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Abstract

Many known algebraic constructions of low-density parity-check (LDPC) codes can be placed

in a general framework using the notion of partial geometries. Based on this notion, the

structure of such LDPC codes can be analyzed using a geometric approach that illuminates

important properties of their parity-check matrices. In this approach, trapping sets are

represented by sub-geometries of the geometry used to construct the code. Based on the

incidence relations between lines and points in this geometry, the structure of trapping sets is

investigated. On the other hand, it is shown that removing a sub-geometry corresponding to

a trapping set gives a punctured matrix which can be used as a parity-check matrix of an

LDPC code. This relates trapping sets, represented by sub-geometries, and punctured

matrices, represented by the residual geometries. The null spaces of these punctured

matrices are LDPC codes which inherit many of the good structural properties of the original

code. Hence, new LDPC codes, with various lengths and rates, can be obtained by

puncturing an LDPC code constructed based on a partial geometry. Furthermore, these

punctured matrices and codes can be used in a two-phase decoding scheme to correct

combinations of random errors and erasures.
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I. Introduction

Partial geometries generalize both Euclidean and projective
geometries which were used to construct the first classes of
algebraic LDPC codes ever reported in the literature and which
were shown to have excellent performance [1]-[2].

LDPC Codes constructed based on the more general partial
geometries were considered in [3]-[8].

Diverse classes of algebraic LDPC codes that appear in the
literature are actually partial geometry codes although their
construction methods do not seem to have any geometrical notion.

4



Coverage of this presentation:

1 Partial geometries and their structural properties;
2 Code construction;
3 Trapping set structure;
4 Punctured codes;
5 Correction of combinations of random errors and erasures
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II. Partial Geometries

Partial geometries were first introduced by Bose in 1963 [9]. An
excellent coverage of partial geometries can be found in Batten
[10]-[14].

Consider a system composed of a set N of n points and a set M of
m lines where each line is a set of points. If a line L contains a
point p, we say that p is on L and that L passes through p.

If two points are on a line, then we say that the two points are
adjacent and if two lines pass through the same point, then we say
that the two lines intersect, otherwise they are parallel.
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The system composed of the sets N and M is a partial geometry if
the following conditions are satisfied for some fixed integers ρ ≥ 2,
γ ≥ 2, and δ ≥ 1 [9], [10]:

1 Any two points are on at most one line,
2 Each point is on γ lines,
3 Each line passes through ρ points,
4 If a point p is not on a line L, then there are exactly δ lines, each

passing through p and a point on L.
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Such a partial geometry will be denoted by PaG(γ, ρ, δ), or PaG for
short, and γ, ρ, and δ are called the parameters of the partial
geometry.

A simple counting argument shows that the partial geometry
PaG(γ, ρ, δ) has exactly

n = ρ((ρ− 1)(γ − 1) + δ)/δ

points and
m = γ((γ − 1)(ρ− 1) + δ)/δ

lines.
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If p and p′ are two adjacent points, then there are exactly
γδ + ρ− γ − δ − 1 points, such that each of these points is
adjacent to both p and p′.

On the other hand, if p and p′ are not adjacent, then there are
exactly γδ points, such that each of these points is adjacent to
both p and p′.

Well known examples of partial geometries are Euclidean and
projective geometries over finite fields [12]-[14].
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A Net

If δ = γ − 1, the partial geometry PaG(γ, ρ, γ − 1) is called a net
[9] which consists of n = ρ2 points and m = γρ lines.

Each point p not on a line L is on a unique line which is parallel to
L.

The set of m = γρ lines in PaG(γ, ρ, γ − 1) can be partitioned into
γ classes, each consisting of ρ lines, such that all the lines in each
class are parallel, any two lines in two different classes intersect,
and each of the n = ρ2 points is on a unique line in each class.

These classes of lines are called parallel bundles.

A two-dimensional Euclidean geometry (or affine geometry) is a
net.
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Intersecting Bundles

For every point p in PaG(γ, ρ, δ) there are exactly γ lines that
intersect at p, i.e., all of them pass through p. These lines are said
to form an intersecting bundle at p, denoted by ∆(p).

Notice that p is on every line in ∆(p), there are exactly γ(ρ− 1)
points, each is on a unique line in ∆(p), and all the other
n− γ(ρ− 1)− 1 points in PaG(γ, ρ, δ) are not on any line in ∆(p).

If δ = ρ, then every point in PaG(γ, ρ, ρ) is adjacent to p since
every point is on a line in ∆(p). In this case, any two points in
PaG(γ, ρ, ρ) are connected by a line.

Examples for which δ = ρ are two-dimensional Euclidean and
projective geometries.
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Subgeometry

Let Λ be a set of points in PaG(γ, ρ, δ). Then Φ(Λ) = ∪p∈Λ∆(p)
is the union of intersecting bundles at points in Λ, i.e., Φ(Λ) is the
set of lines in PaG(γ, ρ, δ) such that each line passes through at
least one point in Λ.

For a set Λ ⊆ N of points and a line L ∈M in PaG(γ, ρ, δ), the
restriction of L to Λ is L∩Λ which consists of the points in Λ that
are on L.

The subgeometry induced by Λ in PaG(γ, ρ, δ), denoted by
PaG[Λ], consists of Λ as the set of its points and the restrictions of
the lines in L ∈ Φ(Λ) as its lines.

Notice that the subgeometry PaG[Λ] has |Λ| points and |Φ(Λ)|
restricted lines.
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III. Construction of LDPC Codes on Partial Geometries

Construct an m× n matrix, HPaG, based on the partial geometry
PaG(γ, ρ, δ) as follows. The rows of HPaG are labeled by the m
lines and the columns are labeled by the n points. The entry at the
column labeled by a point p and the row labeled by a line L is 1 if
and only if L passes through p.

In this case, we say that this row in HPaG labeled by L is attached
to that column labeled by p. Since there are γ lines pass the point
p, there are γ rows attached to the column labeled by p.
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The matrix HPaG is called the incidence matrix of the partial
geometry PaG(γ, ρ, δ) and each row is the incidence vector of the
line labeling that row.

Since each line consists of ρ points, the incidence vector of a line in
PaG(γ, ρ, δ) has weight ρ.

It follows that the matrix HPaG has constant column weight γ and
constant row weight ρ.

Since any two distinct points are connected by at most one line, for
any two distinct columns there is at most one row that has ones in
the two columns, HPaG is said to satisfy the Row-Column
(RC)-constraint.
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If γ is small compared to m, then HPaG is sparse. In this case, the
null space of HPaG gives an RC-constrained (γ, ρ)-regular LDPC
code, CPaG, of length n. The matrix HPaG is then a parity-check
matrix for CPaG which is called a PaG-LDPC code.

It was shown in [13] that the rank of HPaG is upper bounded by

rank(HPaG) ≤ γρ(γ − 1)(ρ− 1)/(ρ(γ + ρ− δ − 1)) + 1.

Furthermore, if γ + ρ+ δ is even, then

rank(HPaG) ≥ γρ(γ − 1)(ρ− 1)/(δ(γ + ρ− δ − 1)).
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The minimum distance, dmin, of the PaG-LDPC code CPaG is
lower bounded by

dmin ≥ max{γ + 1, γ(ρ− γ + δ + 1)/δ, 2(ρ+ δ − 1)/δ}

.

The transpose, HT
PaG , of the matrix HPaG is the incidence matrix

of a partial geometry PaG(ρ, γ, δ), called the dual of PaG(γ, ρ, δ)
obtained by identifying the points of PaG(γ, ρ, δ) with the lines of
PaG(ρ, γ, δ) and vice versa. A point p is on a line L in
PaG(ρ, γ, δ) if and only if the line in PaG(γ, ρ, δ) identified with p
passes through the point in PaG(γ, ρ, δ) identified with L.

The null space of HT
PaG also gives a PaG-LDPC code, denoted by

CPaG,d.
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IV. The Tanner Graph of a PaG-LDPC Code

The Tanner graph, GPaG, associated with the matrix HPaG is a
bipartite graph composed of two sets of nodes, the set of variable
nodes (VNs) labeled by the points in the partial geometry
PaG(γ, ρ, δ) or, equivalently, the columns of HPaG, and the set of
check nodes (CNs) labeled by the lines in PaG(γ, ρ, δ) or,
equivalently, the rows of HPaG. Edges in GPaG connect only VNs
to CNs.

The VN labeled by a point p is connected to the CN labeled by a
line L by an edge if and only if L passes through p, i.e., if and only
if the entry in HPaG at the corresponding row and column is 1. In
this case, we say that this VN and this CN are adjacent.
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Girth

Hence, GPaG is a bipartite graph that has n VNs, m CNs, each
VN has degree γ, and each CN has degree ρ. Furthermore, any
two distinct VNs are connected to at most one CN as any two
points in PaG(γ, ρ, δ) are connected by at most one line. This
implies that the girth of GPaG, which is the shortest length of a
cycle in the bipartite graph, is at least six.

GPaG contains nγ(γ − 1)(ρ− 1)(δ − 1)/6 cycles of length 6.

As each such cycle contains three VNs, each VN is on
γ(γ − 1)(ρ− 1)(δ − 1)/2 cycles of length six.

Such a large number of short cycles causes correlation in the
messages passed during iterative decoding (after three iterations).
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Connectivity

However, the Tanner graph has a high-degree of connectivity as
each pair of VNs is connected by a path of length at most four in
GPaG, as any two points in PaG(γ, ρ, δ) are either adjacent or both
adjacent to a common point.

With iterative message-passing decoding, this high-degree
connectivity allows rapid and large amount of information
exchanges between all the VNs which offsets the effect of short
cycles.

This high-degree of connectivity results in fast decoding
convergence.
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The major disadvantage of this high-degree connectivity is the
decoder complexity, in both hardware and computation, and
memory required to store messages for information exchanges
between processing units.

This decoder complexity issue can be overcome for PaG-LDPC
codes whose parity-check matrices has block cyclic structure.
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V. SUBGRAPHS AND PUNCTURED CODES

The Tanner graph GPaG of a PaG-LDPC code is actually a
graphical representation of the partial geometry PaG(γ, ρ, δ) with
the VNs and CNs representing the points and lines of PaG(γ, ρ, δ)
and the edges connecting the VNs to a CN representing the points
labeling the VNs lying on the line labeling the CN.

Let Λ be a set of points in PaG(γ, ρ, δ) and Φ(Λ) be the set of
lines in PaG(γ, ρ, δ) such that each line passes through at least one
point in Λ.

The VNs in GPaG labeled by the points in Λ are adjacent to the
CNs labeled by the lines in Φ(Λ). Then, the VNs labeled by the
points in Λ and the CNs labelled by the lines in Φ(Λ) form a
subgraph of GPaG, denoted by GPaG[Λ].
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This subgraph GPaG[Λ] consists of |Λ| VNs and |Φ(Λ)| CNs.

We say that this subgraph GPaG[Λ] is induced by the set Λ of VNs
in GPaG.

GPaG[Λ] is the graphical representation of the subgeometry
PaG[Λ] of the PaG(γ, ρ, δ) induced by Λ.

The correspondence GPaG[Λ] ↔ PaG[Λ] is one-to-one.
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Let HPaG(Λ,Φ(Λ)) be the incidence matrix of the subgraph
GPaG[Λ] of the Tanner graph GPaG of the partial geometry
PaG(γ, ρ, δ) (or the incidence matrix of the subgeometry PaG[Λ] of
PaG(γ, ρ, δ)).

HPaG(Λ,Φ(Λ)) is a submatrix of the incidence matrix HPaG (or
a punctured matrix of HPaG obtained by deleting the columns
labeled by the points in Λc and the rows labeled by the lines in
Φ(Λ)c).

Then the null space of HPaG(Λ,Φ(Λ)) also gives a PaG-LDPC
code, denoted by CPaG(Λ,Φ(Λ)), which may be considered as a
punctured code of PaG-LDPC code CPaG.
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Let PaG(Λc,Φ(Λ)c) denote the residue geometry of PaG(γ, ρ, δ)
obtained by deleting the points and lines in PaG(Λ) from
PaG(γ, ρ, δ).

Let HPaG(Λc,Φ(Λ)c) denote the incidence matrix of the residue
geometry PaG(Λc,Φ(Λ)c).

The null space of HPaG(Λc,Φ(Λ)c) also gives a PaG-LDPC code.

Given a partial geometry PaG(γ, ρ, δ), a family of PaG-LDPC
codes can be constructed.

There are many types of partial geometries. From these types of
partial geometries, different families of PaG-LDPC codes can be
constructed.
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IV. Types of Partial Geometries

There are many types of partial geometries that appear in
textbooks and can be used to construct LDPC codes. Here, we
give present five different types, three classical and two new types.

The two new types were initially developed without any geometric
notion.

The LDPC codes constructed from these five types of partial
geometries are mostly quasi-cyclic (QC) or cyclic codes.
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Euclidean Geometries

The s-dimensional Euclidean geometry, EG(s, q), where q is a
prime or a power of a prime, consists of qs points and
qs−1(qs − 1)/(q − 1) lines [10]-[13].

Each point is represented by an s-tuple over GF(q). The point
represented by the all-zero s-tuple is called the origin.

A line in EG(s, q) contains q points. A line is either a
one-dimensional subspace or its coset of the vector space of all the
qs s-tuples over GF(q).

A point is on (qs − 1)/(q − 1) lines. Any two distinct points in
EG(s, q) are connected by one and only one line.
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Hence, EG(s, q) is a partial geometry with parameters
γ = (qs − 1)/(q − 1) and ρ = δ = q, i.e., EG(s, q) =
PaG((qs − 1)/(q − 1), q, q).

GF(qs) as an extension field of GF(q) is a realization of EG(s, q)
and hence, the points of EG(s, q) can be represented by the qs

elements of GF(qs).

Based on EG(s, q), a large class of Euclidean geometry (EG) LDPC
codes can be constructed [1]-[5], including cyclic and QC-LDPC
codes as subclasses.
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Projective Geometries

The s-dimensional projective geometry, PG(s, q), where q is a
prime or a power of a prime, has n = (qs+1 − 1)/(q − 1) points
and m = (qs − 1)(qs+1 − 1)/(q − 1)(q2 − 1) lines. Each line passes
through q + 1 points and each point is on (qs − 1)/(q − 1) lines
[12] - [14]. Any two distinct points are on a unique line.

Hence, PG(s, q) is a partial geometry with parameters
γ = (qs − 1)/(q − 1) and ρ = δ = q + 1.

Based on lines and points of PG(s, q), families of cyclic and quasi
cyclic PG-LDPC codes can be constructed.
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Balanced Incomplete Block Designs with λ = 1

A balanced incomplete block design (BIBD) consists of a set of n
points and distinct subsets, called blocks, each consisting of ρ
points, such that each point is in exactly γ blocks and each pair of
distinct points is in exactly λ blocks. By viewing the blocks as
lines, a BIBD with λ = 1 is a partial geometry PaG(γ, ρ, ρ).

Numerous constructions of BIBDs appear in [15] and the references
therein.

Constructions of LDPC codes based on BIBDs with λ = 1 can be
found in [16] - [18]. These codes are called BIBD-LDPC codes and
they perform well with iterative decoding.
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Partial Geometries from RC-Constrained Matrices

Let H be an RC-constrained matrix of size m× n with row weight
ρ and column weight γ, where n = (ρ− 1)γ + 1.

Then, it can be shown that H is the incidence matrix of a partial
geometry PaG(γ, ρ, ρ). The partial geometry has n points
corresponding to the columns of H and m lines corresponding to
the rows of H.

The RC-constraint implies that any two points are on at most one
line. Furthermore, since each row has weight ρ and each column
has weight γ, each line passes through ρ points and each point is
on γ lines.
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Next, we will argue that if a point p is not on a line L then there
are exactly ρ lines, each passing through p and a point on L in
case n = (ρ− 1)γ + 1.

Since every row has ρ ones, then by adding all the γ rows attached
to the column corresponding to the point p, where the sum is over
the integers rather than over GF(2), we obtain a vector, z, of
length n whose components as integers add up to γρ.

Notice that the entry in the column corresponding to the point p
in z is γ. Hence, all other (ρ− 1)γ components in z add up to
(ρ− 1)γ.
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Because of the RC-constraint, all these components are at most
equal to 1 and, hence, all of them equal 1. Therefore, every
column other than the one corresponding to p is attached to a
unique row corresponding to a line passing through p.

Since L is a line not passing through the point p that passes
through exactly ρ points, each one of these points is on a line
passing through p. This completes the proof that H is the
incidence matrix of a partial geometry PaG(γ, ρ, ρ).

Notice that the projective geometry, PG(s, q), which is a partial
geometry PaG((qs − 1)/(q − 1), q + 1, q + 1), is a special case of
this construction.
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Partial Geometries from an RC-constrained Arrays of
Circulant Permutation Matrices

Let H be an m× n RC-constrained matrix which is a γ × ρ array
of γ × γ circulant permutation matrices (CPMs), where m = γ2

and n = γρ.

Then H is the incidence matrix of a partial geometry
PaG(γ, ρ, ρ− 1). The partial geometry has n = γρ points
corresponding to the columns of H and m = γ2 lines
corresponding to the rows of H. Each point is on γ lines and each
line passes through ρ points. The RC-constraint implies that any
two points are on at most one line.
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The code constructed based on this partial geometry, i.e., whose
parity-check matrix is H, is quasi cyclic.

There are many constructions of a matrix H which is an m× n
RC-constrained matrix in the form of a γ × ρ array of γ × γ CPMs
based on finite fields and Latin squares, see e.g., [19] - [25].

If γ = ρ, then the partial geometry PaG(γ, ρ, ρ− 1) constructed in
this way is actually a net where each parallel bundle of lines in this
net corresponds to the rows comprising a row of CPMs in H.
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The above two cases shows that many algebraic constructions of
LDPC codes can be unified under the framework of partial
geometries.

Consequently, the structure of these finite field LDPC codes can be
studied based on a geometrical approach, especially the trapping
set structure and connectivity of the VNs in the Tanner graph of
such a code.
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V. TRAPPING SETS OF LDPC CODES
Introduction

LDPC codes perform well with iterative decoding based on belief
propagation, such as the sum-product algorithm (SPA) or the
min-sum algorithm (MSA) [20], [26].

However, with iterative decoding, most LDPC codes have a
common severe weakness, known as the error-floor. The error-floor
of an LDPC code is characterized by the phenomenon that as the
SNR continues to increase, the error probability suddenly drops at a
rate much slower than that in the region of low to moderate SNR.

The error-floor may preclude LDPC codes from applications where
very low error rates are required, such as high-speed satellite
communications, optical communications, hard-disk drives and
flash memories.
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High error-floors most commonly occur for unstructured random or
pseudo-random LDPC codes constructed using computer-based
methods or algorithms. Structured LDPC codes constructed based
on finite geometries, finite field and combinatorial designs [2],
[19]-[25], [27], in general, have much lower error-floors.

Ever since the phenomenon of the error-floors of LDPC codes with
iterative decoding became known [28], a great deal of research
effort has been expended in finding its causes and methods to
resolve or mitigate the error-floor problem [20], [24], [28]-[54].

For the AWGN channel, the error-floor of an LDPC code is mostly
caused by an undesirable structure, known as a trapping set [28], in
the Tanner graph of the code based on which the decoding is
carried out.
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Extensive studies and simulation results show that most trapping
sets that cause high error-floors of LDPC codes are the trapping
sets of small size.

In a very recent paper [24], we investigated trapping set structure
of RC-constrained regular LDPC codes and showed that, for an
RC-constrained (γ, ρ)-regular LDPC code, its Tanner graph
contains no trapping set of size at most equal to γ with the
number τ of odd-degree CNs smaller than γ.

The second part of this presentation is on trapping set structure of
the PaG-LDPC codes.
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Definitions and Basic Concepts

For the AWGN channel, we adopt from literature definitions of
trapping sets and related structures as combinatorial objects that
capture the failing mechanisms of iterative decoding algorithms in
general and which are independent of the particular decoder used.

After we briefly review these definitions and concepts of trapping
sets of an LDPC code, we give bounds on the sizes of these
trapping sets for PaG-LDPC codes.

First, we define trapping sets and some subclasses of trapping sets
and follow this with a motivation of these definitions.
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Definition 1. Let G be the Tanner graph of a binary LDPC code, C, of
length n given by the null space of an m× n matrix H over GF(2). For
1 ≤ κ ≤ n and 0 ≤ τ ≤ m, we have the following definitions [28], [29]:

1 A (κ, τ) trapping set is a set, Λ, of κ VNs in G which induces a
subgraph, G[Λ], of G with exactly τ odd-degree CNs and an
arbitrary number of even-degree CNs.

2 A (κ, τ) trapping set is elementary if all the CNs in the induced
subgraph G[Λ] have degree one or degree two, and there are
exactly τ degree-one CNs.
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3 A (κ, τ) trapping set is small if κ ≤
√
n and τ/κ ≤ 4.

4 A (κ, τ ) trapping set is absorbing if every VN in the trapping set is
connected in G[Λ] to fewer CNs of odd degree than CNs of even
degree. If in addition, every VN not in the trapping set is
connected to fewer CNs of odd degree in G[Λ] than other CNs,
i.e., CNs not in G[Λ] or in G[Λ] but of even degree, then the
trapping set is fully absorbing [48]
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In each decoding iteration, we call a CN a satisfied CN if it satisfies
its corresponding check-sum constraint (i.e., its corresponding
check-sum is equal to zero), otherwise we call it an unsatisfied CN.

During the decoding process, the decoder undergoes state
transitions from one state to another until all the CNs satisfy their
corresponding check-sum constraints or a predetermined maximum
number of iterations is reached. The i-th state of an iterative
decoder is represented by the hard-decision decoded sequence
obtained at the end of the i-th iteration.

In the process of a decoding iteration, the messages from the
satisfied CNs try to reinforce the current decoder state, while the
messages from the unsatisfied CNs try to change some of the bit
decisions to satisfy their check-sum constraints.
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If errors affect the κ code bits (or the κ VNs) of a (κ, τ ) trapping
set Λ, the τ odd-degree CNs, each connected to an odd number of
VNs in Λ, will not be satisfied while all other CNs will be satisfied.

The decoder will succeed in correcting the errors in Λ if the
messages coming from the τ unsatisfied CNs connected to the VNs
in Λ are strong enough to overcome the messages coming from the
satisfied CNs. However, this may not be the case if τ is small. As a
result, the decoder may not converge to a valid codeword even if
more decoding iterations are performed and this non-convergence
of decoding results in an error-floor.

In this case, the decoder is said to be trapped.
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For the AWGN channel, error patterns with small number of errors
are more probable to occur than error patterns with larger number
of errors. Consequently, in message-passing decoding algorithms,
the most harmful (κ, τ) trapping sets are usually those with small
values of κ and τ .

Extensive studies and simulation results show that the trapping
sets that result in high decoding failure rates and contribute
significantly to high error-floors are those with small values κ and
small ratios τ/κ.

These conclusions are captured by the notions of elementary
trapping sets and small trapping sets, see Definition 1, parts 2 and
3.

44



The notion of absorbing sets is motivated by the fact that for the
binary symmetric channel (BSC), if the channel causes errors in the
VNs of an absorbing set, then a Gallager type-B decoder (or a
one-step majority-logic) decoder will fail.

With soft-decision iterative decoding, such as the SPA or the MSA,
if most of the soft messages become saturated, i.e., their
magnitudes are clipped to some finite values to avoid numerical
overflow [77] (which is usually true in the error-floor region), then
the decoder will behave like a Gallager type-B decoder and will fail.

Absorbing sets characterize the non-codeword states to which the
decoder converges when it fails.
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As all check-sums of a codeword in the code are satisfied, the VNs
corresponding to the nonzero bits in a codeword forms a (κ, 0)
trapping set, where κ is the weight of the codeword. If an error
pattern determined by these positions occurs, the decoder
converges to an incorrect codeword and commits an undetected
error. In this case, the decoder is permanently trapped.

If there are no harmful trapping sets of sizes smaller than the
minimum distance of an LDPC code, then the error-floor of the
code decoded with iterative decoding is primarily dominated by the
minimum distance.

An LDPC code with relative large minimum distance whose Tanner
graph does not contain harmful trapping set with size smaller than
its minimum distance is said to have a good trapping set structure.
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VI. GEOMETRICAL INTERPRETATION OF TRAPPING
SETS OF PARTIAL GEOMETRY LDPC CODES
Geometrical Interpretation of a Trapping Set

Consider the PaG-LDPC code CPaG constructed based on the
partial geometry PaG(γ, ρ, δ).

A (κ, τ) trapping set in the Tanner graph GPaG of CPaG is defined
by the subgraph GPaG[Λ] induced by the VNs labeled by the
points in a set Λ of size κ in the partial geometry PaG(γ, ρ, δ) such
that GPaG[Λ] has exactly τ odd-degree CNs. The CNs adjacent to
the κ VNs in the induced subgraph are labeled by the lines in
PaG(γ, ρ, δ), each passing through at least one of the κ points
labeling the VNs, i.e., the lines in Φ(Λ).
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Recall that the subgraph GPaG[Λ] of GPaG is the graphical
representation of the subgeometry PaG[Λ] of PaG(γ, ρ, δ) induced
by Λ which consists of the points in Λ and the restricted lines in
Φ(Λ).

Since the correspondence GPaG[Λ] ↔ PaG[Λ] is one-to-one. The
subgraph GPaG[Λ] has exactly τ CNs of odd degree if and only if
there are exactly τ lines in Φ(Λ) that pass through an odd number
of points in Λ.

The above says that a trapping set in the Tanner graph GPaG can
be represented by a subgeometry in PaG(γ, ρ, δ).
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Enumeration of CNs of Odd-Degree in a Trapping Set

Based on the geometrical representation of trapping sets given
above, we can analyze the trapping set structure of a PaG-LDPC
code.

Let mi be the number of lines in Φ(Λ), each passing through
exactly i points in Λ, where 1 ≤ i ≤ κ.

Then, τ is the sum of mi over all odd integers i such that
1 ≤ i ≤ κ. Since 2b(κ+ 1)/2c − 1 is the largest odd integer not
exceeding κ, we have

τ = m1 +m3 +m5 + · · ·+m2b(κ+1)/2c−1. (1)
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Let the subgeometry PaG[Λ] represented by (Λ,Φ(Λ))

Let p be a point in Λ and L be a line in Φ(Λ) passing through p.
The pair (p, L) is called a point-line pair in the subgeometry
(Λ,Φ(Λ)). Such a point-line pair in (Λ,Φ(Λ)) represents a pair of
adjacent VN and CN in a (κ, τ) trapping set.

There are two ways of counting the total number of such point-line
pairs.
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Since each line in Φ(Λ) containing i points in Λ gives i point-line
pairs in (Λ,Φ(Λ)), the total number of point-line pairs in
(Λ,Φ(Λ)) is

m1 + 2m2 + · · ·+ κmκ. (2)

Since each of the κ points in Λ is on γ lines, the total number of
such pairs in (Λ,Φ(Λ)) is also equal to κγ. Consequently, we have
the following equality:

m1 + 2m2 + + κmκ = κγ. (3)
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Next, we count, also in two different ways, the number of pairs of
adjacent points in Λ. (Throughout this paper, by a pair of points
we mean an unordered pair of distinct points.)

Since Λ consists of κ points, there are at most
(
κ
2

)
such pairs.

Alternatively, since every pair of adjacent points in Λ is on a unique
line in Φ(Λ) and a line passing through i points in Λ connects

(
i
2

)
pairs of points, the total number of pairs of adjacent points in Λ is(

2

2

)
m2 +

(
3

2

)
m3 + ...+

(
κ

2

)
mκ.
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Hence, we have the following inequality:(
2

2

)
m2 +

(
3

2

)
m3 + ...+

(
κ

2

)
mκ ≤

(
κ

2

)
. (4)

Multiplying both sides in (4) by 2 and subtracting them from the
corresponding sides in (3), we have the following inequality:

m1 −
κ∑
i=3

i(i− 2)mi ≥ γκ− κ(κ− 1) (5)
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From (5) with some algebraic manipulations, we obtain the
following lower bound on for the number τ of lines in the
subgeometry PaG[Λ]= (Λ,Φ(Λ)), each containing an odd number
of points in Λ:

τ ≥
∑

i=1,3,5...

mi = (γ+1−κ)κ+
∑

i=3,5,...

(i−1)2mi+
∑
4,6,...

i(i−2)mi.

(6)

Equality in the above lower bound on τ holds if δ = ρ, i.e., every
pair of points in the partial geometry PaG(γ, ρ, δ) are adjacent.
This is the case for the first 4 types of partial geometries
mentioned earlier.
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For this case, if we know the distribution of points in Λ over the
lines in Φ(Λ), we can enumerate τ exactly. In fact, we can even
determine the configuration the trapping set corresponding to the
subgeometry PaG[Λ] = (Λ,Φ(Λ)). By configuration, we mean the
degree distributions of the VNs and CNs of the trapping set.

Since the two sums in the right side of (6) are non-negative, we
have the following lower bound on τ :

τ ≥ (γ + 1− κ)κ. (7)

For κ < γ, τ can be many times larger than κ. It follows from
Definition 1-3 that the Tanner graph GPaG of the PaG-LDPC code
CPaG contains no small trapping set with size κ < γ − 3. For
κ < γ − 3, τ is at least 5 time larger than κ, i.e., τ/κ ≥ 5.
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There are two special cases for which the equality of (6) holds.

The first case is that each line in Φ(Λ) passes through at most two
points in Λ is that equality (4) holds and no three points in Λ are
collinear.

In this case, m3 = m4 = ... = mκ = 0 and the subgeometry
PaG(Λ) of PaG(γ, ρ, δ) induced by the set Λ of points represents a
(κ, (γ + 1− κ)κ) elementary trapping set with (γ + 1− κ)κ CNs of
degree-1 and κ(κ− 1)/2 CNs of degree-2.

It can be shown that for κ < b(2γ + 3)/3c, the number of CNs of
degree-1 is greater than the number of CNs of degree-2.
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As another special case is that all the points in Λ are collinear. In
this case, m2 = ... = mκ−1 = 0 and mκ = 1. Then, the equalities
of (4) and (6) hold.

It follows from (6) that: if κ is even, PaG(Λ) represents a
(κ, (γ − 1)κ) trapping set with (γ − 1)κ CNs of degree-1 and one
CN of degree-κ; and (2) if κ is odd, PaG(Λ) represents a
(κ, (γ − 1)κ+ 1) trapping set with (γ − 1)κ CNs of degree-1 and
one CN of degree-κ (all CNs have odd degree).
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Based on the intersecting structure of lines in a partial geometry
PaG(γ, ρ, δ), it can be easily prove that the Tanner graph GPaG of
the PaG-LDPC code CPaG does not have any absorbing set of size
κ ≤ bγ/2c+ 1.

The smallest size of an absorbing set is bγ/2c+ 2.
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Improved bound on Trapping Sets for Net-LDPC Codes

Recall that the partial geometry PaG(γ, ρ, δ) is a net if δ = γ − 1
in which case the lines can be partitioned into γ parallel bundles,
each consisting of ρ parallel lines, and each point is on a unique
line in each parallel bundle.

Examples of nets are two-dimensional Euclidean geometries and
partial geometries corresponding certain arrays of CPMs
constructed based on finite fields and Latin squares.

In case of a net, we can improve upon the bound in (6) by
considering the distribution of points labeling the VNs in a
trapping set over the lines in a parallel bundle.

Recall that each parallel bundle of ρ lines contains all the points in
PaG(γ, ρ, γ − 1) and, in particular, all the points in Λ.
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Let P be a parallel bundle of lines and L1, L2, ..., Lρ be the lines in
P .

For 1 ≤ l ≤ ρ, let Λl be the (possibly empty) set of points in Λ
that are on the line Ll and let κl be the number of such points.

Since the lines L1, L2, ..., Lρ are parallel, each point in Λ is on one
and only one of these lines. Hence, Λ1,Λ2, ...,Λρ are disjoint sets
whose union is Λ and κ1 + κ2 + + κρ = κ.
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Then, the number τ of odd-degree CNs is a (κ, τ) trapping set of a
net-LDPC code is lower bounded as below:

τ ≥ (γ − 1)κ− κ2 +

ρ∑
l=1

κ2
l + |l : 1 ≤ l ≤ b, κl is odd|. (8)

This bound agrees with (7) whenever κl ≤ 2 for all 1 ≤ l ≤ ρ and
improves upon it in all the other cases.
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The bound on τ given in (8) can be applied easily once the
distribution of the set of points Λ corresponding to the VNs of the
trapping set over the lines in a parallel bundle is given without the
need to explicitly determine Φ(Λ).

The bound depends on the numbers κ1, κ2, ..., κρ, which in turn
depend on the set of points Λ as well as on the choice of the
parallel bundle P .

For example, if the net is the two-dimensional Euclidean geometry
EG(2, q), where q is a prime or a power of a prime, then each point
can be represented by a two-tuple (a0, a1) over GF(q) and
{(a0, a1) : a0 ∈ GF(q)} for some a1 ∈ GF(q) is a line associated
with this value of a1. The q lines associated with the q values of
a1 ∈ GF(q) form a parallel bundle.

62



This parallel bundle can be viewed as the set of the q horizontal
lines in a two-dimensional plane where each point in the Euclidean
geometry is represented by its cartesian coordinates.

The number of points in Λ on the line associated with a1 is the
number of points (a0, a1) ∈ Λ. This gives the numbers
κ1, κ2, ..., κρ which can be used in (8) to obtain a lower bound on
τ in a (κ, τ) trapping set.
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