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The mutual information between two random elements X and Y , a
measure of their mutual dependence, can be defined as

I(X ;Y ) = H(X )− H(X |Y )

= E
[
log

dµXY

dµX × µY
(X ,Y )

]
=

∫ ∫
log

fXY (x , y)
fX (x)fY (y)

fXY (x , y)dxdy .
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Consider the discrete-time Gaussian channel

Y ρ = ρX + Z ,

where Y ρ: output, X : input, Z : Gaussian r.v.,
and ρ2: signal-to-noise ratio.

In the paper Mutual information and minimum mean-square error in
Gaussian channels by Guo, Shamai, and Verdu, the I-MMSE
formula was obtained:

d
dρ

I(X ;Y ρ) = ρE
[
(X − E[X |Y ρ])2

]
.
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For the continuous-time channel

Y ρ
t = ρ

∫ t

0
Xsds + Wt , t ∈ [0,T ],

where W is a Brownian motion, the I-MMSE formula is

d
dρ

I(X ;Y ρ) = ρE
∫ T

0
(Xs − E[Xs|Y ρ])2 ds.
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We refer to the Shannon Lecture From Constrained Signaling to
Network Interference Via An Information-Estimation Perspective given
by Shamai for an overview of the applications of I-MMSE.
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Consider the channel
Y ρ = ρX + Z .

I(X ;Y ρ) = H(Y ρ)− H(Y ρ|X ) = H(Y ρ)− H(Z ).

d
dρ

I(X ;Y ρ) =
d
dρ

H(Y ρ) = − d
dρ

E[log fYρ(Y ρ)].
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Recall that Y ρ = ρX + Z .

Computation of
d
dρ

E[log fYρ(Y ρ)].

The approach by Guo, Shamai and Verdu,

d
dρ

∫
fYρ(y) log fYρ(y)dy =

∫
∂

∂ρ
fYρ(y) log fYρ(y)dy .

Our approach

d
dρ

∫ ∫
fX (x)fZ (z) log fXZ (ρx + z)dxdz = E

(
d
dρ

log fYρ(Y ρ)

)
.
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Suppose Z now is a general random variable with density function
eT (z), and E(X ) = 0. Consider the channel

Y ρ = ρX + Z .

It has been studied in Additive non-Gaussian noise channels:
mutual information and conditional mean estimation by Guo,
Shamai and Verdu.

Note that fYρ|X=x(y ; x) = eT (y−ρx), fY (y) =
∫
R eT (y−ρx)dµX (x).

d
dρ

fYρ(Y ρ) =
d
dρ

∫
R

eT (Yρ−ρx)µX (dx)

=
d
dρ

∫
R

eT (ρ(X−x)+Z )µX (dx)
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I-MMSE
De Bruijn’s identity

=

∫
R

eT (ρ(X−x)+Z )T ′(ρ(X − x) + Z )(X − x)µX (dx)

=

∫
R

fYρ|X=x(Y ρ; x)T ′(ρ(X − x) + Z )(X − x)µX (dx)

=fYρ(Y ρ)

∫
R

T ′(Y ρ − ρx)(X − x))µX |Yρ(dx ;Y ρ) (explain later)

=fYρ(Y ρ)
(
XE[T ′(Y ρ − ρX )|Y ρ]− E[T ′(Y ρ − ρX )X |Y ρ]

)
=fYρ(Y ρ)

(
XE[T ′(Z )|Y ρ]− E[T ′(Z )X |Y ρ]

)
.

fYρ|X=x(y ; x)µX (dx) = fYρ|X=x(y ; x)fX (x)dx = fXYρ(x , y)dx

=fYρ(y)fX |Yρ=y (x ; y)dx = fYρ(y)µX |Yρ=y (dx ; y).
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Hence we have

d
dρ

I(X ;Y ρ)

=− d
dρ

E[log fYρ(Y ρ)] = −E
[

1
fYρ(Y ρ)

d
dρ

fYρ(Y
ρ)

]
=− E

(
XE[T ′(Z )|Y ρ]

)
+ E

(
E[T ′(Z )X |Y ρ]

)
=− E

(
XE[T ′(Z )|Y ρ]

)
+ E[T ′(Z )X ]

=− E
(
XE[T ′(Z )|Y ρ]

)
.
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I-MMSE
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When T (x) = −x2/2,

− E(XE[T ′(Z )|Y ρ]) = E(XE[Z |Y ρ]) = E(XE[Y ρ − ρX |Y ρ])

=E(XY ρ)− ρE(XE[X |Y ρ]) = ρE(X 2) + E(XZ )− ρE(XE[X |Y ρ])

=ρE(X 2)− ρE(XE[X |Y ρ]) = ρE(X − E[X |Y ρ])2.
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Theorem
Let X be any random variable with a finite variance with density fX (x).
Let Z be an independent standard normally distributed random variable.
Then

d
dρ

H(X +
√
ρZ ) =

1
2

J(X +
√
ρZ ),

where J(·) is the Fisher information.

Let Y ρ = X +
√
ρZ .

Density function of Y ρ :

fYρ(y) =
∫
R

fX (x)√
2πρ

exp
(
−(y − x)2

2ρ

)
dx .
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fYρ(Y ρ) = fYρ(X +
√
ρZ ) =

∫
R

fX (x)√
2πρ

exp

(
−
(X +

√
ρZ − x)2

2ρ

)
dx .

d
dρ

fYρ(Y ρ)

=

∫
R

fX (x)√
2πρ

exp

(
−
(X +

√
ρZ − x)2

2ρ

)(
(X − x)(X +

√
ρZ − x)

2ρ2 − 1
2ρ

)
dx

=fYρ(Y ρ)

∫
R

fX |Yρ(x |Y ρ)

(
(X − x)(Y ρ − x)

2ρ2 − 1
2ρ

)
dx .

The Blue terms = fXYρ(x ,Y ρ).
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d
dρ

H(Y ρ) = −E
[

1
fYρ(Y ρ)

d
dρ

fYρ(Y ρ)

]
= E

[∫
R

fX |Yρ(x |Y ρ)

(
−(X − x)(Y ρ − x)

2ρ2 +
1
2ρ

)
dx
]

=
1

2ρ2E
(
− XY ρ + (X + Y ρ)E[X |Y ρ]− E[X 2|Y ρ]

)
+

1
2ρ

=
1

2ρ2

(
−E[X 2] + E[(E[X |Y ρ])2]

)
+

1
2ρ

22 / 39



Problem and background
Comparison between old approach and our observation

New proofs based on our observation
Main results

I-MMSE
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For the Fisher information J(Y ρ) = E
[(

f ′Yρ (Y
ρ)

fYρ (Yρ)

)2
]
.

f ′Yρ(y) =
∫
R

fX (x)√
2πρ

exp
(
−(y − x)2

2ρ

)
x − y
ρ

dx

=fYρ(y)
∫
R

fX |Yρ(x |y)
x − y
ρ

dx .

f ′Yρ(Y ρ) = fYρ(Y ρ)

∫
R

fX |Yρ(x |Y ρ)
x − Y ρ

ρ
dx =

1
ρ

fYρ(Y ρ)E [X − Y ρ|Y ρ] .
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Y ρ = X +
√
ρZ .

J(Y ρ) = E

[(
f ′Yρ(Y

ρ)

fYρ(Y ρ)

)2
]

=
1
ρ2E (E [X − Y ρ|Y ρ])2 =

1
ρ
E (E [Z |Y ρ])2

=
1
ρ2

(
E[(E[X |Y ρ])2 + E [(Y ρ)2]− 2E[XY ρ]

)
,

d
dρ

H(Y ρ) =
1
2

J(Y ρ),

since
ρ = E[(X − Y ρ)2].

24 / 39



Problem and background
Comparison between old approach and our observation

New proofs based on our observation
Main results

Discrete-time
Continuous-time

Theorem (Han-Song 2013)

Consider a discrete-time channel with feedback

Yi = ρgi(Xi ,Y i−1
1 ) + Zi , i = 1, · · · ,n,

where the density function of Zi ’s is eT (x). Then we have

dI(X n
1 ;Y

n
1 )

dρ
=

n∑
i=1

(
−E

(
(gi + ρ

d
dρ

gi)E [T ′(Zi)|Y n
1 ]

)
+ E

[
(gi + ρ

d
dρ

gi))T ′(Zi)

])
,

where gi = gi(Xi ,Y i−1
1 ).
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f (yn
1 ) means the density function of Y n

1 , f (Y n
1 ) means the density

function of Y n
1 evaluated at Y n

1 , f (yn
1 |xn

1 ) means the conditional
density function of Y n

1 given X n
1 = xn

1 , and so on.

I(X n
1 ;Y

n
1 ) = H(Y n

1 )− H(Y n
1 |X n

1 ) = −E log f (Y n
1 )− H(Y n

1 |X n
1 ).

H(Y n
1 |X n

1 ) =
n∑

i=1

H(Yi |X n
1 ,Y

i−1
1 ) = nH(Z1).

Hence

dI(X ;Y )

dρ
= −E

[
d
dρ

log f (Y n
1 )

]
= −E

[
1

f (Y n
1 )

d
dρ

f (Y n
1 )

]
.
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f (yn
1 |xn

1 ) =f (y1|xn
1 )f (y2|y1, xn

1 ) · · · f (yn|yn−1
1 , xn

1 )

=
n∏

i=1

exp
(

T (yi − ρgi(xi , y i−1
1 ))

)
.

d
dρ

f (Y n
1 )

=
d
dρ

∫
Rn

f (Y n
1 |xn

1 )f (x
n
1 )dx =

∫
Rn

d
dρ

f (Y n
1 |xn

1 )f (x
n
1 )dx

=

∫
Rn

d
dρ

n∏
i=1

exp
(

T
(

Yi − ρgi(xi ,Y i−1
1 )

))
f (xn

1 )dx

=

∫
Rn

d
dρ

n∏
i=1

exp
(

T
(
ρgi(Xi ,Y i−1

1 )− ρgi(xi ,Y i−1
1 ) + Zi

))
f (xn

1 )dx
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Discrete-time
Continuous-time

=

∫
Rn

f (Y n
1 |xn

1 )
n∑

i=1

T ′(Yi − ρgi(xi ,Y i−1
1 )

[
gi(Xi ,Y i−1

1 )− gi(xi ,Y i−1
1 )

+ ρ
d
dρ

(
gi(Xi ,Y i−1

1 )− gi(xi ,Y i−1
1 )

)]
f (xn

1 )dx

=f (Y n
1 )

∫
Rn

n∑
i=1

T ′(Yi − ρg(xi ,Y i−1
1 )

[
gi(Xi ,Y i−1

1 )− gi(xi ,Y i−1
1 )

+ ρ
d
dρ

(
gi(Xi ,Y i−1

1 )− gi(xi ,Y i−1
1 )

)]
f (xn

1 |Y n
1 )dx .

Denote gi := gi(Xi ,Y i−1
1 ) and g̃i := gi(xi ,Y i−1

1 ).
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Discrete-time
Continuous-time

d
dρ

fX (Y n
1 )

=fX (Y n
1 )

n∑
i=1

∫
Rn

T ′(Yi − ρg̃i)

[
(gi + ρ

d
dρ

gi)− (g̃i + ρ
d
dρ

g̃i)

]
fX (xn

1 |Y n
1 )dx

=fX (Y n
1 )

n∑
i=1

(
(gi + ρ

d
dρ

gi)E
[

T ′(Yi − ρgi)
∣∣Y n

1
]
− E

[
(gi + ρ

d
dρ

gi)T ′(Yi − ρgi)

∣∣∣∣Y n
1

])

=fX (Y n
1 )

n∑
i=1

(
(gi + ρ

d
dρ

gi)E
[

T ′(Zi)
∣∣Y n

1
]
− E

[
(gi + ρ

d
dρ

gi)T ′(Zi)

∣∣∣∣Y n
1

])
.

dI(X ;Y ρ)

dρ
= −E

[
d
dρ

log fX (Y n
1 )

]
=

n∑
i=1

(
−E

(
(gi + ρ

d
dρ

gi)E
[

T ′(Zi)
∣∣Y n

1
])

+ E
[
(gi + ρ

d
dρ

gi)T ′(Zi)

])
.
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Discrete-time
Continuous-time

For the Gaussian channel where T (x) = −x2/2, we have

dI(X ;Y ρ)

dρ

=
n∑

i=1

(
E
(
(gi + ρ

d
dρ

gi)E [Zi |Y n
1 ]

)
− E

[
(gi + ρ

d
dρ

gi)Zi

])

=
n∑

i=1

(
E
(
(gi + ρ

d
dρ

gi)(Yi − ρE [gi |Y n
1 ])

)
− E

[
(gi + ρ

d
dρ

gi)(Yi − ρgi)

])

=
n∑

i=1

(
ρE
[
(gi − E(gi |Y n

1 ))
2]+ ρ2E

[
(gi − E(gi |Y n

1 ))
d
dρ

gi

])
.
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Discrete-time
Continuous-time

Theorem (Han-Song 2013)

Consider the continuous-time channel with feedback

Y ρ
t = ρ

∫ t

0
g(s,Xs,Y ρ)ds + Wt , t ∈ [0,T ], (1)

where g : [0,T ]× R× C([0,T ];R)→ R is a bounded progressively
measurable function. We have

dI(X ;Y ρ)

dρ
= ρE

∫ T

0
(gs − E[gs|Y ρ])2 ds + ρ2

∫ T

0
E
[
(gs − E [gs|Y ρ])

∂gs

∂ρ

]
ds,

where gs = g(s,Xs,Y ρ).
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Discrete-time
Continuous-time

For simplicity, consider the case g(s,Xs,Y ) = Xs.

Lemma (Cameron-Martin)

Yt = ρ
∫ t

0 Xsds + Wt , where W is a Wiener process, and X is
independent of W. Then we have

dµY |X

dµW
(y ;ω) = exp

(
ρ

∫ T

0
ωsdys −

ρ2

2

∫ t

0
ω2

s ds

)
, y ∈ C[0,T ],

and
dµY

dµW
(y) =

∫
C[0,T ]

dµY |X

dµW
(y ;ω)µX (dω).
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I(X ;Y ρ)

=E
[
log

dµXYρ

d(µX × µYρ)
(X ,Y ρ)

]
=E

[
log

dµYρ|X

dµW
(Y ρ;X )

]
− E

[
log

dµYρ

dµW
(Y ρ)

]
=
ρ2

2

∫ T

0
E[X 2

s ]ds − E
[
log

dµYρ

dµW
(Y ρ)

]

d
dρ

I(X ;Y ρ)

=ρ

∫ T

0
E[X 2

s ]ds − d
dρ

E
[
log

dµYρ

dµW
(Y ρ)

]
.
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d
dρ

(
dµYρ

dµW
(Y ρ)

)
=

d
dρ

∫
C[0,T ]

dµYρ|X=ω

dµW
(Y ρ;ω)µX (dω)

=
d
dρ

∫
C[0,T ]

exp

{
ρ

∫ T

0
ωsdY ρ

s −
ρ2

2

∫ T

0
ω2

s ds

}
µX (dω)

=
d
dρ

∫
C[0,T ]

exp

{
ρ2
∫ T

0
ωsXsds + ρ

∫ T

0
ωsdWs −

ρ2

2

∫ T

0
ω2

s ds

}
µX (dω)

=

∫
C[0,T ]

(
ρ

∫ T

0
ωs(Xs − ωs)ds +

∫ T

0
ωsdY ρ

s

)
dµYρ|X=ω

dµW
(Y ρ;ω)µX (dω)
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=

∫
C[0,T ]

(
ρ

∫ T

0
ωs(Xs − ωs)ds +

∫ T

0
ωsdY ρ

s

)
dµXYρ

dµW
(dω,Y ρ)

=
dµYρ

dµW
(Y ρ)

∫
C[0,T ]

(
ρ

∫ T

0
ωs(Xs − ωs)ds +

∫ T

0
ωsdY ρ

s

)
µX |Yρ(dω;Y ρ)

=
dµYρ

dµW
(Y ρ)

(
ρ

∫ T

0
E [Xs|Y ρ]Xsds − ρ

∫ T

0
E
[

X 2
s

∣∣∣Y ρ
]

ds + E
[∫ T

0
XsdY ρ

s

∣∣∣∣Y ρ

])
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E
[

d
dρ

(
dµYρ

dµW
(Y ρ)

)
dµW

dµYρ
(Y ρ)

]
=ρ

∫ T

0
E [E [Xs|Y ρ]Xs]ds − ρ

∫ T

0
E
[
X 2

s

]
ds + E

[∫ T

0
XsdY ρ

s

]

=ρ

∫ T

0
E
[
(E [Xs|Y ρ])2

]
ds.

d
dρ

I(X ;Y ρ)

=ρ

∫ T

0
E[X 2

s ]ds − d
dρ

E
[
log

dµYρ

dµW
(Y ρ)

]
=ρ

∫ T

0
E
[
(Xs − E [Xs|Y ρ])2

]
ds.
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Further study

I-MMSE when W is a general Gaussian process.

Applications of I-MMSE.
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Mutual information and minimum mean-square error in Gaussian
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D. Guo, S. Shamai, and S. Verdu.

Additive non-Gaussian noise channels: mutual information and
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THANK YOU!

39 / 39


	Problem and background
	Comparison between old approach and our observation
	New proofs based on our observation
	I-MMSE
	De Bruijn's identity

	Main results
	Discrete-time
	Continuous-time


