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Outline

• Stationary 1-D processes

– Entropy (rate)

– Markov chains

• Stationary 2-D processes

– Entropy (rate)

– 2-D Markov random fields (MRF)

– Examples of MRFs: Gibbs measures (e.g., hardcore, Ising,

Potts)

• Exponential Strong spatial mixing (ESSM)

• Main result: For any fixed 2-D stationary Gibbs measure, satisfy-

ing ESSM, there is an efficient algorithm to approximate entropy

(but only in dimension 2).

• Others get efficient algorithms for higher dimensional stationary

Gibbs measures, by establishing ESSM and computation tree for

special processes.

• Proof sketch
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Entropy of 1-D stationary processes

Entropy (rate) of a 1-D stationary processX = . . . X−1, X0, X1, . . .

(discrete time, finite-valued) is defined:

h(X) = lim
n→∞

H(X1 . . . Xn)

n
= lim

n→∞
H(X0|X−n, . . . , X−1)

Entropy of a stationary 1-D Markov chain, with transition matrix P

and stationary vector π, has a closed form expression:

h(X) = −
∑
ij

πiPij logPij

Example:

P =

[
1
λ

1
λ2

1 0

]
where λ = 1+

√
5

2 .

h(X) = log λ ≈ .69.

Note: X is supported on the Golden Mean constraint: forbid

adjacent 1’s.

Fact: this process is uniform in the sense that, for fixed values a, b,

Prob(x1 . . . xn|x0 = a, xn+1 = b)

is the uniform distribution on allowed sequences ax1 . . . xnb.
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Entropy of 2-D stationary processes

Entropy (rate) of a 2-D stationary process X = Xij, is defined

h(X) = lim
n→∞

H(Xi,j)1≤i,j≤n

n2

View process as a translation-invariant measure µ on AZ2
(set of

configurations on the 2-dimensional integer lattice with finite alpha-

bet A).

Markov random field:

A measure µ on AZ2
such that for any

• finite S ⊂ Z2,

• configuration x on S (x ∈ AS)

• finite T ⊂ Z2 s.t. ∂S ⊆ T ⊆ Z2 \ S

• configuration δ on T with µ(δ) > 0,

µ(x | δ) = µ(x | δ|∂S)
uniform MRF: for a given hard constraint, each µ(· | δ|∂S) is

uniform.

Example: uniform 2-D hard square measure: forbid adjacent 1’s,

horizontally and vertically.

h(X) ≈ .59.

Much harder to compute entropy of 2-D stationary MRF, even in

the uniform case. Known only in a handful of special cases.
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Q: What would be a satisfactory “formula” for the entropy?

One possible answer: an efficient algorithm: on input ϵ pro-

duces numbers h+, h− s.t.

• h− ≤ h(X) ≤ h+

• h+ − h− < ϵ

• h+, h− are computed in time poly(1/ϵ).

Fact: entropy of uniform 2-D Hard square measure has an efficient

algorithm (Weitz, Gamarnik-Katz; independently, Pavlov)
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Notation

Let µ be a stationary 2-D process.

Given finite set S ⊂ Zd,

Hµ(S) :=
∑
w∈AS

−µ(w) log(µ(w))

In this notation Entropy of µ is:

h(µ) = lim
n→∞

Hµ(Bn)

n2
,

where Bn is an n× n square.

Conditional entropy: for finite disjoint S, T ,

Hµ(S | T ) :=
∑

w∈AS ,y∈AT : µ(y)>0

−µ(w, y) log µ(w | y)

Extend to infinite T :

Hµ(S | T ) := lim
n

Hµ(S | Tn)

for a nested sequence of finite sets T1 ⊂ T2 ⊂ . . . with ∪nTn = T

Conditional entropy formula:

h(µ) = Hµ(0 | P−).

where P− = {z ∈ Z2 : z ≼ 0}, the lexicographic past of the origin.
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Exponential Strong Spatial Mixing (ESSM)

A stationary 2-D MRF µ satisfies exponential strong spatial

mixing (ESSM) if there exist C,α > 0 s.t. s.t

• for any disjoint S, T , with S, T ⊂ Bn

• any x ∈ AS, y ∈ AT , δ, δ′ ∈ A∂Bn s.t. µ(y, δ), µ(y, δ′) > 0,

|µ(x | y, δ)− µ(x | y, δ′)| < C|S|e−αd(S,∂Bn)

Fact: 2-D uniform hard squares satisfies ESSM (Weitz, Gamarnik-

Katz; independently, Pavlov)
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Exponentially tight upper and lower bounds

Let P+ = {z ∈ Z2 : z ≽ 0}, the lexicographic future of the

origin. Let Sn = Bn ∩ P+, and Un = Bn ∩ ∂P+.

Lemma 1: For a stationary 2-D MRF µ,

Hµ(0 | ∂Sn) ≤ h(µ) ≤ Hµ(0 | Un).

Proof:

Hµ(0 | ∂Sn) = Hµ(0 | ∂Sn,P−) ≤ Hµ(0 | P−) = h(µ) ≤ Hµ(0 |Un).

Theorem 1: For a stationary 2-D MRF µ that satisfies ESSM

|Hµ(0 | Un)−Hµ(0 | ∂Sn)| = O(n)e−αn

Proof idea: For y ∈ AUn, let

E(y) = {w ∈ A∂Sn\Un : µ(wy) > 0}
Then

Hµ(0 | Un) =
∑

y∈AUn : µ(y)>0

µ(y)Hµ(0 | y)

and

Hµ(0 | ∂Sn) =
∑

y∈AUn : µ(y)>0

µ(y)
∑

w∈E(y)

µ(w | y)Hµ(0 | yw).

By ESSM, for all x ∈ A0, y ∈ AUn, and w,w′ ∈ E(y),

|µ(x | yw)− µ(x | yw′)| ≤ Ce−αn.

And

µ(x | y) =
∑

w∈E(y)

µ(w | y)µ(x | yw),

Apply Jensen’s inequality.

Note: Lemma 1 and Theorem 1 extend to any dimension.

Q: How to efficiently approximate these upper and lower bounds?
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Stationary 2-D Gibbs measures:

MRFs are not so tractable in general: too many conditional prob-

ability measures.

nearest-neighbour interaction: function Φ, on configura-

tions on single sites and adjacent sites. Let

For finite set S ⊂ Z2, and any w ∈ AS, the energy function is

defined

UΦ
S (w) :=

∑
e

Φ(w(e)) +
∑
v

Φ(w(v))

where the sums range over all edges e and vertices v of S.

The partition function of Φ, S, δ ∈ A∂S is

ZΦ,δ(S) :=
∑
w∈AS

e−UΦ
S (wδ).

For any nearest-neighbor interaction Φ, an MRF µ is called a

Gibbs measure for Φ if for any finite set S ⊂ Z2 and δ ∈ A∂S for

which µ(δ) > 0, we have ZΦ,δ(S) ̸= 0 and, for any w ∈ AS,

µ(w|δ) = e−UΦ
S (wδ)

ZΦ,δ(S)
.
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Classical Gibbs measures

• Ising model: A = {±1}, Φ(a) = −βEa, Φ(a, b) = −βJab

for constants E (external magnetic field), J (coupling strength),

and β (inverse temperature).

• n-state Potts model: A = {1, . . . , n}, Φ(a) = 0, Φ(a, b) = −βJ

if a = b and 0 otherwise.

• uniform n-coloring measure: A = {1, . . . n}, Φ(a) = 0, Φ(a, b) =

∞ if a = b and 0 otherwise; this can be thought of as the limiting

case of the n-state Potts model as β → −∞.

• uniform hard square measure: A = {0, 1}, Φ(a) = 0, Φ(a, b) = 0

unless a = b = 1 in which case Φ(a, b) = ∞
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Efficient approximation of the upper and lower bounds.

Theorem 2: Let µ be a stationary 2-D Gibbs measure which sat-

isfies ESSM. Let Kn satisfy Kn ⊂ Bn and |Kn| = O(n). Then for

some for some C ′, α′ > 0. there is an algorithm which, on input n,

computes upper and lower bounds to Hµ(0 | Kn) in time eO(n) to

within tolerance C ′e−α′n.

Corollary (Main Result): Let µ be a stationary 2-D Gibbs measure

which satisfies ESSM. Then there is an algorithm which, on input

ϵ > 0, computes upper and lower bounds to h(µ) in time poly(1/ϵ)

within tolerance ϵ.

Note; algorithm does not require knowledge of decay rate α of

ESSM.

Proof of Corollary: Write ϵ = Cne−αn + C ′e−α′n. By Lemma 1

and Theorem 1, Hµ(0 | ∂Sn) and Hµ(0 | Un) are upper and lower

approximations to within tolerance ϵ. Apply Theorem 2 toKn = ∂Sn

and Kn = Un. Each can be approximated to within tolerance ϵ in

time eO(n) = poly(1/ϵ).

Note: Proof extends to any dimension to give an algorithm, but

is not efficient.
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Sketch of Proof of Theorem 2:

Fix L > 0.

Step 1: For w ∈ AKn, and δ ∈ A∂Bn+Ln, compute µ(w|δ) exactly.

Idea: Set up modified transfer matrix to compute UΦ
S (w) and

ZΦ,δ
S (Bn+Ln) exactly.

computation error = 0.

computation time = eO(n+Ln).

Step 2: For w ∈ AKn find δ±w ∈ A∂Bn+Ln s.t.

µ−(w) := µ(w|δ−w ) ≤ µ(w) ≤ µ(w|δ+w ) =: µ+(w)

Idea: µ(w) =
∑

δ µ(w|δ)µ(δ).
computation error = e−αLn (by ESSM)

computation time = eO(n+Ln) (brute force)

Step 3: Do same as in Step 2 for µ(x0|w) instead of µ(w)

Step 4: Form H±
µ (0 | Kn) by replacing each µ(w) by µ±(w) and

each µ(x0|w) by µ±(x0|w).
computation error = eO(n)e−αLn

computation time = eO(n)eO(n+Ln) = eO(n)

If L is sufficiently large (depending on |A|, α and some constants)

computation error = C ′e−α′n for some C ′, α′ > 0.
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