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◆ Optimality of the source-channel separation architecture for lossy source
coding in general networks

◆ The source broadcast problem: Application of the source-channel
separation theorem as a converse method

◆ Other converse methods for the source broadcast problem
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◆ Source-channel communication

n
S Encoder Channel Decoder ˆ n

S

n
X

n
Y
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◆ Source-channel communication

n
S Encoder Channel Decoder ˆ n

S

n
X

n
Y

◆ Separation theorem (Shannon 48)

n
S

Source

Encoder

Channel

Encoder

Channel

Decoder
Channel

Source

Decoder
ˆ n
S

n
X

n
Yi i

For any achievable end-to-end distortion D,

R(D) ≤ C.
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n
S Encoder Channel Decoder ˆ n

S

n
X

n
Y

◆ Standard proof

■ Information-theoretic definition of channel capacity and rate-distortion
function

C = max
pX

I(X;Y )

R(D) = min
p
Ŝ|S

:E[d(S,Ŝ)]≤D

I(S; Ŝ)

■ Converse theorem of channel coding: I(Xn;Y n) ≤ nC

■ Converse theorem of lossy source coding: I(Sn; Ŝn) ≥ nR(D)
■ Data processing inequality: I(Xn;Y n) ≥ I(Sn; Ŝn)
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◆ Standard proof

■ Information-theoretic definition of channel capacity and rate-distortion
function

C = max
pX

I(X;Y )

R(D) = min
p
Ŝ|S

:E[d(S,Ŝ)]≤D

I(S; Ŝ)

■ Converse theorem of channel coding: I(Xn;Y n) ≤ nC

■ Converse theorem of lossy source coding: I(Sn; Ŝn) ≥ nR(D)
■ Data processing inequality: I(Xn;Y n) ≥ I(Sn; Ŝn)

◆ Alternative proof

■ Operational definition of channel capacity and rate-distortion function
■ Achievability theorem of channel coding: I(Xn;Y n) ≤ nC

■ Achievability theorem of lossy source coding: I(Sn; Ŝn) ≥ nR(D)
■ Data processing inequality: I(Xn;Y n) ≥ I(Sn; Ŝn)
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n
S Encoder Channel Decoder ˆ n

S

n
X

n
Y

◆ Channel-centered proof

■ View pY n|Xn as a communication channel: I(Xn;Y n) ≤ nC

■ View pY n|Xn as a test channel: I(Xn;Y n) ≥ R(pXn,Y n)
■ R(pXn,Y n) ≥ nR(D)
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n
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◆ Channel-centered proof

■ View pY n|Xn as a communication channel: I(Xn;Y n) ≤ nC

■ View pY n|Xn as a test channel: I(Xn;Y n) ≥ R(pXn,Y n)
■ R(pXn,Y n) ≥ nR(D)

◆ Source-centered proof

■ View pŜn|Sn as a test channel: I(Sn; Ŝn) ≥ nR(D)

■ View pŜn|Sn as a communication channel: I(Sn; Ŝn) ≤ C(pŜn|Sn)
■ C(pŜn|Sn ) ≤ nC
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Source-Channel Separation in Networks: General Source
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◆ Optimality: The memoryless sources at source nodes are arbitrarily
correlated, each of which is to be reconstructed at possibly multiple
destinations within certain distortions, but the channels in this network
are synchronized, orthogonal and memoryless point-to-point channels.
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Source-Channel Separation in Networks: General Channel
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◆ Optimality: The memoryless sources are mutually independent, each of
which is to be reconstructed only at one destination within a certain
distortion, but the channels are general, including multi-user channels
such as multiple access, broadcast, interference and relay channels,
possibly with feedback.
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Sm transmitter
f (m,n)

pY1,Y2|X

receiver 1
g
(n,m)
1

receiver 2
g
(n,m)
2

Ŝm
1

Ŝm
2

Xn
1

Y n
1

Y n
2

◆ We say (κ,D1,D2) is achievable if

n

m
≤ κ,

1

m

m
∑

t=1

pS(t),Ŝi(t)
∈ Di, i = 1, 2. (∗)

Remark: (∗) is more general than conventional distortion constraints since

1

m

m
∑

t=1

E[di(S(t), Si(t))] = E[d(S, Ŝi)],

where pS,Ŝi
= 1

m

∑m

t=1 pS(t),Ŝi(t)
, i = 1, 2.
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m
S Encoder

Decoder 1+

+

1

n
Z

2

n
Z

1
ˆmS

2
ˆmSDecoder 2

1

n
Y

2

n
Y

n
X

◆ Tradeoff between the transmit power P , the bandwidth mismatch factor
κ, and the achievable reconstruction distortion pair (d1, d2)

◆ A mysterious auxiliary random variable (Reznic, Feder, and Zamir 06):
S + U , where U is independent of everything else.

P ≥ sup
σ2

U
>0

N1

(

σ2
S(d1 + σ2

U )

d1(d2 + σ2
U )

) 1

κ
+ (N2 −N1)

(

σ2
S + σ2

U

d2 + σ2
U

) 1

κ
−N2
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Sm
1 , Sm

2
transmitter
f (m,n)

pY1,Y2|X

receiver 1
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(n,m)
1

Sm
2

receiver 2
g
(n,m)
2

Ŝm
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◆ We say (κ,D1,D2) is achievable if

n

m
≤ κ,

1

m

m
∑

t=1

pS1(t),S2(t),Ŝ1(t)
∈ D1,

1

m

m
∑

t=1

pS2(t),Ŝ2(t)
∈ D2.
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◆ (κ,D1,D2) is achievable ⇐⇒ (RS1|S2
(D1), RS2

(D2)) ∈ κC1|2(pY1,Y2|X),
where

RS1|S2
(D1) = min

p
S1,S2,Ŝ1

∈D1

I(S1; Ŝ1|S2),

RS2
(D2) = min

p
S2,Ŝ2

∈D2

I(S2; Ŝ2),

and C1|2(pY1,Y2|X) is the capacity region of broadcast channel pY1,Y2|X

when the message intended for receiver 2 is available at receiver 1.

http://www.people.cornell.edu/pages/jc353/


Broadcast Channel with Receiver Side Information

Outline

Theorem

Proof I

Proof II

Optimality I

Optimality II

Source Broadcast

Gaussian Case

Variant

Separation

Side Information

Example

Reduction

Gaussian Case

Broadcast

Tradeoff

System Diagram

Comparison

Gaussian Case

Binary Case

Another Method

Conclusion

Jun Chen 12 / 23

M1,M2
transmitter

f (n)
pY1,Y2|X

receiver 1
g
(n)
1

M2

receiver 2
g
(n)
2

M̂1

M̂2

Xn
1

Y n
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◆ Capacity region C1|2(pY1,Y2|X) (Kramer and Shamai 07)

R1 ≤ I(X;Y1),

R2 ≤ I(V ;Y2),

R1 +R2 ≤ I(X;Y1|V ) + I(V ;Y2)

for some pV,X .

http://www.people.cornell.edu/pages/jc353/
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◆ C1|2(pY1,Y2|X) = C(pY1,Y2|X) if Y1 is less noisy than Y2, but not
necessarily so if Y1 is more capable than Y2.

BEC-BSC

R1

R
2

 

 
C1|2(pY1,Y2|X)
C(pY1,Y2|X)
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◆ Introduction of remote source {(S1(t), S2(t))}
∞
t=1

Given 1
m

∑m

t=1 pS(t),Ŝi(t)
∈ Di, i = 1, 2, one can compute the induced

1
m

∑m

t=1 pS1(t),S2(t),Ŝ1(t)
and 1

m

∑m

t=1 pS2(t),Ŝ2(t)
. So the separation

theorem can be applied.

Sm
transmitter
f (m,n)
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receiver 1
g
(n,m)
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receiver 2
g
(n,m)
2

Ŝm
1

Ŝm
2

Xn
1

Y n
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◆ Introduction of remote source {(S1(t), S2(t))}
∞
t=1

Given 1
m

∑m

t=1 pS(t),Ŝi(t)
∈ Di, i = 1, 2, one can compute the induced

1
m

∑m

t=1 pS1(t),S2(t),Ŝ1(t)
and 1

m

∑m

t=1 pS2(t),Ŝ2(t)
. So the separation

theorem can be applied.

Sm
1 , Sm

2
transmitter
f (m,n)

pY1,Y2|X

receiver 1
g
(n,m)
1

Sm
2

receiver 2
g
(n,m)
2

Ŝm
1

Ŝm
2

Xn
1

Y n
1

Y n
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◆ There exists some pS,Ŝ1,Ŝ2
= pSpŜ1,Ŝ2|S

with pS,Ŝi
∈ Di, i = 1, 2 such

that (I(S1; Ŝ1|S2), I(S2; Ŝ2)) ∈ κC1|2(pY1,Y2|X) for all pS1,S2|S .
Moreover, there is no loss of generality in choosing S1 = S.
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◆ Let S1 = S and S2 = S + U , where U ∼ N (0, σ2
U ).

κ < κ
∗

κ = κ
∗

κ > κ
∗

R1

R
2

 

 

κ < κ
∗

κ = κ
∗

κ > κ
∗

Source
κC1|2(pY1,Y2|X)
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Bivariate Gaussian Source over Gaussian Broadcast Channel
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◆ Tradeoff between the transmit power P , the bandwidth mismatch factor
κ, and the achievable reconstruction distortion pair (D1,D2)

1 2
,

m m
S S

Encoder

Decoder 1+

+

1

n
Z

2

n
Z

1
ˆ mS

2
ˆ mSDecoder 2

1

n
Y

2

n
Y

n
X

◆ Scalar case without bandwidth mismatch

■ Source-channel separation is suboptimal (Gao and Tuncel 11).
■ Uncoded scheme is optimal at low SNR (Bross, Lapidoth, and

Tinguely 10).
■ Hybrid scheme is optimal (Tian, Diggavi, and Shamai 11).
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◆ Source: (S1,S2) ∼ N (0,ΣS) with Si ∼ N (0,ΣSi
), i = 1, 2

◆ Channel: Zi ∼ N (0, Ni), i = 1, 2, with N1 < N2
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◆ Source: (S1,S2) ∼ N (0,ΣS) with Si ∼ N (0,ΣSi
), i = 1, 2

◆ Channel: Zi ∼ N (0, Ni), i = 1, 2, with N1 < N2

◆ A necessary condition:

P ≥ min
Θ1,Θ2

sup
ΣU≻0

N1

( |ΣS||Θ1 +ΣU|

|Θ1||Θ2 +ΣU|

) 1

κ
+ (N2 −N1)

( |ΣS +ΣU|

|Θ2 +ΣU|

) 1

κ
−N2,

where the minimization is over Θi =

(

Θi,i ∗
∗ ∗

)

, i = 1, 2, subject to

ΣS � Θ2 � Θ1 ≻ 0 and Θi,i � Di, i = 1, 2.
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◆ Source: (S1,S2) ∼ N (0,ΣS) with Si ∼ N (0,ΣSi
), i = 1, 2

◆ Channel: Zi ∼ N (0, Ni), i = 1, 2, with N1 < N2

◆ A necessary condition:

P ≥ min
Θ1,Θ2

sup
ΣU≻0

N1

( |ΣS||Θ1 +ΣU|

|Θ1||Θ2 +ΣU|

) 1

κ
+ (N2 −N1)

( |ΣS +ΣU|

|Θ2 +ΣU|

) 1

κ
−N2,

where the minimization is over Θi =

(

Θi,i ∗
∗ ∗

)

, i = 1, 2, subject to

ΣS � Θ2 � Θ1 ≻ 0 and Θi,i � Di, i = 1, 2.

◆ This bound is tight when S2 is a scalar and κ = 1:

P ≥ sup
ΣU≻0

N1
|ΣS +ΣU|

|D1 +ΣU1
|(d2 + σ2

U2
)
+ (N2 −N1)

σ2
S2

+ σ2
U2

d2 + σ2
U2

−N2,

where ΣU =

(

ΣU1
∗

∗ σ2
U2

)

.
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Source-channel separation theorems can be used to prove the optimality
of non-separation based schemes (e.g., hybrid coding schemes) and
determine performance limits even in scenarios where the separation
architecture is suboptimal!
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◆ A single-letter version: If (κ,D1,D2) is achievable, then

C(pS , pŜ1,Ŝ2|S
) ⊆ κC(pY1,Y2|X)

for some pS,Ŝ1,Ŝ2
= pSpŜ1,Ŝ2|S

with pS,Ŝi
∈ Di, i = 1, 2. A proper

definition of C(pS , pŜ1,Ŝ2|S
) is needed. For simplicity, we can replace

C(pS , pŜ1,Ŝ2|S
) with Marton’s inner bound Cin(pS, pŜ1,Ŝ2|S

).
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◆ For any pS,Ŝ1,Ŝ2
= pSpŜ1,Ŝ2|S

with E[(S − Ŝi)
2] ≤ di, i = 1, 2,

C(G-BC(d1, d2)) ⊆ C(pS , pŜ1,Ŝ2|S
).

◆ If (κ, d1, d2) is achievable, then C(G-BC(d1, d2)) ⊆ κC(pY1,Y2|X).

κ < κ
∗

κ = κ
∗

κ > κ
∗

R1

R
2

 

 
C(G-BC(d1, d2))
κC(pY1,Y2|X)
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◆ For any pS1,Ŝ1,Ŝ2
= pSpŜ1,Ŝ2|S

with E[S ⊕ Ŝi] ≤ di, i = 1, 2,

C(BS-BC(d1, d2)) ⊆ C(pS , pŜ1,Ŝ2|S
).

◆ If (κ, d1, d2) is achievable, then C(BS-BC(d1, d2)) ⊆ κC(pY1,Y2|X).

κ < κ
∗

κ = κ
∗

κ > κ
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◆ A general ordering: Given any U1, · · · , UL, there exist V1, · · · , VL such
that I(UA1

; Ŝ1) + I(UA2
; Ŝ2|UA1

) + · · ·+ I(UAk
; Ŝ2|U∪k−1

j=1
Aj

)

≤ κ[I(VA1
;Y1) + I(VA2

;Y2|VA1
) + · · ·+ I(VAk

;Y2|V∪k−1

j=1
Aj

)]

for any A1, · · · ,Ak ⊆ {1, · · · , L}.
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◆ A general ordering: Given any U1, · · · , UL, there exist V1, · · · , VL such
that I(UA1

; Ŝ1) + I(UA2
; Ŝ2|UA1

) + · · ·+ I(UAk
; Ŝ2|U∪k−1

j=1
Aj

)

≤ κ[I(VA1
;Y1) + I(VA2

;Y2|VA1
) + · · ·+ I(VAk

;Y2|V∪k−1

j=1
Aj

)]

for any A1, · · · ,Ak ⊆ {1, · · · , L}.

◆ A subset of inequalities
I(U0; Ŝi) ≤ κI(V0;Yi), i = 1, 2
I(U0, Ui; Ŝi) ≤ κI(V0, Vi;Yi), i = 1, 2
I(U0; Ŝ1) + I(U2; Ŝ2|U0) ≤ κ[I(V0;Y1) + I(V2;Y2|V0)]
I(U0; Ŝ2) + I(U1; Ŝ1|U0) ≤ κ[I(V0;Y2) + I(V1;Y1|V0)]
I(U0, U1; Ŝ1) + I(S; Ŝ2|U0, U1) ≤ κ[I(V0, V1;Y1) + I(X;Y2|V0, V1)]
I(U0, U2; Ŝ2) + I(S; Ŝ1|U0, U2) ≤ κ[I(V0, V2;Y2) + I(X;Y1|V0, V2)]
I(U0; Ŝ1) + I(U2; Ŝ2|U0) + I(S; Ŝ1|U0, U2)

≤ κ[I(V0;Y1) + I(V2;Y2|V0) + I(X;Y1|V0, V2)]
I(U0; Ŝ2) + I(U1; Ŝ1|U0) + I(S; Ŝ2|U0, U1)

≤ κ[I(V0;Y2) + I(V1;Y1|V0) + I(X;Y2|V0, V1)]
Therefore, if (κ,D1,D2) is achievable, then

Cout(pS , pŜ1,Ŝ2|S
) ⊆ κCout(pY1,Y2|X)

for some pS,Ŝ1,Ŝ2
= pSpŜ1,Ŝ2|S

with pS,Ŝi
∈ Di, i = 1, 2.
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◆ The source-channel separation theorem can be useful even in the
scenarios where the source-channel separation architecture is strictly
suboptimal!

◆ From source-channel separation to source-channel correspondence
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◆ The source-channel separation theorem can be useful even in the
scenarios where the source-channel separation architecture is strictly
suboptimal!

◆ From source-channel separation to source-channel correspondence

Thank you!
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