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Problem and background

The mutual information between two random elements X and Y, a
measure of their mutual dependence, can be defined as

I(X; Y) = H(X) — H(X|Y)

. duxy
" [Iogduxxuy(x’ g

//)g&y j e (x, ) cecly.
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Problem and background

@ Consider the discrete-time Gaussian channel
YP =pX+Z,
where Y?: output, X: input, Z: Gaussian r.v.,
and p?: signal-to-noise ratio.

@ In the paper Mutual information and minimum mean-square error in
Gaussian channels by Guo, Shamai, and Verdu, the -MMSE
formula was obtained:

d

3,06 Y7) = o (X ~ EIX] YP])Z] .
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Problem and background

For the continuous-time channel
t
W —p/ Xsds + Wy, t € [0, T,
0

where W is a Brownian motion, the I-MMSE formula is

.
il(x; Y?) = pE / (Xs — E[Xs| Y?])? ds.
dp 0
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Problem and background

We refer to the Shannon Lecture From Constrained Signaling to
Network Interference Via An Information-Estimation Perspective given
by Shamaifor an overview of the applications of -MMSE.

6/39



Comparison between old approach and our observation

@ Consider the channel
YP =pX+Z.

I(X; YP) = H(Y?) — H(Y?|X) = H(Y?) — H(Z).

d d d
-YP) — Py — __ » P .
dpl(X' Y?) = de(Y )= dpE[Iog fye(YP)]
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Comparison between old approach and our observation

Recall that Y? = pX + Z.

Computation of
d
. 4
deE[Iog fyo(YP)].

@ The approach by Guo, Shamai and Verdu,
d/f ()Iof()d—/af (y)log fy»(y)d
dp velY)10Q Tye(y)ay = 6pypy gly.(y)ay.
@ Our approach

:p / / fx(x)fz(2) log fxz(px + z)dxdz = E (c;’jp log fyp(yp)> ‘
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I-MMSE

New proofs based on our observation De Bruijn’s identity

@ Suppose Z now is a general random variable with density function
e’(?) and E(X) = 0. Consider the channel

YP = pX + Z.

@ It has been studied in Additive non-Gaussian noise channels:
mutual information and conditional mean estimation by Guo,
Shamai and Verdu.

@ Note that fy, x_x(y; x) = €TV~ fy(y) = [ €TV dpux(x).

d d
p T(YP—px)
fyp(Y ) / e /Lx(dX)

— d T(p(X—x)+2)
—dpAe ,ux(dX)
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I-MMSE

New proofs based on our observation De Bruijn’s identity

B / e WX AT (p(X — X) + Z)(X — X)ux(dx)
R
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I-MMSE

New proofs based on our observation De Bruijn’s identity

B / e WX AT (p(X — X) + Z)(X — X)ux(dx)
R

B / Fropxax (Y7 X) T/ (p(X = X) + Z)(X = x)px ()
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I-MMSE

New proofs based on our observation De Bruijn’s identity

B / e WX AT (p(X — X) + Z)(X — X)ux(dx)
R
- / Fropx—x( Y7 )T (p(X = X) + Z)(X = x)px(dx)

=fyo(YP) /T’ )(X = X)) ve (dx; Y?) (explain later)
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I-MMSE

New proofs based on our observation De Bruijn’s identity

B / e WX AT (p(X — X) + Z)(X — X)ux(dx)
R
- / Fropx—x( Y7 )T (p(X = X) + Z)(X = x)px(dx)

:fyp(Yf’)/ T'(YP — px)(X — x))ux ve(dx; Y*) (explain later)
R
—fyo(Y?) (XE[T'(Y? = pX)| Y?] ~ E[T'(Y? — pX)X| Y*])
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I-MMSE

New proofs based on our observation De Bruijn’s identity

B / e WX AT (p(X — X) + Z)(X — X)ux(dx)
R
- / Fropx—x( Y7 )T (p(X = X) + Z)(X = x)px(dx)

:fyp(Yf’)/]R T(Y? — px)(X — X)) x| ve(dx; Y?) (explain later)

—fya(Y?) (XE[T'(Y? = pX)|Y?] — E[T/(Y? - pX)X]Y?))
=fyo(Y?) (XIE[T’(Z)\ Y?] - E[T'(Z2)X] Yp]).
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I-MMSE

New proofs based on our observation De Bruijn’s identity

B / e WX AT (p(X — X) + Z)(X — X)ux(dx)
R
- / Fropx—x( Y7 )T (p(X = X) + Z)(X = x)px(dx)

:fyp(Yf’)/]R T(Y? — px)(X — X)) x| ve(dx; Y?) (explain later)

—fya(Y?) (XE[T'(Y? = pX)|Y?] — E[T/(Y? - pX)X]Y?))
=fyo(Y?) (XIE[T’(Z)\ Y?] - E[T'(Z2)X] Yp]).

fyopx=x(¥: X)px(ax) = fyo x—x(¥; X)fx(X)dx = fxys(x, y)dx
=fyo (¥)fx)vo=y(X: y)aX = fyo(¥) x| ve=y(aX; ¥).
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I-MMSE

New proofs based on our observation De Bruijn’s identity

@ Hence we have

d P
d—pI(X; Y?)
d 1 d
=~ gprtea b (Yl = —E | 2y g ()

— —E (XE[T'(2)|Y"]) +E (E[T'(2)X| Y*])
— — E (XE[T'(2)|Y*]) + E[T(Z)X]
— —E (XE[T'(2)|Y"]) .
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I-MMSE

New proofs based on our observation De Bruijn’s identity

@ When T(x) = —x2/2,

— E(XE[T'(2)|Y’]) = E(XE[Z|Y’]) = E(XE[Y” — pX|Y"])
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I-MMSE

New proofs based on our observation De Bruijn’s identity

@ When T(x) = —x2/2,

— E(XE[T'(2)|Y?]) = E(XE[Z|Y*]) = E(XE[Y” — pX|Y"])
—E(XY?) — pE(XE[X|Y?]) = pE(X?) + E(XZ) — pE(XE[X|Y?])
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I-MMSE

New proofs based on our observation De Bruijn’s identity

@ When T(x) = —x2/2,

— E(XE[T'(2)|Y?]) = E(XE[Z|Y*]) = E(XE[Y” — pX|Y"])
—E(XY?) — pE(XE[X|Y?]) = pE(X?) + E(XZ) — pE(XE[X|Y?])
=pE(X?) — pE(XE[X| Y*]) = pE(X — E[X|Y*]).
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I-MMSE
New proofs based on our observation De Bruijn’s identity

Theorem

Let X be any random variable with a finite variance with density fx(x).

Let Z be an independent standard normally distributed random variable.
Then

:pH(x +/pZ) = %J(X +./p2),

where J(-) is the Fisher information.

@ Let Y/ =X+ ,/pZ.

@ Density function of Y” :

fra(y) = /R %exp <—(y ;px)2>dx.
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I-MMSE

New proofs based on our observation De Bruijn’s identity

:
o (Y?) = Fro(X + pZ) = /R \%%exp (—(“ */fpz - X)z) )
-
;;)pr(Yp)
(g (e )
:fyp(w)/RfXW(x\ y?) <(X - X;E)ZP —x) _ 21,)> dx.

@ The Blue terms = fxy»(x, Y?).
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I-MMSE

New proofs based on our observation De Bruijn’s identity

9 hiyey = { fyp;yp) d fyp(Yp)}

d
,, =5 | [ anav) (<500 4 ) o]

_ 21[)2]@( ~ XY? £ (X + YP)E[X|Y?] — E[X?| Yp]) 4 21p
~ 5,2 (~EDXE]+ EIEXI YT + 5
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I-MMSE

New proofs based on our observation De Bruijn’s identity

2
@ For the Fisher information J(Y?) = E [(gi%ﬁ;) } .

)= [ 590 aip (U x)?) x—y

~ Jr V27p 2p P
X—y
nyp(}’)/fxwp(XW) ax.
R P
°
xX—Yr

f,,(Y?) = fyp(Yp)/ fijve (x| Y?) dx = %fyp(Y”)E [X — Y?|Y?].
R

p
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I-MMSE

New proofs based on our observation De Bruijn’s identity

° YP =X+ /pZ.

i (YP)\?
500 =2 | ({em)
— ZEEIX - YY) = SE(E(Z] V7))
_ ! (EIELX| Y21)? + EI(Y*)?] - 2B[XY7]) .
p
° d 1
g HY) =300,
since

p=E[(X - Y?)2].
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Discrete-time
Continuous-time
Main results

Theorem (Han-Song 2013)
Consider a discrete-time channel with feedback

Y =pgi(X, Yy )+ Z,i=1,---.n,
where the density function of Z;’s is e”X). Then we have

XY _ 5

dp 2 (_E <(gi ’ p;DQI)E [T'(2)] Y1n]) tE [(Qi + pddpgi))T/(Zi)

i=1

where g; = gi(X;, Y1 ).
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Discrete-time

Continuous-time

Main results

@ f(y{) means the density function of Y{, f(Y{") means the density
function of Y] evaluated at Y7, f(y{|x{') means the conditional
density function of Y given X{" = x{, and so on.

(]
e n
H(YTIXT) = > HYiIXP, Y1) = nH(Z).
i=1
@ Hence

d/(g(f;) Y) _E [;:0 log f( Yf)} —_E [f(:’f)(;jpf( Y{')] )
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Discrete-time

Continuous-time

Main results
o
I =F O X (valys, X7) - F(valyy " x])
n
=[] exp <T(YI — pgi(Xi, ;! ))) :
=1
o
d n

d/ ad

=— fY”x”fx”dx:/ — (Y| x) F(x{)dx
I | T ae = | A )

. d < i—1 n

= Jen dp ,-|:|1 exp (T (YI — pgi(Xi, Y ))) f(x{')ax

d . |
~ Jen dp I]__[exp (T <pg,-(X,-, Y™ = pgi(xi, Y1) + Z,)) f(xI)dx
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Discrete-time

Continuous-time

Main results

:/ Y1 ’X1 Z T/ PQ/ Xi, Y’ 1) [g,(X,, Y’ 1) g,-(x,-, Y1i_1)
+pr J (g( Yi ) - gi(xi Y’“)) } f(x)dx
d I is IAGAY RIS | 1
n
=f(Y7) / > T(Yi—pg(xi, ¥i ) [g;(X/, Yim1y — gi(x;, Vi)
i
d - :
e (9%, Yi™) = gilx i) } F(xP| YT dx
@ Denote g; := gi(X;, ¥; ') and §i := gi(xi, Y ).
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Discrete-time
Continuous-time

Main results

d n
prX(%)
n ° d = d~ n n
(S [ T 0@ [(g,-+pd—pg,-)—(gf+pd—pgf)} (7| Y7 ) o
i=1 R7?
n ., d . n|
=50 (@ o a)E [T ,-—pg,->|Y1]—E[(g,-+pd—pg,-)r(vf—pgf)\v1]
i=1 ’
n d
()Y ((0+ 9 - 0)E [T(@)] Y] - | @+ p-0)T'(@)| i) ).
i=1
(]
dx; vy [d )
IEY) 5|2 logfxm}
d /
fz( B0+ 5 0)E[T(2)] 7)) +E @+ 00 T'2)] ).
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Discrete-time

Continuous-time

Main results

@ For the Gaussian channel where T(x) = —x?/2, we have

dl(X YP)

)3 ( ((@+ o (21 D) ~E @+ 5-0)2]

n (E(g,+pd 9)(Yi — pE[gil Y{’])) [(g,-+p$gi)(Yi—pgf)D

3 (pE E(gIYD))?)] + P°E [(g—E(gAYf))j’pgD
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Discrete-time
Continuous-time
Main results

Theorem (Han-Song 2013)
Consider the continuous-time channel with feedback

t
V= [ ols.Xe, Y)ds+ Wt [0.7]
where g : [0, T] x R x C([0, T];R) — R is a bounded progressively
measurable function. We have

ai(X: Y? 7 r 0
LT ik [ (oo Elaul V"D o5+ 2 [ E|(0s—Elgsl Y7)) 22
P 0 0 2

where gs = g(s, Xs, Y?).

as,
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Discrete-time

Continuous-time
Main results

@ For simplicity, consider the case g(s, Xs, Y) = Xs.

Lemma (Cameron-Martin)

Yi=0p fot Xsds + W, where W is a Wiener process, and X is
independent of W. Then we have

d T 2 t
“Y‘X(y:w) = exp p/ wsdys — p/ wids |,y € C[0, T],
duw 0 2 Jo

duy / dpy|x
—(y) = ;W dw).
dﬂw(y) cto.1 dpw (¥i w)px(dw)
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Discrete-time

Continuous-time

Main results

I(X; Y?)

_ dpuxye "
= [Iog d(ux x MYP)(X’ Y )]

duye|x ] [ duye ]
=E |[log ———(Y?; X)| — E |{log ——(Y”
log “ 7% (v#, )| - 2 |log S (v7)
2 T
_r 21ds — duye (v
_2/0 E[Xs]ds E[Iog CIMW(Y)}
d
S xye
3,/ ")

4 o} d,lLYp
= E[X?]ds — —E [Io
p [ ElXEl0s - 78 log

duw (yp)] '
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Discrete-time

Continuous-time

Main results

d d,LLYP >
) yr
dp (duw( )

d / duye|x=w
=— —(Y*w dw
dp Jepn duw ( Jiux(0o)

d T p2 T 5
=— ex wsdY? — —/ wsds dw
dp /C[O,T] p P/O sATg 2/, s px(dw)
_d 2 [ woxedt "sdWs 2 [T 2d d
~ds exp § P WsAsAS + p wsA@Ws — & wsds ¢ pux(dw)
P Jclo,T] 0 0 0

T T d IS
- / <p / we(Xe — we)ds + / wdesf’) EXXe (0, )ux( o)
Clo,T] 0 0 nw
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Discrete-time

Continuous-time

Main results

T T
_/ (p/ ws(Xsfws)der/ wdes”) dpxve g, ye)
o, 7] 0 0 du

w

dpye r ’
:ﬁ(yp)/c[o . (,)/O ws(Xs —ws)ds+/0 wdes") pxjve (dw; Y*)

_dMYp

T T
(Y?) <p/ IE[XS|Y”]XSds—p/ E[ X
duw 0 0

.
YP} ds+E U XsdY?
0

Yp} >
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Discrete-time

Continuous-time

Main results

=[5 (Gow ) e )

:p/OTE[E[XS| Yﬂ]xs]ds—p/OTE[xg} ds+E /Oszdvg
:p/OTE [(®1X:] Y?1)?] ds
o
d
3,1 Y?)
/ E[X2]ds — [Iog m’(yp)]

o [ B[06 B Y12 05
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Discrete-time
Continuous-time
Main results

Further study

@ |I-MMSE when W is a general Gaussian process.
@ Applications of -MMSE.
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Discrete-time
Continuous-time

Main results
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Discrete-time

Continuous-time

Main results

THANK YOU!
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