Combinatorial Batch Codes

Anna Gál

UT Austin

Joint work with: Natalia Silberstein

Batch codes

[Ishai, Kushilevitz, Ostrovsky, Sahai, 2004]
string x of length $n \rightarrow m$ strings (buckets) such that ANY subset of k symbols from x can be retrieved by reading at most t symbols from each bucket.

Goal: keep t small (e.g. $t=1$) minimizing m AND total storage size.

Motivation

Load balancing in distributed storage

Given data set of n items, use m servers for storage

Load of server: number of symbols read from it

Minimize load of servers, number of servers,
while also minimizing total storage space.

Motivation Private Information Retrieval (PIR)

DATA: n-bit string x
USER: wishes to retrieve x_{i} and keep i private

Download entire x : n bits communication
With one server, improvement only possible under computational hardness assumptions [CGKS95]
e.g. $O\left(n^{\epsilon}\right), O(\log n)$ bits communication [KO97]
x is held by several servers
User gets i-th item, servers learn nothing about i.

2 servers: $O\left(n^{1 / 3}\right)$ [CGKS95]
s servers: $n^{1 / \Omega(s)}$ [CGKS95, Amb97, BIKR02]
$\log n$ servers polylog(n) communication

Time complexity of servers remains $\Omega(n)$.

PIR protocol to retrieve 1 bit of an n-bit string
$C(n)$: communication (number of bits transmitted)
$T(n)$: time complexity of servers

What is the cost to retrieve k bits?

Trivial: $\leq k C(n)$ communication, $\leq k T(n)$ time.

Suppose we have a batch code:
n bit string $\rightarrow m$ strings of lengths N_{1}, \ldots, N_{m}.
$t=1$: any k bits can be retrieved by reading at most
1 bit from each server
gives k out of n PIR protocol with
$\leq \sum_{i=1}^{m} C\left(N_{i}\right)$ communication
$\leq \sum_{i=1}^{m} T\left(N_{i}\right)$ time

Examples

$m=3$ servers; repeat $x 3$ times
To retrieve k bits, read $k / 3$ bits/server, $N=3 n$

Can we have storage $N=1.5 n$, and load $<k$? not possible with just replication for $m=3$.
($\exists n / 2$ bits at one server, $n / 6$ bits at same server)
$m=3, N=1.5 n$, load $k / 2$
split x in half: $x=(L, R)$, store $L, R, L \oplus R$ (retrieve any 2 bits reading 1 bit/server)

Combinatorial Batch Codes

Name by [Paterson, Stinson, Wei 2008].
Replication only batch codes
Each server gets a subset of the bits of x

Notation: $t=1,(n, N, k, m)-C B C$:
$x \in\{0,1\}^{n} \rightarrow m$ servers
ANY k bits of x can be retrieved by reading at most
1 bit from each server
N : total storage used

Matrix view

Rows: servers, columns: items

1	0	0	1	1	0
0	1	0	1	0	1
0	0	1	0	1	1

$(n, N, k, m)-C B C$:
Any k columns contain a "diagonal" of size k.

Set system view

$\mathcal{F}=F_{1}, \ldots, F_{m}$, where $F_{i} \subseteq[n]$
F_{i} specifies which bits stored at server i
(n, N, k, m) $-C B C$:
Any $A \subseteq[n]$ with $|A|=k$ forms a system of distinct representatives for some k members of \mathcal{F}.

Graph view

Bipartite graph $G=\left(V_{1}, V_{2}, E\right)$
$\left|V_{1}\right|=m$ servers, $\left|V_{2}\right|=n$ bits
edge $(i, j) \in E$ if j-th bit is stored at server i
(n, N, k, m) - CBC:
n by m bipartite graph, s.t. for any $A \subseteq V_{2}$ with $|A|=k$ there is a matching of A into some subset of V_{1}

Hall's Condition

For $A \subseteq V_{2}$ there is a matching of A into V_{1}
if and only if
$\forall S \subseteq A$ has $\geq|S|$ neighbours.
$(n, N, k, m)-C B C$:
$\forall S \subseteq V_{2}$ with $|S| \leq k$ has $\geq|S|$ neighbours.

Bipartite Expander graphs

$G=\left(V_{1}, V_{2}, E\right)$ is a (k, a)-vertex expander if $\forall S \subseteq V_{2}$ with $|S| \leq k$ has $\geq a|S|$ neighbours.
$(n, N, k, m)-C B C:(k, 1)$-expander.
want to minimize N (number of edges)

Two Trivial CBCs

1. $C(x)=x, x, \ldots, x ; m=k$, but storage $N=k n$ very large

1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1

2. $C(x)=x_{1}, x_{2}, \ldots, x_{n} N=n$, but $m=n$ very large

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

Note: $k \leq m \leq n$
(n, N, k, m)-CBC is called OPTIMAL if total storage N is minimal for given n, m and k.

1	0	0	1	1	1	1
0	1	0	1	1	1	1
0	0	1	1	1	1	1

$N(n, m, k)$ minimal value of N for given n, m, k.
Easy: $n \leq N(n, m, k) \leq k n-m(k-1)$

Precise values known for $k=2,3,4$ for any n and m; for $m=n, n-1, n-2$ for any k, and for $n \geq\binom{ m}{k-2}$.

Known bounds [PSW09, BRR12]

n	$N(n, k, m)$
$n \geq(k-1)\binom{m}{k-1}$	$k n-(k-1)\binom{m}{k-1}$
$\binom{m}{k-2} \leq n \leq(k-1)\binom{m}{k-1}$	$n(k-1)-\left\lfloor\frac{(k-1)\left(\left(_{k-1}^{m}\right)-n\right.}{m-k+1}\right\rfloor$

Last bound generalized [BRR12]
Let $1 \leq c \leq k-1$ be the least integer such that

$$
n \leq \frac{(k-1)\binom{m}{c}}{\binom{k-1}{c}}
$$

Then $N(n, k, m) \geq n c-\left\lfloor\frac{(k-c)\left(\frac{(k-1)\binom{m}{c}}{\binom{k-1}{c}}-n\right)}{m-k+1}\right\rfloor \geq n(c-1)$
[BRR12]: Tight for half of the values of n in the range $\binom{m}{k-2}-(m-k+1) A(m, 4, k-3) \leq n \leq\binom{ m}{k-2}$

Open if tight, even up to constant factors,
for $n<\binom{m}{k-2}-(m-k+1) A(m, 4, k-3)$
$A(m, 4, k-3)$: max \# of codewords in a binary constant weight code (length m, weight $k-3$ Hamming distance 4)

We construct optimal CBCs for n in this range

Block Designs

Subsets of "points" called "blocks"

1. each block contains exactly ℓ points
2. each pair of points is in exactly λ blocks

Transversal Designs

$T D(\ell, h): \ell$ groups of points each of size h

1. each block contains one point from each group
2. any pair of points from different groups in 1 block
lh points
number of blocks is h^{2}
number of blocks that contain a given point is h

Resolvable Transversal Designs

$T D(\ell, h)$ is resolvable if
set of h^{2} blocks can be partitioned into
h classes of h blocks, s.t.
each point is in exactly one block of each class
q prime power,
there exists resolvable $T D(\ell, q)$ for any $\ell \leq q$.
$T D(3,4)$
$\left(\begin{array}{llll|lllllllll|llll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0\end{array}\right)$
rows: points, columns: blocks

Optimal CBCs from transversal designs

We construct (n, N, k, m)-CBC for
$n=q^{2}+q-1, N=q^{3}-1, k=m-1, m=q(q-1)$.

Construction:
Add incidence vectors of groups to $T D(q-1, q)$

Optimal CBC

$$
\left(\begin{array}{llll|llll|llll|llll|lll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Proof ideas

Optimal construction for $m=n$:

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

Transversal designs seem to have the right structure for CBCs.

Proof ideas

We have to show,
any set of $r \leq k$ columns (blocks)
covers at least r points

Permutation matrices \rightarrow
condition holds for any subset within classes

Resolvability \rightarrow full class covers all m points

Proof ideas

What if we take one column from each class?
(ignore "special" class for now)
that is at most q columns ($r \leq q$)
any one column covers $q-1$ points,
so we just need one extra point

Use property of TD: any pair of columns
from different classes intersect in one point

Proof sketch

So far, proved condition for any set of $r \leq q$ columns.

Now let $r=i q+j(1 \leq j \leq q)$.
on average, about i columns/class

1. If there is a class with $>i+1$ columns used cover enough points by just this class: $(i+2)(q-1) \geq r$
2. Otherwise, largest class covers $(i+1)(q-1)$, show other classes cover enough additional points (usually one more class is sufficient)

Affine Plane of order q

exists when q is prime power
q^{2} points
$q(q+1)$ blocks of size q
each pair of points in exactly one block

Every affine plane is resolvable:
blocks can be partitioned into $q+1$ classes
(q blocks in each class) s.t.
each point is in exactly one block of each class
"Parallel classes": blocks within a class are disjoint
parallel "lines" (they don't intersect)

Affine plane of order q

$\left(\begin{array}{llll|llll|llll|llll|llll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

Uniform CBC

Each item stored at same number of servers.

Graph view: d-regular bipartite expander
Probabilistic constructions known - not optimal.

Optimal constructions were known for $d=2, k-1, k-2$

We give optimal constructions for $d=\sqrt{k}$.
Affine plane is uniform CBC, with $k=m=q^{2}$

OPEN PROBLEMS

Is the bound
$N(n, k, m) \geq n c-\left\lfloor\frac{(k-c)\left(\frac{(k-1)\binom{m}{c}}{\binom{k-1}{c}}-n\right)}{m-k+1}\right\rfloor$
always tight?

Optimal uniform CBCs for other values of d

