Combinatorial Batch Codes

Anna Gál

UT Austin

Joint work with: Natalia Silberstein

Batch codes

[Ishai, Kushilevitz, Ostrovsky, Sahai, 2004] string x of length $n \rightarrow m$ strings (buckets) such that ANY subset of k symbols from x can be retrieved by reading at most t symbols from each bucket.

Goal: keep t small (e.g. t = 1) minimizing m AND total storage size.

Motivation Load balancing in distributed storage

Given data set of n items, use m servers for storage

Load of server: number of symbols read from it

Minimize load of servers,

number of servers,

while also minimizing total storage space.

Motivation Private Information Retrieval (PIR)

DATA: *n*-bit string xUSER: wishes to retrieve x_i and keep *i* private

Download entire x: n bits communication With one server, improvement only possible under computational hardness assumptions [CGKS95] e.g. $O(n^{\epsilon}), O(\log n)$ bits communication [KO97]

x is held by several servers User gets *i*-th item, servers learn nothing about *i*.

2 servers: $O(n^{1/3})$ [CGKS95] s servers: $n^{1/\Omega(s)}$ [CGKS95, Amb97, BIKR02] log n servers polylog(n) communication

Time complexity of servers remains $\Omega(n)$.

PIR protocol to retrieve 1 bit of an *n*-bit string

C(n): communication (number of bits transmitted)T(n): time complexity of servers

What is the cost to retrieve k bits?

Trivial: $\leq kC(n)$ communication, $\leq kT(n)$ time.

Suppose we have a batch code:

n bit string $\rightarrow m$ strings of lengths N_1, \ldots, N_m .

t = 1: any k bits can be retrieved by reading at most 1 bit from each server

gives k out of n PIR protocol with $\leq \sum_{i=1}^{m} C(N_i)$ communication $\leq \sum_{i=1}^{m} T(N_i)$ time

Examples

m = 3 servers; repeat x 3 times

To retrieve k bits, read k/3 bits/server, N = 3n

Can we have storage N = 1.5n, and load < k? not possible with just replication for m = 3. $(\exists n/2 \text{ bits at one server, } n/6 \text{ bits at same server})$

m = 3, N = 1.5n, load k/2split x in half: x = (L, R), store $L, R, L \oplus R$ (retrieve any 2 bits reading 1 bit/server)

Combinatorial Batch Codes

Name by [Paterson, Stinson, Wei 2008]. Replication only batch codes Each server gets a subset of the bits of x

Notation: t = 1, (n, N, k, m) - CBC:

 $x \in \{0,1\}^n \to m$ servers

ANY k bits of x can be retrieved by reading at most

- 1 bit from each server
- N: total storage used

Matrix view

Rows: servers, columns: items

(n, N, k, m) - CBC: Any k columns contain a "diagonal" of size k.

Set system view

$$\mathcal{F} = F_1, \ldots, F_m$$
, where $F_i \subseteq [n]$

 F_i specifies which bits stored at server i

(n, N, k, m) - CBC: Any $A \subseteq [n]$ with |A| = k forms a system of distinct representatives for some k members of \mathcal{F} .

Graph view

Bipartite graph $G = (V_1, V_2, E)$

 $|V_1| = m$ servers, $|V_2| = n$ bits

edge $(i, j) \in E$ if j-th bit is stored at server i

(n, N, k, m) - CBC:

n by *m* bipartite graph, s.t. for any $A \subseteq V_2$ with |A| = k there is a matching of *A* into some subset of V_1

Hall's Condition

- For $A \subseteq V_2$ there is a matching of A into V_1 if and only if
- $\forall S \subseteq A \text{ has } \geq |S| \text{ neighbours.}$

(n, N, k, m) - CBC:

 $\forall S \subseteq V_2 \text{ with } |S| \leq k \text{ has } \geq |S| \text{ neighbours.}$

Bipartite Expander graphs

 $G = (V_1, V_2, E)$ is a (k, a)-vertex expander if $\forall S \subseteq V_2$ with $|S| \le k$ has $\ge a|S|$ neighbours.

(n, N, k, m) - CBC: (k, 1)-expander.

want to minimize N (number of edges)

Two Trivial CBCs

1. C(x) = x, x, ..., x; m = k, but storage N = kn very large

1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1

2. $C(x) = x_1, x_2, \ldots, x_n$ N = n, but m = n very large

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

Note: $k \le m \le n$

(n, N, k, m)-CBC is called OPTIMAL if total storage N is minimal for given n, m and k.

N(n, m, k) minimal value of N for given n, m, k. Easy: $n \le N(n, m, k) \le kn - m(k - 1)$

Precise values known for k = 2, 3, 4 for any n and m; for m = n, n - 1, n - 2 for any k, and for $n \ge {m \choose k-2}$.

Known bounds [PSW09, BRR12]

n	N(n,k,m)
$n \ge (k-1)\binom{m}{k-1}$	$kn - (k-1)\binom{m}{k-1}$
$\binom{m}{k-2} \leq n \leq (k-1)\binom{m}{k-1}$	$\left\lfloor n(k-1) - \left\lfloor rac{(k-1)\binom{m}{k-1} - n}{m-k+1} ight floor$

Last bound generalized [BRR12] Let $1 \le c \le k-1$ be the least integer such that

$$n \leq \frac{(k-1)\binom{m}{c}}{\binom{k-1}{c}}.$$

Then $N(n,k,m) \geq nc - \left\lfloor \frac{(k-c)\binom{(k-1)\binom{m}{c}}{\binom{k-1}{c}} - n}{\binom{m-k+1}{m-k+1}} \right\rfloor \geq n(c-1)$

[BRR12]: Tight for half of the values of n in the range $\binom{m}{k-2} - (m-k+1)A(m,4,k-3) \le n \le \binom{m}{k-2}$

Open if tight, even up to constant factors,

for
$$n < \binom{m}{k-2} - (m-k+1)A(m,4,k-3)$$

A(m, 4, k-3): max # of codewords in a binary constant weight code (length m, weight k-3 Hamming distance 4)

We construct optimal CBCs for n in this range

Block Designs

Subsets of "points" called "blocks"

1. each block contains exactly ℓ points

2. each pair of points is in exactly λ blocks

Transversal Designs

 $TD(\ell, h)$: ℓ groups of points each of size h

- 1. each block contains one point from each group
- 2. any pair of points from different groups in 1 block

lh points number of blocks is h^2 number of blocks that contain a given point is h

Resolvable Transversal Designs

 $TD(\ell, h)$ is resolvable if set of h^2 blocks can be partitioned into h classes of h blocks, s.t. each point is in exactly one block of each class

q prime power,

there exists resolvable $TD(\ell, q)$ for any $\ell \leq q$.

TD(3,4)

rows: points, columns: blocks

Optimal CBCs from transversal designs

We construct
$$(n, N, k, m)$$
-CBC for
 $n = q^2 + q - 1$, $N = q^3 - 1$, $k = m - 1$, $m = q(q - 1)$.

Construction: Add incidence vectors of groups to TD(q-1,q)

Optimal CBC

Proof ideas

Optimal construction for m = n:

Transversal designs seem to have the right structure for CBCs.

Proof ideas

We have to show, any set of $r \le k$ columns (blocks) covers at least r points

Permutation matrices \rightarrow

condition holds for any subset within classes

Resolvability \rightarrow full class covers all *m* points

Proof ideas

What if we take one column from each class? (ignore "special" class for now)

that is at most q columns $(r \leq q)$ any one column covers q - 1 points, so we just need one extra point

Use property of TD: any pair of columns from different classes intersect in one point

Proof sketch

So far, proved condition for any set of $r \leq q$ columns.

Now let r = iq + j $(1 \le j \le q)$. on average, about *i* columns/class

1. If there is a class with > i + 1 columns used cover enough points by just this class: $(i + 2)(q - 1) \ge r$

2. Otherwise, largest class covers (i + 1)(q - 1), show other classes cover enough additional points (usually one more class is sufficient)

Affine Plane of order q

exists when q is prime power

 q^2 points q(q+1) blocks of size qeach pair of points in exactly one block

Every affine plane is resolvable:

blocks can be partitioned into q + 1 classes (q blocks in each class) s.t. each point is in exactly one block of each class

"Parallel classes": blocks within a class are disjoint parallel "lines" (they don't intersect)

Affine plane of order q

(1000	1000	1000	1000	1000
	0100	0100	0100	0100	1000
	0010	0010	0010	0010	1000
	0001	0001	0001	0001	1000
	1000	0100	0001	0010	0100
	0100	1000	0010	0001	0100
	0010	0001	0100	1000	0100
	0001	0010	1000	0100	0100
	1000	0010	0100	0001	0010
	0100	0001	1000	0010	0010
	0010	1000	0001	0100	0010
	0001	0100	0010	1000	0010
	1000	0001	0010	0100	0001
	0100	0010	0001	1000	0001
	0010	0100	1000	0001	0001
	0001	1000	0100	0010	0001/

Uniform CBC

Each item stored at same number of servers.

Graph view: d-regular bipartite expander Probabilistic constructions known - not optimal.

Optimal constructions were known for d = 2, k-1, k-2

We give optimal constructions for $d = \sqrt{k}$.

Affine plane is uniform CBC, with $k = m = q^2$

OPEN PROBLEMS

Is the bound

$$N(n,k,m) \ge nc - \left\lfloor \frac{(k-c)\left(\frac{(k-1)\binom{m}{c}}{\binom{k-1}{c}} - n\right)}{m-k+1} \right\rfloor$$

always tight?

Optimal uniform CBCs for other values of \boldsymbol{d}