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Wish List for ECC Scheme

Wewant ECC schemes that can jointly handle

burst errors,

symbol errors.

Moreover, the ECC scheme schould also be able to handle

burst erasures,

symbol erasures.

Finally, the ECC scheme should have

low encoding complexity,

low decoding complexity.
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Disadvantages of Product Coding Scheme

Product coding schemes have many favorable aspects.

However:

Rate(C1) < 1.

⇒ The redundancy of the coding scheme is at least linear inm.

Rate(C2) < 1.

⇒ The redundancy of the coding scheme is at least linear in n.
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,

every submatrixHj is invertible over F ,

every subset of δ − 1 columns inHin is linearly independent.
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Definition of Proposed Code

We defineC = (C, Hin) to be

the linear [mn,mk] code over F

which consists of allm× nmatrices over F

Γ =
(

Γ0 Γ1 . . . . . . Γn−1

m×1 m×1 m×1 m×1 m×1

)

such that each row in

Z =
(

H0Γ0 H1Γ1 . . . . . . Hn−1Γn−1

m×1 m×1 m×1 m×1 m×1

)

is a codeword of C.
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error erasure

block τ columns in error ρ columns erased

symbol ϑ symbols in error ̺ symbols erased

Theorem: There exists a decoder for the codeC that correctly recovers

the transmitted array in the presence of the above error and erasure types

(which may occur simultaneously), whenever

2τ + ρ ≤ d− 2

2ϑ + ̺ ≤ δ − 1

, Surprisingly simple conditions!
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code C2 needs to be designed
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worst case where ϑ symbol

errors and ̺ symbol erasures

appear all in the same column.

Proposed code:

“same redundancy symbols” can be

used to handle overall ϑ symbol

errors and ̺ symbol erasures.

⇒ “Price” that is paid for this:

2τ + ρ ≤ d− 2

vs. 2τ + ρ ≤ d− 1
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(To the best of our knowledge.)
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One can devise efficient decoders for combinations of block and

symbol errors and erasures most relevant in practical applications.

In particular, these decoders are more efficient than a

corresponding decoder for a suitably chosen Reed–Solomon code

of lengthmn over F , assuming such a Reed–Solomon code exists

in the first place.

Finding efficient decoders for the general case is still an open

problem.
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A Simplified Setup: Decoding

· =

E · HT
= S

Now we consider the case of generalm.

A necessary condition for being able to correct (up to) t burst errors:

t ≤
1

2
·
(

n− k + rank(E)− 1
)

=







1
2
·
(

n− k
)

(rank(E) = 1)

n− k − 1 (rank(E) = t)
.

(Assumption: C is an MDS code.)



A Simplified Setup: Decoding

· =

E · HT
= S

Now we consider the case of generalm.

Remarkable:

Decoding can be done by Gaussian elimination,

independently of the chosen code C.

See [Metzner, Kapturowski, 1990] and [Haslach, Vinck, 2000/2001].
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Proposed Coding Scheme:
Encoding and Decoding

First decoding step: multiply the i-th column byHi.

Decoder then takes advantage of special structure of burst errors in this

modified array.
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Conclusions

Motivation for block and symbol errors / erasures.

Discussed traditional and novel ECC schemes

that can handle such errors / erasures with low complexity

and compared their advantages / disadvantages.

Finding efficient decoders for the general case is still an open

problem.

More details, in particular decoding schemes and comparison with

other coding schemes, can be found in the paper available at

http://arxiv.org/abs/1302.1931
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Connections between

Techniques for Analyzing Finite State Channels and

Techniques for Analyzing Graphical Models

Theorems 26 and Corollary 27 in

P. O. Vontobel, “The Bethe permanent of a non-negative matrix,”

IEEE Trans. Inf. Theory, vol. 59, no. 3, pp. 1866–1901, Mar. 2013.

Theorem 8 and Corollary 9 in

H. D. Pfister and P. O. Vontobel, “On the relevance of graph covers

and zeta functions for the analysis of SPA decoding of cycle

codes,” Proc. ISIT 2013.
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max
{µi,pij}

f
(
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Optimization Problem

max
{µi,pij}

f
(

{µi, pij}
)

ℓ− 2 ℓ− 1 ℓ+ 1ℓ ℓ+ 2ℓ− 3

1

2

3

4· · ·

· · ·

· · ·

· · ·

T44

T24

T43

T23

T32

T12

T31

T11

· · ·

· · ·

· · ·

· · ·

f
(

{µi, pij}
)

= −
∑

(i,j)∈B

µi · pij · log(pij) +
∑

(i,j)∈B

µi · pij · Tij

S : state alphabet

B : branch alphabet

{µi} : stationary state probabilities

{pij} : transition probabilities

{Tij} : branch weights



Solution of this Optimization Problem

Definitions:

“Noisy adjacency matrix”AwithAij =







eTij if (i, j) ∈ B

0 otherwise
.

Let ρ be the maximal (real) eigenvalue ofA.

Let βT and γ be the corresponding left and right eigenvectors.

Then: p∗ij =
γj

γi
·
Aij

ρ
(i, j) ∈ B,

µ∗
i ∝ βi · γi i ∈ S,

f
(

{µ∗
i , p

∗
ij}

)

= log (ρ) .

This and similar problems were solved in, e.g., [Justesen, Høholdt, 1984],

[Khayrallah, Neuhoff, 1996], [V., Kavčić, Arnold, Loeliger, 2008].



Thank you!

http://arxiv.org/abs/1302.1931
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