
Capacity of a POST Channel 	

with and without Feedback

Tsachy Weissman 	

based on joint work with:	


Haim Permuter 	

Himanshu Asnani	


The University of Hong Kong, December 2013

Workshop On Coding and Information Theory 



directed information

Directed Information

I(Xn → Y n) !
n
∑

i=1

I(Xi;Yi|Y
i−1)

POST Channel
Previous Output is the STate

Convex Optimization

T. Weissman Directed Information and the POST Channel



directed information 

compare to: 



Definitions
Directed Information [Massey90] inspired by [Marko 73]

I(Xn → Y n) ! H(Y n)−H(Y n||Xn)

I(Xn;Y n) ! H(Y n)−H(Y n|Xn)

Causal Conditioning [Kramer98]

H(Y n||Xn) ! E[− log P (Y n||Xn)]

H(Y n|Xn) ! E[− log P (Y n|Xn)]

P (yn||xn) !

n
∏

i=1

P (yi|x
i, yi−1)

P (yn||xn−1) !

n
∏

i=1

P (yi|x
i−1, yi−1)
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causal conditioning

Directed information optimization
How to find

max
p(xn||yn−1)

I(Xn → Y n).

Recall

I(Xn → Y n) =
n
∑

i=1

I(Xi;Yi|Y
i−1)

= H(Y n)−H(Y n||Xn)

=
∑

yn,xn

p(xn, yn) log
p(yn∥xn)

p(yn)

P (xn, yn) can be expressed by the chain-rule

p(xn, yn) = p(xn||yn−1)p(yn||xn)
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why directed information?

1 for berkeley csoi

BSC(1/2)

Xi = Yi�1

• CFB

• CNFB

• CFB > CNFB?

PX , PY

Si = Yi�1

,

p(yi|xi, yi�1) = p(yi|xi, yi�1)

with naive scheme, P (maybe) small if

Ed(X̂, Y ) > DX(R) +D

)

Rnaive(D) = RX

⇣
Ed(X̂, Y )�D

⌘

(assuming d is a metric)

PX,Y = PX ⇥ PY

EQ(R, 0)

bla

R

(Xn, Y n) ⇠
nY

i=1

PX(xi)PY (yi)

d(xn, yn) =
1

n

nX

i=1

d(xi, yi)

D0

T�1(T ) = TPX|U (u
n(T ))

1
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1

consider, e.g.:

I(Xn;Y n) ⇡ 0 ) X and Y are essentially independent

Ī(X ! Y) = lim
n!1

1

n
I(Xn ! Y n)

Q is universal if

lim
n!1

1

n
D(PXnkQXn) = 0

for every stationary P

and pointwise universal if

lim sup
n!1

1

n
log

PXn(Xn)

QXn(Xn)
 0 P � a.s.

for every stationary and ergodic P

The directed information from Xn to Y n is defined as

I(Xn ! Y n) ,
nX

i=1

I(Xi;Yi|Y i�1) = H(Y n)�H(Y nkXn) (45)

where H(Y nkXn) is the causally conditional entropy

H(Y nkXn) ,
nX

i=1

H(Yi|Y i�1, Xi) = E [� logP (Y nkXn)] (46)

Compared with the definition of mutual information,

I(Xn;Y n) = H(Y n)�H(Y n|Xn), (47)

directed information has the causally conditional entropy in place of the conditional entropy.
Unlike mutual information, directed information is not symmetric, i.e., I(Y n ! Xn) 6=
I(Xn ! Y n) in general.

The following notation of causal conditional pmfs will be used throughout:

P (xnkyn) =
nY

i=1

P (xi|xi�1, yi) (48)

p(xnkyn�1) =
nY

i=1

p(xi|xi�1, yi�1). (49)

It is easily verified that
p(xn, yn) = p(ynkxn)p(xnkyn�1), (50)

and that we have the conservation law:

I(Xn;Y n) = I(Xn ! Y n) + I(Y n�1 ! Xn), (51)

I(Xn;Y n) =?

15I(Xn ! Y n) =?

C = lim
T!1

1

T
sup I(XT ! Y T )

probability distributions on X ⇥Y . Define f as the function that maps a joint pmf P (x, y)
of a random pair (X,Y ) to the corresponding conditional entropy H(Y |X), i.e.,

f(P ) , �
X

x,y

P (x, y) logP (y|x) (52)

where P (y|x) is the conditional pmf induced by P (x, y). Take Q as a universal probability
assignment, either on processes with (X⇥Y)-valued components, or with Y-valued components,
as will be clear from the context.

Define four estimators as follows:

Î1(X
n ! Y n) , Ĥ1(Y

n)� Ĥ1(Y
nkXn) (53)

Î2(X
n ! Y n) , Ĥ2(Y

n)� Ĥ2(Y
nkXn) (54)

Î3(X
n ! Y n) , 1

n

nX

i=1

D(Q(yi|Xi, Y i�1)kQ(yi|Y i�1)) (55)

Î2(X
n ! Y n) , 1

n

nX

i=1

D(Q(yi|Xi, Y i�1)kQ(yi|Y i�1)) (56)

Î4(X
n ! Y n) , 1

n

nX

i=1

D(Q(xi+1, yi+1|Xi, Y i)kQ(yi+1|Y i)Q(xi+1|Xi, Y i)) (57)

where

Ĥ1(Y
nkXn) , � 1

n
logQ(Y nkXn) = � 1

n

nX

i=1

logQ(Yi|Y i�1, Xi) (58)

Ĥ2(Y
nkXn) , 1

n

nX

i=1

f(Q(xi+1, yi+1|Xi, Y i)) (59)

and Ĥ1(Y n) = Ĥ1(Y nk;), Ĥ2(Y n) = Ĥ2(Y nk;)
Theorem

Let Q be a universal probability assignment and (X,Y) be jointly stationary ergodic. Then

lim
n!1

Î1(X
n ! Y n) = I(X ! Y) in L1

If Q is also pointwise universal then the limit holds almost surely as well.

If (X,Y) is a stationary ergodic aperiodic Markov process, we could say more about the
performance of Î1 using the probability assignment in CTW method.

Let Q be the CTW sequential probability assignment. If (X,Y) is a jointly stationary

ergodic aperiodic Markov process (of arbitrary order), then there exists a constant C1 such that

E
���Î1(Xn ! Y n)� I(X ! Y)

���  C1n
�1/2 log n,
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optimization
Property of the optimization problem

max
p(xn||yn−1)

I(Xn → Y n)

Good news
I(Xn → Y n) is convex in p(xn||yn−1) for a fixed p(yn||xn).
p(xn||yn−1) is a convex set.

Benefits:
Efficient algorithm for finding the maximum.
Necessary and sufficient conditions (KKT conditions) for
having the optimum.

To be carefull
I(Xn → Y n) non-convex in p(x1), ..., p(xn|xn−1, yn−1)

Cannot optimize each term in
∑

i I(X
i;Yi|Y i−1) separately.

T. Weissman Directed Information and the POST Channel

• concavity of the function  	


• convexity of the set  

note:



(under conditions)

[Massey 1990], [Kramer 1998], [Chen and Berger 2005], 	

[Tatikonda and Mitter 2010], [Kim 2010], [Permuter, Goldsmith and W. 2010]

on capacity



Finite State Channels

Channels with feedback

Message
Encoder

xi(m, zi−1)
xi

Finite State Channel

P (yi, si|xi, si−1) yim

Decoder

m̂(yn)

zi(yi) yi
Unit Delay Time-Invariant

Functionzi−1(yi−1)

m̂

Estimated
message

Finite State Channel(FSC) property:

P (yi, si|x
i, si−1, yi−1) = P (yi, si|xi, si−1)
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• memoryless channels 	


• mod-additive channels	


• Gaussian with and without FB	


• trapdoor with FB 	


• Ising with FB  	


• some more  

explicit computations 



POST
Previous Output is the STate

T. Weissman Directed Information and the POST Channel

1 for berkeley csoi

PX , PY

Si = Yi�1

,

p(yi|xi, yi�1) = p(yi|xi, yi�1)

with naive scheme, P (maybe) small if

Ed(X̂, Y ) > DX(R) +D

)

Rnaive(D) = RX

⇣
Ed(X̂, Y )�D

⌘

(assuming d is a metric)

PX,Y = PX ⇥ PY

EQ(R, 0)

bla

R

(Xn, Y n) ⇠
nY

i=1

PX(xi)PY (yi)

d(xn, yn) =
1

n

nX

i=1

d(xi, yi)

D0

T�1(T ) = TPX|U (u
n(T ))

PX|U

un(T )

EQ(R, 0) = min {R+ 2⇢Bhattacharya(PX , PY ), H2(X,Y )}

1

channel

T. Berger, 2002 Shannon lecture 	

“living information theory” [ ]



motivation

• simple 	


• good model	


• to feed or not 



“To Feed or Not to Feed Back”



questions for the POST channel 
1 for berkeley csoi

• CFB

• CNFB

• CFB > CNFB?

PX , PY

Si = Yi�1

,

p(yi|xi, yi�1) = p(yi|xi, yi�1)

with naive scheme, P (maybe) small if

Ed(X̂, Y ) > DX(R) +D

)

Rnaive(D) = RX

⇣
Ed(X̂, Y )�D

⌘

(assuming d is a metric)

PX,Y = PX ⇥ PY

EQ(R, 0)

bla

R

(Xn, Y n) ⇠
nY

i=1

PX(xi)PY (yi)

d(xn, yn) =
1

n

nX

i=1

d(xi, yi)

D0

T�1(T ) = TPX|U (u
n(T ))

PX|U

1



random stuff

CFB = max
p(x1|y0)

I(X1;Y1|Y0)

T. Weissman Directed Information and the POST Channel

feedback capacity of the POST channel

[Chen and Berger 2005]: 

(under benign conditions)



POST(α) channel

If yi−1 = 0 then the channel behaves as an Z channel with
parameter α
If yi−1 = 1 then it behaves an S channel with parameter α.

00

11

00

11

yi−1 = 0 yi−1 = 1

xi xiyi yiα

α

1− α

1− α
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Simple POST channel or POST(α = 1
2)

if Xi = Yi−1, Yi = Xi

otherwise, Yi ∼ Bernouli(
1

2
)

00

11

00

11

yi−1 = 0 yi−1 = 1

xi xiyi yi1
2

1
2

1
2

1
2
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alternatively:

(simple)



intuition? 
Gaining intuition via a similar example

si−1 = 0 si−1 = 1

xi xiyi yi
1
2

1
2

1
2

1
2

En Xi Yi, SiP (si, yi|xi)

Si i.i.d. ∼Bernoulli(12)
De

M M̂

0 0 0 0

1 1 1 1
Regular capacity

C = max
P (x)

I(X;Y, S) = Hb(
1

4
)−

1

2
= 0.3111

Feedback capacity is the capacity of the Z channel

Cfb = − log2 0.8 = 0.3219

T. Weissman Directed Information and the POST Channel



channel probing ([Asnani, Permuter and W. 2011])
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1 for berkeley csoi

• CFB

• CNFB
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Main result and idea

Theorem
Feedback does not increase the capacity of the POST(α)
channel.
Main Idea: show that for any n the two optimization problems
have the same value.

max
P (xn||yn−1)

I(Xn → Y n)

max
P (xn)

I(Xn → Y n)

T. Weissman Directed Information and the POST Channel
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=

show: 



Necessary and sufficient for max I(Xn → Y n)

Theorem
A set of necessary and sufficient conditions for an input
probability P (xn||yn−1) to maximize I(Xn → Y n) is that for
some numbers βyn−1

∑

yn

p(yn||xn) log
p(yn||xn)

ep(yn)
= βyn−1 , ∀xn, yn−1, if p(xn||yn−1) > 0

∑

yn

p(yn||xn) log
p(yn||xn)

ep(yn)
≤ βyn−1 , ∀xn, yn−1, if p(xn||yn−1) = 0

where p(yn) =
∑

xn p(yn||xn)p(xn||yn−1). The solution of the
optimization is

max
P (xn||yn−1)

I(Xn → Y n) =
∑

yn−1

βyn−1 + 1.
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the case n=1

[Gallager 1968]



Necessary and sufficient for max I(Xn → Y n)
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key tool
Main corollary we use to prove equality of the
optimization problems

Corollary
Let P ∗(xn||yn−1) achieve the maximum of
maxP (xn||yn−1) I(X

n → Y n) and let P ∗(yn) be the induced
output pmf. If there exists an input probability distribution P (xn)
such that

p∗(yn) =
∑

xn

p(yn||xn)p(xn),

for any n then the feedback capacity and the nonfeedback
capacity are the same.

T. Weissman Directed Information and the POST Channel
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=

then



route for showing CNFB = CFB

Find:
1 p∗(yn)
2 P−1

n

3 P−1
n · p∗(yn)

is P−1
n · p∗(yn) ≥ 0?

if yes ∀n ⇒ CNFB = CFB
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(where Pn(yn, xn) = P (yn|xn))

I(Xn ! Y n) =?

C = lim
T!1

1

T
sup I(XT ! Y T )

probability distributions on X ⇥Y . Define f as the function that maps a joint pmf P (x, y)
of a random pair (X,Y ) to the corresponding conditional entropy H(Y |X), i.e.,

f(P ) , �
X

x,y

P (x, y) logP (y|x) (52)

where P (y|x) is the conditional pmf induced by P (x, y). Take Q as a universal probability
assignment, either on processes with (X⇥Y)-valued components, or with Y-valued components,
as will be clear from the context.

Define four estimators as follows:

Î1(X
n ! Y n) , Ĥ1(Y

n)� Ĥ1(Y
nkXn) (53)

Î2(X
n ! Y n) , Ĥ2(Y

n)� Ĥ2(Y
nkXn) (54)

Î3(X
n ! Y n) , 1

n

nX

i=1

D(Q(yi|Xi, Y i�1)kQ(yi|Y i�1)) (55)

Î2(X
n ! Y n) , 1

n

nX

i=1

D(Q(yi|Xi, Y i�1)kQ(yi|Y i�1)) (56)

Î4(X
n ! Y n) , 1

n

nX

i=1

D(Q(xi+1, yi+1|Xi, Y i)kQ(yi+1|Y i)Q(xi+1|Xi, Y i)) (57)

where

Ĥ1(Y
nkXn) , � 1

n
logQ(Y nkXn) = � 1

n

nX

i=1

logQ(Yi|Y i�1, Xi) (58)

Ĥ2(Y
nkXn) , 1

n

nX

i=1

f(Q(xi+1, yi+1|Xi, Y i)) (59)

and Ĥ1(Y n) = Ĥ1(Y nk;), Ĥ2(Y n) = Ĥ2(Y nk;)
Theorem

Let Q be a universal probability assignment and (X,Y) be jointly stationary ergodic. Then

lim
n!1

Î1(X
n ! Y n) = I(X ! Y) in L1

If Q is also pointwise universal then the limit holds almost surely as well.

If (X,Y) is a stationary ergodic aperiodic Markov process, we could say more about the
performance of Î1 using the probability assignment in CTW method.

16



specifically, for POST 

• simple structure and evolution of:	


• optimal output distribution	


• channel matrix	


• its inverse 



Simple POST channel

Binary symmetric Markov {Y }i≥1 with transition probability 0.2
can be described recursively

P0(y
n) =

[

0.8P0(yn−1)
0.2P1(yn−1)

]

P1(y
n) =

[

0.2P0(yn−1)
0.8P1(yn−1)

]

,

where P0(y0) = P1(y0) = 1.
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(matrix of the) 

Simple POST channel

Binary symmetric Markov {Y }i≥1 with transition probability 0.2
can be described recursively

P0(y
n) =

[

0.8P0(yn−1)
0.2P1(yn−1)

]

P1(y
n) =

[

0.2P0(yn−1)
0.8P1(yn−1)

]

,

where P0(y0) = P1(y0) = 1.

Conditional probabilities:
P (Y1|X1, s0 = 0) P (Y1|X1, s0 = 1)

!
!
!
!
!
!

Y1

X1 0 1

0 1 1
2

1 0 1
2

!
!
!
!
!
!

Y1

X1 0 1

0 1
2 0

1 1
2 1
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Simple POST channel

P0(y
n) =

[

0.8P0(yn−1)
0.2P1(yn−1)

]

P1(y
n) =

[

0.2P0(yn−1)
0.8P1(yn−1)

]

,

Pn,0 =

[

1 · Pn−1,0
1
2 · Pn−1,0

0 · Pn−1,1
1
2 · Pn−1,1

]

Pn,1 =

[

1
2 · Pn−1,0 0 · Pn−1,0
1
2 · Pn−1,1 1 · Pn−1,1

]

Using

P0(x
n) = P−1

n,0P0(y
n), P1(x

n) = P−1
n,1P1(y

n)

we obtained

P0(x
n) =

[

0.8P0(xn−1)− 0.2P1(xn−1)
0.4P1(xn−1)

]

,

P1(x
n) =

[

0.4P0(xn−1)
0.8P1(xn−1)− 0.2P0(xn−1)

]

.
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Main result
Feedback does not increase capacity of POST(α)
The feedback and the non-feedback capacity of POST(α)
channel is the same as of the memoryless Z channel with
parameter α, which is C = − log2 c where

c = (1 + ᾱα
α
ᾱ )−1
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POST(a, b) channel

00

11

00

11

yi−1 = 0 yi−1 = 1

xi xiyi

a

a

ā

āb̄

b̄

b

b

If yi−1 = 0 then the channel behaves as DMC with parameters
(a, b) and if yi−1 = 1 then the channel behaves as DMC with
parameters (b, a).

We are able to show numerically on a grid of resolution
10−5 × 10−5 on (a, b) ∈ [0, 1] × [0, 1] that feedback does not
increase the capacity.
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POST(a, b) channel
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Difficulty

We were able to obtain an input distribution that attains P ∗(yn),

P0(x
n) =

1

(a+ b− 1)(γ + 1)

[

bγP0(xn−1)− b̄P1(xn−1)
−āγP0(xn−1) + aP1(xn−1)

]

,

P1(x
n) =

1

(a+ b− 1)(γ + 1)

[

aP0(xn−1)− āγP1(xn−1)
−b̄P0(xn−1) + bγP1(xn−1)

]

,

γ = 2
H(b)−H(a)

a+b−1 .

but how to show analytically that P0(xn) and P1(xn) are valid.
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the input distribution



Inequalities that we needed.

In order to prove that P (xn) is valid we needed:

γ ≥ b̄
b

γ ≤ a
ā

γ ≥ a
b for a ≥ b̄

γ2 ≤ a2

bā for a ≥ b̄

γ(ā+b)
2b̄

≥ 1 for a ≥ b̄ and aā ≤ bb̄

γ2(ā+ b)2 − 4ab̄ ≥ 0

γ(ā+ b)−
√

γ2(ā+ b)2 − 4ab̄ ≤ 2b̄, for a ≥ b̄ and aā ≤ bb̄

where
γ = 2

H(b)−H(a)
a+b−1 .
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Main result
Feedback does not increase capacity of a POST(a, b) channel
The feedback and the non-feedback capacity of POST(a, b)
channel is the same as of a binary DMC channel with
parameters (a, b), which is given by

C = log

[

2
āHb(b)−bHb(a)

a+b−1 + 2
b̄Hb(a)−aHb(b)

a+b−1

]

.
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can feedback help for a general POST channel?  



large alphabetIs there a POST channel where feedback increases
capacity?

1
2 2

11
2 2

1

yi−1 = 1, 2, ...,m yi−1 = m+ 1

xi xiyi yi
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Is there a POST channel where feedback increases
capacity?

1
2 2

11
2 2

1

yi−1 = 1, 2, ...,m yi−1 = m+ 1

xi xiyi yi

mm mm

m+ 1 m+ 1 m+ 1m+ 1

upper bound on capacity lower bound on Cfb

m 1
6 maxs0 maxP (x6) I(X

6;Y 6|s0) R = log2 m
3

29 2.5376 3.0000
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is the sufficient condition necessary?

• we didn’t know 	


• numerics in binary case were inconclusive



condition is necessary and sufficient

Theorem:
1 for berkeley csoi

fgfgddg
Let CFB = maxp(x1|y0) I(X1;Y1|Y0) and let p⇤(y0) be induced by p⇤(x1|y0).
CFB = CNFB if and only if 8n:
Can induce p⇤fb(y

n) without feedback and without knowledge of Y0 ⇠ p⇤(y0).

BSC(1/2)

Xi = Yi�1

• CFB

• CNFB

• CFB > CNFB?

PX , PY

Si = Yi�1

,

p(yi|xi, yi�1) = p(yi|xi, yi�1)

with naive scheme, P (maybe) small if

Ed(X̂, Y ) > DX(R) +D

)

Rnaive(D) = RX

⇣
Ed(X̂, Y )�D

⌘

(assuming d is a metric)

PX,Y = PX ⇥ PY

EQ(R, 0)

bla

R

1
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1 for berkeley csoi

• CFB = CNFB , can induce p⇤fb(y
n) without feedback 8n

• CFB = CNFB for binary POST(a, b) channels

• 9 POST channels with CFB > CNFB
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1 for berkeley csoi

• CFB = CNFB , can induce p⇤fb(y
n) without feedback 8n

• CFB = CNFB for binary POST(a, b) channels

• 9 POST channels with CFB > CNFB

• crisper necessary and su�cient condition for CFB = CNFB

• capacity achieving schemes
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CFB = CNFB if and only if 8n:
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