

$$
\text { Jönt work withRon M. Roth } \quad \text {.http://ar xiv.org/abs/1302.1931 }
$$

Overview

- Motivation
- Proposed coding scheme
- Decoding
- Conclusions / open problems

Motivation

Storing Data

Disk

1 symbol error

Storing Data

Disk

1 symbol error

2 symbol errors

Storing Data

1 burst error

RAID:
Redundant Array of Inexpensive Disks

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

RAID:
Redundant Array of Inexpensive Disks

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

RAID:
Redundant Array of Inexpensive Disks

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk $6 \quad$ Disk 7

RAID:
 Redundant Array of Inexpensive Disks

RAID:
 Redundant Array of Inexpensive Disks

RAID:
 Redundant Array of Inexpensive Disks

RAID:
 Redundant Array of Inexpensive Disks

Disk 1	Disk 2	Disk 3	Disk 4	Disk 5	Disk 6	Disk 7

RAID:

Redundant Array of Inexpensive Disks

RAID:

Redundant Array of Inexpensive Disks

Disk 1	Disk 2	Disk 3	Disk 4	Disk 5	Disk 6	Disk 7

RAID:

Redundant Array of Inexpensive Disks

Stripe 1

RAID:
 Redundant Array of Inexpensive Disks

Stripe 1
Stripe 2

RAID:
 Redundant Array of Inexpensive Disks

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Stripe 1
Stripe 2
Stripe 3

RAID:
 Redundant Array of Inexpensive Disks

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Stripe 1
Stripe 2
Stripe 3
Stripe 4

RAID:
 Redundant Array of Inexpensive Disks

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Stripe 1
Stripe 2
Stripe 3
Stripe 4
Stripe 5

RAID:
 Redundant Array of Inexpensive Disks

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Stripe 1
Stripe 2
Stripe 3
Stripe 4
Stripe 5
Stripe 6

RAID:
 Redundant Array of Inexpensive Disks

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Stripe 1
Stripe 2
Stripe 3
Stripe 4
Stripe 5
Stripe 6
Stripe 7

RAID:
 Redundant Array of Inexpensive Disks

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Stripe 1
Stripe 2
Stripe 3
Stripe 4
Stripe 5
Stripe 6
Stripe 7
Stripe 8

RAID:
 Redundant Array of Inexpensive Disks

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Stripe 1
Stripe 2
Stripe 3
Stripe 4
Stripe 5
Stripe 6
Stripe 7
Stripe 8

RAID:
 Redundant Array of Inexpensive Disks

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Stripe 1
Stripe 2
Stripe 3
Stripe 4
Stripe 5
Stripe 6
Stripe 7
Stripe 8

RAID:
 Redundant Array of Inexpensive Disks

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Stripe 1
Stripe 2
Stripe 3
Stripe 4
Stripe 5
Stripe 6
Stripe 7
Stripe 8

Similar Principle with DRAMs

DRAM 1 DRAM 2 DRAM 3 DRAM 4 DRAM 5 DRAM 6 DRAM 7

Stripe 1
Stripe 2
Stripe 3
Stripe 4
Stripe 5
Stripe 6
Stripe 7
Stripe 8

RAID:
 Redundant Array of Inexpensive Disks

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Stripe 1
Stripe 2
Stripe 3
Stripe 4
Stripe 5
Stripe 6
Stripe 7
Stripe 8

Error / erasure model

Error / Erasure Model

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Stripe 1
Stripe 2
Stripe 3
Stripe 4
Stripe 5
Stripe 6
Stripe 7
Stripe 8

Error / Erasure Model

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Stripe 1
Stripe 2
Stripe 3
Stripe 4
Stripe 5
Stripe 6
Stripe 7
Stripe 8

Error / Erasure Model

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Stripe 1
Stripe 2
Stripe 3
Stripe 4
Stripe 5
Stripe 6
Stripe 7
Stripe 8

Error / Erasure Model

Stripe 1
Stripe 2
Stripe 3
Stripe 4
Stripe 5
Stripe 6
Stripe 7
Stripe 8

Error / Erasure Model

Error / Erasure Model

Error / Erasure Model

$m \times n$

Wish List for ECC Scheme

We want ECC schemes that can jointly handle

- burst errors,
- symbol errors.

Wish List for ECC Scheme

We want ECC schemes that can jointly handle

- burst errors,
- symbol errors.

Moreover, the ECC scheme schould also be able to handle

- burst erasures,
- symbol erasures.

Wish List for ECC Scheme

We want ECC schemes that can jointly handle

- burst errors,
- symbol errors.

Moreover, the ECC scheme schould also be able to handle

- burst erasures,
- symbol erasures.

Finally, the ECC scheme should have

- low encoding complexity,
- low decoding complexity.

Overview

Example of previous coding schemes for related setups.

[Blokh, Zyablov, 1974]
[Kasahara, Hirasawa, Sugiyama, Namekawa, 1976]
[Zinov'ev, Zyablov, 1979]
[Zinov’ev, 1981]
[Abdel-Ghaffar, Hassner, 1991]
[Feng, Tzeng, 1991]
[Dumer, 1998]
[Metzner, Kapturowski, 1990]
[Sakata, 1991]
[Krachkovsky, Lee, 1998]
[Roth, Seroussi, 1998]
[Haslach, Vinck, 1999, 2000]
[Brown, Minder, Shokrollahi, 2004]
[Justesen, Thommesen, Høholdt, 2004]
[Bleichenbacher, Kiayas, Yung, 2007]
[Wu, 2008]
[Schmidt, Sidorenko, Bossert, 2009]
[Kurzweil, Seidl, Huber, 2011]
[Blaum, Hafner, Hetzler, 2012]
[Wachter-Zeh, Zeh, Bossert, 2012]
[Gabrys, Yaakobi, Dolecek, 2013]

Overview

Example of previous coding schemes for related setups.

[Blokh, Zyablov, 1974]
[Kasahara, Hirasawa, Sugiyama, Namekawa, 1976]
[Zinov'ev, Zyablov, 1979]
[Zinov’ev, 1981]
[Abdel-Ghaffar, Hassner, 1991]
[Feng, Tzeng, 1991]
[Dumer, 1998]
[Metzner, Kapturowski, 1990]
[Sakata, 1991]
[Krachkovsky, Lee, 1998]
[Roth, Seroussi, 1998]
[Haslach, Vinck, 1999, 2000]
[Brown, Minder, Shokrollahi, 2004]
[Justesen, Thommesen, Høholdt, 2004]
[Bleichenbacher, Kiayas, Yung, 2007]
[Wu, 2008]
[Schmidt, Sidorenko, Bossert, 2009]
[Kurzweil, Seidl, Huber, 2011]
[Blaum, Hafner, Hetzler, 2012]
[Wachter-Zeh, Zeh, Bossert, 2012]
[Gabrys, Yaakobi, Dolecek, 2013]

Our proposed coding scheme:

- Code construction
- Code properties
- Decoding algorithms

Example of a more "traditional" coding scheme

Concatenated Coding Scheme In Particular: Product Coding Scheme

Concatenated Coding Scheme In Particular: Product Coding Scheme

$m^{\prime} \times n^{\prime}$ array of information symbols

Concatenated Coding Scheme In Particular: Product Coding Scheme

Concatenated Coding Scheme In Particular: Product Coding Scheme

Encoder $_{\mathcal{C}_{1}}$

Concatenated Coding Scheme In Particular: Product Coding Scheme

Concatenated Coding Scheme In Particular: Product Coding Scheme

-					

Encoder $_{\mathcal{C}_{1}}$

Concatenated Coding Scheme In Particular: Product Coding Scheme

Concatenated Coding Scheme In Particular: Product Coding Scheme

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| | | | | | |

Concatenated Coding Scheme In Particular: Product Coding Scheme

Concatenated Coding Scheme In Particular: Product Coding Scheme

Encoder $_{\mathcal{C}_{2}}$

Concatenated Coding Scheme In Particular: Product Coding Scheme

Concatenated Coding Scheme In Particular: Product Coding Scheme

4
Encoder $_{\mathcal{C}_{2}}$

Concatenated Coding Scheme In Particular: Product Coding Scheme

Concatenated Coding Scheme In Particular: Product Coding Scheme

$m \times n$ array of codeword symbols

Concatenated Coding Scheme In Particular: Product Coding Scheme

Concatenated Coding Scheme In Particular: Product Coding Scheme

Concatenated Coding Scheme In Particular: Product Coding Scheme

Decoding of columns based on \mathcal{C}_{2} :

- corrects symbol errors (as far as possible),
- leaves or modifies block errors.

Concatenated Coding Scheme In Particular: Product Coding Scheme

Decoding of columns based on \mathcal{C}_{2} :

- corrects symbol errors (as far as possible),
- leaves or modifies block errors.

Concatenated Coding Scheme In Particular: Product Coding Scheme

Concatenated Coding Scheme In Particular: Product Coding Scheme

Decoding of rows based on \mathcal{C}_{1} :

- corrects block errors (as far as possible).

Concatenated Coding Scheme In Particular: Product Coding Scheme

Decoding of rows based on \mathcal{C}_{1} :

- corrects block errors (as far as possible).

Concatenated Coding Scheme In Particular: Product Coding Scheme

Disadvantages of Product Coding Scheme

Product coding schemes have many favorable aspects.

Disadvantages of Product Coding Scheme

Product coding schemes have many favorable aspects.

However:

- $\operatorname{Rate}\left(\mathcal{C}_{1}\right)<1$.
\Rightarrow The redundancy of the coding scheme is at least linear in m.
- Rate $\left(\mathcal{C}_{2}\right)<1$.
\Rightarrow The redundancy of the coding scheme is at least linear in n.

Proposed coding scheme:

Overview

Overview of Proposed Coding Scheme

Overview of Proposed Coding Scheme

$m \times n^{\prime}$ array of information symbols

Overview of Proposed Coding Scheme

Overview of Proposed Coding Scheme

Encoder $_{\mathcal{C}}$

Overview of Proposed Coding Scheme

Overview of Proposed Coding Scheme

Encoder $_{C}$

Overview of Proposed Coding Scheme

4
multiply by square matrix H_{0}^{-1}

Overview of Proposed Coding Scheme

Overview of Proposed Coding Scheme

4
multiply by square matrix H_{1}^{-1}

Overview of Proposed Coding Scheme

Overview of Proposed Coding Scheme

$m \times n$ array of codeword symbols

Overview of Proposed Coding Scheme

Overview of Proposed Coding Scheme

Overview of Proposed Coding Scheme

Decoding based on code \mathcal{C} and matrices H_{0}, H_{1}, \ldots.

Overview of Proposed Coding Scheme

Decoding based on code \mathcal{C} and matrices H_{0}, H_{1}, \ldots.

Overview of Proposed Coding Scheme

Overview of Proposed Coding Scheme

Proposed coding scheme:

Code definition

Definition of Proposed Code

- Let \mathcal{C} be a linear $[n, k, d]$ code over F.

Definition of Proposed Code

- Let \mathcal{C} be a linear $[n, k, d]$ code over F.
- Let

$$
H_{\mathrm{in}}=(\square)
$$

be a matrix over F that for some positive integer δ satisfies:

Definition of Proposed Code

- Let \mathcal{C} be a linear $[n, k, d]$ code over F.
- Let

$$
H_{\mathrm{in}}=(\square)
$$

be a matrix over F that for some positive integer δ satisfies:

- writing

$$
H_{\text {in }}=\left(\begin{array}{ccccc}
\begin{array}{cccc}
H_{0} & H_{1} & \ldots & \ldots \\
m \times m & H_{n-1} & m \times m & m \times m \\
m \times m
\end{array}
\end{array}\right)
$$

every submatrix H_{j} is invertible over F,

Definition of Proposed Code

- Let \mathcal{C} be a linear $[n, k, d]$ code over F.
- Let

$$
H_{\mathrm{in}}=(\square)
$$

be a matrix over F that for some positive integer δ satisfies:

- writing

$$
H_{\mathrm{in}}=\left(\begin{array}{ccccc}
H_{0} & H_{1} & \ldots & \ldots & H_{n-1} \\
m \times m & m \times m & m \times m & m \times m & m \times m
\end{array}\right),
$$

every submatrix H_{j} is invertible over F,

- every subset of $\delta-1$ columns in $H_{\text {in }}$ is linearly independent.

Definition of Proposed Code

Definition of Proposed Code

We define $\mathbb{C}=\left(\mathcal{C}, H_{\text {in }}\right)$ to be

Definition of Proposed Code

We define $\mathbb{C}=\left(\mathcal{C}, H_{\text {in }}\right)$ to be

- the linear $[m n, m k]$ code over F

Definition of Proposed Code

We define $\mathbb{C}=\left(\mathcal{C}, H_{\text {in }}\right)$ to be

- the linear $[m n, m k]$ code over F
- which consists of all $m \times n$ matrices over F

$$
\Gamma=\left(\begin{array}{cccccc}
\Gamma_{0} & \Gamma_{1} & \ldots & \ldots & \Gamma_{n-1} \\
m \times 1 & m \times 1 & m \times 1 & m \times 1 & m \times 1
\end{array}\right)
$$

Definition of Proposed Code

We define $\mathbb{C}=\left(\mathcal{C}, H_{\text {in }}\right)$ to be

- the linear [$m n, m k$] code over F
- which consists of all $m \times n$ matrices over F

$$
\Gamma=\left(\begin{array}{cccccc}
\Gamma_{0} & \Gamma_{1} & \ldots & \ldots & \Gamma_{n-1} \\
m \times 1 & m \times 1 & m \times 1 & m \times 1 & m \times 1
\end{array}\right)
$$

such that each row in

$$
Z=\left(\begin{array}{ccccc}
H_{0} \Gamma_{0} & H_{1} \Gamma_{1} & \ldots & \ldots & H_{n-1} \Gamma_{n-1} \\
m \times 1 & \ldots \times 1 & m \times 1 & m \times 1 & m \times 1
\end{array}\right)
$$

is a codeword of \mathcal{C}.

Proposed coding scheme:

Correction capabilities

Correction Capability of Proposed Code

	error	erasure
block	τ columns in error	ρ columns erased
symbol	ϑ symbols in error	ϱ symbols erased

Correction Capability of Proposed Code

	error	erasure
block	τ columns in error	ρ columns erased
symbol	ϑ symbols in error	ϱ symbols erased

Theorem: There exists a decoder for the code \mathbb{C} that correctly recovers the transmitted array in the presence of the above error and erasure types (which may occur simultaneously), whenever

$$
\begin{aligned}
& 2 \tau+\rho \leq d-2 \\
& 2 \vartheta+\varrho \leq \delta-1
\end{aligned}
$$

Correction Capability of Proposed Code

	error	erasure
block	τ columns in error	ρ columns erased
symbol	ϑ symbols in error	ϱ symbols erased

Theorem: There exists a decoder for the code \mathbb{C} that correctly recovers the transmitted array in the presence of the above error and erasure types (which may occur simultaneously), whenever

$$
\begin{aligned}
& 2 \tau+\rho \leq d-2 \\
& 2 \vartheta+\varrho \leq \delta-1
\end{aligned}
$$

© Surprisingly simple conditions!

Proposed coding scheme:

 Advantages
Advantages of Proposed Coding Scheme

Advantages of Proposed Coding Scheme

- Multiplication by H_{j}^{-1} is like a rate- 1 inner code.

Advantages of Proposed Coding Scheme

- Multiplication by H_{j}^{-1} is like a rate- 1 inner code.
\Rightarrow The redundancy of the coding scheme can be independent of n.

Advantages of Proposed Coding Scheme

Overall, we want to handle ϑ symbol errors and ϱ symbol erasures.

Advantages of Proposed Coding Scheme

Overall, we want to handle ϑ symbol errors and ϱ symbol erasures.

Product code:

code \mathcal{C}_{2} needs to be designed such that it can handle the worst case where ϑ symbol errors and ϱ symbol erasures appear all in the same column.

Proposed code:
"same redundancy symbols" can be used to handle overall ϑ symbol errors and ϱ symbol erasures.

Advantages of Proposed Coding Scheme

Overall, we want to handle ϑ symbol errors and ϱ symbol erasures.

Product code:

code \mathcal{C}_{2} needs to be designed such that it can handle the worst case where ϑ symbol errors and ϱ symbol erasures appear all in the same column.

Proposed code:
"same redundancy symbols" can be used to handle overall ϑ symbol errors and ϱ symbol erasures.
\Rightarrow "Price" that is paid for this:

$$
\begin{array}{l|l}
& 2 \tau+\rho \leq d-2 \\
\text { vs. } & 2 \tau+\rho \leq d-1
\end{array}
$$

Advantages of Proposed Coding Scheme

Advantages of Proposed Coding Scheme

- One can identify a range of code parameters for \mathbb{C} for which the resulting redundancy improves upon the best known.
(To the best of our knowledge.)

Advantages of Proposed Coding Scheme

Advantages of Proposed Coding Scheme

- One can devise efficient decoders for combinations of block and symbol errors and erasures most relevant in practical applications.

Advantages of Proposed Coding Scheme

- One can devise efficient decoders for combinations of block and symbol errors and erasures most relevant in practical applications.
- In particular, these decoders are more efficient than a corresponding decoder for a suitably chosen Reed-Solomon code of length $m n$ over F, assuming such a Reed-Solomon code exists in the first place.

Advantages of Proposed Coding Scheme

- One can devise efficient decoders for combinations of block and symbol errors and erasures most relevant in practical applications.
- In particular, these decoders are more efficient than a corresponding decoder for a suitably chosen Reed-Solomon code of length $m n$ over F, assuming such a Reed-Solomon code exists in the first place.
- Finding efficient decoders for the general case is still an open problem.

Decoding

A Simplified Setup

A Simplified Setup: Error Model

- Encoded array has size $m \times n$.
- Up to t burst errors happen.

A Simplified Setup: Encoding

A Simplified Setup: Encoding

$m \times n^{\prime}$ array of information symbols

A Simplified Setup: Encoding

A Simplified Setup: Encoding

Encoder $_{C}$

A Simplified Setup: Encoding

A Simplified Setup: Encoding

Encoder $_{C}$

A Simplified Setup: Encoding

A Simplified Setup: Encoding

A Simplified Setup: Encoding

A Simplified Setup: Decoding

A Simplified Setup: Decoding

We consider first the case $m=1$.

A Simplified Setup: Decoding

We consider first the case $m=1$.
A necessary condition for being able to correct (up to) t errors:
\#error patterns that we want to correct \leq \#different syndromes.

A Simplified Setup: Decoding

We consider first the case $m=1$.
A necessary condition for being able to correct (up to) t errors:

$$
\binom{n}{t} \cdot q^{t} \lesssim q^{n-k} .
$$

A Simplified Setup: Decoding

Now we consider the case of general m.

A Simplified Setup: Decoding

Now we consider the case of general m.
A necessary condition for being able to correct (up to) t burst errors:
\#error patterns that we want to correct \leq \#different syndromes.

A Simplified Setup: Decoding

Now we consider the case of general m.
A necessary condition for being able to correct (up to) t burst errors:

$$
\binom{n}{t} \cdot q^{m t} \lesssim q^{m(n-k)}
$$

A Simplified Setup: Decoding

Now we consider the case of general m.
A necessary condition for being able to correct (up to) t burst errors:

$$
t \lesssim \frac{m}{m+1} \cdot(n-k)
$$

(Assumption: $n \approx q$ and t small.)

A Simplified Setup: Decoding

Now we consider the case of general m.
A necessary condition for being able to correct (up to) t burst errors:

$$
t \leq \frac{1}{2} \cdot(n-k+\operatorname{rank}(E)-1)
$$

(Assumption: MDS code.)

A Simplified Setup: Decoding

Now we consider the case of general m.
A necessary condition for being able to correct (up to) t burst errors:
$t \leq \frac{1}{2} \cdot(n-k+\operatorname{rank}(E)-1)=\left\{\begin{array}{ll}\frac{1}{2} \cdot(n-k) & (\operatorname{rank}(E)=1) \\ n-k-1 & (\operatorname{rank}(E)=t)\end{array}\right.$.
(Assumption: \mathcal{C} is an MDS code.)

A Simplified Setup: Decoding

Now we consider the case of general m.

Remarkable:

Decoding can be done by Gaussian elimination, independently of the chosen code \mathcal{C}.

See [Metzner, Kapturowski, 1990] and [Haslach, Vinck, 2000/2001].

Proposed Coding Scheme: Encoding and Decoding

Assume that the rows have already been encoded.

Proposed Coding Scheme: Encoding and Decoding

4
multiply by square matrix H_{0}^{-1}

Proposed Coding Scheme: Encoding and Decoding

Proposed Coding Scheme: Encoding and Decoding

4
multiply by square matrix H_{1}^{-1}

Proposed Coding Scheme: Encoding and Decoding

Proposed Coding Scheme: Encoding and Decoding

$m \times n$ array of codeword symbols

Proposed Coding Scheme: Encoding and Decoding

Proposed Coding Scheme: Encoding and Decoding

Proposed Coding Scheme: Encoding and Decoding

First decoding step: multiply the i-th column by H_{i}.

Proposed Coding Scheme: Encoding and Decoding

First decoding step: multiply the i-th column by H_{i}.

Decoder then takes advantage of special structure of burst errors in this modified array.

Conclusions

Conclusions

- Motivation for block and symbol errors / erasures.
- Discussed traditional and novel ECC schemes that can handle such errors / erasures with low complexity and compared their advantages / disadvantages.
- Finding efficient decoders for the general case is still an open problem.
- More details, in particular decoding schemes and comparison with other coding schemes, can be found in the paper available at http://arxiv.org/abs/1302.1931

Original Talk Topic

> Connections between
> Techniques for Analyzing Finite State Channels and
> Techniques for Analyzing Graphical Models

- Theorems 26 and Corollary 27 in
P. O. Vontobel, "The Bethe permanent of a non-negative matrix,"

IEEE Trans. Inf. Theory, vol. 59, no. 3, pp. 1866-1901, Mar. 2013.

- Theorem 8 and Corollary 9 in
H. D. Pfister and P. O. Vontobel, "On the relevance of graph covers and zeta functions for the analysis of SPA decoding of cycle codes," Proc. ISIT 2013.

Optimization Problem

$$
\max _{\left\{\mu_{i}, p_{i}\right\}} f\left(\left\{\mu_{i}, p_{i j}\right\}\right)
$$

$$
f\left(\left\{\mu_{i}, p_{i j}\right\}\right)=-\sum_{(i, j) \in \mathcal{B}} \mu_{i} \cdot p_{i j} \cdot \log \left(p_{i j}\right)
$$

\mathcal{S} : state alphabet
\mathcal{B} : branch alphabet
$\left\{\mu_{i}\right\}$: stationary state probabilities
$\left\{p_{i j}\right\}$: transition probabilities

Optimization Problem

$$
\max _{\left\{\mu_{i}, p_{i j}\right\}} f\left(\left\{\mu_{i}, p_{i j}\right\}\right)
$$

$$
f\left(\left\{\mu_{i}, p_{i j}\right\}\right)=-\sum_{(i, j) \in \mathcal{B}} \mu_{i} \cdot p_{i j} \cdot \log \left(p_{i j}\right)+\sum_{(i, j) \in \mathcal{B}} \mu_{i} \cdot p_{i j} \cdot T_{i j}
$$

\mathcal{S} : state alphabet
\mathcal{B} : branch alphabet
$\left\{\mu_{i}\right\}$: stationary state probabilities
$\left\{p_{i j}\right\}$: transition probabilities
$\left\{T_{i j}\right\}$: branch weights

Solution of this Optimization Problem

Definitions:

- "Noisy adjacency matrix" A with $A_{i j}=\left\{\begin{array}{ll}\mathrm{e}^{T_{i j}} & \text { if }(i, j) \in \mathcal{B} \\ 0 & \text { otherwise }\end{array}\right.$.
- Let ρ be the maximal (real) eigenvalue of A .
- Let β^{\top} and γ be the corresponding left and right eigenvectors.

Then:

$$
\begin{aligned}
p_{i j}^{*} & =\frac{\gamma_{j}}{\gamma_{i}} \cdot \frac{A_{i j}}{\rho} \quad(i, j) \in \mathcal{B} \\
\mu_{i}^{*} & \propto \beta_{i} \cdot \gamma_{i} \quad i \in \mathcal{S} \\
f\left(\left\{\mu_{i}^{*}, p_{i j}^{*}\right\}\right) & =\log (\rho)
\end{aligned}
$$

This and similar problems were solved in, e.g., [Justesen, Høholdt, 1984], [Khayrallah, Neuhoff, 1996], [V., Kavčić, Arnold, Loeliger, 2008].

