A Generalization of the I-MMSE Formula

Jian Song
(joint work with Guangyue Han)

Department of Mathematics
Department of Statistics \& Actuarial Science
Hong Kong University
txjsong@hku.hk
(1) Problem and background
(2) Comparison between old approach and our observation
(3) New proofs based on our observation

- I-MMSE
- De Bruijn's identity
(4) Main results
- Discrete-time
- Continuous-time

The mutual information between two random elements X and Y, a measure of their mutual dependence, can be defined as

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =\mathbb{E}\left[\log \frac{d \mu_{X Y}}{d \mu_{X} \times \mu_{Y}}(X, Y)\right] \\
& =\iint \log \frac{f_{X Y}(x, y)}{f_{X}(x) f_{Y}(y)} f_{X Y}(x, y) d x d y .
\end{aligned}
$$

- Consider the discrete-time Gaussian channel

$$
Y^{\rho}=\rho X+Z
$$

where Y^{ρ} : output, X : input, Z : Gaussian r.v., and ρ^{2} : signal-to-noise ratio.

- In the paper Mutual information and minimum mean-square error in Gaussian channels by Guo, Shamai, and Verdu, the I-MMSE formula was obtained:

$$
\frac{d}{d \rho} I\left(X ; Y^{\rho}\right)=\rho \mathbb{E}\left[\left(X-\mathbb{E}\left[X \mid Y^{\rho}\right]\right)^{2}\right]
$$

For the continuous-time channel

$$
Y_{t}^{\rho}=\rho \int_{0}^{t} X_{s} d s+W_{t}, t \in[0, T]
$$

where W is a Brownian motion, the I-MMSE formula is

$$
\frac{d}{d \rho} I\left(X ; Y^{\rho}\right)=\rho \mathbb{E} \int_{0}^{T}\left(X_{s}-\mathbb{E}\left[X_{s} \mid Y^{\rho}\right]\right)^{2} d s
$$

We refer to the Shannon Lecture From Constrained Signaling to Network Interference Via An Information-Estimation Perspective given by Shamai for an overview of the applications of I-MMSE.

- Consider the channel

$$
Y^{\rho}=\rho X+Z
$$

$$
\begin{aligned}
& I\left(X ; Y^{\rho}\right)=H\left(Y^{\rho}\right)-H\left(Y^{\rho} \mid X\right)=H\left(Y^{\rho}\right)-H(Z) . \\
& \frac{d}{d \rho} I\left(X ; Y^{\rho}\right)=\frac{d}{d \rho} H\left(Y^{\rho}\right)=-\frac{d}{d \rho} \mathbb{E}\left[\log f_{Y \rho}\left(Y^{\rho}\right)\right] .
\end{aligned}
$$

Recall that $Y^{\rho}=\rho X+Z$.
Computation of

$$
\frac{d}{d \rho} \mathbb{E}\left[\log f_{Y^{\rho}}\left(Y^{\rho}\right)\right]
$$

- The approach by Guo, Shamai and Verdu,

$$
\frac{d}{d \rho} \int f_{Y \rho}(y) \log f_{Y \rho}(y) d y=\int \frac{\partial}{\partial \rho} f_{Y \rho}(y) \log f_{Y \rho}(y) d y
$$

- Our approach

$$
\frac{d}{d \rho} \iint f_{X}(x) f_{Z}(z) \log f_{X Z}(\rho x+z) d x d z=\mathbb{E}\left(\frac{d}{d \rho} \log f_{Y^{\rho}}\left(Y^{\rho}\right)\right)
$$

- Suppose Z now is a general random variable with density function $e^{T(z)}$, and $\mathbb{E}(X)=0$. Consider the channel

$$
Y^{\rho}=\rho X+Z
$$

- It has been studied in Additive non-Gaussian noise channels: mutual information and conditional mean estimation by Guo, Shamai and Verdu.
- Note that $f_{Y_{\rho} \mid X=x}(y ; x)=e^{T(y-\rho x)}, f_{Y}(y)=\int_{\mathbb{R}} e^{T(y-\rho x)} d \mu_{X}(x)$.

$$
\begin{aligned}
\frac{d}{d \rho} f_{Y \rho}\left(Y^{\rho}\right) & =\frac{d}{d \rho} \int_{\mathbb{R}} e^{T\left(Y^{\rho}-\rho x\right)} \mu_{X}(d x) \\
& =\frac{d}{d \rho} \int_{\mathbb{R}} e^{T(\rho(X-x)+Z)} \mu_{X}(d x)
\end{aligned}
$$

$$
=\int_{\mathbb{R}} e^{T(\rho(X-x)+Z)} T^{\prime}(\rho(X-x)+Z)(X-x) \mu_{X}(d x)
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}} e^{T(\rho(X-x)+Z)} T^{\prime}(\rho(X-x)+Z)(X-x) \mu_{X}(d x) \\
& =\int_{\mathbb{R}} f_{Y^{\rho} \mid X=x}\left(Y^{\rho} ; x\right) T^{\prime}(\rho(X-x)+Z)(X-x) \mu_{X}(d x)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}} e^{T(\rho(X-x)+Z)} T^{\prime}(\rho(X-x)+Z)(X-x) \mu_{X}(d x) \\
& =\int_{\mathbb{R}} f_{Y^{\rho} \mid X=x}\left(Y^{\rho} ; x\right) T^{\prime}(\rho(X-x)+Z)(X-x) \mu_{X}(d x) \\
& \left.=f_{Y^{\rho}}\left(Y^{\rho}\right) \int_{\mathbb{R}} T^{\prime}\left(Y^{\rho}-\rho x\right)(X-x)\right) \mu_{X \mid Y^{\rho}}\left(d x ; Y^{\rho}\right) \text { (explain later) }
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}} e^{T(\rho(X-x)+Z)} T^{\prime}(\rho(X-x)+Z)(X-x) \mu_{X}(d x) \\
& =\int_{\mathbb{R}} f_{Y^{\rho} \mid X=x}\left(Y^{\rho} ; x\right) T^{\prime}(\rho(X-x)+Z)(X-x) \mu_{X}(d x) \\
& \left.=f_{Y^{\rho}}\left(Y^{\rho}\right) \int_{\mathbb{R}} T^{\prime}\left(Y^{\rho}-\rho x\right)(X-x)\right) \mu_{X \mid Y^{\rho}}\left(d x ; Y^{\rho}\right) \text { (explain later) } \\
& =f_{Y^{\rho}}\left(Y^{\rho}\right)\left(X \mathbb{E}\left[T^{\prime}\left(Y^{\rho}-\rho X\right) \mid Y^{\rho}\right]-\mathbb{E}\left[T^{\prime}\left(Y^{\rho}-\rho X\right) X \mid Y^{\rho}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}} e^{T(\rho(X-x)+Z)} T^{\prime}(\rho(X-x)+Z)(X-x) \mu_{X}(d x) \\
& =\int_{\mathbb{R}} f_{Y^{\rho} \mid X=x}\left(Y^{\rho} ; x\right) T^{\prime}(\rho(X-x)+Z)(X-x) \mu_{X}(d x) \\
& \left.=f_{Y_{\rho}}\left(Y^{\rho}\right) \int_{\mathbb{R}} T^{\prime}\left(Y^{\rho}-\rho x\right)(X-x)\right) \mu_{X \mid Y^{\rho}}\left(d x ; Y^{\rho}\right) \text { (explain later) } \\
& =f_{Y^{\rho}}\left(Y^{\rho}\right)\left(X \mathbb{E}\left[T^{\prime}\left(Y^{\rho}-\rho X\right) \mid Y^{\rho}\right]-\mathbb{E}\left[T^{\prime}\left(Y^{\rho}-\rho X\right) X \mid Y^{\rho}\right]\right) \\
& =f_{Y_{\rho}(}\left(Y^{\rho}\right)\left(X \mathbb{E}\left[T^{\prime}(Z) \mid Y^{\rho}\right]-\mathbb{E}\left[T^{\prime}(Z) X \mid Y^{\rho}\right]\right) .
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}} e^{T(\rho(X-x)+Z)} T^{\prime}(\rho(X-x)+Z)(X-x) \mu_{X}(d x) \\
& =\int_{\mathbb{R}} f_{Y^{\rho} \mid X=x}\left(Y^{\rho} ; x\right) T^{\prime}(\rho(X-x)+Z)(X-x) \mu_{X}(d x) \\
& \left.=f_{Y^{\rho}}\left(Y^{\rho}\right) \int_{\mathbb{R}} T^{\prime}\left(Y^{\rho}-\rho x\right)(X-x)\right) \mu_{X \mid Y^{\rho}}\left(d x ; Y^{\rho}\right) \text { (explain later) } \\
& =f_{Y^{\rho}}\left(Y^{\rho}\right)\left(X \mathbb{E}\left[T^{\prime}\left(Y^{\rho}-\rho X\right) \mid Y^{\rho}\right]-\mathbb{E}\left[T^{\prime}\left(Y^{\rho}-\rho X\right) X \mid Y^{\rho}\right]\right) \\
& =f_{Y^{\rho}}\left(Y^{\rho}\right)\left(X \mathbb{E}\left[T^{\prime}(Z) \mid Y^{\rho}\right]-\mathbb{E}\left[T^{\prime}(Z) X \mid Y^{\rho}\right]\right) . \\
& \quad f_{Y^{\rho} \mid X=x}(y ; x) \mu_{X}(d x)=f_{Y^{\rho} \mid X=x}(y ; x) f_{X}(x) d x=f_{X Y \rho}(x, y) d x \\
& =f_{Y^{\rho}}(y) f_{X \mid Y^{\rho}=y}(x ; y) d x=f_{Y^{\rho}}(y) \mu_{X \mid Y^{\rho}=y}(d x ; y) .
\end{aligned}
$$

- Hence we have

$$
\begin{aligned}
& \frac{d}{d \rho} I\left(X ; Y^{\rho}\right) \\
= & -\frac{d}{d \rho} \mathbb{E}\left[\log f_{Y^{\rho}}\left(Y^{\rho}\right)\right]=-\mathbb{E}\left[\frac{1}{f_{Y^{\rho}}\left(Y^{\rho}\right)} \frac{d}{d \rho} f_{Y_{\rho}}\left(Y^{\rho}\right)\right] \\
= & -\mathbb{E}\left(X \mathbb{E}\left[T^{\prime}(Z) \mid Y^{\rho}\right]\right)+\mathbb{E}\left(\mathbb{E}\left[T^{\prime}(Z) X \mid Y^{\rho}\right]\right) \\
= & -\mathbb{E}\left(X \mathbb{E}\left[T^{\prime}(Z) \mid Y^{\rho}\right]\right)+\mathbb{E}\left[T^{\prime}(Z) X\right] \\
= & -\mathbb{E}\left(X \mathbb{E}\left[T^{\prime}(Z) \mid Y^{\rho}\right]\right) .
\end{aligned}
$$

- When $T(x)=-x^{2} / 2$,

$$
-\mathbb{E}\left(X \mathbb{E}\left[T^{\prime}(Z) \mid Y^{\rho}\right]\right)=\mathbb{E}\left(X \mathbb{E}\left[Z \mid Y^{\rho}\right]\right)=\mathbb{E}\left(X \mathbb{E}\left[Y^{\rho}-\rho X \mid Y^{\rho}\right]\right)
$$

- When $T(x)=-x^{2} / 2$,

$$
\begin{aligned}
& -\mathbb{E}\left(X \mathbb{E}\left[T^{\prime}(Z) \mid Y^{\rho}\right]\right)=\mathbb{E}\left(X \mathbb{E}\left[Z \mid Y^{\rho}\right]\right)=\mathbb{E}\left(X \mathbb{E}\left[Y^{\rho}-\rho X \mid Y^{\rho}\right]\right) \\
= & \mathbb{E}\left(X Y^{\rho}\right)-\rho \mathbb{E}\left(X \mathbb{E}\left[X \mid Y^{\rho}\right]\right)=\rho \mathbb{E}\left(X^{2}\right)+\mathbb{E}(X Z)-\rho \mathbb{E}\left(X \mathbb{E}\left[X \mid Y^{\rho}\right]\right)
\end{aligned}
$$

- When $T(x)=-x^{2} / 2$,

$$
\begin{aligned}
& -\mathbb{E}\left(X \mathbb{E}\left[T^{\prime}(Z) \mid Y^{\rho}\right]\right)=\mathbb{E}\left(X \mathbb{E}\left[Z \mid Y^{\rho}\right]\right)=\mathbb{E}\left(X \mathbb{E}\left[Y^{\rho}-\rho X \mid Y^{\rho}\right]\right) \\
= & \mathbb{E}\left(X Y^{\rho}\right)-\rho \mathbb{E}\left(X \mathbb{E}\left[X \mid Y^{\rho}\right]\right)=\rho \mathbb{E}\left(X^{2}\right)+\mathbb{E}(X Z)-\rho \mathbb{E}\left(X \mathbb{E}\left[X \mid Y^{\rho}\right]\right) \\
= & \rho \mathbb{E}\left(X^{2}\right)-\rho \mathbb{E}\left(X \mathbb{E}\left[X \mid Y^{\rho}\right]\right)=\rho \mathbb{E}\left(X-\mathbb{E}\left[X \mid Y^{\rho}\right]\right)^{2} .
\end{aligned}
$$

Theorem

Let X be any random variable with a finite variance with density $f_{X}(x)$. Let Z be an independent standard normally distributed random variable. Then

$$
\frac{d}{d \rho} H(X+\sqrt{\rho} Z)=\frac{1}{2} J(X+\sqrt{\rho} Z)
$$

where $J(\cdot)$ is the Fisher information.

- Let $Y^{\rho}=X+\sqrt{\rho} Z$.
- Density function of Y^{ρ} :

$$
f_{Y \rho}(y)=\int_{\mathbb{R}} \frac{f_{X}(x)}{\sqrt{2 \pi \rho}} \exp \left(-\frac{(y-x)^{2}}{2 \rho}\right) d x
$$

$$
f_{Y \rho}\left(Y^{\rho}\right)=f_{Y \rho}(X+\sqrt{\rho} Z)=\int_{\mathbb{R}} \frac{f_{X}(x)}{\sqrt{2 \pi \rho}} \exp \left(-\frac{(X+\sqrt{\rho} Z-x)^{2}}{2 \rho}\right) d x
$$

$$
\begin{aligned}
& \frac{d}{d \rho} f_{Y_{\rho} \rho}\left(Y^{\rho}\right) \\
= & \int_{\mathbb{R}} \frac{f_{X}(x)}{\sqrt{2 \pi \rho}} \exp \left(-\frac{(X+\sqrt{\rho} Z-x)^{2}}{2 \rho}\right)\left(\frac{(X-x)(X+\sqrt{\rho} Z-x)}{2 \rho^{2}}-\frac{1}{2 \rho}\right) d x \\
= & f_{Y_{\rho}(}\left(Y^{\rho}\right) \int_{\mathbb{R}} f_{X \mid Y^{\rho}}\left(X \mid Y^{\rho}\right)\left(\frac{(X-x)\left(Y^{\rho}-x\right)}{2 \rho^{2}}-\frac{1}{2 \rho}\right) d x .
\end{aligned}
$$

- The Blue terms $=f_{X Y_{\rho}}\left(x, Y^{\rho}\right)$.

$$
\begin{aligned}
\frac{d}{d \rho} H\left(Y^{\rho}\right) & =-\mathbb{E}\left[\frac{1}{f_{Y \rho}\left(Y^{\rho}\right)} \frac{d}{d \rho} f_{Y \rho}\left(Y^{\rho}\right)\right] \\
& =\mathbb{E}\left[\int_{\mathbb{R}} f_{X \mid Y^{\rho}}\left(x \mid Y^{\rho}\right)\left(-\frac{(X-x)\left(Y^{\rho}-x\right)}{2 \rho^{2}}+\frac{1}{2 \rho}\right) d x\right] \\
& =\frac{1}{2 \rho^{2}} \mathbb{E}\left(-X Y^{\rho}+\left(X+Y^{\rho}\right) \mathbb{E}\left[X \mid Y^{\rho}\right]-\mathbb{E}\left[X^{2} \mid Y^{\rho}\right]\right)+\frac{1}{2 \rho} \\
& =\frac{1}{2 \rho^{2}}\left(-\mathbb{E}\left[X^{2}\right]+\mathbb{E}\left[\left(\mathbb{E}\left[X \mid Y^{\rho}\right]\right)^{2}\right]\right)+\frac{1}{2 \rho}
\end{aligned}
$$

- For the Fisher information $J\left(Y^{\rho}\right)=\mathbb{E}\left[\left(\frac{f_{y}^{\prime}\left(Y^{\rho}\right)}{f_{Y \rho}\left(Y^{\rho}\right)}\right)^{2}\right]$.

$$
\begin{aligned}
& f_{Y_{\rho}}^{\prime}(y)=\int_{\mathbb{R}} \frac{f_{X}(x)}{\sqrt{2 \pi \rho}} \exp \left(\frac{-(y-x)^{2}}{2 \rho}\right) \frac{x-y}{\rho} d x \\
= & f_{Y_{\rho}}(y) \int_{\mathbb{R}} f_{X \mid Y^{\rho}}(x \mid y) \frac{x-y}{\rho} d x .
\end{aligned}
$$

$$
f_{Y_{\rho}}^{\prime}\left(Y^{\rho}\right)=f_{Y_{\rho}(}\left(Y^{\rho}\right) \int_{\mathbb{R}} f_{X \mid Y^{\rho}}\left(x \mid Y^{\rho}\right) \frac{X-Y^{\rho}}{\rho} d x=\frac{1}{\rho} f_{Y_{\rho}}\left(Y^{\rho}\right) \mathbb{E}\left[X-Y^{\rho} \mid Y^{\rho}\right] .
$$

- $\boldsymbol{Y}^{\rho}=\boldsymbol{X}+\sqrt{\rho} \boldsymbol{Z}$.

$$
\begin{aligned}
J\left(Y^{\rho}\right) & =\mathbb{E}\left[\left(\frac{f_{Y^{\rho}}^{\prime}\left(Y^{\rho}\right)}{f_{Y_{\rho}}\left(Y^{\rho}\right)}\right)^{2}\right] \\
& =\frac{1}{\rho^{2}} \mathbb{E}\left(\mathbb{E}\left[X-Y^{\rho} \mid Y^{\rho}\right]\right)^{2}=\frac{1}{\rho} \mathbb{E}\left(\mathbb{E}\left[Z \mid Y^{\rho}\right]\right)^{2} \\
& =\frac{1}{\rho^{2}}\left(\mathbb{E}\left[\left(\mathbb{E}\left[X \mid Y^{\rho}\right]\right)^{2}+E\left[\left(Y^{\rho}\right)^{2}\right]-2 \mathbb{E}\left[X Y^{\rho}\right]\right)\right.
\end{aligned}
$$

$$
\frac{d}{d \rho} H\left(Y^{\rho}\right)=\frac{1}{2} J\left(Y^{\rho}\right)
$$

since

$$
\rho=\mathbb{E}\left[\left(X-Y^{\rho}\right)^{2}\right]
$$

Theorem (Han-Song 2013)

Consider a discrete-time channel with feedback

$$
Y_{i}=\rho g_{i}\left(X_{i}, Y_{1}^{i-1}\right)+Z_{i}, i=1, \cdots, n,
$$

where the density function of Z_{i} 's is $e^{T(x)}$. Then we have
$\left.\frac{d l\left(X_{1}^{n} ; Y_{1}^{n}\right)}{d \rho}=\sum_{i=1}^{n}\left(-\mathbb{E}\left(\left(g_{i}+\rho \frac{d}{d \rho} g_{i}\right) \mathbb{E}\left[T^{\prime}\left(Z_{i}\right) \mid Y_{1}^{n}\right]\right)+\mathbb{E}\left[\left(g_{i}+\rho \frac{d}{d \rho} g_{i}\right)\right) T^{\prime}\left(Z_{i}\right)\right]\right)$
where $g_{i}=g_{i}\left(X_{i}, Y_{1}^{i-1}\right)$.

- $f\left(y_{1}^{n}\right)$ means the density function of $Y_{1}^{n}, f\left(Y_{1}^{n}\right)$ means the density function of Y_{1}^{n} evaluated at $Y_{1}^{n}, f\left(y_{1}^{n} \mid x_{1}^{n}\right)$ means the conditional density function of Y_{1}^{n} given $X_{1}^{n}=x_{1}^{n}$, and so on.

$$
I\left(X_{1}^{n} ; Y_{1}^{n}\right)=H\left(Y_{1}^{n}\right)-H\left(Y_{1}^{n} \mid X_{1}^{n}\right)=-\mathbb{E} \log f\left(Y_{1}^{n}\right)-H\left(Y_{1}^{n} \mid X_{1}^{n}\right)
$$

$$
H\left(Y_{1}^{n} \mid X_{1}^{n}\right)=\sum_{i=1}^{n} H\left(Y_{i} \mid X_{1}^{n}, Y_{1}^{i-1}\right)=n H\left(Z_{1}\right)
$$

- Hence

$$
\frac{d l(X ; Y)}{d \rho}=-\mathbb{E}\left[\frac{d}{d \rho} \log f\left(Y_{1}^{n}\right)\right]=-\mathbb{E}\left[\frac{1}{f\left(Y_{1}^{n}\right)} \frac{d}{d \rho} f\left(Y_{1}^{n}\right)\right]
$$

$$
\begin{aligned}
f\left(y_{1}^{n} \mid x_{1}^{n}\right) & =f\left(y_{1} \mid x_{1}^{n}\right) f\left(y_{2} \mid y_{1}, x_{1}^{n}\right) \cdots f\left(y_{n} \mid y_{1}^{n-1}, x_{1}^{n}\right) \\
& =\prod_{i=1}^{n} \exp \left(T\left(y_{i}-\rho g_{i}\left(x_{i}, y_{1}^{i-1}\right)\right)\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d \rho} f\left(Y_{1}^{n}\right) \\
= & \frac{d}{d \rho} \int_{\mathbb{R}^{n}} f\left(Y_{1}^{n} \mid x_{1}^{n}\right) f\left(x_{1}^{n}\right) d x=\int_{\mathbb{R}^{n}} \frac{d}{d \rho} f\left(Y_{1}^{n} \mid x_{1}^{n}\right) f\left(x_{1}^{n}\right) d x \\
= & \int_{\mathbb{R}^{n}} \frac{d}{d \rho} \prod_{i=1}^{n} \exp \left(T\left(Y_{i}-\rho g_{i}\left(x_{i}, Y_{1}^{i-1}\right)\right)\right) f\left(x_{1}^{n}\right) d x \\
= & \int_{\mathbb{R}^{n}} \frac{d}{d \rho} \prod_{i=1}^{n} \exp \left(T\left(\rho g_{i}\left(X_{i}, Y_{1}^{i-1}\right)-\rho g_{i}\left(x_{i}, Y_{1}^{i-1}\right)+Z_{i}\right)\right) f\left(x_{1}^{n}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
&=\int_{\mathbb{R}^{n}} f\left(Y_{1}^{n} \mid x_{1}^{n}\right) \sum_{i=1}^{n} T^{\prime}\left(Y_{i}-\rho g_{i}\left(x_{i}, Y_{1}^{i-1}\right)\left[g_{i}\left(X_{i}, Y_{1}^{i-1}\right)-g_{i}\left(x_{i}, Y_{1}^{i-1}\right)\right.\right. \\
&\left.+\rho \frac{d}{d \rho}\left(g_{i}\left(X_{i}, Y_{1}^{i-1}\right)-g_{i}\left(x_{i}, Y_{1}^{i-1}\right)\right)\right] f\left(x_{1}^{n}\right) d x \\
&=f\left(Y_{1}^{n}\right) \int_{\mathbb{R}^{n}} \sum_{i=1}^{n} T^{\prime}\left(Y_{i}-\rho g\left(x_{i}, Y_{1}^{i-1}\right)\left[g_{i}\left(X_{i}, Y_{1}^{i-1}\right)-g_{i}\left(x_{i}, Y_{1}^{i-1}\right)\right.\right. \\
&\left.+\rho \frac{d}{d \rho}\left(g_{i}\left(X_{i}, Y_{1}^{i-1}\right)-g_{i}\left(x_{i}, Y_{1}^{i-1}\right)\right)\right] f\left(x_{1}^{n} \mid Y_{1}^{n}\right) d x
\end{aligned}
$$

- Denote $g_{i}:=g_{i}\left(X_{i}, Y_{1}^{i-1}\right)$ and $\tilde{g}_{i}:=g_{i}\left(x_{i}, Y_{1}^{i-1}\right)$.

$$
\begin{aligned}
& \frac{d}{d \rho} f_{X}\left(Y_{1}^{n}\right) \\
= & f_{X}\left(Y_{1}^{n}\right) \sum_{i=1}^{n} \int_{\mathbb{R}^{n}} T^{\prime}\left(Y_{i}-\rho \tilde{g}_{i}\right)\left[\left(g_{i}+\rho \frac{d}{d \rho} g_{i}\right)-\left(\tilde{g}_{i}+\rho \frac{d}{d \rho} \tilde{g}_{i}\right)\right] f_{X}\left(x_{1}^{n} \mid Y_{1}^{n}\right) d x \\
= & f_{X}\left(Y_{1}^{n}\right) \sum_{i=1}^{n}\left(\left(g_{i}+\rho \frac{d}{d \rho} g_{i}\right) \mathbb{E}\left[T^{\prime}\left(Y_{i}-\rho g_{i}\right) \mid Y_{1}^{n}\right]-\mathbb{E}\left[\left.\left(g_{i}+\rho \frac{d}{d \rho} g_{i}\right) T^{\prime}\left(Y_{i}-\rho g_{i}\right) \right\rvert\, Y_{1}^{n}\right]\right. \\
= & f_{X}\left(Y_{1}^{n}\right) \sum_{i=1}^{n}\left(\left(g_{i}+\rho \frac{d}{d \rho} g_{i}\right) \mathbb{E}\left[T^{\prime}\left(Z_{i}\right) \mid Y_{1}^{n}\right]-\mathbb{E}\left[\left.\left(g_{i}+\rho \frac{d}{d \rho} g_{i}\right) T^{\prime}\left(Z_{i}\right) \right\rvert\, Y_{1}^{n}\right]\right) . \\
& \frac{d I\left(X ; Y^{\rho}\right)}{d \rho}=-\mathbb{E}\left[\frac{d}{d \rho} \log f_{X}\left(Y_{1}^{n}\right)\right] \\
= & \sum_{i=1}^{n}\left(-\mathbb{E}\left(\left(g_{i}+\rho \frac{d}{d \rho} g_{i}\right) \mathbb{E}\left[T^{\prime}\left(Z_{i}\right) \mid Y_{1}^{n}\right]\right)+\mathbb{E}\left[\left(g_{i}+\rho \frac{d}{d \rho} g_{i}\right) T^{\prime}\left(Z_{i}\right)\right]\right) .
\end{aligned}
$$

- For the Gaussian channel where $T(x)=-x^{2} / 2$, we have

$$
\begin{aligned}
& \frac{d l\left(X ; Y^{\rho}\right)}{d \rho} \\
= & \sum_{i=1}^{n}\left(\mathbb{E}\left(\left(g_{i}+\rho \frac{d}{d \rho} g_{i}\right) \mathbb{E}\left[Z_{i} \mid Y_{1}^{n}\right]\right)-\mathbb{E}\left[\left(g_{i}+\rho \frac{d}{d \rho} g_{i}\right) Z_{i}\right]\right) \\
= & \sum_{i=1}^{n}\left(\mathbb{E}\left(\left(g_{i}+\rho \frac{d}{d \rho} g_{i}\right)\left(Y_{i}-\rho \mathbb{E}\left[g_{i} \mid Y_{1}^{n}\right]\right)\right)-\mathbb{E}\left[\left(g_{i}+\rho \frac{d}{d \rho} g_{i}\right)\left(Y_{i}-\rho g_{i}\right)\right]\right) \\
= & \sum_{i=1}^{n}\left(\rho \mathbb{E}\left[\left(g_{i}-\mathbb{E}\left(g_{i} \mid Y_{1}^{n}\right)\right)^{2}\right]+\rho^{2} \mathbb{E}\left[\left(g_{i}-\mathbb{E}\left(g_{i} \mid Y_{1}^{n}\right)\right) \frac{d}{d \rho} g_{i}\right]\right) .
\end{aligned}
$$

Theorem (Han-Song 2013)

Consider the continuous-time channel with feedback

$$
\begin{equation*}
Y_{t}^{\rho}=\rho \int_{0}^{t} g\left(s, X_{s}, Y^{\rho}\right) d s+W_{t}, t \in[0, T] \tag{1}
\end{equation*}
$$

where $g:[0, T] \times \mathbb{R} \times C([0, T] ; \mathbb{R}) \rightarrow \mathbb{R}$ is a bounded progressively measurable function. We have

$$
\frac{d l\left(X ; Y^{\rho}\right)}{d \rho}=\rho \mathbb{E} \int_{0}^{T}\left(g_{s}-\mathbb{E}\left[g_{s} \mid Y^{\rho}\right]\right)^{2} d s+\rho^{2} \int_{0}^{T} \mathbb{E}\left[\left(g_{s}-\mathbb{E}\left[g_{s} \mid Y^{\rho}\right]\right) \frac{\partial g_{s}}{\partial \rho}\right] d s
$$

where $g_{s}=g\left(s, X_{s}, Y^{\rho}\right)$.

- For simplicity, consider the case $g\left(s, X_{s}, Y\right)=X_{s}$.

Lemma (Cameron-Martin)

$Y_{t}=\rho \int_{0}^{t} X_{s} d s+W_{t}$, where W is a Wiener process, and X is independent of W. Then we have

$$
\frac{d \mu_{Y \mid X}}{d \mu_{W}}(y ; \omega)=\exp \left(\rho \int_{0}^{T} \omega_{s} d y_{s}-\frac{\rho^{2}}{2} \int_{0}^{t} \omega_{s}^{2} d s\right), y \in C[0, T]
$$

and

$$
\frac{d \mu_{Y}}{d \mu_{W}}(y)=\int_{C[0, T]} \frac{d \mu_{Y \mid X}}{d \mu_{W}}(y ; \omega) \mu_{X}(d \omega)
$$

$$
\begin{aligned}
& I\left(X ; Y^{\rho}\right) \\
= & \mathbb{E}\left[\log \frac{d \mu_{X Y^{\rho}}}{d\left(\mu_{X} \times \mu_{Y_{\rho}}\right)}\left(X, Y^{\rho}\right)\right] \\
= & \mathbb{E}\left[\log \frac{d \mu_{Y^{\rho} \mid X}}{d \mu_{W}}\left(Y^{\rho} ; X\right)\right]-\mathbb{E}\left[\log \frac{d \mu_{Y^{\rho}}}{d \mu_{W}}\left(Y^{\rho}\right)\right] \\
= & \frac{\rho^{2}}{2} \int_{0}^{T} \mathbb{E}\left[X_{s}^{2}\right] d s-\mathbb{E}\left[\log \frac{d \mu_{Y^{\rho}}}{d \mu_{W}}\left(Y^{\rho}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d \rho} I\left(X ; Y^{\rho}\right) \\
= & \rho \int_{0}^{T} \mathbb{E}\left[X_{s}^{2}\right] d s-\frac{d}{d \rho} \mathbb{E}\left[\log \frac{d \mu_{Y \rho}}{d \mu_{W}}\left(Y^{\rho}\right)\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d \rho}\left(\frac{d \mu_{Y \rho}}{d \mu_{W}}\left(Y^{\rho}\right)\right) \\
= & \frac{d}{d \rho} \int_{C[0, T]} \frac{d \mu_{Y \rho} \mid X_{=\omega}}{d \mu_{W}}\left(Y^{\rho} ; \omega\right) \mu_{X}(d \omega) \\
= & \frac{d}{d \rho} \int_{C[0, T]} \exp \left\{\rho \int_{0}^{T} \omega_{s} d Y_{s}^{\rho}-\frac{\rho^{2}}{2} \int_{0}^{T} \omega_{s}^{2} d s\right\} \mu_{X}(d \omega) \\
= & \frac{d}{d \rho} \int_{C[0, T]} \exp \left\{\rho^{2} \int_{0}^{T} \omega_{s} X_{s} d s+\rho \int_{0}^{T} \omega_{s} d W_{s}-\frac{\rho^{2}}{2} \int_{0}^{T} \omega_{s}^{2} d s\right\} \mu_{X}(d \omega) \\
= & \int_{C[0, T]}\left(\rho \int_{0}^{T} \omega_{s}\left(X_{s}-\omega_{s}\right) d s+\int_{0}^{T} \omega_{s} d Y_{s}^{\rho}\right) \frac{d \mu_{Y \rho \mid X=\omega}}{d \mu_{W}}\left(Y^{\rho} ; \omega\right) \mu_{X}(d \omega)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{C[0, T]}\left(\rho \int_{0}^{T} \omega_{s}\left(X_{s}-\omega_{s}\right) d s+\int_{0}^{T} \omega_{s} d Y_{s}^{\rho}\right) \frac{d \mu_{X Y \rho}}{d \mu_{W}}\left(d \omega, Y^{\rho}\right) \\
& =\frac{d \mu_{Y \rho}}{d \mu_{W}}\left(Y^{\rho}\right) \int_{C[0, T]}\left(\rho \int_{0}^{T} \omega_{s}\left(X_{s}-\omega_{s}\right) d s+\int_{0}^{T} \omega_{s} d Y_{s}^{\rho}\right) \mu_{X \mid Y \rho}\left(d \omega_{;} Y^{\rho}\right) \\
& =\frac{d \mu_{Y \rho}}{d \mu_{W}}\left(Y^{\rho}\right)\left(\rho \int_{0}^{T} \mathbb{E}\left[X_{s} \mid Y^{\rho}\right] X_{s} d s-\rho \int_{0}^{T} \mathbb{E}\left[X_{s}^{2} \mid Y^{\rho}\right] d s+\mathbb{E}\left[\int_{0}^{T} X_{s} d Y_{s}^{\rho} \mid Y^{\rho}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}\left[\frac{d}{d \rho}\left(\frac{d \mu_{Y \rho}}{d \mu_{W}}\left(Y^{\rho}\right)\right) \frac{d \mu_{W}}{d \mu Y_{\rho}}\left(Y^{\rho}\right)\right] \\
= & \rho \int_{0}^{T} \mathbb{E}\left[\mathbb{E}\left[X_{s} \mid Y^{\rho}\right] X_{s}\right] d s-\rho \int_{0}^{T} \mathbb{E}\left[X_{s}^{2}\right] d s+\mathbb{E}\left[\int_{0}^{T} X_{s} d Y_{s}^{\rho}\right] \\
= & \rho \int_{0}^{T} \mathbb{E}\left[\left(\mathbb{E}\left[X_{s} \mid Y^{\rho}\right]\right)^{2}\right] d s .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d \rho} I\left(X ; Y^{\rho}\right) \\
= & \rho \int_{0}^{T} \mathbb{E}\left[X_{s}^{2}\right] d s-\frac{d}{d \rho} \mathbb{E}\left[\log \frac{d \mu_{Y} \rho}{d \mu_{W}}\left(Y^{\rho}\right)\right] \\
= & \rho \int_{0}^{T} \mathbb{E}\left[\left(X_{s}-\mathbb{E}\left[X_{s} \mid Y^{\rho}\right]\right)^{2}\right] d s .
\end{aligned}
$$

Further study

- I-MMSE when W is a general Gaussian process.
- Applications of I-MMSE.
D. Guo, S. Shamai, and S. Verdu.

Mutual information and minimum mean-square error in Gaussian channels. IEEE Trans. Info. Theory, vol. 51, no. 4, pp. 1261-1282, 2005.
D. Guo, S. Shamai, and S. Verdu.

Additive non-Gaussian noise channels: mutual information and conditional mean estimation. IEEE ISIT, pp. 719-723, 2005.

R S. Shamai.
From Constrained Signaling to Network Interference Via An Information-Estimation Perspective. Shannon Lecture, IEEE ISIT, 2011.

THANK YOU!

