3}=a a b \quad y^{3}=c b a \quad z=a$
- $z \sim x^{3} \quad(p)$
- Empirical classifier: assign to training where z appeared more
- Proxy for distribution with highest probability
- Label invariant
- Competitive?
- For arbitrary n, let $p=U[n]$ and $q=U[2 n]$
- Optimal classifier: $z \rightarrow p$ if $p(z)>q(z)$, otherwise $z \rightarrow q$
- Recall $X^{n} \sim p, Y^{n} \sim q$
- $n_{z}\left(x^{n}\right) \geq 1 \rightarrow p(z)=1 / n \quad n_{z}\left(y^{n}\right) \geq 1 \rightarrow q(z)=1 /(2 n)$
- $n_{z}\left(x^{n}\right), n_{z}\left(y^{n}\right) \geq 1$, optimal: $z \sim p$
- Label invariant
- $\operatorname{Pr}\left(1 \leq n_{z}(\bar{x})<n_{z}(\bar{y})\right)>0.03$
- $P_{E}^{\text {empirical }}(p, q)>P_{E}^{* *}(p, q)+0.01$
- Empirical classifier not competitive with label-invariant class.

Competitive Label-Invariant Classifier

Competitive Label-Invariant Classifier

- Are there uniformly competitive label-invariant classifiers??

Competitive Label-Invariant Classifier

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs

Competitive Label-Invariant Classifier

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs
- Modify new estimator for sequence-pairs

Competitive Label-Invariant Classifier

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs
- Modify new estimator for sequence-pairs
- Label-invariant classifier A such that $\forall p, q$,

$$
P_{E}^{A}(p, q) \leq P_{E}^{* *}(p, q)+\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 5}}\right)
$$

Competitive Label-Invariant Classifier

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs
- Modify new estimator for sequence-pairs
- Label-invariant classifier A such that $\forall p, q$,

$$
P_{E}^{A}(p, q) \leq P_{E}^{* *}(p, q)+\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 5}}\right)
$$

- Independent of k !

Competitive Label-Invariant Classifier

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs
- Modify new estimator for sequence-pairs
- Label-invariant classifier A such that $\forall p, q$,

$$
P_{E}^{A}(p, q) \leq P_{E}^{* *}(p, q)+\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 5}}\right)
$$

- Independent of k !
- Runs in linear time

Competitive Label-Invariant Classifier

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs
- Modify new estimator for sequence-pairs
- Label-invariant classifier A such that $\forall p, q$,

$$
P_{E}^{A}(p, q) \leq P_{E}^{* *}(p, q)+\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 5}}\right)
$$

- Independent of k !
- Runs in linear time
- First uniformly-optimal classifier

Competitive Label-Invariant Classifier

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs
- Modify new estimator for sequence-pairs
- Label-invariant classifier A such that $\forall p, q$,

$$
P_{E}^{A}(p, q) \leq P_{E}^{* *}(p, q)+\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 5}}\right)
$$

- Independent of k !
- Runs in linear time
- First uniformly-optimal classifier
- Omniscient oracle too powerful, compare to more realistic one

Competitive Label-Invariant Classifier

- Are there uniformly competitive label-invariant classifiers??
- Relate classification to estimation over sequence-pairs
- Modify new estimator for sequence-pairs
- Label-invariant classifier A such that $\forall p, q$,

$$
P_{E}^{A}(p, q) \leq P_{E}^{* *}(p, q)+\widetilde{\mathcal{O}}\left(\frac{1}{n^{1 / 5}}\right)
$$

- Independent of k !
- Runs in linear time
- First uniformly-optimal classifier
- Omniscient oracle too powerful, compare to more realistic one
- Lower bound: For any classifier $C, \exists p, q$ such that

$$
P_{E}^{C}(p, q) \geq P_{E}^{* *}(p, q)+\widetilde{\Omega}\left(\frac{1}{n^{1 / 3}}\right)
$$

Experiments

Experiments

- Netflix challenge: $10 \% \rightarrow \$ 1 \mathrm{M}$

Experiments

- Netflix challenge: $10 \% \rightarrow \$ 1 \mathrm{M}$
- Zipf distributions $p_{i} \propto i^{-s}, s=1$ and $s=1.5, k=100$

Experiments

- Netflix challenge: $10 \% \rightarrow \$ 1 \mathrm{M}$
- Zipf distributions $p_{i} \propto i^{-s}, s=1$ and $s=1.5, k=100$

Experiments

- Netflix challenge: $10 \% \rightarrow \$ 1 \mathrm{M}$
- Zipf distributions $p_{i} \propto i^{-s}, s=1$ and $s=1.5, k=100$

Prediction / Universal Compression

Universal Compression

- X^{n} : generated by unknown i.i.d. distribution

Universal Compression

- X^{n} : generated by unknown i.i.d. distribution
- Code designed for distribution q

Universal Compression

- X^{n} : generated by unknown i.i.d. distribution
- Code designed for distribution q
- Redundancy

$$
R=\min _{q} \max _{p} \mathbb{E}\left[\log \frac{p}{q}\right]
$$

Universal Compression

- X^{n} : generated by unknown i.i.d. distribution
- Code designed for distribution q
- Redundancy

$$
R=\min _{q} \max _{p} \mathbb{E}\left[\log \frac{p}{q}\right]
$$

- Compress sequences: compress dictionary + pattern

Universal Compression

- X^{n} : generated by unknown i.i.d. distribution
- Code designed for distribution q
- Redundancy

$$
R=\min _{q} \max _{p} \mathbb{E}\left[\log \frac{p}{q}\right]
$$

- Compress sequences: compress dictionary + pattern
- $x^{5}=a b b a c$

Universal Compression

- X^{n} : generated by unknown i.i.d. distribution
- Code designed for distribution q
- Redundancy

$$
R=\min _{q} \max _{p} \mathbb{E}\left[\log \frac{p}{q}\right]
$$

- Compress sequences: compress dictionary + pattern
- $x^{5}=a b b a c$
- Dict: $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3$ and pattern: 12213

Universal Compression

- X^{n} : generated by unknown i.i.d. distribution
- Code designed for distribution q
- Redundancy

$$
R=\min _{q} \max _{p} \mathbb{E}\left[\log \frac{p}{q}\right]
$$

- Compress sequences: compress dictionary + pattern
- $x^{5}=a b b a c$
- Dict: $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3$ and pattern: 12213
- Redundancy of patterns?

Universal Compression

- X^{n} : generated by unknown i.i.d. distribution
- Code designed for distribution q
- Redundancy

$$
R=\min _{q} \max _{p} \mathbb{E}\left[\log \frac{p}{q}\right]
$$

- Compress sequences: compress dictionary + pattern
- $x^{5}=a b b a c$
- Dict: $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3$ and pattern: 12213
- Redundancy of patterns?
- (ADO '12): $\widetilde{\mathcal{O}}\left(n^{1 / 3}\right)$

Universal Compression

- X^{n} : generated by unknown i.i.d. distribution
- Code designed for distribution q
- Redundancy

$$
R=\min _{q} \max _{p} \mathbb{E}\left[\log \frac{p}{q}\right]
$$

- Compress sequences: compress dictionary + pattern
- $x^{5}=a b b a c$
- Dict: $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3$ and pattern: 12213
- Redundancy of patterns?
- (ADO '12): $\widetilde{\mathcal{O}}\left(n^{1 / 3}\right)$
- Computationally efficient sequential algorithms?

Universal Compression

- X^{n} : generated by unknown i.i.d. distribution
- Code designed for distribution q
- Redundancy

$$
R=\min _{q} \max _{p} \mathbb{E}\left[\log \frac{p}{q}\right]
$$

- Compress sequences: compress dictionary + pattern
- $x^{5}=a b b a c$
- Dict: $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3$ and pattern: 12213
- Redundancy of patterns?
- (ADO '12): $\widetilde{\mathcal{O}}\left(n^{1 / 3}\right)$
- Computationally efficient sequential algorithms?
- (OSZ '03): $\mathcal{O}\left(n^{2 / 3}\right)$

Universal Compression

- X^{n} : generated by unknown i.i.d. distribution
- Code designed for distribution q
- Redundancy

$$
R=\min _{q} \max _{p} \mathbb{E}\left[\log \frac{p}{q}\right]
$$

- Compress sequences: compress dictionary + pattern
- $x^{5}=a b b a c$
- Dict: $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3$ and pattern: 12213
- Redundancy of patterns?
- (ADO '12): $\widetilde{\mathcal{O}}\left(n^{1 / 3}\right)$
- Computationally efficient sequential algorithms?
- (OSZ '03): $\mathcal{O}\left(n^{2 / 3}\right)$
- New bound: $\widetilde{\mathcal{O}}\left(n^{1 / 2}\right)$

Proof Sketch

Motivation

Motivation

- N_{μ} : \# of symbols appearing μ times

Motivation

- N_{μ} : \# of symbols appearing μ times
- Empirical

$$
E_{\mu}=N_{\mu} \frac{\mu}{n}
$$

Motivation

- N_{μ} : \# of symbols appearing μ times
- Empirical

$$
E_{\mu}=N_{\mu} \frac{\mu}{n}
$$

- Multiply by a correction term c_{μ} to improve the estimate

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

Motivation

- N_{μ} : \# of symbols appearing μ times
- Empirical

$$
E_{\mu}=N_{\mu} \frac{\mu}{n}
$$

- Multiply by a correction term c_{μ} to improve the estimate

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}

Motivation

- N_{μ} : \# of symbols appearing μ times
- Empirical

$$
E_{\mu}=N_{\mu} \frac{\mu}{n}
$$

- Multiply by a correction term c_{μ} to improve the estimate

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}
- Ignoring constants:

$$
\left|S_{\mu}-\widehat{S}_{\mu}\right| \approx \text { bias }+\sqrt{\text { variance }}
$$

New estimator

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}
Estimator
c_{μ}
Bias
Variance

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}
Estimator
c_{μ}
Bias
Variance Empirical

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}

Estimator	c_{μ}	Bias	Variance
Empirical	1		

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}\left[N_{\mu}\right] \frac{\sqrt{\mu}}{n}$	$\mathbb{E}\left[N_{\mu}\right] \frac{\mu}{n^{2}}$

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}\left[N_{\mu}\right] \frac{\sqrt{\mu}}{n}$	$\mathbb{E}\left[N_{\mu}\right] \frac{\mu}{n^{2}}$

Good-Turing

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}\left[N_{\mu}\right] \frac{\sqrt{\mu}}{n}$	$\mathbb{E}\left[N_{\mu}\right] \frac{\mu}{n^{2}}$

Good-Turing $\quad \frac{\mu+1}{\mu} \frac{N_{\mu+1}}{N_{\mu}}$

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}\left[N_{\mu}\right] \frac{\sqrt{\mu}}{n}$	$\mathbb{E}\left[N_{\mu}\right] \frac{\mu}{n^{2}}$
Good-Turing	$\frac{\mu+1}{\mu} \frac{N_{\mu+1}}{N_{\mu}}$	0	$\mathbb{E}\left[N_{\mu}\right] \frac{(\mu+1)^{2}}{n^{2}}$

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}

$$
\begin{array}{cccc}
\text { Estimator } & c_{\mu} & \text { Bias } & \text { Variance } \\
\text { Empirical } & 1 & \mathbb{E}\left[N_{\mu}\right] \frac{\sqrt{\mu}}{n} & \mathbb{E}\left[N_{\mu}\right] \frac{\mu}{n^{2}} \\
\text { Good-Turing } & \frac{\mu+1}{\mu} \frac{N_{\mu+1}}{N_{\mu}} & 0 & \mathbb{E}\left[N_{\mu}\right] \frac{(\mu+1)^{2}}{n^{2}}
\end{array}
$$

New

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}

$$
\begin{array}{cccc}
\text { Estimator } & c_{\mu} & \text { Bias } & \text { Variance } \\
\text { Empirical } & 1 & \mathbb{E}\left[N_{\mu}\right] \frac{\sqrt{\mu}}{n} & \mathbb{E}\left[N_{\mu}\right] \frac{\mu}{n^{2}} \\
\text { Good-Turing } & \frac{\mu+1}{\mu} \frac{N_{\mu+1}}{N_{\mu}} & 0 & \mathbb{E}\left[N_{\mu}\right] \frac{(\mu+1)}{n^{2}} \\
\text { New } & \frac{\mu+1}{\mu} \frac{\mathbb{E}\left[N_{\mu+1}\right]}{\mathbb{E}\left[N_{\mu}\right]} & &
\end{array}
$$

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}\left[N_{\mu}\right] \frac{\sqrt{\mu}}{n}$	$\mathbb{E}\left[N_{\mu}\right] \frac{\mu}{n^{2}}$
Good-Turing	$\frac{\mu+1}{\mu} \frac{N_{\mu+1}}{N_{\mu}}$	0	$\mathbb{E}\left[N_{\mu}\right] \frac{(\mu+1)^{2}}{n^{2}}$
New	$\frac{\mu+1}{\mu} \frac{\mathbb{E}\left[N_{\mu+1}\right]}{\mathbb{E}\left[N_{\mu}\right]}$	0	$\mathbb{E}\left[N_{\mu}\right] \frac{\mu}{n^{2}}$

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}

$$
\begin{array}{cccc}
\text { Estimator } & c_{\mu} & \text { Bias } & \text { Variance } \\
\text { Empirical } & 1 & \mathbb{E}\left[N_{\mu}\right] \frac{\sqrt{\mu}}{n} & \mathbb{E}\left[N_{\mu}\right] \frac{\mu}{n^{2}} \\
\text { Good-Turing } & \frac{\mu+1}{\mu} \frac{N_{\mu+1}}{N_{\mu}} & 0 & \mathbb{E}\left[N_{\mu}\right] \frac{(\mu+1)^{2}}{n^{2}} \\
\text { New } & \frac{\mu+1}{\mu} \frac{\mathbb{E}\left[N_{\mu+1}\right]}{\mathbb{E}\left[N_{\mu}\right]} & 0 & \mathbb{E}\left[N_{\mu}\right] \frac{\mu}{n^{2}}
\end{array}
$$

- Best of both estimators!

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}

$$
\begin{array}{cccc}
\text { Estimator } & c_{\mu} & \text { Bias } & \text { Variance } \\
\text { Empirical } & 1 & \mathbb{E}\left[N_{\mu}\right] \frac{\sqrt{\mu}}{n} & \mathbb{E}\left[N_{\mu}\right] \frac{\mu}{n^{2}} \\
\text { Good-Turing } & \frac{\mu+1}{\mu} \frac{N_{\mu+1}}{N_{\mu}} & 0 & \mathbb{E}\left[N_{\mu}\right] \frac{(\mu+1)^{2}}{n^{2}} \\
\text { New } & \frac{\mu+1}{\mu} \frac{\mathbb{E}\left[N_{\mu+1]}\right]}{\mathbb{E}\left[N_{\mu}\right]} & 0 & \mathbb{E}\left[N_{\mu}\right] \frac{\mu}{n^{2}}
\end{array}
$$

- Best of both estimators!
- Idealized as we don't know the expectations

New estimator

$$
\widehat{S}_{\mu}=N_{\mu} \frac{\mu}{n} c_{\mu}
$$

- c_{μ} : a function of x^{n}

Estimator	c_{μ}	Bias	Variance
Empirical	1	$\mathbb{E}\left[N_{\mu}\right] \frac{\sqrt{\mu}}{n}$	$\mathbb{E}\left[N_{\mu}\right] \frac{\mu}{n^{2}}$
Good-Turing	$\frac{\mu+1}{\mu} \frac{N_{\mu+1}}{N_{\mu}}$	0	$\mathbb{E}\left[N_{\mu}\right] \frac{(\mu+1)^{2}}{n^{2}}$
New	$\frac{\mu+1}{\mu} \frac{\mathbb{E}\left[N_{\mu+1}\right]}{\mathbb{E}\left[N_{\mu}\right]}$	0	$\mathbb{E}\left[N_{\mu}\right] \frac{\mu}{n^{2}}$

- Best of both estimators!
- Idealized as we don't know the expectations
- How to estimate $\frac{\mathbb{E}\left[N_{\mu+1}\right]}{\mathbb{E}\left[N_{\mu}\right]}$?

Estimating $\frac{\mathbb{E}\left[N_{\mu+1}\right]}{\mathbb{E}\left[N_{\mu}\right]}$

Estimating $\frac{\mathbb{E}\left[N_{\mu+1}\right]}{\mathbb{E}\left[N_{\mu}\right]}$

- Given: sequence X^{n}, estimate $\mathbb{E}\left[N_{\mu}\right]$

Estimating $\frac{\mathbb{E}\left[N_{\mu+1}\right]}{\mathbb{E}\left[N_{\mu}\right]}$

- Given: sequence X^{n}, estimate $\mathbb{E}\left[N_{\mu}\right]$
- Expected \# of symbols appearing μ times

Estimating $\frac{\mathbb{E}\left[N_{\mu+1}\right]}{\mathbb{E}\left[N_{\mu}\right]}$

- Given: sequence X^{n}, estimate $\mathbb{E}\left[N_{\mu}\right]$
- Expected \# of symbols appearing μ times
- Good-Turing: $\mathbb{E}\left[N_{\mu}\right] \sim N_{\mu}$, high variance

Estimating $\frac{\mathbb{E}\left[N_{\mu+1}\right]}{\mathbb{E}\left[N_{\mu}\right]}$

- Given: sequence X^{n}, estimate $\mathbb{E}\left[N_{\mu}\right]$
- Expected \# of symbols appearing μ times
- Good-Turing: $\mathbb{E}\left[N_{\mu}\right] \sim N_{\mu}$, high variance
- Better estimators for $\mathbb{E}\left[N_{\mu}\right]$

Estimating $\frac{\mathbb{E}\left[N_{\mu+1}\right]}{\mathbb{E}\left[N_{\mu}\right]}$

- Given: sequence X^{n}, estimate $\mathbb{E}\left[N_{\mu}\right]$
- Expected \# of symbols appearing μ times
- Good-Turing: $\mathbb{E}\left[N_{\mu}\right] \sim N_{\mu}$, high variance
- Better estimators for $\mathbb{E}\left[N_{\mu}\right]$
- Given: X^{n} or $N_{0}, N_{1}, \ldots N_{n}$

Estimating $\frac{\mathbb{E}\left[N_{\mu+1}\right]}{\mathbb{E}\left[N_{\mu}\right]}$

- Given: sequence X^{n}, estimate $\mathbb{E}\left[N_{\mu}\right]$
- Expected \# of symbols appearing μ times
- Good-Turing: $\mathbb{E}\left[N_{\mu}\right] \sim N_{\mu}$, high variance
- Better estimators for $\mathbb{E}\left[N_{\mu}\right]$
- Given: X^{n} or $N_{0}, N_{1}, \ldots N_{n}$
- Linear?

Estimating $\frac{\mathbb{E}\left[N_{\mu+1}\right]}{\mathbb{E}\left[N_{\mu}\right]}$

- Given: sequence X^{n}, estimate $\mathbb{E}\left[N_{\mu}\right]$
- Expected \# of symbols appearing μ times
- Good-Turing: $\mathbb{E}\left[N_{\mu}\right] \sim N_{\mu}$, high variance
- Better estimators for $\mathbb{E}\left[N_{\mu}\right]$
- Given: X^{n} or $N_{0}, N_{1}, \ldots N_{n}$
- Linear?
- $\sum_{\mu} h_{\mu} N_{\mu}$

Estimating $\frac{\mathbb{E}\left[N_{\mu+1}\right]}{\mathbb{E}\left[N_{\mu}\right]}$

- Given: sequence X^{n}, estimate $\mathbb{E}\left[N_{\mu}\right]$
- Expected \# of symbols appearing μ times
- Good-Turing: $\mathbb{E}\left[N_{\mu}\right] \sim N_{\mu}$, high variance
- Better estimators for $\mathbb{E}\left[N_{\mu}\right]$
- Given: X^{n} or $N_{0}, N_{1}, \ldots N_{n}$
- Linear?
- $\sum_{\mu} h_{\mu} N_{\mu}$
- Why should it work?

Linear estimator

Linear estimator

- Simple estimator for $\mathbb{E}\left[N_{\mu}\right]: N_{\mu}$

Linear estimator

- Simple estimator for $\mathbb{E}\left[N_{\mu}\right]: N_{\mu}$
- Bias $=0$ variance $=\mathbb{E}\left[N_{\mu}\right]$

$$
\left|N_{\mu}-\mathbb{E}\left[N_{\mu}\right]\right|=\sqrt{\mathbb{E}\left[N_{\mu}\right]}
$$

Linear estimator

- Simple estimator for $\mathbb{E}\left[N_{\mu}\right]: N_{\mu}$
- Bias $=0$ variance $=\mathbb{E}\left[N_{\mu}\right]$

$$
\left|N_{\mu}-\mathbb{E}\left[N_{\mu}\right]\right|=\sqrt{\mathbb{E}\left[N_{\mu}\right]}
$$

- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$

Linear estimator

- Simple estimator for $\mathbb{E}\left[N_{\mu}\right]: N_{\mu}$
- Bias $=0$ variance $=\mathbb{E}\left[N_{\mu}\right]$

$$
\left|N_{\mu}-\mathbb{E}\left[N_{\mu}\right]\right|=\sqrt{\mathbb{E}\left[N_{\mu}\right]}
$$

- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$
- Expected \# symbols appearing 100 and 101 times are close

Linear estimator

- Simple estimator for $\mathbb{E}\left[N_{\mu}\right]: N_{\mu}$
- Bias $=0$ variance $=\mathbb{E}\left[N_{\mu}\right]$

$$
\left|N_{\mu}-\mathbb{E}\left[N_{\mu}\right]\right|=\sqrt{\mathbb{E}\left[N_{\mu}\right]}
$$

- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$
- Expected \# symbols appearing 100 and 101 times are close
- Momentarily assume: $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ independent

Linear estimator

- Simple estimator for $\mathbb{E}\left[N_{\mu}\right]: N_{\mu}$
- Bias $=0$ variance $=\mathbb{E}\left[N_{\mu}\right]$

$$
\left|N_{\mu}-\mathbb{E}\left[N_{\mu}\right]\right|=\sqrt{\mathbb{E}\left[N_{\mu}\right]}
$$

- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$
- Expected \# symbols appearing 100 and 101 times are close
- Momentarily assume: $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ independent
- New Estimator

$$
\left(N_{\mu-1}+N_{\mu}+N_{\mu+1}\right) / 3
$$

Linear estimator

- Simple estimator for $\mathbb{E}\left[N_{\mu}\right]: N_{\mu}$
- Bias $=0$ variance $=\mathbb{E}\left[N_{\mu}\right]$

$$
\left|N_{\mu}-\mathbb{E}\left[N_{\mu}\right]\right|=\sqrt{\mathbb{E}\left[N_{\mu}\right]}
$$

- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$
- Expected \# symbols appearing 100 and 101 times are close
- Momentarily assume: $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ independent
- New Estimator

$$
\left(N_{\mu-1}+N_{\mu}+N_{\mu+1}\right) / 3
$$

- Bias $\leq 2 \epsilon / 3 \leq \epsilon$

Linear estimator

- Simple estimator for $\mathbb{E}\left[N_{\mu}\right]: N_{\mu}$
- Bias $=0$ variance $=\mathbb{E}\left[N_{\mu}\right]$

$$
\left|N_{\mu}-\mathbb{E}\left[N_{\mu}\right]\right|=\sqrt{\mathbb{E}\left[N_{\mu}\right]}
$$

- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$
- Expected \# symbols appearing 100 and 101 times are close
- Momentarily assume: $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ independent
- New Estimator

$$
\left(N_{\mu-1}+N_{\mu}+N_{\mu+1}\right) / 3
$$

- Bias $\leq 2 \epsilon / 3 \leq \epsilon$
- Variance of sum $=$ sum of variances

Linear estimator

- Simple estimator for $\mathbb{E}\left[N_{\mu}\right]: N_{\mu}$
- Bias $=0$ variance $=\mathbb{E}\left[N_{\mu}\right]$

$$
\left|N_{\mu}-\mathbb{E}\left[N_{\mu}\right]\right|=\sqrt{\mathbb{E}\left[N_{\mu}\right]}
$$

- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$
- Expected \# symbols appearing 100 and 101 times are close
- Momentarily assume: $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ independent
- New Estimator

$$
\left(N_{\mu-1}+N_{\mu}+N_{\mu+1}\right) / 3
$$

- Bias $\leq 2 \epsilon / 3 \leq \epsilon$
- Variance of sum $=$ sum of variances
- $\sigma^{\prime}=\sigma / \sqrt{3}$

$$
\text { error } \leq \frac{1}{\sqrt{3}} \sqrt{\mathbb{E}\left[N_{\mu}\right]}+\epsilon
$$

Linear estimator

- Simple estimator for $\mathbb{E}\left[N_{\mu}\right]: N_{\mu}$
- Bias $=0$ variance $=\mathbb{E}\left[N_{\mu}\right]$

$$
\left|N_{\mu}-\mathbb{E}\left[N_{\mu}\right]\right|=\sqrt{\mathbb{E}\left[N_{\mu}\right]}
$$

- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$
- Expected \# symbols appearing 100 and 101 times are close
- Momentarily assume: $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ independent
- New Estimator

$$
\left(N_{\mu-1}+N_{\mu}+N_{\mu+1}\right) / 3
$$

- Bias $\leq 2 \epsilon / 3 \leq \epsilon$
- Variance of sum $=$ sum of variances
- $\sigma^{\prime}=\sigma / \sqrt{3}$

$$
\text { error } \leq \frac{1}{\sqrt{3}} \sqrt{\mathbb{E}\left[N_{\mu}\right]}+\epsilon
$$

- Improvement

Technical Details

Technical Details

- $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ are not independent

Technical Details

- $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ are not independent
- Need to show

Technical Details

- $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ are not independent
- Need to show
- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$

Technical Details

- $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ are not independent
- Need to show
- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$
- Bounds on bias, variance are enough for concentration

Technical Details

- $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ are not independent
- Need to show
- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$
- Bounds on bias, variance are enough for concentration
- Simple averaging does not yield optimal estimator

Technical Details

- $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ are not independent
- Need to show
- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$
- Bounds on bias, variance are enough for concentration
- Simple averaging does not yield optimal estimator
- Explicit estimator such that bias and variance is optimized

Technical Details

- $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ are not independent
- Need to show
- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$
- Bounds on bias, variance are enough for concentration
- Simple averaging does not yield optimal estimator
- Explicit estimator such that bias and variance is optimized
- Properties of Poisson functions, distribution approximations

Technical Details

- $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ are not independent
- Need to show
- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$
- Bounds on bias, variance are enough for concentration
- Simple averaging does not yield optimal estimator
- Explicit estimator such that bias and variance is optimized
- Properties of Poisson functions, distribution approximations
- Adaptively choose the \# of non-zero coefficients based on X^{n}

Technical Details

- $N_{\mu-1}, N_{\mu}, N_{\mu+1}$ are not independent
- Need to show
- $\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu+1}\right]\right|,\left|\mathbb{E}\left[N_{\mu}\right]-\mathbb{E}\left[N_{\mu-1}\right]\right| \leq \epsilon$
- Bounds on bias, variance are enough for concentration
- Simple averaging does not yield optimal estimator
- Explicit estimator such that bias and variance is optimized
- Properties of Poisson functions, distribution approximations
- Adaptively choose the \# of non-zero coefficients based on X^{n}
- Converse: show that estimation is hard for some distributions

Estimator Properties

Estimator Properties

- Linear estimator for $\mathbb{E}\left[N_{\mu}\right]: \sum_{|i| \leq r} h_{i} N_{\mu+i}$

Estimator Properties

- Linear estimator for $\mathbb{E}\left[N_{\mu}\right]: \sum_{|i| \leq r} h_{i} N_{\mu+i}$
- Bias: $\mathbb{E}\left[N_{\mu}-\sum_{|i| \leq r} h_{i} N_{\mu+i}\right]$

$$
\mathbb{E}\left[N_{\mu}\right]=\sum_{x}\binom{n}{\mu} p_{x}^{\mu}\left(1-p_{x}\right)^{n-\mu}
$$

Estimator Properties

- Linear estimator for $\mathbb{E}\left[N_{\mu}\right]: \sum_{|i| \leq r} h_{i} N_{\mu+i}$
- Bias: $\mathbb{E}\left[N_{\mu}-\sum_{|i| \leq r} h_{i} N_{\mu+i}\right]$

$$
\mathbb{E}\left[N_{\mu}\right]=\sum_{x}\binom{n}{\mu} p_{x}^{\mu}\left(1-p_{x}\right)^{n-\mu}
$$

- Problem

Estimator Properties

- Linear estimator for $\mathbb{E}\left[N_{\mu}\right]: \sum_{|i| \leq r} h_{i} N_{\mu+i}$
- Bias: $\mathbb{E}\left[N_{\mu}-\sum_{|i| \leq r} h_{i} N_{\mu+i}\right]$

$$
\mathbb{E}\left[N_{\mu}\right]=\sum_{x}\binom{n}{\mu} p_{x}^{\mu}\left(1-p_{x}\right)^{n-\mu}
$$

- Problem
- After rescaling, contribution of symbol with probability p

$$
\binom{n}{\mu} p^{\mu}(1-p)^{n-\mu} \sum_{|i| \leq r} h_{i}^{\prime}\left(\frac{n p}{\mu}\right)^{i}
$$

Estimator Properties

- Linear estimator for $\mathbb{E}\left[N_{\mu}\right]: \sum_{|i| \leq r} h_{i} N_{\mu+i}$
- Bias: $\mathbb{E}\left[N_{\mu}-\sum_{|i| \leq r} h_{i} N_{\mu+i}\right]$

$$
\mathbb{E}\left[N_{\mu}\right]=\sum_{x}\binom{n}{\mu} p_{x}^{\mu}\left(1-p_{x}\right)^{n-\mu}
$$

- Problem
- After rescaling, contribution of symbol with probability p

$$
\binom{n}{\mu} p^{\mu}(1-p)^{n-\mu} \sum_{|i| \leq r} h_{i}^{\prime}\left(\frac{n p}{\mu}\right)^{i}
$$

- h_{i}^{\prime} : scaled version of $h_{i} \mathrm{~s}$

Estimator Properties

- Linear estimator for $\mathbb{E}\left[N_{\mu}\right]: \sum_{|i| \leq r} h_{i} N_{\mu+i}$
- Bias: $\mathbb{E}\left[N_{\mu}-\sum_{|i| \leq r} h_{i} N_{\mu+i}\right]$

$$
\mathbb{E}\left[N_{\mu}\right]=\sum_{x}\binom{n}{\mu} p_{x}^{\mu}\left(1-p_{x}\right)^{n-\mu}
$$

- Problem
- After rescaling, contribution of symbol with probability p

$$
\binom{n}{\mu} p^{\mu}(1-p)^{n-\mu} \sum_{|i| \leq r} h_{i}^{\prime}\left(\frac{n p}{\mu}\right)^{i}
$$

- h_{i}^{\prime} : scaled version of $h_{i} \mathrm{~s}$
- Variance $\propto \max _{i} h_{i}^{2}$

Estimator Properties

- Linear estimator for $\mathbb{E}\left[N_{\mu}\right]: \sum_{|i| \leq r} h_{i} N_{\mu+i}$
- Bias: $\mathbb{E}\left[N_{\mu}-\sum_{|i| \leq r} h_{i} N_{\mu+i}\right]$

$$
\mathbb{E}\left[N_{\mu}\right]=\sum_{x}\binom{n}{\mu} p_{x}^{\mu}\left(1-p_{x}\right)^{n-\mu}
$$

- Problem
- After rescaling, contribution of symbol with probability p

$$
\binom{n}{\mu} p^{\mu}(1-p)^{n-\mu} \sum_{|i| \leq r} h_{i}^{\prime}\left(\frac{n p}{\mu}\right)^{i}
$$

- h_{i}^{\prime} : scaled version of $h_{i} \mathrm{~s}$
- Variance $\propto \max _{i} h_{i}^{2}$
- Set term close to $\binom{n}{\mu} p^{\mu}(1-p)^{n-\mu}$ s.t. $\max _{i} h(i)$ is bounded

A polynomial problem

A polynomial problem

- Approximating a polynomial with bounded co-efficients

A polynomial problem

- Approximating a polynomial with bounded co-efficients
- Let $x=\frac{n p}{\mu} \approx 1$

A polynomial problem

- Approximating a polynomial with bounded co-efficients
- Let $x=\frac{n p}{\mu} \approx 1$
- Minimize

$$
\begin{aligned}
& \delta=\max _{x \in(1-\epsilon, 1+\epsilon)}\left|1-\sum_{i=-r}^{r} h_{i} x^{i}\right| \\
& \text { s.t. } \max \left|h_{i}\right| \leq \frac{c}{r+1}, \quad\left|h_{i}-h_{i-1}\right|=\frac{c}{(r+1)^{2}}
\end{aligned}
$$

A polynomial problem

- Approximating a polynomial with bounded co-efficients
- Let $x=\frac{n p}{\mu} \approx 1$
- Minimize

$$
\begin{aligned}
& \delta=\max _{x \in(1-\epsilon, 1+\epsilon)}\left|1-\sum_{i=-r}^{r} h_{i} x^{i}\right| \\
& \text { s.t. } \max \left|h_{i}\right| \leq \frac{c}{r+1}, \quad\left|h_{i}-h_{i-1}\right|=\frac{c}{(r+1)^{2}}
\end{aligned}
$$

- $\sum_{i} h_{i}=1 \Longrightarrow \delta=\mathcal{O}(\epsilon)$

A polynomial problem

- Approximating a polynomial with bounded co-efficients
- Let $x=\frac{n p}{\mu} \approx 1$
- Minimize

$$
\begin{aligned}
& \delta=\max _{x \in(1-\epsilon, 1+\epsilon)}\left|1-\sum_{i=-r}^{r} h_{i} x^{i}\right| \\
& \text { s.t. } \max \left|h_{i}\right| \leq \frac{c}{r+1}, \quad\left|h_{i}-h_{i-1}\right|=\frac{c}{(r+1)^{2}}
\end{aligned}
$$

- $\sum_{i} h_{i}=1 \Longrightarrow \delta=\mathcal{O}(\epsilon)$
- By symmetry, $h_{i}=h_{-i} \Longrightarrow \delta=\mathcal{O}\left(\epsilon^{2}\right)$

A polynomial problem

- Approximating a polynomial with bounded co-efficients
- Let $x=\frac{n p}{\mu} \approx 1$
- Minimize

$$
\begin{aligned}
& \delta=\max _{x \in(1-\epsilon, 1+\epsilon)}\left|1-\sum_{i=-r}^{r} h_{i} x^{i}\right| \\
& \text { s.t. } \max \left|h_{i}\right| \leq \frac{c}{r+1}, \quad\left|h_{i}-h_{i-1}\right|=\frac{c}{(r+1)^{2}}
\end{aligned}
$$

- $\sum_{i} h_{i}=1 \Longrightarrow \delta=\mathcal{O}(\epsilon)$
- By symmetry, $h_{i}=h_{-i} \Longrightarrow \delta=\mathcal{O}\left(\epsilon^{2}\right)$
- $\sum_{i} h_{i} i^{2}=0, \Longrightarrow \delta=\mathcal{O}\left(\epsilon^{4}\right)$

A polynomial problem

- Approximating a polynomial with bounded co-efficients
- Let $x=\frac{n p}{\mu} \approx 1$
- Minimize

$$
\begin{aligned}
& \delta=\max _{x \in(1-\epsilon, 1+\epsilon)}\left|1-\sum_{i=-r}^{r} h_{i} x^{i}\right| \\
& \text { s.t. } \max \left|h_{i}\right| \leq \frac{c}{r+1}, \quad\left|h_{i}-h_{i-1}\right|=\frac{c}{(r+1)^{2}}
\end{aligned}
$$

- $\sum_{i} h_{i}=1 \Longrightarrow \delta=\mathcal{O}(\epsilon)$
- By symmetry, $h_{i}=h_{-i} \Longrightarrow \delta=\mathcal{O}\left(\epsilon^{2}\right)$
- $\sum_{i} h_{i} i^{2}=0, \Longrightarrow \delta=\mathcal{O}\left(\epsilon^{4}\right)$
- $\sum_{i} h_{i}=1, \sum_{i} h_{i} i^{2}=0$, and $h_{r}=0$ uniquely represents a second degree polynomial of the form $h_{i}=\alpha i^{2}+\beta i+\gamma$ and satisfies above conditions

A polynomial problem

- Approximating a polynomial with bounded co-efficients
- Let $x=\frac{n p}{\mu} \approx 1$
- Minimize

$$
\begin{aligned}
& \delta=\max _{x \in(1-\epsilon, 1+\epsilon)}\left|1-\sum_{i=-r}^{r} h_{i} x^{i}\right| \\
& \text { s.t. } \max \left|h_{i}\right| \leq \frac{c}{r+1}, \quad\left|h_{i}-h_{i-1}\right|=\frac{c}{(r+1)^{2}}
\end{aligned}
$$

- $\sum_{i} h_{i}=1 \Longrightarrow \delta=\mathcal{O}(\epsilon)$
- By symmetry, $h_{i}=h_{-i} \Longrightarrow \delta=\mathcal{O}\left(\epsilon^{2}\right)$
- $\sum_{i} h_{i} i^{2}=0, \Longrightarrow \delta=\mathcal{O}\left(\epsilon^{4}\right)$
- $\sum_{i} h_{i}=1, \sum_{i} h_{i} i^{2}=0$, and $h_{r}=0$ uniquely represents a second degree polynomial of the form $h_{i}=\alpha i^{2}+\beta i+\gamma$ and satisfies above conditions
- Choose r to minimize bias-variance tradeoff

Putting pieces back together

Putting pieces back together

- The error: bias $+\sqrt{\text { variance }}$

Putting pieces back together

- The error: bias $+\sqrt{\text { variance }}$
- Good-Turing: $\frac{\sqrt{N_{\mu}} \mu}{n}$

Putting pieces back together

- The error: bias $+\sqrt{\text { variance }}$
- Good-Turing: $\frac{\sqrt{N_{\mu}} \mu}{n^{n}}$
- Empirical: $\frac{N_{\mu} \sqrt{\mu}}{n}$

Putting pieces back together

- The error: bias $+\sqrt{\text { variance }}$
- Good-Turing: $\frac{\sqrt{N_{\mu}} \mu}{{ }^{n}}$
- Empirical: $\frac{N_{\mu} \sqrt{\mu}}{n}$
- New error: $\frac{N_{\mu}^{3 / 4} \sqrt{\mu}}{n}$

Putting pieces back together

- The error: bias $+\sqrt{\text { variance }}$
- Good-Turing: $\frac{\sqrt{N_{\mu}} \mu}{{ }^{n}}$
- Empirical: $\frac{N_{\mu} \sqrt{\mu}}{n}$
- New error: $\frac{N_{\mu}^{3 / 4} \sqrt{\mu}}{n}$
- Adding over all multiplicities and maximizing for N_{μ} yields

$$
\widetilde{\mathcal{O}}\left(n^{-1 / 4}\right)
$$

Putting pieces back together

- The error: bias $+\sqrt{\text { variance }}$
- Good-Turing: $\frac{\sqrt{N_{\mu}} \mu}{\sqrt{n}^{n}}$
- Empirical: $\frac{N_{\mu} \sqrt{\mu}}{n}$
- New error: $\frac{N_{\mu}^{3 / 4} \sqrt{\mu}}{n}$
- Adding over all multiplicities and maximizing for N_{μ} yields

$$
\widetilde{\mathcal{O}}\left(n^{-1 / 4}\right)
$$

- \forall estimator there is a distribution with error $\widetilde{\Omega}\left(n^{-1 / 4}\right)$

Summary

Summary

- Probability estimation

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$
- Estimating S_{μ} independent of k

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$
- Estimating S_{μ} independent of k
- ℓ_{1} distance as function of \# samples

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$
- Estimating S_{μ} independent of k
- ℓ_{1} distance as function of \# samples
- Good-Turing: $\widetilde{\mathcal{O}}\left(n^{-1 / 6}\right)$

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$
- Estimating S_{μ} independent of k
- ℓ_{1} distance as function of \# samples
- Good-Turing: $\widetilde{\mathcal{O}}\left(n^{-1 / 6}\right)$
- Proposed estimator: $\widetilde{\mathcal{O}}\left(n^{-1 / 4}\right)$

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$
- Estimating S_{μ} independent of k
- ℓ_{1} distance as function of \# samples
- Good-Turing: $\widetilde{\mathcal{O}}\left(n^{-1 / 6}\right)$
- Proposed estimator: $\widetilde{\mathcal{O}}\left(n^{-1 / 4}\right)$
- Optimal

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$
- Estimating S_{μ} independent of k
- ℓ_{1} distance as function of \# samples
- Good-Turing: $\widetilde{\mathcal{O}}\left(n^{-1 / 6}\right)$
- Proposed estimator: $\widetilde{\mathcal{O}}\left(n^{-1 / 4}\right)$
- Optimal
- Linear-time complexity

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$
- Estimating S_{μ} independent of k
- ℓ_{1} distance as function of \# samples
- Good-Turing: $\widetilde{\mathcal{O}}\left(n^{-1 / 6}\right)$
- Proposed estimator: $\widetilde{\mathcal{O}}\left(n^{-1 / 4}\right)$
- Optimal
- Linear-time complexity
- Classification

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$
- Estimating S_{μ} independent of k
- ℓ_{1} distance as function of \# samples
- Good-Turing: $\widetilde{\mathcal{O}}\left(n^{-1 / 6}\right)$
- Proposed estimator: $\widetilde{\mathcal{O}}\left(n^{-1 / 4}\right)$
- Optimal
- Linear-time complexity
- Classification
- Can't compete with oracle classifier that knows p, q

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$
- Estimating S_{μ} independent of k
- ℓ_{1} distance as function of \# samples
- Good-Turing: $\widetilde{\mathcal{O}}\left(n^{-1 / 6}\right)$
- Proposed estimator: $\widetilde{\mathcal{O}}\left(n^{-1 / 4}\right)$
- Optimal
- Linear-time complexity
- Classification
- Can't compete with oracle classifier that knows p,q
- Label-invariant classifiers, or oracle knows multisets

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$
- Estimating S_{μ} independent of k
- ℓ_{1} distance as function of \# samples
- Good-Turing: $\widetilde{\mathcal{O}}\left(n^{-1 / 6}\right)$
- Proposed estimator: $\widetilde{\mathcal{O}}\left(n^{-1 / 4}\right)$
- Optimal
- Linear-time complexity
- Classification
- Can't compete with oracle classifier that knows p,q
- Label-invariant classifiers, or oracle knows multisets
- Proposed classifier: additional error $\widetilde{\mathcal{O}}\left(n^{-1 / 5}\right)$

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$
- Estimating S_{μ} independent of k
- ℓ_{1} distance as function of \# samples
- Good-Turing: $\widetilde{\mathcal{O}}\left(n^{-1 / 6}\right)$
- Proposed estimator: $\widetilde{\mathcal{O}}\left(n^{-1 / 4}\right)$
- Optimal
- Linear-time complexity
- Classification
- Can't compete with oracle classifier that knows p, q
- Label-invariant classifiers, or oracle knows multisets
- Proposed classifier: additional error $\widetilde{\mathcal{O}}\left(n^{-1 / 5}\right)$
- Independent of alphabet size

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$
- Estimating S_{μ} independent of k
- ℓ_{1} distance as function of \# samples
- Good-Turing: $\widetilde{\mathcal{O}}\left(n^{-1 / 6}\right)$
- Proposed estimator: $\widetilde{\mathcal{O}}\left(n^{-1 / 4}\right)$
- Optimal
- Linear-time complexity
- Classification
- Can't compete with oracle classifier that knows p, q
- Label-invariant classifiers, or oracle knows multisets
- Proposed classifier: additional error $\widetilde{\mathcal{O}}\left(n^{-1 / 5}\right)$
- Independent of alphabet size
- Converse: additional error $\widetilde{\Omega}\left(n^{-1 / 3}\right)$

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$
- Estimating S_{μ} independent of k
- ℓ_{1} distance as function of $\#$ samples
- Good-Turing: $\widetilde{\mathcal{O}}\left(n^{-1 / 6}\right)$
- Proposed estimator: $\widetilde{\mathcal{O}}\left(n^{-1 / 4}\right)$
- Optimal
- Linear-time complexity
- Classification
- Can't compete with oracle classifier that knows p, q
- Label-invariant classifiers, or oracle knows multisets
- Proposed classifier: additional error $\widetilde{\mathcal{O}}\left(n^{-1 / 5}\right)$
- Independent of alphabet size
- Converse: additional error $\widetilde{\Omega}\left(n^{-1 / 3}\right)$
- Prediction/universal compression

Summary

- Probability estimation
- Estimating p_{x} requires $n=\Theta(k)$
- Estimating S_{μ} independent of k
- ℓ_{1} distance as function of $\#$ samples
- Good-Turing: $\widetilde{\mathcal{O}}\left(n^{-1 / 6}\right)$
- Proposed estimator: $\widetilde{\mathcal{O}}\left(n^{-1 / 4}\right)$
- Optimal
- Linear-time complexity
- Classification
- Can't compete with oracle classifier that knows p, q
- Label-invariant classifiers, or oracle knows multisets
- Proposed classifier: additional error $\widetilde{\mathcal{O}}\left(n^{-1 / 5}\right)$
- Independent of alphabet size
- Converse: additional error $\widetilde{\Omega}\left(n^{-1 / 3}\right)$
- Prediction/universal compression
- Per-symbol redundancy $\widetilde{\mathcal{O}}\left(n^{-1 / 2}\right)$

Xie Xie

