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— 2-D Markov random fields (MRF)
— Examples of MRFs: Gibbs measures (e.g., hardcore, Ising,
Potts)
e Exponential Strong spatial mixing (ESSM)

e Main result: For any fixed 2-D stationary Gibbs measure, satisfy-
ing ESSM, there is an efficient algorithm to approximate entropy
(but only in dimension 2).

e Others get efficient algorithms for higher dimensional stationary
Gibbs measures, by establishing ESSM and computation tree for
special processes.

e Proof sketch



Entropy of 1-D stationary processes

Entropy (rate) of a 1-D stationary process X = ... X 1, Xy, X1, . ..
(discrete time, finite-valued) is defined:
H(X,... X,
h(X) = lim X ) — Jim H(Xo| X n,..., X1)
n—00 n n—00

Entropy of a stationary 1-D Markov chain, with transition matrix P
and stationary vector 7, has a closed form expression:

h(X) = — Z Wipij 10g Pij

ij
1
2
3

|

h(X) =log A ~ .69.
Note: X is supported on the Golden Mean constraint: forbid

Example:

e o Ly

where \ = %5

adjacent 1’s.
Fact: this process is uniform in the sense that, for fixed values a, b,

Prob(zy ... x,|x0 = a, 2,01 = b)

is the uniform distribution on allowed sequences ax; ... x,b.



Entropy of 2-D stationary processes

Entropy (rate) of a 2-D stationary process X = X, is defined

H(Xi ) )i<ijen
h(X) _ hm ( 7])1§ IS

n—o0 7’),2

View process as a translation-invariant measure g on A% (set of
configurations on the 2-dimensional integer lattice with finite alpha-

bet A).

Markov random field:

A measure p on AZ* such that for any
e finite S C Z2,

e configuration z on S (z € A”)

o finite T'C Z*st. 0S CT CZ*\ S

e configuration § on T with u(d) > 0,

px | 0) = plx | dlas)
uniform MRF: for a given hard constraint, each u(- | d|gg) is

uniform.
Example: uniform 2-D hard square measure: forbid adjacent 1’s,

horizontally and vertically.
h(X) = .59.

Much harder to compute entropy of 2-D stationary MRF, even in
the uniform case. Known only in a handful of special cases.



Q: What would be a satisfactory “formula” for the entropy?

One possible answer: an efficient algorithm: on input € pro-
duces numbers h™, h~ s.t.

o h™ <h(X)<h'
e ht —h™ <e
e W, h™ are computed in time poly(1/e).

Fact: entropy of uniform 2-D Hard square measure has an efficient
algorithm (Weitz, Gamarnik-Katz; independently, Pavlov)



Notation

Let u be a stationary 2-D process.
Given finite set S C Z¢,
H,(S) = ) —p(w)log(p(w))
weAS

In this notation Entropy of w is:

h(p) = lim

n—o00 77,2
where B,, is an n X n square.

Conditional entropy: for finite disjoint S, T,

H,(S|T):= > —p(w, y) log p(w | y)

weAS ye AT 1(y)>0

Extend to infinite 71"
H,(S|T):=lmH,(S|T,)

for a nested sequence of finite sets Ty C T, C ... with U, 1, =T
Conditional entropy formula:

hi) = H, (0| P7)

where P~ = {2z € Z* : 2z < 0}, the lexicographic past of the origin.



Exponential Strong Spatial Mixing (ESSM)

A stationary 2-D MRF' p satisfies exponential strong spatial
mixing (ESSM) if there exist C,a > 0 s.t. s.t

e for any disjoint S, T, with S,T C B,
eany v € A%, yec AT, 6,8 € A% st pu(y, ), uly, 8') > 0,

(@ | y,8) — plx |y, )| < C|S|e o505

Fact: 2-D uniform hard squares satisfies ESSM (Weitz, Gamarnik-
Katz; independently, Pavlov)



Exponentially tight upper and lower bounds

Let Pt = {2z € Z* : z = 0}, the lexicographic future of the
origin. Let S, = B, NP", and U, = B, NPT,
Lemma 1: For a stationary 2-D MRF p,

H,(0 | 05,) < h(p) < H,(0 | Uy).
Proof:
H,(00S,) = H,(0]9S,,P") < H,(0| P~) = h(u) < H,(0| U,
Theorem 1: For a stationary 2-D MRF' p that satisfies ESSM
[H,(0 | U) = H,(0]9S,)] = O(n)e™
Proof idea: For y € AU», let
E(y) = {w € A% u(wy) > 0}

Then
Hy (0| U) = > py)Hu(0]y)
yeAUn: pu(y)>0
and
H,(0]0S,) = >  ply) > ww|yH,(0]yw).

yeAUn: 1u(y)>0 wek(y)
By ESSM, for all z € A%, y € AY" and w,w’ € E(y),
(@ [ yw) — plz | yu')] < Ce "
And
wla | y) = Z plw | y)pu(e | yw),

weE(y
Apply Jensen’s inequality.

Note: Lemma 1 and Theorem 1 extend to any dimension.

Q): How to efficiently approximate these upper and lower bounds?



Stationary 2-D Gibbs measures:

MRF's are not so tractable in general: too many conditional prob-
ability measures.

nearest-neighbour interaction: function ®, on configura-
tions on single sites and adjacent sites. Let

For finite set S C Z?, and any w € A”, the energy function is
defined

US(w) =) d(wle)) + Y (w(v))

where the sums range over all edges e and vertices v of S.

The partition function of @, 5,6 € A% is
Z‘”(S) — Z o Ug (wd)

weAS

For any nearest-neighbor interaction ®, an MRF p is called a
Gibbs measure for ® if for any finite set S C Z? and § € A% for
which (0) > 0, we have Z%(S) # 0 and, for any w € A°,

e—Ug(w(S)

p(wld) = Z‘I’T(S)'



Classical Gibbs measures

e [sing model: A = {£1}, ®(a) = —pfFa, ®(a,b) = —FJab
for constants E (external magnetic field), J (coupling strength),
and [ (inverse temperature).

e n-state Potts model: A ={1,...,n}, ®(a) =0, P(a,b) = —FJ
if @ = b and 0 otherwise.

e uniform n-coloring measure: A = {1,...n}, ®(a) =0, P(a,b) =
oo if @ = b and 0 otherwise; this can be thought of as the limiting
case of the n-state Potts model as § — —o0.

e uniform hard square measure: A = {0,1}, ®(a) =0, P(a,b) =0
unless a = b =1 in which case ®(a,b) = oo
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Efficient approximation of the upper and lower bounds.

Theorem 2: Let pu be a stationary 2-D Gibbs measure which sat-
isfies ESSM. Let K, satisty K,, C B, and |K,| = O(n). Then for
some for some C’, o/ > 0. there is an algorithm which, on input n,
computes upper and lower bounds to H,(0 | K,,) in time %™ to
within tolerance C'e".

Corollary (Main Result): Let p be a stationary 2-D Gibbs measure
which satisfies ESSM. Then there is an algorithm which, on input
e > 0, computes upper and lower bounds to A(u) in time poly(1/e)
within tolerance e.

Note; algorithm does not require knowledge of decay rate a of

ESSM.

Proof of Corollary: Write € = Cne " + C'e®". By Lemma 1
and Theorem 1, H,(0 | 05,) and H,(0 | U,) are upper and lower
approximations to within tolerance €. Apply Theorem 2 to K,, = 0.5,
and K, = U,. Each can be approximated to within tolerance € in
time e = poly(1/e).

Note: Proof extends to any dimension to give an algorithm, but
is not efficient.
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Sketch of Proof of Theorem 2:
Fix L > 0.
Step 1: For w € A%n and § € APrtin compute pu(w|d) exactly.

[dea: Set up modified transfer matrix to compute U&(w) and
Zg)’(s(BnJr In) exactly.

computation error = 0.

computation time = ¢?+Ln),

Step 2: For w € AX» find 6= € A9Bniin st
po(w) = p(wld,) < plw) < p(wldy) =: p(w)

Idea: p(w) = 325 p(w[0)u(9).
computation error = e~ (by ESSM)

computation time = e?+Ln) (

brute force)

Step 3: Do same as in Step 2 for p(zo|w) instead of p(w)

Step 4: Form H;(0 | K,) by replacing each p(w) by p*(w) and
cach pi(zolw) by p(zo|w).

O(n)e—&Ln

O(n+Ln)

computation error = e

O(n) O(n)

computation time = e~\"e =e
If L is sufficiently large (depending on |A|, v and some constants)

. 7
computation error = C'e~*" for some C’, o/ > 0.
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