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channel

sink

Setting:

Communication between single source and sink.

In the channel messages are forwarded.
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Traditional Communication Channel

source

channel

sink

Setting:

Communication between single source and sink.

In the channel messages are forwarded.

Question

Why do we consider only communications between single entities?
Is it natural?
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Example - Butterfly Network

Question

Is it possible that both S1 and S2 communicate their messages to
both R1 and R2 in only one “round time”?
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Channel setting
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Example - Butterfly Network

Question

Is it possible that both S1 and S2 communicate their messages to
both R1 and R2 in only one “round time”?

R2

R1

a

b

b

S1

S2

a

a

a

a

Traditional communication channel approach:
Throughput is limited by the Max-Flow, Min-Cut Theorem.
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Example - Butterfly Network

Question

Is it possible that both S1 and S2 communicate their messages to
both R1 and R2 in only one “round time”?

R2

R1

a

b

b

S1

S2

a

a+ b

a+ b

a + b

Linear Network coding approach increases Throughput!
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Linear Network Coding

channel

sources sinks
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Linear Network Coding

other nodessources sinks
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Linear Network Coding

other nodessources sinks

Setting:

digraph G = (V ,E ) with capacities on the edges.

the output messages of a channel nodes are linear
combinations of input ones.
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Single User many Receivers

channel receiverssource
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Single User many Receivers

source other nodes receivers
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What is Network Coding useful for?

P2P file exchanges over the Internet,
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What is Network Coding useful for?

P2P file exchanges over the Internet,

Data Streaming over Wireless Networks,
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What is Network Coding useful for?

P2P file exchanges over the Internet,

Data Streaming over Wireless Networks,

Network security:
1 prevents an eavesdropper from recovering messages,
2 against the modification of packets by an attacker,
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What is Network Coding useful for?

P2P file exchanges over the Internet,

Data Streaming over Wireless Networks,

Network security:
1 prevents an eavesdropper from recovering messages,
2 against the modification of packets by an attacker,

others.
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The Role of Vector Spaces

Let Fq be a finite field and n, k two nonzero natural numbers.
Denote by m1, . . . ,mk ∈ F

n
q the messages trasmitted by k different

sources.
Assume the messages to be linear independent.

m1, . . . ,mk → M =











mt
1

mt
2
...

mt
k











∈ Matk×n(Fq)→ rowsp(M) ∈ G(k ,Fn
q)

where G(k ,Fn
q) is the Grassmannian of all k-dimensional vector

subspaces of Fn
q.
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Metric on P(n)

Definition

Denote by P(n) the set of all linear subspaces inside the vector
space F

n
q.
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Metric on P(n)

Definition

Denote by P(n) the set of all linear subspaces inside the vector
space F

n
q.

Definition

On P(n) define a metric through:

dS (V ,W ) := dim(V +W )− dim(V ∩W ).
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Metric on P(n)

Definition

Denote by P(n) the set of all linear subspaces inside the vector
space F

n
q.

Definition

On P(n) define a metric through:

dS (V ,W ) := dim(V +W )− dim(V ∩W ).

Remark

Check that the map: dS : P(n) × P(n)→ N+ defines a metric on
P(n).
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Subspace Codes for Linear Network Codes

Definition

A subset C of P(n) will be called a subspace code.
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Subspace Codes for Linear Network Codes

Definition

A subset C of P(n) will be called a subspace code.

Definition

In the usual way one defines the distance of the subspace code
C ⊂ P(n) through:

dist(C) := min {dS(V ,W ) | V ,W ∈ C, V 6= W }

and the size of C as M := |C|.

Subspace Codes and Orbit Codes



Kötter-Kschischang Setting
List decoding, a problem in Schubert calculus

Relation to Rank Matrix Codes
Construction of Spread and Orbit Codes

Subspace Codes for Linear Network Codes

Definition

A subset C of P(n) will be called a subspace code.

Definition

In the usual way one defines the distance of the subspace code
C ⊂ P(n) through:

dist(C) := min {dS(V ,W ) | V ,W ∈ C, V 6= W }

and the size of C as M := |C|.

Remark

In the usual way one has the goal to construct for any natural
numbers n,M and any finite field Fq codes having maximal
distance d and efficient decoding algorithms.
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Induced Metric on the the Grassmannian G(k ,Fn
q)

Definition

In the sequel we will assume that a subspace code is a subset of
the Grassmannian G(k ,Fn

q). We call such codes also
constant-dimension codes.
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Induced Metric on the the Grassmannian G(k ,Fn
q)

Definition

In the sequel we will assume that a subspace code is a subset of
the Grassmannian G(k ,Fn

q). We call such codes also
constant-dimension codes.

Definition

The metric on P(n) induces a metric on the Grassmannian
G(k ,Fn

q):

dS(V ,W ) := dim(V +W )− dim(V ∩W )
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Induced Metric on the the Grassmannian G(k ,Fn
q)

Definition

In the sequel we will assume that a subspace code is a subset of
the Grassmannian G(k ,Fn

q). We call such codes also
constant-dimension codes.

Definition

The metric on P(n) induces a metric on the Grassmannian
G(k ,Fn

q):

dS(V ,W ) := dim(V +W )− dim(V ∩W )

Remark

The main constant-dimension subspace coding problem is: For
every size M construct codes C ⊂ G(k ,Fn

q) having maximal
possible distance.
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Errors and Erasures

Decoder: Minimum Distance Decoder (closest codeword given a
received vector space).

Question

How do we expect errors and erasures to be?
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Errors and Erasures

Decoder: Minimum Distance Decoder (closest codeword given a
received vector space).

Question

How do we expect errors and erasures to be?

Error ↔ Increase in dimension.

Subspace Codes and Orbit Codes



Kötter-Kschischang Setting
List decoding, a problem in Schubert calculus

Relation to Rank Matrix Codes
Construction of Spread and Orbit Codes

Errors and Erasures

Decoder: Minimum Distance Decoder (closest codeword given a
received vector space).

Question

How do we expect errors and erasures to be?

Error ↔ Increase in dimension.

Erasure ↔ Decrease in dimension.
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Fundamental Research Questions

For every finite field and positive intgers d , k , n find the
maximum number of subspaces in the Grassmannian G (k ,Fn

q)
such that this code has distance d .
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Fundamental Research Questions

For every finite field and positive intgers d , k , n find the
maximum number of subspaces in the Grassmannian G (k ,Fn

q)
such that this code has distance d .

Find constructions of codes together with efficient decoding
algorithms.
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List Decoding Problem

Given a subspace code C ⊂ Grass(k ,V ) and a received subspace
W ⊂ V , whose dimension is not necessarily k .
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List Decoding Problem

Given a subspace code C ⊂ Grass(k ,V ) and a received subspace
W ⊂ V , whose dimension is not necessarily k .

Consider a fixed distance parameter t and the set.

SW := {U ∈ Grass(k ,V ) | d(U,W ) ≤ t}
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List Decoding Problem

Given a subspace code C ⊂ Grass(k ,V ) and a received subspace
W ⊂ V , whose dimension is not necessarily k .

Consider a fixed distance parameter t and the set.

SW := {U ∈ Grass(k ,V ) | d(U,W ) ≤ t}

The list decoding problem asks for efficient methods to compute:

SW
⋂

C
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List Decoding Problem

Given a subspace code C ⊂ Grass(k ,V ) and a received subspace
W ⊂ V , whose dimension is not necessarily k .

Consider a fixed distance parameter t and the set.

SW := {U ∈ Grass(k ,V ) | d(U,W ) ≤ t}

The list decoding problem asks for efficient methods to compute:

SW
⋂

C

Nota Bene: It will turn out that the problem of list decoding is an
intersection problem between the Schubert variety SW and the
subspace code C ⊂ Grass(k ,V ).
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Geometric Questions of Schubert

Hermann Schubert studied in the 19th century geometric questions
of the following type:
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Geometric Questions of Schubert

Hermann Schubert studied in the 19th century geometric questions
of the following type:

Example

Given 4 lines in 3-space in general position. Is there a line
intersecting all 4 lines.
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Geometric Questions of Schubert

Hermann Schubert studied in the 19th century geometric questions
of the following type:

Example

Given 4 lines in 3-space in general position. Is there a line
intersecting all 4 lines.

Answer Schubert: By Poncelet’s principle of conservation of
numbers we can assume lines 1 and 2 intersect and lines 3 and 4
intersect. So there are 2 solutions in general.
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A Result of Schubert

Theorem (Schubert [2])

Given N := k(n − k) linear subspace Ui , i = 1, . . . ,N in V having
dimension k each. If the base field F is algebraically closed and the
subspaces are in general position then there exist exactly

1!2! · · · (k − 1)!(N)!

(n − k)!(n − k + 1)! · · · (n − 1)!
(1)

subspaces W of dimension (n − k) intersecting each of the
subspaces Ui nontrivially.

Subspace Codes and Orbit Codes



Kötter-Kschischang Setting
List decoding, a problem in Schubert calculus

Relation to Rank Matrix Codes
Construction of Spread and Orbit Codes

Hermann Cäsar Hannibal Schubert (1848-1911)
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Schubert Varieties

Definition

A flag F is a sequence of nested subspaces

{0} ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = V (2)

where we assume that dimVi = i for i = 1, . . . , n.
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Schubert Varieties

Definition

A flag F is a sequence of nested subspaces

{0} ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = V (2)

where we assume that dimVi = i for i = 1, . . . , n.

Let i = (i1, . . . , ik) denote a sequence of numbers having the
property that

1 ≤ i1 < . . . < ik ≤ n. (3)
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Schubert Varieties

Definition

A flag F is a sequence of nested subspaces

{0} ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = V (2)

where we assume that dimVi = i for i = 1, . . . , n.

Let i = (i1, . . . , ik) denote a sequence of numbers having the
property that

1 ≤ i1 < . . . < ik ≤ n. (3)

Definition

For each flag F and each multiindex i

S(i ;F) := {W ∈ Grass(k ,V ) | dim(W
⋂

Vis ) ≥ s}

is called a Schubert variety. Subspace Codes and Orbit Codes
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Central Question of Schubert Calculus

Problem

Given two Schubert varieties S(ν;F) and S(ν̃; F̃). Describe as
explicitly as possible the intersection variety

S(ν;F) ∩ S(ν̃; F̃).

Subspace Codes and Orbit Codes



Kötter-Kschischang Setting
List decoding, a problem in Schubert calculus

Relation to Rank Matrix Codes
Construction of Spread and Orbit Codes

Hilbert Problem Number 15, Paris 1900
Rigorous foundation of Schubert’s enumerative calculus

The problem consists in this: To establish rigorously and with an
exact determination of the limits of their validity those geometrical
numbers which Schubert especially has determined on the basis of
the so-called principle of special position, or conservation of
number, by means of the enumerative calculus developed by him.
Although the algebra of today guarantees, in principle, the
possibility of carrying out the processes of elimination, yet for the
proof of the theorems of enumerative geometry decidedly more is
requisite, namely, the actual carrying out of the process of
elimination in the case of equations of special form in such a way
that the degree of the final equations and the multiplicity of their
solutions may be foreseen.
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David Hilbert (1862-1943)
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Plücker Embedding

Consider the vector space of alternating k–tensors ∧kV . Let
P(∧kV ) be the projective space consisting of all lines in ∧kV .
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Plücker Embedding

Consider the vector space of alternating k–tensors ∧kV . Let
P(∧kV ) be the projective space consisting of all lines in ∧kV .
The Plücker embedding is defined through:

ϕ : Grass(k ,V ) −→ P(∧kV ) (4)

span(v1, . . . , vk) 7−→ Fv1 ∧ · · · ∧ vk .
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Plücker Coordinates

Assume

vi =
n

∑

j=1

aijej , i = 1, . . . , k .

Let A be the k × n matrix (ai ,j). The Plücker embedding writes:

ϕ : Matk×n −→ P(∧kV ) (5)

rowspace(A) 7−→
∑

1≤i1<···<ik≤n

xi1,...,ik · ei1 ∧ . . . ∧ eik .

The coordinates xi := xi1,...,ik are called the Plücker coordinates of
rowspace(A).
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Shuffle Relations

Theorem

k+1
∑

λ=1

(−1)λ · xi1,...,ik−1,jλ · xj1,...,ĵλ,...,jk+1
= 0 (6)

describes the image of the Grassmannian in the projective space
P(∧kV )
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Shuffle Relations

Theorem

k+1
∑

λ=1

(−1)λ · xi1,...,ik−1,jλ · xj1,...,ĵλ,...,jk+1
= 0 (6)

describes the image of the Grassmannian in the projective space
P(∧kV )

Example

Grass(2,F4) is embedded in P
5 and ϕ(Grass(2, 4)) is described by

a single relation

x12x34 − x13x24 + x14x23 = 0 (7)
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Shuffle Relations

Example

Grass(2,F5) is embedded in P
9 and the defining relations are:

x12x34 − x13x24 + x14x23 = 0

x12x35 − x13x25 + x15x23 = 0

x12x45 − x14x25 + x15x14 = 0

x13x45 − x14x35 + x15x34 = 0

x23x45 − x24x35 + x25x34 = 0
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Defining Equations of Schubert Varieties

Bruhat order:
Let i := (i1, . . . , ik) and j := (j1, . . . , jk) be two set of indices
satisfying

1 ≤ i1 < . . . < ik ≤ n

respectively
1 ≤ j1 < . . . < jk ≤ n.

Then one defines:
i ≤ j

if and only if it ≤ jt for t = 1, . . . , k .
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Defining Equations of Schubert Varieties

Bruhat order:
Let i := (i1, . . . , ik) and j := (j1, . . . , jk) be two set of indices
satisfying

1 ≤ i1 < . . . < ik ≤ n

respectively
1 ≤ j1 < . . . < jk ≤ n.

Then one defines:
i ≤ j

if and only if it ≤ jt for t = 1, . . . , k .

Theorem

The defining equations in terms of Plücker coordinates of the
Schubert variety S(i ;F) are given by the quadratic shuffle relations
together with the linear equations xj = 0 for all j 6≤ i .
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List Decoding Problem

Given a subspace code C ⊂ Grass(k ,V ) and a received subspace
W ⊂ V , whose dimension is not necessarily k .
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List Decoding Problem

Given a subspace code C ⊂ Grass(k ,V ) and a received subspace
W ⊂ V , whose dimension is not necessarily k .

Consider the Schubert variety.

SW := {U ∈ Grass(k ,V ) | d(U,W ) ≤ t}

Subspace Codes and Orbit Codes



Kötter-Kschischang Setting
List decoding, a problem in Schubert calculus

Relation to Rank Matrix Codes
Construction of Spread and Orbit Codes

List Decoding Problem

Given a subspace code C ⊂ Grass(k ,V ) and a received subspace
W ⊂ V , whose dimension is not necessarily k .

Consider the Schubert variety.

SW := {U ∈ Grass(k ,V ) | d(U,W ) ≤ t}

Find efficient methods to compute:

SW
⋂

C

Subspace Codes and Orbit Codes



Kötter-Kschischang Setting
List decoding, a problem in Schubert calculus

Relation to Rank Matrix Codes
Construction of Spread and Orbit Codes

List Decoding Problem

Given a subspace code C ⊂ Grass(k ,V ) and a received subspace
W ⊂ V , whose dimension is not necessarily k .

Consider the Schubert variety.

SW := {U ∈ Grass(k ,V ) | d(U,W ) ≤ t}

Find efficient methods to compute:

SW
⋂

C

We could show how to efficiently describe the equations for the

variety SW .
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In 1978 Delsarte introduced a class of codes called rank matrix
codes.
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In 1978 Delsarte introduced a class of codes called rank matrix
codes.

Definition

On the set Fk×m consisting of all k ×m matrices over F define the
rank distance:

dR(X ,Y ) := rank(X − Y )
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In 1978 Delsarte introduced a class of codes called rank matrix
codes.

Definition

On the set Fk×m consisting of all k ×m matrices over F define the
rank distance:

dR(X ,Y ) := rank(X − Y )

Remark

dR(X ,Y ) is a metric.
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In 1978 Delsarte introduced a class of codes called rank matrix
codes.

Definition

On the set Fk×m consisting of all k ×m matrices over F define the
rank distance:

dR(X ,Y ) := rank(X − Y )

Remark

dR(X ,Y ) is a metric.

Remark

Gabidulin provided several constructions and decoding algorithms
of rank metric codes with good distances.
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Rank distance and subspace distance

The rank distance and the subspace distance are related through
the following theorem:
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Rank distance and subspace distance

The rank distance and the subspace distance are related through
the following theorem:

Theorem

Let X ,Y ∈ F
k×m and let V := rowsp[Ik X ] and

W := rowsp[Ik Y ]. Then

dS(V ,W ) = 2dR(X ,Y ).
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Rank distance and subspace distance

The rank distance and the subspace distance are related through
the following theorem:

Theorem

Let X ,Y ∈ F
k×m and let V := rowsp[Ik X ] and

W := rowsp[Ik Y ]. Then

dS(V ,W ) = 2dR(X ,Y ).

Remark

The map

φ : Fk×m −→ G(k ,Fk+m
q ), X 7−→ rowsp[Ik X ]

defines an embedding and one sometimes calls the image the thick
open cell of the Grassmannian.
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Spread of Fn
q

Definition

S ⊂ G(k ,Fn
q) is a spread of Fn

q if:

V ∩W = {0} for all V ,W ∈ S, and

for any v ∈ F
n
q, v 6= 0, exists unique V ∈ S such that v ∈ V .
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Spread of Fn
q

Definition

S ⊂ G(k ,Fn
q) is a spread of Fn

q if:

V ∩W = {0} for all V ,W ∈ S, and

for any v ∈ F
n
q, v 6= 0, exists unique V ∈ S such that v ∈ V .

Question

Spreads exist for every choice of k and n?
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Spread of Fn
q

Definition

S ⊂ G(k ,Fn
q) is a spread of Fn

q if:

V ∩W = {0} for all V ,W ∈ S, and

for any v ∈ F
n
q, v 6= 0, exists unique V ∈ S such that v ∈ V .

Question

Spreads exist for every choice of k and n?

Theorem

There exists a spread S ⊂ G(k ,Fn
q) if and only if k | n.
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Spreads in Projective Geometry [Hirschfeld 98]

Remark

k-dim subspaces in F
n
q

1−1
←−→ (k − 1)-dim subspaces in P

n−1
Fq

.

It follows G(k ,Fn
q)
∼= G(k − 1,Pn−1

Fq
).

Definition

S ⊂ G(k − 1,Pn−1
Fq

) is a spread of Pn−1
Fq

if:

V ∩W = ∅ for all V ,W ∈ S, and
⋃

V∈S V = P
n−1
Fq

.
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Spreads in Projective Geometry [Hirschfeld 98]

Remark

k-dim subspaces in F
n
q

1−1
←−→ (k − 1)-dim subspaces in P

n−1
Fq

.

It follows G(k ,Fn
q)
∼= G(k − 1,Pn−1

Fq
).

Definition

S ⊂ G(k − 1,Pn−1
Fq

) is a spread of Pn−1
Fq

if:

V ∩W = ∅ for all V ,W ∈ S, and
⋃

V∈S V = P
n−1
Fq

.

Theorem

There exists a spread S ⊂ G(k − 1,Pn−1
Fq

) if and only if k | n.
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Spread Codes

Setting:

n, k , r ∈ N+ such that n = kr ;

p ∈ Fq[x ] irreducible of degree k and P ∈ Matk×k(Fq) its
companion matrix;

Fq[P ] ⊂ GLk(Fq), Fq[P ] ∼= Fqk .
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Spread Codes

Setting:

n, k , r ∈ N+ such that n = kr ;

p ∈ Fq[x ] irreducible of degree k and P ∈ Matk×k(Fq) its
companion matrix;

Fq[P ] ⊂ GLk(Fq), Fq[P ] ∼= Fqk .

Theorem

The collection of subspaces

S :=
r
⋃

i=1

{rowsp [0k · · · 0k Ik Ai+1 · · · Ar ] | Ai+1, . . . ,Ar ∈ Fq[P ]}

is a subset of G(k ,Fn
q) and a spread of Fn

q.
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Definition and Properties

Definition

The set S constructed as in the previous slide will be called a
Spread Codes of G(k ,Fn

q).
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Definition and Properties

Definition

The set S constructed as in the previous slide will be called a
Spread Codes of G(k ,Fn

q).

Properties:

MDS-like for the distance d = 2k .

every nonzero vector of Fn
q belong to one and only one

codeword.
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Orbit codes

GLn(Fq) (right) action on Grassmannians:

G(k , n)× GLn(Fq) → G(k , n)
(U ,A) 7→ U · A := rowsp(U · A)

Proposition

Let U ,V ∈ G(k , n). Then

d(U ,V) = d(U · A,V · A) ∀A ∈ GLn(Fq).
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Orbit codes

GLn(Fq) (right) action on Grassmannians:

G(k , n)× GLn(Fq) → G(k , n)
(U ,A) 7→ U · A := rowsp(U · A)

Proposition

Let U ,V ∈ G(k , n). Then

d(U ,V) = d(U · A,V · A) ∀A ∈ GLn(Fq).

Definition (orbit codes)

Let U ∈ G(k , n) and G < GLn(Fq). An orbit code is

C = {U · A | A ∈ G}.

Subspace Codes and Orbit Codes



Kötter-Kschischang Setting
List decoding, a problem in Schubert calculus

Relation to Rank Matrix Codes
Construction of Spread and Orbit Codes

Representation of Grassmannian via GLn(Fq)

Definition

Let U ∈ G(k , n). The stabilizer of U is

Stab(U) := {A ∈ GLn(Fq) | U = U · A}.

Theorem

Let U ∈ G(k , n). Then

G(k , n) ∼= GLn(Fq)/Stab(U).
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Cyclic orbit codes

GLn(Fq)
π
−→ GLn(Fq)/Stab(U)←→ G(k , n)

Proposition

Let G1,G2 < GLn. Then

π(G1) = π(G2) ⇐⇒ CG1
= CG2

.

Definition

An orbit code C is cyclic if there exists G < GLn(Fq) cyclic
defining it.
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“Linearity” of orbit codes

Properties

Let G < GLn(Fq). Then

|C | =
|G|

|G ∩ Stab(U)|
.

dmin = min
A∈G\Stab(U)

d(U ,U · A).

C⊥ := {U⊥ ∈ G(n − k , n) | U ∈ C} is an orbit code.
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Spread codes as cyclic orbit codes

Lemma

If k |n, c := qn−1
qk−1

and α a primitive element of Fqn , then the vector

space generated by 1, αc , ..., α(k−1)c is equal to
{αic |i = 0, ..., qk − 2} ∪ {0} = Fqk .
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Spread codes as cyclic orbit codes

Lemma

If k |n, c := qn−1
qk−1

and α a primitive element of Fqn , then the vector

space generated by 1, αc , ..., α(k−1)c is equal to
{αic |i = 0, ..., qk − 2} ∪ {0} = Fqk .

Lemma

For every β ∈ Fqn the set

β · Fqk = {βα
ic |i = 0, ..., qk − 2} ∪ {0}

defines an Fq-subspace of dimension k.
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Spread codes as cyclic orbit codes

Theorem

The set
S =

{

αi · Fqk | i = 0, . . . , c − 1
}

defines a spread code.
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Spread codes as cyclic orbit codes

Theorem

The set
S =

{

αi · Fqk | i = 0, . . . , c − 1
}

defines a spread code.

Proof.

It is enough to show that the subspace αi · Fqk and αi · Fqk are
pairwise disjoint whenever 0 ≤ i < j ≤ c − 1. For this assume that
there are field elements ci , cj ∈ Fqk , such that

v = αici = αjcj ∈ αi · Fqk ∩ αj · Fqk .

If v 6= 0 then αi−j = cjc
−1
i ∈ Fqk . But this means i − j ≡ 0

mod c and αi · Fqk = αj · Fqk . It follows that S is a spread.
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Translation into matrix setting

Theorem

Let p(x) be an irreducible polynomial over Fq of degree n and P
its companion matrix. Furthermore let α ∈ Fqn be a root of p(x)
and φ be the canonical homomorphism

φ : Fn
q → Fqn , (v1, . . . , vn) 7→

n
∑

i=1

viα
i−1

Then the following diagram commutes (for v ∈ F
n
q):

v
·P
−→ vP

φ ↓ ↓ φ
v ′ −→

·α
v ′α
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Example 1

Over the binary field let p(x) := x6 + x + 1 primitive, α a root of
p(x) and P its companion matrix. For the 3-dimensional spread
compute c = 63

7 = 9 and construct a basis for the starting point of
the orbit:

u1 = φ−1(1) = (100000)

u2 = φ−1(α9) = φ−1(α4 + α3) = (000110)

u3 = φ−1(α18) = φ−1(α3 + α2 + α+ 1) = (111100)

The starting point is

U = rowsp





1 0 0 0 0 0
0 0 0 1 1 0
1 1 1 1 0 0



 = rowsp





1 0 0 0 0 0
0 1 1 0 1 0
0 0 0 1 1 0





and the orbit of the group generated by P on U is a spread code.
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Example 2

For the 2-dimensional spread compute c = 63
3 = 21 and construct

the starting point

u1 = φ−1(1) = (100000)

u2 = φ−1(α21) = φ−1(α2 + α+ 1) = (111000)

The starting point is

U = rowsp

[

1 0 0 0 0 0
1 1 1 0 0 0

]

= rowsp

[

1 0 0 0 0 0
0 1 1 0 0 0

]

and the orbit of the group generated by P is a spread code.
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Thank you for your attention.
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