Source-Channel Communication in Networks: Separation Theorems and Beyond

Jun Chen
Electrical and Computer Engineering
McMaster University

Joint work with Kia Khezeli, Lin Song, Chao Tian, Suhas Diggavi, and Shlomo Shamai

Outline

Outline

Theorem
Proof I
Proof II
Optimality I Optimality II Source Broadcast Gaussian Case Variant Separation Side Information Example
Reduction Gaussian Case Broadcast
Tradeoff
System Diagram Comparison
Gaussian Case Binary Case Another Method Conclusion

- Optimality of the source-channel separation architecture for lossy source coding in general networks
- The source broadcast problem: Application of the source-channel separation theorem as a converse method
- Other converse methods for the source broadcast problem

Source-Channel Separation Theorem

Outline

Theorem

Proof I
Proof II
Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example
Reduction
Gaussian Case
Broadcast
Tradeoff
System Diagram
Comparison
Gaussian Case
Binary Case
Another Method
Conclusion

- Source-channel communication

Source-Channel Separation Theorem

Outline

Theorem

Proof I
Proof II
Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example
Reduction
Gaussian Case
Broadcast
Tradeoff
System Diagram
Comparison
Gaussian Case
Binary Case
Another Method Conclusion

- Source-channel communication

- Separation theorem (Shannon 48)

For any achievable end-to-end distortion D,

$$
R(D) \leq C
$$

Two Proofs

Outline

Theorem

- Standard proof
- Information-theoretic definition of channel capacity and rate-distortion function

$$
\begin{aligned}
& C=\max _{p_{X}} I(X ; Y) \\
& R(D)=\min _{p_{\hat{S} \mid S}: \mathbb{E}[d(S, \hat{S})] \leq D} I(S ; \hat{S})
\end{aligned}
$$

- Converse theorem of channel coding: $I\left(X^{n} ; Y^{n}\right) \leq n C$
- Converse theorem of lossy source coding: $I\left(S^{n} ; \hat{S}^{n}\right) \geq n R(D)$

■ Data processing inequality: $I\left(X^{n} ; Y^{n}\right) \geq I\left(S^{n} ; \hat{S}^{n}\right)$

Two Proofs

- Standard proof
- Information-theoretic definition of channel capacity and rate-distortion function

$$
\begin{aligned}
& C=\max _{p_{X}} I(X ; Y) \\
& R(D)=\min _{p_{\hat{S} \mid S}: \mathbb{E}[d(S, \hat{S})] \leq D} I(S ; \hat{S})
\end{aligned}
$$

- Converse theorem of channel coding: $I\left(X^{n} ; Y^{n}\right) \leq n C$
- Converse theorem of lossy source coding: $I\left(S^{n} ; \hat{S}^{n}\right) \geq n R(D)$
- Data processing inequality: $I\left(X^{n} ; Y^{n}\right) \geq I\left(S^{n} ; \hat{S}^{n}\right)$
- Alternative proof
- Operational definition of channel capacity and rate-distortion function
- Achievability theorem of channel coding: $I\left(X^{n} ; Y^{n}\right) \leq n C$
- Achievability theorem of lossy source coding: $I\left(S^{n} ; \hat{S}^{n}\right) \geq n R(D)$

■ Data processing inequality: $I\left(X^{n} ; Y^{n}\right) \geq I\left(S^{n} ; \hat{S}^{n}\right)$

More Proofs

Outline

Theorem
Proof I

Proof II

Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example
Reduction
Gaussian Case
Broadcast
Tradeoff
System Diagram
Comparison
Gaussian Case
Binary Case
Another Method
Conclusion

- Channel-centered proof
- View $p_{Y^{n} \mid X^{n}}$ as a communication channel: $I\left(X^{n} ; Y^{n}\right) \leq n C$
- View $p_{Y^{n} \mid X^{n}}$ as a test channel: $I\left(X^{n} ; Y^{n}\right) \geq R\left(p_{X^{n}, Y^{n}}\right)$
- $R\left(p_{X^{n}, Y^{n}}\right) \geq n R(D)$

More Proofs

Outline
Theorem
Proof I

Proof II

Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example
Reduction
Gaussian Case
Broadcast
Tradeoff
System Diagram Comparison
Gaussian Case
Binary Case
Another Method Conclusion

- Channel-centered proof
- View $p_{Y^{n} \mid X^{n}}$ as a communication channel: $I\left(X^{n} ; Y^{n}\right) \leq n C$
- View $p_{Y^{n} \mid X^{n}}$ as a test channel: $I\left(X^{n} ; Y^{n}\right) \geq R\left(p_{X^{n}, Y^{n}}\right)$
- $R\left(p_{X^{n}, Y^{n}}\right) \geq n R(D)$
- Source-centered proof
- View $p_{\hat{S}^{n} \mid S^{n}}$ as a test channel: $I\left(S^{n} ; \hat{S}^{n}\right) \geq n R(D)$
- View $p_{\hat{S}^{n} \mid S^{n}}$ as a communication channel: $I\left(S^{n} ; \hat{S}^{n}\right) \leq C\left(p_{\hat{S}^{n} \mid S^{n}}\right)$
- $C\left(p_{\hat{S}^{n} \mid S^{n}}\right) \leq n C$

Source-Channel Separation in Networks: General Source

Outline
Theorem
Proof I
Proof II
Optimality I Optimality II Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example
Reduction
Gaussian Case
Broadcast
Tradeoff
System Diagram Comparison
Gaussian Case
Binary Case
Another Method Conclusion

- Optimality: The memoryless sources at source nodes are arbitrarily correlated, each of which is to be reconstructed at possibly multiple destinations within certain distortions, but the channels in this network are synchronized, orthogonal and memoryless point-to-point channels.

Source-Channel Separation in Networks: General Channel

Outline Theorem
Proof I
Proof II
Optimality I

Optimality II

Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example
Reduction Gaussian Case

Broadcast
Tradeoff
System Diagram
Comparison
Gaussian Case
Binary Case
Another Method Conclusion

- Optimality: The memoryless sources are mutually independent, each of which is to be reconstructed only at one destination within a certain distortion, but the channels are general, including multi-user channels such as multiple access, broadcast, interference and relay channels, possibly with feedback.

The Source Broadcast Problem

Outline Theorem
Proof I
Proof II
Optimality I
Optimality II

Source Broadcast

Gaussian Case
Variant
Separation
Side Information
Example
Reduction
Gaussian Case
Broadcast
Tradeoff
System Diagram Comparison Gaussian Case Binary Case Another Method Conclusion

- We say $\left(\kappa, \mathcal{D}_{1}, \mathcal{D}_{2}\right)$ is achievable if

$$
\begin{aligned}
& \frac{n}{m} \leq \kappa, \\
& \frac{1}{m} \sum_{t=1}^{m} p_{S(t), \hat{S}_{i}(t)} \in \mathcal{D}_{i}, \quad i=1,2 . \quad(*)
\end{aligned}
$$

Remark: $(*)$ is more general than conventional distortion constraints since

$$
\frac{1}{m} \sum_{t=1}^{m} \mathbb{E}\left[d_{i}\left(S(t), S_{i}(t)\right)\right]=\mathbb{E}\left[d\left(S, \hat{S}_{i}\right)\right],
$$

where $p_{S, \hat{S}_{i}}=\frac{1}{m} \sum_{t=1}^{m} p_{S(t), \hat{S}_{i}(t)}, i=1,2$.

Gaussian Source over Gaussian Broadcast Channel

Outline Theorem Proof I Proof II Optimality I Optimality II Source Broadcast

- Tradeoff between the transmit power P, the bandwidth mismatch factor κ, and the achievable reconstruction distortion pair $\left(d_{1}, d_{2}\right)$
- A mysterious auxiliary random variable (Reznic, Feder, and Zamir 06): $S+U$, where U is independent of everything else.

$$
P \geq \sup _{\sigma_{U}^{2}>0} N_{1}\left(\frac{\sigma_{S}^{2}\left(d_{1}+\sigma_{U}^{2}\right)}{d_{1}\left(d_{2}+\sigma_{U}^{2}\right)}\right)^{\frac{1}{\kappa}}+\left(N_{2}-N_{1}\right)\left(\frac{\sigma_{S}^{2}+\sigma_{U}^{2}}{d_{2}+\sigma_{U}^{2}}\right)^{\frac{1}{\kappa}}-N_{2}
$$

Source Broadcast with Receiver Side Information

Outline
Theorem
Proof I
Proof II
Optimality I
Optimality II
Source Broadcast
Gaussian Case

Variant

Separation
Side Information
Example
Reduction
Gaussian Case
Broadcast
Tradeoff
System Diagram Comparison
Gaussian Case
Binary Case
Another Method Conclusion

- We say $\left(\kappa, \mathcal{D}_{1}, \mathcal{D}_{2}\right)$ is achievable if

$$
\begin{aligned}
& \frac{n}{m} \leq \kappa, \\
& \frac{1}{m} \sum_{t=1}^{m} p_{S_{1}(t), S_{2}(t), \hat{S}_{1}(t)} \in \mathcal{D}_{1}, \\
& \frac{1}{m} \sum_{t=1}^{m} p_{S_{2}(t), \hat{S}_{2}(t)} \in \mathcal{D}_{2} .
\end{aligned}
$$

A Source-Channel Separation Theorem

Outline Theorem
Proof I Proof II Optimality I Optimality II Source Broadcast Gaussian Case Variant

Separation

Side Information
Example
Reduction Gaussian Case Broadcast

Tradeoff
System Diagram Comparison Gaussian Case Binary Case Another Method Conclusion

$\bullet\left(\kappa, \mathcal{D}_{1}, \mathcal{D}_{2}\right)$ is achievable $\Longleftrightarrow\left(R_{S_{1} \mid S_{2}}\left(\mathcal{D}_{1}\right), R_{S_{2}}\left(\mathcal{D}_{2}\right)\right) \in \kappa \mathcal{C}_{1 \mid 2}\left(p_{Y_{1}, Y_{2} \mid X}\right)$, where

$$
\begin{aligned}
& R_{S_{1} \mid S_{2}}\left(\mathcal{D}_{1}\right)=\min _{p_{S_{1}, S_{2}, \hat{S}_{1}} \in \mathcal{D}_{1}} I\left(S_{1} ; \hat{S}_{1} \mid S_{2}\right), \\
& R_{S_{2}}\left(\mathcal{D}_{2}\right)=\min _{p_{S_{2}}, \hat{S}_{2} \in \mathcal{D}_{2}} I\left(S_{2} ; \hat{S}_{2}\right),
\end{aligned}
$$

and $C_{1 \mid 2}\left(p_{Y_{1}, Y_{2} \mid X}\right)$ is the capacity region of broadcast channel $p_{Y_{1}, Y_{2} \mid X}$ when the message intended for receiver 2 is available at receiver 1 .

Broadcast Channel with Receiver Side Information

Outline
Theorem
Proof I
Proof II
Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation

Side Information

Example
Reduction
Gaussian Case
Broadcast
Tradeoff
System Diagram Comparison
Gaussian Case
Binary Case
Another Method Conclusion

- Capacity region $\mathcal{C}_{1 \mid 2}\left(p_{Y_{1}, Y_{2} \mid X}\right)$ (Kramer and Shamai 07)

$$
\begin{aligned}
& R_{1} \leq I\left(X ; Y_{1}\right) \\
& R_{2} \leq I\left(V ; Y_{2}\right) \\
& R_{1}+R_{2} \leq I\left(X ; Y_{1} \mid V\right)+I\left(V ; Y_{2}\right)
\end{aligned}
$$

for some $p_{V, X}$.

Broadcast Channel with Receiver Side Information

Outline Theorem
Proof I
Proof II
Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation
Side Information

Example

Reduction
Gaussian Case
Broadcast
Tradeoff
System Diagram Comparison Gaussian Case Binary Case Another Method Conclusion

- $\mathcal{C}_{1 \mid 2}\left(p_{Y_{1}, Y_{2} \mid X}\right)=\mathcal{C}\left(p_{Y_{1}, Y_{2} \mid X}\right)$ if Y_{1} is less noisy than Y_{2}, but not necessarily so if Y_{1} is more capable than Y_{2}.

BEC-BSC

A Reduction Argument

Outline Theorem
Proof I
Proof II
Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example

Reduction

Gaussian Case
Broadcast
Tradeoff
System Diagram Comparison Gaussian Case Binary Case Another Method Conclusion

- Introduction of remote source $\left\{\left(S_{1}(t), S_{2}(t)\right)\right\}_{t=1}^{\infty}$

Given $\frac{1}{m} \sum_{t=1}^{m} p_{S(t), \hat{S}_{i}(t)} \in \mathcal{D}_{i}, i=1,2$, one can compute the induced $\frac{1}{m} \sum_{t=1}^{m} p_{S_{1}(t), S_{2}(t), \hat{S}_{1}(t)}$ and $\frac{1}{m} \sum_{t=1}^{m} p_{S_{2}(t), \hat{S}_{2}(t)}$. So the separation theorem can be applied.

A Reduction Argument

Outline Theorem
Proof I
Proof II
Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example

Reduction

Gaussian Case Broadcast
Tradeoff
System Diagram Comparison Gaussian Case Binary Case Another Method Conclusion

- Introduction of remote source $\left\{\left(S_{1}(t), S_{2}(t)\right)\right\}_{t=1}^{\infty}$ Given $\frac{1}{m} \sum_{t=1}^{m} p_{S(t), \hat{S}_{i}(t)} \in \mathcal{D}_{i}, i=1,2$, one can compute the induced $\frac{1}{m} \sum_{t=1}^{m} p_{S_{1}(t), S_{2}(t), \hat{S}_{1}(t)}$ and $\frac{1}{m} \sum_{t=1}^{m} p_{S_{2}(t), \hat{S}_{2}(t)}$. So the separation theorem can be applied.

A Reduction Argument

Outline Theorem
Proof I
Proof II
Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example

Reduction

Gaussian Case
Broadcast
Tradeoff
System Diagram Comparison Gaussian Case Binary Case Another Method Conclusion

- Introduction of remote source $\left\{\left(S_{1}(t), S_{2}(t)\right)\right\}_{t=1}^{\infty}$

Given $\frac{1}{m} \sum_{t=1}^{m} p_{S(t), \hat{S}_{i}(t)} \in \mathcal{D}_{i}, i=1,2$, one can compute the induced $\frac{1}{m} \sum_{t=1}^{m} p_{S_{1}(t), S_{2}(t), \hat{S}_{1}(t)}$ and $\frac{1}{m} \sum_{t=1}^{m} p_{S_{2}(t), \hat{S}_{2}(t)}$. So the separation theorem can be applied.

A Reduction Argument

Outline Theorem
Proof I
Proof II
Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example

Reduction

Gaussian Case
Broadcast
Tradeoff
System Diagram
Comparison Gaussian Case Binary Case Another Method Conclusion

- Introduction of remote source $\left\{\left(S_{1}(t), S_{2}(t)\right)\right\}_{t=1}^{\infty}$

Given $\frac{1}{m} \sum_{t=1}^{m} p_{S(t), \hat{S}_{i}(t)} \in \mathcal{D}_{i}, i=1,2$, one can compute the induced $\frac{1}{m} \sum_{t=1}^{m} p_{S_{1}(t), S_{2}(t), \hat{S}_{1}(t)}$ and $\frac{1}{m} \sum_{t=1}^{m} p_{S_{2}(t), \hat{S}_{2}(t)}$. So the separation theorem can be applied.

- There exists some $p_{S, \hat{S}_{1}, \hat{S}_{2}}=p_{S} p_{\hat{S}_{1}, \hat{S}_{2} \mid S}$ with $p_{S, \hat{S}_{i}} \in \mathcal{D}_{i}, i=1,2$ such that $\left(I\left(S_{1} ; \hat{S}_{1} \mid S_{2}\right), I\left(S_{2} ; \hat{S}_{2}\right)\right) \in \kappa \mathcal{C}_{1 \mid 2}\left(p_{Y_{1}, Y_{2} \mid X}\right)$ for all $p_{S_{1}, S_{2} \mid S}$. Moreover, there is no loss of generality in choosing $S_{1}=S$.

Gaussian Source with Squared Error Distortion Measure

Outline
Theorem
Proof I
Proof II
Optimality I Optimality II Source Broadcast Gaussian Case Variant Separation Side Information Example
Reduction

Tradeoff
System Diagram Comparison Gaussian Case Binary Case Another Method Conclusion

- Let $S_{1}=S$ and $S_{2}=S+U$, where $U \sim \mathcal{N}\left(0, \sigma_{U}^{2}\right)$.

Bivariate Gaussian Source over Gaussian Broadcast Channel

Outline Theorem
Proof I
Proof II
Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example
Reduction
Gaussian Case

- Tradeoff between the transmit power P, the bandwidth mismatch factor κ, and the achievable reconstruction distortion pair $\left(\mathbf{D}_{1}, \mathbf{D}_{2}\right)$

- Scalar case without bandwidth mismatch

■ Source-channel separation is suboptimal (Gao and Tuncel 11).
■ Uncoded scheme is optimal at low SNR (Bross, Lapidoth, and Tinguely 10).

- Hybrid scheme is optimal (Tian, Diggavi, and Shamai 11).

Characterization of the Power-Bandwidth-Distortion Tradeoff

Outline
Theorem
Proof I
Proof II
Optimality I Optimality II Source Broadcast Gaussian Case Variant

Separation

Side Information
Example
Reduction
Gaussian Case
Broadcast

Tradeoff

System Diagram Comparison Gaussian Case Binary Case Another Method Conclusion

- Source: $\left(\mathbf{S}_{1}, \mathbf{S}_{2}\right) \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{S}}\right)$ with $\mathbf{S}_{i} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{S}_{i}}\right), i=1,2$
- Channel: $Z_{i} \sim \mathcal{N}\left(0, N_{i}\right), i=1,2$, with $N_{1}<N_{2}$

Characterization of the Power-Bandwidth-Distortion Tradeoff

Outline
Theorem
Proof I
Proof II
Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example
Reduction
Gaussian Case
Broadcast

Tradeoff

System Diagram Comparison Gaussian Case Binary Case Another Method Conclusion

- Source: $\left(\mathbf{S}_{1}, \mathbf{S}_{2}\right) \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{S}}\right)$ with $\mathbf{S}_{i} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{S}_{i}}\right), i=1,2$
- Channel: $Z_{i} \sim \mathcal{N}\left(0, N_{i}\right), i=1,2$, with $N_{1}<N_{2}$
- A necessary condition:

$$
P \geq \min _{\boldsymbol{\Theta}_{1}, \boldsymbol{\Theta}_{2} \boldsymbol{\Sigma}_{\mathbf{U}} \succ \mathbf{0}} \sup _{1} N_{1}\left(\frac{\left|\boldsymbol{\Sigma}_{\mathbf{S}}\right|\left|\boldsymbol{\Theta}_{1}+\boldsymbol{\Sigma}_{\mathbf{U}}\right|}{\left|\boldsymbol{\Theta}_{1}\right|\left|\boldsymbol{\Theta}_{2}+\boldsymbol{\Sigma}_{\mathbf{U}}\right|}\right)^{\frac{1}{\kappa}}+\left(N_{2}-N_{1}\right)\left(\frac{\left|\boldsymbol{\Sigma}_{\mathbf{S}}+\boldsymbol{\Sigma}_{\mathrm{U}}\right|}{\left|\boldsymbol{\Theta}_{2}+\boldsymbol{\Sigma}_{\mathbf{U}}\right|}\right)^{\frac{1}{\kappa}}-N_{2},
$$

where the minimization is over $\boldsymbol{\Theta}_{i}=\left(\begin{array}{cc}\boldsymbol{\Theta}_{i, i} & * \\ * & *\end{array}\right), i=1,2$, subject to $\boldsymbol{\Sigma}_{\mathbf{S}} \succeq \boldsymbol{\Theta}_{2} \succeq \boldsymbol{\Theta}_{1} \succ \mathbf{0}$ and $\boldsymbol{\Theta}_{i, i} \preceq \mathbf{D}_{i}, i=1,2$.

Characterization of the Power-Bandwidth-Distortion Tradeoff

Outline Theorem Proof I Proof II Optimality I Optimality II Source Broadcast Gaussian Case Variant Separation Side Information Example Reduction Gaussian Case

Broadcast

Tradeoff

System Diagram Comparison Gaussian Case Binary Case Another Method Conclusion
\bullet Source: $\left(\mathbf{S}_{1}, \mathbf{S}_{2}\right) \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{S}}\right)$ with $\mathbf{S}_{i} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{S}_{i}}\right), i=1,2$

- Channel: $Z_{i} \sim \mathcal{N}\left(0, N_{i}\right), i=1,2$, with $N_{1}<N_{2}$
- A necessary condition:
$P \geq \min _{\boldsymbol{\Theta}_{1}, \boldsymbol{\Theta}_{2} \boldsymbol{\Sigma}_{\mathbf{U}} \succ 0} \sup _{0} N_{1}\left(\frac{\left|\boldsymbol{\Sigma}_{\mathbf{S}}\right|\left|\boldsymbol{\Theta}_{1}+\boldsymbol{\Sigma}_{\mathbf{U}}\right|}{\left|\boldsymbol{\Theta}_{1}\right|\left|\boldsymbol{\Theta}_{2}+\boldsymbol{\Sigma}_{\mathbf{U}}\right|}\right)^{\frac{1}{\kappa}}+\left(N_{2}-N_{1}\right)\left(\frac{\left|\boldsymbol{\Sigma}_{\mathbf{S}}+\boldsymbol{\Sigma}_{\mathbf{U}}\right|}{\left|\boldsymbol{\Theta}_{2}+\boldsymbol{\Sigma}_{\mathbf{U}}\right|}\right)^{\frac{1}{\kappa}}-N_{2}$,
where the minimization is over $\boldsymbol{\Theta}_{i}=\left(\begin{array}{cc}\boldsymbol{\Theta}_{i, i} & * \\ * & *\end{array}\right), i=1,2$, subject to $\boldsymbol{\Sigma}_{\mathbf{S}} \succeq \boldsymbol{\Theta}_{2} \succeq \boldsymbol{\Theta}_{1} \succ \mathbf{0}$ and $\boldsymbol{\Theta}_{i, i} \preceq \mathbf{D}_{i}, i=1,2$.
- This bound is tight when S_{2} is a scalar and $\kappa=1$:

$$
P \geq \sup _{\boldsymbol{\Sigma}_{\mathbf{U}} \succ \mathbf{0}} N_{1} \frac{\left|\boldsymbol{\Sigma}_{\mathbf{S}}+\boldsymbol{\Sigma}_{\mathbf{U}}\right|}{\left|\mathbf{D}_{1}+\boldsymbol{\Sigma}_{\mathbf{U}_{1}}\right|\left(d_{2}+\sigma_{U_{2}}^{2}\right)}+\left(N_{2}-N_{1}\right) \frac{\sigma_{S_{2}}^{2}+\sigma_{U_{2}}^{2}}{d_{2}+\sigma_{U_{2}}^{2}}-N_{2},
$$

where $\boldsymbol{\Sigma}_{\mathbf{U}}=\left(\begin{array}{cc}\boldsymbol{\Sigma}_{\mathbf{U}_{1}} & * \\ * & \sigma_{U_{2}}^{2}\end{array}\right)$.

System Diagram

Outline
Theorem
Proof I
Proof II
Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example
Reduction
Gaussian Case
Broadcast
Tradeoff System Diagram
Comparison Gaussian Case Binary Case Another Method Conclusion

Source-channel separation theorems can be used to prove the optimality of non-separation based schemes (e.g., hybrid coding schemes) and determine performance limits even in scenarios where the separation architecture is suboptimal!

A Converse Method Based on Channel Comparison

Outline
Theorem
Proof I
Proof II
Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example
Reduction
Gaussian Case
Broadcast
Tradeoff
System Diagram

Comparison

Gaussian Case
Binary Case
Another Method
Conclusion

A Converse Method Based on Channel Comparison

Outline Theorem Proof I Proof II Optimality I Optimality II Source Broadcast Gaussian Case Variant Separation Side Information Example

Reduction Gaussian Case Broadcast

Tradeoff
System Diagram

Comparison

Gaussian Case
Binary Case Another Method Conclusion

- A single-letter version: If $\left(\kappa, \mathcal{D}_{1}, \mathcal{D}_{2}\right)$ is achievable, then

$$
\mathcal{C}\left(p_{S}, p_{\hat{S}_{1}, \hat{S}_{2} \mid S}\right) \subseteq \kappa \mathcal{C}\left(p_{Y_{1}, Y_{2} \mid X}\right)
$$

for some $p_{S, \hat{S}_{1}, \hat{S}_{2}}=p_{S} p_{\hat{S}_{1}, \hat{S}_{2} \mid S}$ with $p_{S, \hat{S}_{i}} \in \mathcal{D}_{i}, i=1,2$. A proper definition of $\mathcal{C}\left(p_{S}, p_{\hat{S}_{1}, \hat{S}_{2} \mid S}\right)$ is needed. For simplicity, we can replace $\mathcal{C}\left(p_{S}, p_{\hat{S}_{1}, \hat{S}_{2} \mid S}\right)$ with Marton's inner bound $\mathcal{C}_{\text {in }}\left(p_{S}, p_{\hat{S}_{1}, \hat{S}_{2} \mid S}\right)$.

Gaussian Source with Squared Error Distortion Measure

Outline Theorem Proof I Proof II Optimality I Optimality II Source Broadcast Gaussian Case Variant Separation Side Information Example

Reduction Gaussian Case Broadcast Tradeoff System Diagram Comparison

Gaussian Case

$\bullet \quad$ For any $p_{S, \hat{S}_{1}, \hat{S}_{2}}=p_{S} p_{\hat{S}_{1}, \hat{S}_{2} \mid S}$ with $\mathbb{E}\left[\left(S-\hat{S}_{i}\right)^{2}\right] \leq d_{i}, i=1,2$,

$$
\mathcal{C}\left(\mathrm{G}-\mathrm{BC}\left(d_{1}, d_{2}\right)\right) \subseteq \mathcal{C}\left(p_{S}, p_{\hat{S}_{1}, \hat{S}_{2} \mid S}\right) .
$$

\bullet If $\left(\kappa, d_{1}, d_{2}\right)$ is achievable, then $\mathcal{C}\left(\mathrm{G}-\mathrm{BC}\left(d_{1}, d_{2}\right)\right) \subseteq \kappa \mathcal{C}\left(p_{Y_{1}, Y_{2} \mid X}\right)$.

Binary Uniform Source with Hamming Distortion Measure

Outline Theorem Proof I Proof II Optimality I Optimality II Source Broadcast Gaussian Case Variant Separation Side Information Example

Reduction Gaussian Case Broadcast Tradeoff System Diagram Comparison Gaussian Case

```
Binary Case
```

\bullet For any $p_{S_{1}, \hat{S}_{1}, \hat{S}_{2}}=p_{S} p_{\hat{S}_{1}, \hat{S}_{2} \mid S}$ with $\mathbb{E}\left[S \oplus \hat{S}_{i}\right] \leq d_{i}, i=1,2$,

$$
\mathcal{C}\left(\operatorname{BS}-\mathrm{BC}\left(d_{1}, d_{2}\right)\right) \subseteq \mathcal{C}\left(p_{S}, p_{\hat{S}_{1}, \hat{S}_{2} \mid S}\right) .
$$

\bullet If $\left(\kappa, d_{1}, d_{2}\right)$ is achievable, then $\mathcal{C}\left(\operatorname{BS}-\mathrm{BC}\left(d_{1}, d_{2}\right)\right) \subseteq \kappa \mathcal{C}\left(p_{Y_{1}, Y_{2} \mid X}\right)$.

Another Converse Method

Outline
Theorem
Proof I
Proof II
Optimality I
Optimality II
Source Broadcast
Gaussian Case
Variant
Separation
Side Information
Example
Reduction
Gaussian Case
Broadcast
Tradeoff
System Diagram Comparison
Gaussian Case
Binary Case

Another Method

Conclusion

- A general ordering: Given any U_{1}, \cdots, U_{L}, there exist V_{1}, \cdots, V_{L} such that $I\left(U_{\mathcal{A}_{1}} ; \hat{S}_{1}\right)+I\left(U_{\mathcal{A}_{2}} ; \hat{S}_{2} \mid U_{\mathcal{A}_{1}}\right)+\cdots+I\left(U_{\mathcal{A}_{k}} ; \hat{S}_{2} \mid U_{\cup_{j=1}^{k-1} \mathcal{A}_{j}}\right)$ $\leq \kappa\left[I\left(V_{\mathcal{A}_{1}} ; Y_{1}\right)+I\left(V_{\mathcal{A}_{2}} ; Y_{2} \mid V_{\mathcal{A}_{1}}\right)+\cdots+I\left(V_{\mathcal{A}_{k}} ; Y_{2} \mid V_{\cup_{j=1}^{k-1} \mathcal{A}_{j}}\right)\right]$ for any $\mathcal{A}_{1}, \cdots, \mathcal{A}_{k} \subseteq\{1, \cdots, L\}$.

Another Converse Method

Outline Theorem Proof I Proof II Optimality I Optimality II Source Broadcast Gaussian Case Variant Separation Side Information Example Reduction Gaussian Case Broadcast Tradeoff System Diagram Comparison Gaussian Case Binary Case

- A general ordering: Given any U_{1}, \cdots, U_{L}, there exist V_{1}, \cdots, V_{L} such that $I\left(U_{\mathcal{A}_{1}} ; \hat{S}_{1}\right)+I\left(U_{\mathcal{A}_{2}} ; \hat{S}_{2} \mid U_{\mathcal{A}_{1}}\right)+\cdots+I\left(U_{\mathcal{A}_{k}} ; \hat{S}_{2} \mid U_{\substack{\cup_{j=1}^{k-1} \mathcal{A}_{j}}}\right)$ $\leq \kappa\left[I\left(V_{\mathcal{A}_{1}} ; Y_{1}\right)+I\left(V_{\mathcal{A}_{2}} ; Y_{2} \mid V_{\mathcal{A}_{1}}\right)+\cdots+I\left(V_{\mathcal{A}_{k}} ; Y_{2} \mid V_{\cup_{j=1}^{k-1} \mathcal{A}_{j}}\right)\right]$ for any $\mathcal{A}_{1}, \cdots, \mathcal{A}_{k} \subseteq\{1, \cdots, L\}$.
- A subset of inequalities

$$
\begin{aligned}
& I\left(U_{0} ; \hat{S}_{1}\right) \leq \kappa I\left(V_{0} ; Y_{i}\right), i=1,2 \\
& I\left(U_{0}, U_{i} ; \hat{S}_{i}\right) \leq \kappa I\left(V_{0}, V_{i} ; Y_{i}\right), i=1,2 \\
& I\left(U_{0} ; \hat{S}_{1}\right)+I\left(U_{2} ; \hat{S}_{2} \mid U_{0}\right) \leq \kappa\left[I\left(V_{0} ; Y_{1}\right)+I\left(V_{2} ; Y_{2} \mid V_{0}\right)\right] \\
& I\left(U_{0} ; \hat{S}_{2}\right)+I\left(U_{1} ; \hat{S}_{1} \mid U_{0}\right) \leq \kappa\left[I\left(V_{0} ; Y_{2}\right)+I\left(V_{1} ; Y_{1} \mid V_{0}\right)\right] \\
& I\left(U_{0}, U_{1} ; \hat{S}_{1}\right)+I\left(S ; \hat{S}_{2} \mid U_{0}, U_{1}\right) \leq \kappa\left[I\left(V_{0}, V_{1} ; Y_{1}\right)+I\left(X ; Y_{2} \mid V_{0}, V_{1}\right)\right] \\
& I\left(U_{0}, U_{2} ; \hat{S}_{2}\right)+I\left(S ; \hat{S}_{1} \mid U_{0}, U_{2}\right) \leq \kappa\left[I\left(V_{0}, V_{2} ; Y_{2}\right)+I\left(X ; Y_{1} \mid V_{0}, V_{2}\right)\right] \\
& I\left(U_{0} ; \hat{S}_{1}\right)+I\left(U_{2} ; \hat{S}_{2} \mid U_{0}\right)+I\left(S ; \hat{S}_{1} \mid U_{0}, U_{2}\right) \\
& \\
& \quad \leq \kappa\left[I\left(V_{0} ; Y_{1}\right)+I\left(V_{2} ; Y_{2} \mid V_{0}\right)+I\left(X ; Y_{1} \mid V_{0}, V_{2}\right)\right] \\
& I\left(U_{0} ; \hat{S}_{2}\right)+I\left(U_{1} ; \hat{S}_{1} \mid U_{0}\right)+I\left(S ; \hat{S}_{2} \mid U_{0}, U_{1}\right) \\
& \\
& \quad \leq \kappa\left[I\left(V_{0} ; Y_{2}\right)+I\left(V_{1} ; Y_{1} \mid V_{0}\right)+I\left(X ; Y_{2} \mid V_{0}, V_{1}\right)\right]
\end{aligned}
$$

Therefore, if $\left(\kappa, \mathcal{D}_{1}, \mathcal{D}_{2}\right)$ is achievable, then

$$
\mathcal{C}_{\text {out }}\left(p_{S}, p_{\hat{S}_{1}, \hat{S}_{2} \mid S}\right) \subseteq \kappa \mathcal{C}_{\text {out }}\left(p_{Y_{1}, Y_{2} \mid X}\right)
$$

for some $p_{S, \hat{S}_{1}, \hat{S}_{2}}=p_{S} p_{\hat{S}_{1}, \hat{S}_{2} \mid S}$ with $p_{S, \hat{S}_{i}} \in \mathcal{D}_{i}, i=1,2$.

Conclusion

Outline Theorem
Proof I
Proof II
Optimality I Optimality II Source Broadcast Gaussian Case
Variant
Separation
Side Information
Example
Reduction
Gaussian Case
Broadcast
Tradeoff
System Diagram
Comparison
Gaussian Case
Binary Case
Another Method

Conclusion

Outline Theorem
Proof I
Proof II
Optimality I Optimality II Source Broadcast Gaussian Case
Variant
Separation
Side Information
Example
Reduction
Gaussian Case
Broadcast
Tradeoff
System Diagram
Comparison
Gaussian Case
Binary Case
Another Method Conclusion

- The source-channel separation theorem can be useful even in the scenarios where the source-channel separation architecture is strictly suboptimal!
- From source-channel separation to source-channel correspondence

Thank you!

