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Figure 1: A block digram of a digital communication system
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I. Introduction

Channel coding is an important element in every communication or
data storage system.

The objective of channel coding is to provide reliable information
transmission and storage.

Shannon Channel Coding Theorem (1948).

Over the last 60 years, various types of codes and methods for
correcting transmission errors over a wide spectrum of
communication and storage channels have been constructed and
devised.
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The ever-growing needs for cheaper, faster, and more reliable
communication and storage systems have forced many researchers
to seek means to attain the ultimate limits on reliable information
transmission and storage.

Low-density parity-check (LDPC) codes are currently the most
promising coding technique to achieve the Shannon capacities (or
limits) for a wide range of channels.

Discovered by Gallager in 1962 [1].

A brief visit by Tanner in 1981 - graphical representation and
message-passing concepts were introduced [2].

5



LDPC Codes: Recent Developments

[1] R. G. Gallager, ”Low density parity-check codes,” IRE Trans. Inf.
Theory, vol. 8, no. 1, pp. 21-28, Jan. 1962.

[2] R. M. Tanner, “A recursive approach to low complexity codes,”
IEEE Trans. Inf. Theory, vol. IT-27, no. 5, pp. 533–547, Sep. 1981.

6



LDPC Codes: Recent Developments UC Davis

Resurrected in the late 1990’s by MacKay [3],[4], Luby [5] and
others [6],[7],[8].

Ever since, a great deal of research effort has been expended in
design, construction, encoding, decoding algorithms, structure,
performance analysis, generalizations and applications of these
remarkable codes.

Numerous papers and patents have been published on these
subjects.
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Many LDPC codes have been adopted as the standard codes for
various next generations of communication systems, such as
wireless, optical, satellite, space, digital video broadcast (DVB),
multi-media broadcast (MMB), 10G BASE-T Ethernet, NASA’s
LANDSAT and other space missions.

Applications to data storage systems, such as hard disk drives and
flash memories are now being seriously considered.

This rapid dominance of LDPC codes in applications is due to their
capacity-approaching performance which can be achieved with
practically implementable iterative decoding algorithms.
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Figure 2: Picture of communication and storage systems.
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More applications are expected to come.

Future is promising.

However, there are still many things unknown about these codes,
especially their fundamental structure. Further study is needed.

The most urgent need are methods to design and construct
efficient encodable and decodable codes that can achieve very low
error rates, say a BER of 10−15, for very high speed
communications and very high density data storage.
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Theme

This presentation is to give an overview of LDPC codes
and their recent developments.
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II. Definition and Classifications of LDPC Codes

An LDPC code over GF(q), a finite field with q elements, is a q-ary
linear block code given by the null space of a sparse parity-check
matrix H over GF(q).

An LDPC code is said to be regular if its parity-check matrix H
has constant column weight, say γ, and constant row, say ρ. Such
a q-ary LDPC code is said to be (γ,ρ)-regular.

If the columns and/or rows of the parity-check matrix H have
multiple weights, then the null space over of H gives an irregular
LDPC code.
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If H is an array of sparse circulants of the same size over GF(q),
then the null space over of H gives a q-ary quasi-cyclic
(QC)-LDPC code.

If H consists of a single sparse circulant or a column of sparse
circulants, then the null space of H gives a cyclic LDPC code.

For q = 2, the null space of H over the binary field GF(2) gives a
binary LDPC code.
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LDPC codes can be classified into two general categories:
1) random or pseudo-random codes, and
2) Algebraic codes.

Random or pseudo-random codes are constructed using
computer-based algorithms or methods.

Algebraic codes are constructed using algebraic or combinatorial
tools such as finite fields, finite geometries and combinatorial
designs.
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Codes in these two categories can be classified into two types:
1) codes whose parity-check matrices possess little structure and
2) codes whose parity-check matrices have structures.

A code whose parity-check matrix possesses no structure beyond
being a linear code is problematic in that both encoding and
decoding implementations become quite complex.

A code whose parity-check matrix has structures beyond being a
linear code is in general more easily implemented.
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Two desirable structures for hardware implementation of encoding
and decoding of LDPC codes are cyclic and quasi-cyclic structures.

A cyclic LDPC code can be efficiently and systematically
encoded using a single feedback shift-register with complexity
linearly proportional to the number of parity-check symbols (or
information symbols).

Encoding of a QC-LDPC code can also be efficiently implemented
but requires multiple shift-registers. It is in general more complex
than encoding of a cyclic code but still enjoys linear complexity.
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However, QC-LDPC codes enjoy some advantages in hardware
implementation of decoding in terms of wire routing. Furthermore,
the QC structure allows partially to full parallel decoding which
offers a trade-off between decoding complexity and decoding speed.

Based on quasi-cyclic structure, a reduced complexity iterative
decoding algorithm can be devised, which significantly reduces the
hardware implementation complexity of a QC-LDPC decoder in
terms of the number of message processing units and the number
of wires required to connect the message processing units.

A cyclic LDPC code can be put in QC form through column and
row permutations [9]. As a result, a cyclic LDPC code enjoys both
encoding and decoding implementation advantages.
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Encoding is carried out in cyclic form while decoding is carried out
in QC form.

[9] Q. Huang, Q. Diao, S. Lin, and K. Abdel-Ghaffar, “Cyclic and
quasi-cyclic LDPC codes on constrained parity-check matrices and their
trapping sets,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 2648-2671,
May 2012.
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Well Known Structured LDPC Codes

1 Partial geometry codes

2 Finite field codes

3 Algebraic geometry codes

4 Codes based on combinatorial (or experimental) designs

5 Superimposed codes
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Well Known Structured LDPC Codes

6 Graph-theoretic codes: proto-graph codes, PEG-ACE codes, and
trellis-based codes

7 Multi-edge-type codes

8 Accumulator-based codes (including repeat-accumulate (RA)
codes, irregular repeat-accumulate (IRA) codes, and
accumulate-repeat-accumulate (ARA) codes)

9 Generalized and doubly generalized LDPC codes
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Codes in the first five classes are constructed using partial or
algebraic geometries, finite fields and combinatorial mathematics.

Partial geometry LDPC codes constructed based on Euclidean and
projective geometries are the first class of structured codes ever
constructed. They are cyclic LDPC codes [7],[8].

Recently, a large class of cyclic LDPC codes has been constructed
based on cyclic finite geometry codes by decomposition [9].

Codes in the next four classes are constructed using
computer-based algorithms or methods.

Proto-graph, multi-edge-type, generalized and doubly generalized
LDPC codes are actually superimposed LDPC codes.
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IV. Row-Column Constraint

In almost all of the proposed constructions of LDPC codes, the
following constraint is imposed on the rows and columns of the
parity-check matrix H of an LDPC code:
No two rows (or two columns) can have more than one place
where they both have 1-components.

This constraint on the rows and columns of H and is referred to as
the row-column (RC)-constraint.

The RC-constraint ensures that the Tanner graph of an LDPC code
is free of cycles of length 4 and hence has a girth of at least 6.
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v0 v1 v2 v3 v4 v5 v6

c0 c1 c2 c3 c4 c5

Figure 3: A Tanner graph to demonstrate its cycles.
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For a (γ,ρ)-regular LDPC code, the RC-constraint on its
parity-check matrix H ensures that the minimum distance (or
weight) of the code is at least γ + 1.

This lower bound on the minimum distance is tight for a regular
LDPC code whose parity-check matrix H has a relatively large
column weight γ, such as a finite geometry LDPC code or finite
field LDPC codes.
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V. Iterative Decoding of LDPC Codes

Decoding algorithms devised for LDPC codes are iterative in
nature. These decoding algorithms are also referred to as
message-passing decoding (MPD) algorithms.

They are practically implementable.

The low-density nature of the parity-check matrix of an LDPC
code facilitates iterative decoding.

An iterative decoder consists of a collection of low-complexity
decoders working cooperatively in a distributed fashion to decode a
received codeword which may be corrupted by noise.
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Well Known Iterative Decoding Algorithms For Binary
LDPC Codes

Sum-product algorithm (SPA)

Min-sum algorithm (MSA)

Revolving iterative decoding (RID) algorithm (New)

Binary message-passing (BMP) algorithm

Iterative majority-logic decoding (IMLGD) algorithm

Bit-flipping (BF) algorithm

Weighted-BF (WBF) algorithm
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The SPA is a suboptimal (soft-decision) decoding algorithm which
gives the best error performance but requires the highest
computational complexity.

An MSA is a simplified version of the SPA. It may cause some
performance degradation.

The RID is devised for decoding LDPC codes whose parity-check
matrices have block cyclic structure to reduce decoder complexity
with no or small performance degradation.

BMP- and WBF-algorithms are reliability-based decoding
algorithms that provide effective trade-off between error
performance and decoding complexity.

The BF-algorithm is a hard-decision decoding algorithm that
requires the least decoding complexity but offers the least coding
(or performance) gain over an uncoded system.
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For Non-binary LDPC Codes

Q-ary SPA (QSPA)

FFT-QSPA

FFT-RID

Reliability-Based Message-Passing Algorithms

Min-Max Algorithm
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VI. Measure of Performance

The performance of an LDPC code with iterative decoding is
measured by:
1) The bit and block error performance (how close to the Shannon
limit or sphere packing bound),
2) The rate of decoding convergence (how fast the decoding
process terminates),
3) Error-floor (how low the error rate can achieve).
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Figure 4: Error performances of a masked (64386,32193) QC-LDPC code and
the DVB-S2 code over the AWGN channel.
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Figure 5: Bit error performances of the binary (4095,3367) cyclic EG-LDPC
code decoded with the SPA and the scaled MS-algorithm.

32



LDPC Codes: Recent Developments UC Davis

4 6 8 10 12 14 16
10

−15

10
−10

10
−5

10
0

(16129,15372)QC−LDPC performance

SNR,dB

 

 

(16129,15372),BER

(16129,15372),BLER

Shannon Limit

uncoded BPSK

Figure 6: The bit and block error performances of a binary QC-LDPC code
with rate 0.953.
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Error-Floor

LDPC codes perform amazingly well with iterative decoding
based on belief propagation.

However, with iterative decoding, most LDPC codes have a
common severe weakness, known as error-floor.

The error-floor of an LDPC code is characterized by the
phenomenon of an abrupt decrease in the slope of the code’s
error performance curve from the moderate SNR water-fall region
to the high SNR floor region, i.e., the error probability of a code in
the high SNR region suddenly drops at a rate much slower than
that in the region of low to moderate SNR (or even stops to
drop).

34



LDPC Codes: Recent Developments UC Davis

1 2 3 4 5 6 7 8 9 10
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0(dB)

B
it

/b
lo

c
k
 e

rr
o

r 
ra

te

Uncoded BPSK

C1 (3969,3213) BER

C1 (3969,3213) BLER

C2 (3969,3213) BER

C2 (3969,3213) BLER

C3 (3969,3213) BER

C3 (3969,3213) BLER

Shannon Limit

Figure 7: A figure to demonstrate the error floor phenomenon.
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For the AWGN channel, the error-floor of an LDPC code is mostly
caused by an undesirable structure, known as trapping-set, in the
Tanner graph of the code based on which the decoding is carried
out.

Error-floor may preclude LDPC codes from applications requiring
very low error rates, such as optical communication and flash
memory.

High error-floors most commonly occur for random or
pseudo-random LDPC codes.

Structured LDPC codes constructed algebraically, in general, have
much lower error-floors.
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Constructing (or designing) codes to avoid harmful trapping sets
to mitigate error-floor problem is a combinatorial problem, hard
but challenging.

Several subclasses of finite geometry and finite field LDPC codes
have been proved that their Tanner graphs do not contain small
harmful trapping sets.

The error-floor of an LDPC can be lowered by taking a
decoder-based strategy to remove or reduce the effect of harmful
trapping sets on error-floor.

Several such decoder based strategies have been recently proposed.
Among them, the most effective decoding strategy is the
backtracking iterative decoding algorithm proposed recently.
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Summary

The performance of an LDPC code is determined by a number of
structural properties collectively:

1 minimum distance (or minimum weight);
2 girth of its Tanner graph;
3 cycle distribution of its Tanner graph;
4 variable node (VN) connectivity (or structure);
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5 row redundancy of the parity-check matrix;

6 trapping set distribution of its Tanner graph;

7 degree distributions of variable and check nodes of its
Tanner graph; and

8 other unknown structures.

No single structural property dominates the performance of a code.

It is still unknown how the code performance depend on the above
structural properties analytically as a function.
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Remarks Based on Extensive Simulation Results

Error-floor performance of an LDPC is mostly determined by its
trapping set distribution and minimum distance.

Large girth does not necessarily give good error performance. In
fact, for finite geometry and finite field LDPC codes, a girth of 6 is
all that needed.

Large row redundancy of the parity-check matrix of an LDPC code
makes the decoding of the code converging faster.

Parity-check matrices of finite geometry and several classes of
finite field LDPC codes have large row redundancies. Their
decoding converges very fast.
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New Results

For algebraically constructed regular LDPC codes, RC-constraint
and large row redundancy ensure that their Tanner graphs do not
contain harmful trapping sets of sizes smaller than the column
weights of their parity-check matrices.

More specifically, the Tanner graph of an RC-constrained
(γ, ρ)-regular LDPC code contains no harmful trapping sets with
sizes γ or less.
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VII. Algebraic Constructions of Structured LDPC Codes

Construction based on finite geometries such as Euclidean and
projective geometries (partial geometries in a broad sense)

Construction based algebraic geometries

Constructions based on finite fields: 1) additive subgroups; 2)
cyclic subgroups; and 3) primitive elements

Construction based on combinatorial designs: 1) Latin squares; and
2) balanced incomplete block designs (BIBDs)

Construction based on integer sequences
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Construction based on Reed-Solomon (RS) codes

Superposition construction (including product)

Transform domain construction (new powerful approach)

Algebraic constructions mostly result in cyclic and quasi-cyclic
LDPC codes.

Algebraic LDPC codes in general have lower error-floor and their
decoding converges faster than graph-theoretic-based LDPC codes.
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VIII. Finite Geometry LDPC Codes

There are two classes of finite geometry (FG) LDPC codes, one
class constructed based on finite Euclidean geometries and the
other based on projective geometries.

Based each type of geometries, both cyclic and QC-LDPC codes
can be constructed.

They have large minimum distances and their Tanner graphs have
girth of at least 6.

Their parity-check matrices have large row redundancy.

They have very low error-floors.
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Binary Cyclic Euclidean Geometry (EG) LDPC Codes

In the following, we only consider construction of binary LDPC
codes based on two-dimensional Euclidean geometries over finite
fields.

Let the 2-dimensional Euclidean geometry, EG(2,q), over GF(q) be
the code construction geometry.

This geometry consists of q2 point and q2 + q lines. Each line
consists of q points. Any two points are connected by a unique
line. Two lines are either parallel or they intersect at one and only
one point. Any point is intersected by q + 1 lines.
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The parity-check matrix HEG of a binary EG-LDPC code CEG is
formed by the binary incidence vectors of all the lines in EG(2, q)
not passing through the origin.

HEG can be arranged as a column of circulants of size
(q2 − 1)× (q2 − 1).

HEG satisfies the RC-Constraint.
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A Special Subclass of Cyclic EG-LDPC Codes

The null space of HEG gives a binary cyclic EG-LDPC code CEG
whose Tanner graph has a girth at least 6.

Its minimum distance is at least q + 1.

The null space of HEG gives a cyclic EG-LDPC codes of length
n = q2 − 1 with minimum distance at least q + 1.

Its Tanner graph contains no small trapping sets of sizes smaller
than q + 1.
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For q = 2s, the cyclic EG-LDPC code CEG has the following
parameters:
Length n = 4s − 1,
Number of parity bits n− k = 3s − 1,
Minimum distance dmin = 2s + 1.

Its parity-check matrix HEG has 4s − 3s dependent rows and hence
has large row redundancy.

Its Tanner graph contains no trapping sets of sizes small than the
minimum distance 2s + 1.
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Decoding

Besides decoding with the SPA and the MSA, EG-LDPC codes are
quite effective for other types of decoding such as: 1) one-step
majority-logic decoding (OSMLGD) (not iterative), 2)
BF-decoding, 3) WBF-decoding, 4) soft-reliability-based binary
message-passing (SRB-BMP) decoding, 5) hard-reliability-based
binary message-passing (HRB-BMP) decoding, and 6) RID.

Various methods of decoding provide a wide spectrum of trade-offs
between error performance and decoding complexity.

Dual-mode decoder, SPA (MSA) plus (OSMLGD), can be designed
to improve error performance.
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Example 1

Construction geometry: EG(2,26) over GF(26).

Parity-check matrix HEG: a 4095× 4095 circulant with both
column and row weights 64.

Code: a (4095,3367) cyclic LDPC code with minimum distance 65.

The error-floor of the code is very low.

The error performances of this code with various decoding methods
are shown in Figure 8.
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Figure 8: Bit error performances of the binary (4095,3367) cyclic EG-LDPC
code given in Example 2 decoded with the SPA and the scaled MS-algorithm.
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X. A Class of QC-LDPC Codes

Suppose we factor q2− 1 as the product of c = q+1 and l = q− 1.

Then, the (q2 − 1)× (q2 − 1) circulant HEG constructed based on
EG(2,q) over GF(q) can be decomposed into a (q + 1)× (q + 1)
doubly cyclic array HEG,qc of circulants of size (q − 1)× (q − 1).

Each circulant in HEG,qc is either a (q − 1)× (q − 1) circulant
permutation matrix (CPM) or a (q − 1)× (q − 1) zero matrix
(ZM). Each row (or column) block of HEG,qc consists of q CPMs
and one zero matrix.
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The null space of HEG,qc gives a QC-EG-LDPC code CEG,qc which
is equivalent to the cyclic EG-LDPC code CEG constructed based
on EG(2,q).

For any pair of integers, (γ, ρ) with 1 ≤ γ, ρ ≤ q + 1, let
HEG,qc(γ, ρ) be a γ × ρ subarray of HEG,qc.

The null space of HEG,qc(γ, ρ) gives a QC-LDPC code of length
n = ρ(q − 1).

The above decomposition and construction give a large class of
QC-EG-LDPC codes with various lengths, rates and minimum
distances.
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A Very Low Error Floor QC-LDPC Code
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Figure 9: The bit and block error performances of a binary QC-LDPC code
with rate 0.953.
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Example 2

NASA Standard Code for LANDSAT and Cruise Exploration Shuttle
Mission

A (8176,7156) QC-EG-LDPC code with rate 7/8.

The performance of this code is shown in Figure 10.

Beautiful waterfall performance and no error-floor down to the
BER of 10−14.
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Figure 10: The error performances of the binary (8176,7156) QC-LDPC code.
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This code is used by NASA-USA in the Landsat Data Continuity
Mission. The satellite was successfully launched on February 13,
2013. The code is used for downlink data transmission in the
X-band.

This 384 Mbps data rate communications link is NASA’s first
operational use of an LDPC and is the first use of an LDPC code
for a space to ground link for any agency or company.

The next mission to use this LDPC code is IRIS:
http://science.nasa.gov/missions/iris/.

It will be launched in April, 2013.

Goes-R will follow in 2015: http://www.goes-r.gov/.
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Other Applications

New NASA Tracking and Data Relay Satellite Service (TDRSS):
high-rate 1.0 and 1.5 Gbps return link Service.

The 1.0 Gbps Deformation, Ecosystem Structure and Dynamics of
Ice (DESynl) mission.

Surface Water Ocean Topography (SWOT).

Hyperspectral Infrared Imager (HyspIRI).
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IX. QC-LDPC Codes on Finite Fields

From late 1950s to early 1960s, finite fields were successfully used
to develop algebraic coding theory and construct linear block
codes, especially cyclic codes, with large minimum distances for
hard-decision algebraic decoding, such as BCH codes, RS codes,
Reed-Muller codes, FG codes, quadratic codes, self-dual, Goppa
codes and many others. These codes are called classical codes.

Finite fields can also be used to construct Shannon capacity
approaching LDPC codes, called modern codes.

For any finite field GF (q), it is possible to construct a family of
structurally compatible QC-LDPC codes of various lengths, rates
and minimum distances, whose Tanner graphs have a girth of at
least 6.

Codes in the same family can be encoded with the same encoding
circuit and decoded with the same decoding circuit.
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Code Construction by Binary Matrix Dispersions of Field
Elements

Consider the Galois field GF (q). Let α be a primitive element of
GF (q). Then,

α−∞ = 0, α0 = 1, α, α2, ..., αq−2

give all the q elements of GF (q) and αq−1 = 1.

For 0 ≤ i < q − 1, let Pi denote the (q − 1)× (q − 1) circulant
permutation matrix (CPM) over GF(2) whose top row has its
single 1-component at the i-th position. There are exactly q − 1
CPMs over GF(2) and P0 is the (q − 1)× (q − 1) identity matrix.

For the nonzero element αi with 0 ≤ i < q − 1, we represent it by
the (q − 1)× (q − 1) CPM Pi.
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This matrix representation is referred to as the (q − 1)-fold binary
matrix dispersion (or simply binary matrix dispersion) of αi.

The binary matrix dispersions of two different nonzero elements in
GF (q) are different.

Since there are exactly q − 1 different (q − 1)× (q − 1) CPMs over
GF(2), there is a one-to-one correspondence between a nonzero
element of GF (q) and a (q − 1)× (q − 1) CPM. Therefore, each
nonzero element of GF (q) is uniquely represented by a
(q − 1)× (q − 1) CPM.

For a nonzero element δ in GF(q), we use B(δ) to denote its
binary matrix dispersion. If δ = αi, then B(δ) = Pi.

For the 0-element of GF (q), its matrix dispersion is defined as the
(q − 1)× (q − 1) zero matrix.
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A Row-Distance Constrained Matrix over a Finite Field

Consider an m× n matrix over GF (q),

W =


w0

w1
...

wm−1

 =


w0,0 w0,1 · · · w0,n−1
w1,0 w1,1 · · · w1,n−1

...
...

. . .
...

wm−1,0 wm−1,1 · · · wm−1,n−1

 . (1)
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We require that the rows of W satisfies the following constraint:
every 2× 2 submatrix of W contains at least one zero entry or is
non-singular.

This constraint is referred to as 2× 2 submatrix constraint.
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Binary Array Dispersion

For 0 ≤ i < m and 0 ≤ j < n, dispersing each nonzero entry wi,j
of W into a binary (q − 1)× (q − 1) CPM Bi,j = B(wi,j) over
GF(2) and zero entry into a (q − 1)× (q − 1) zero matrix, we
obtain the following m× n array of (q − 1)× (q − 1) CPMs and/or
zero matrices over GF(2):

Hb =


B0,0 B0,1 · · · B0,n−1
B1,0 B1,1 · · · B1,n−1

...
...

. . .
...

Bm−1,0 Bm−1,1 · · · Bm−1,n−1

 . (2)

Hb is called the binary (q − 1)-fold array dispersion of W. It is an
m(q − 1)× n(q − 1) matrix over GF(2).
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Binary Array Dispersion(Continued)

The 2× 2 submatrix constraint on the base matrix W ensures that
Hb satisfies the RC-constraint. Hence the Tanner graph of the
code given by the null space of Hb has a girth of at least 6.
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Binary QC-LDPC codes

For any pair (γ, ρ) of integers with 1 ≤ γ ≤ m and 1 ≤ ρ ≤ n, let
Hb(γ, ρ) be a γ × ρ subarray of Hb.

Hb(γ, ρ) is a γ(q − 1)× ρ(q − 1) matrix over GF(2) and satisfies
the RC-constraint.

The null space of Hb(γ, ρ) gives a binary QC-LDPC codes Cb,qc of
lenth ρ(q − 1) with rate at least ρ−γ

ρ , whose Tanner graph have
girth of at least 6.

If Hb(γ, ρ) has constant column and row weights, then Cb,qc is a
regular binary QC-LDPC code.
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Masking

A set of CPMs in a chosen γ × ρ subarray Hb(γ, ρ) = [Bi,j ] of the
array Hb given by (2) can be replaced by a set of zero matrices.

This replacement is referred to as masking.

Masking results in a sparser matrix whose associated Tanner graph
has fewer edges and hence fewer short cycles and probably a larger
girth than that of the associated Tanner graph of the original γ × ρ
subarray Hb(γ, ρ).

To carry out masking, we first design a sparse γ × ρ matrix
Z(γ, ρ) = [zi,j ] over GF(2).
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Then take the following matrix product:

Mb(γ, ρ) = Z(γ, ρ)×Hb(γ, ρ) = [zi,jBi,j ],

where zi,jBi,j = Bi,j for zi,j = 1 and zi,jBi,j = O (a
(q − 1)× (q − 1) zero matrix) for zi,j = 0.

We call Z(γ, ρ) the masking matrix, Hb(γ, ρ) the base array and
Mb(γ, ρ) the masked array.

Since the base array Hb(γ, ρ) satisfies the RC-constraint, the
masked array Mb(γ, ρ) also satisfies the RC-constraint, regardless
of the masking matrix.

Hence, the associated Tanner graph of the masked matrix
Mb(γ, ρ) has a girth of at least 6.

The null space of the masked array Mb(γ, ρ) gives a new binary
QC-LDPC code.
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Figure 11: Error performances of a masked (64386,32193) QC-LDPC code and
the DVB-S2 code over the AWGN channel.
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Construction of QC-LDPC Codes Based on Latin Squares
over Finite Fields

Definition: A Latin square of order n is an n× n array in which each
row and each column contains every element of a set of n distinct
objects. The following q × q array is a Lain square over GF (q):

W =


α0 − α0 α0 − α ... α0 − αq−2 α0 − 0
α− α0 α− α ... α− αq−2 α− 0

...
...

. . .
...

...
αq−2 − α0 αq−2 − α ... αq−2 − αq−2 αq−2 − 0
0− α0 0− α ... 0− αq−2 0− 0

 . (3)

This matrix satisfies the 2× 2 submatrix constraint and hence can be
used as a base matrix for constructing RC-Constrained QC-LDPC code.
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Construct a q × q RC-constrained array H of circulant permutation
and zero matrices of size (q − 1)× (q − 1).

From this array, a family RC-constrained QC-LDPC code can be
constructed. They are suitable for various types of message-passing
decoding and OSMLGD to provide a wide range of trade-offs
between performance and decoding complexity.

For q = 2r, the rank of H is 3r − 1. H has a large row redundancy,
4r − 3r − 2r + 1 redundant rows.

The code given by the null space of H has the following
parameters: length n = 2r(2r − 1), dimension
k = 4r − 3r − 2r + 1, minimum distance at least 2r. Again, its
Tanner graph has no trapping set with size smaller than 2r.
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Example

Code Construction Field: GF(181).

Code: a (6,90)-regular (16200,15125) QC-LDPC code with rate
0.9336.

Performance: See Figure 12. There is no error-floor down to 10−12.

Possible application: being considered for application in two
high-rate and low error-rate systems.
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Figure 12: Error performances of (6,90)-regular (16200,15125) QC-LDPC
code.
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X. Possible Research Directions

Further structure analysis for better understanding of algebraic
LDPC codes, especially the structural properties that affect the
error performance of an algebraic LDPC code and facilitate the
implementation complexity of its decoder.

Further performance analysis, especially the rate of decoding
convergence and error-floor.

Nonbinary LDPC codes and effective decoding algorithms

Decoder design to reduce power consumption and to increase
decoding throughput.
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X. Possible Research Directions

Effective iterative decoding algorithms for Reed-Solomon codes.

Concatenation with LDPC codes as inner codes.

Graph-theoretic approach to the construction LDPC codes from
combinatorial point of view (codes on graph).

LDPC codes vs. polar codes.

Application to flash memory.
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