Capacity of a POST Channel with and without Feedback

Workshop On Coding and Information Theory

The University of Hong Kong, December 2013

Tsachy Weissman based on joint work with: Haim Permuter Himanshu Asnani

directed information

n $I(X^n \to Y^n) \triangleq \sum I(X^i; Y_i | Y^{i-1})$ i=1

directed information

$$I(X^n \to Y^n) \triangleq \sum_{i=1}^n I(X^i; Y_i | Y^{i-1})$$

compare to:

$$I(X^{n}; Y^{n}) = \sum_{i=1}^{n} I(X^{n}; Y_{i}|Y^{i-1})$$

Directed Information

[Massey90] inspired by [Marko 73]

$$I(X^n \to Y^n) \triangleq H(Y^n) - H(Y^n || X^n)$$
$$I(X^n; Y^n) \triangleq H(Y^n) - H(Y^n |X^n)$$

Causal Conditioning

[Kramer98]

$$H(Y^{n}||X^{n}) \triangleq E[-\log P(Y^{n}||X^{n})]$$
$$H(Y^{n}|X^{n}) \triangleq E[-\log P(Y^{n}|X^{n})]$$

$$P(y^{n}||x^{n}) \triangleq \prod_{i=1}^{n} P(y_{i}|x^{i}, y^{i-1})$$
$$P(y^{n}||x^{n-1}) \triangleq \prod_{i=1}^{n} P(y_{i}|x^{i-1}, y^{i-1})$$

causal conditioning

$$P(y^{n}||x^{n}) \triangleq \prod_{i=1}^{n} P(y_{i}|x^{i}, y^{i-1})$$
$$P(y^{n}||x^{n-1}) \triangleq \prod_{i=1}^{n} P(y_{i}|x^{i-1}, y^{i-1})$$

$$p(x^n, y^n) = p(x^n || y^{n-1}) p(y^n || x^n)$$

why directed information?

consider, e.g.:

BSC(1/2)

 $X_i = Y_{i-1}$

 $I(X^n;Y^n) = ?$

 $I(X^n \to Y^n) = ?$

optimization

$$\max_{p(x^n||y^{n-1})} I(X^n \to Y^n)$$

note:

- concavity of the function
- convexity of the set

on capacity

(under conditions)
$$C = \lim_{n \to \infty} \max \frac{1}{n} I(X^n \to Y^n)$$

[Massey 1990], [Kramer 1998], [Chen and Berger 2005], [Tatikonda and Mitter 2010], [Kim 2010], [Permuter, Goldsmith and W. 2010]

Finite State Channels

 $P(y_i, s_i | x^i, s^{i-1}, y^{i-1}) = P(y_i, s_i | x_i, s_{i-1})$

explicit computations

- memoryless channels
- mod-additive channels
- Gaussian with and without FB
- trapdoor with FB
- Ising with FB
- some more

POST channel Previous Output is the STate

$$S_i = Y_{i-1}$$

\Leftrightarrow

$$p(y_i|x^i, y^{i-1}) = p(y_i|x_i, y_{i-1})$$

T. Berger, 2002 Shannon lecture "living information theory"

motivation

- simple
- good model
- to feed or not

"To Feed or Not to Feed Back"

questions for the POST channel

feedback capacity of the POST channel

[Chen and Berger 2005]:

$$C_{FB} = \max_{p(x_1|y_0)} I(X_1; Y_1|Y_0)$$

(under benign conditions)

$POST(\alpha)$ channel

alternatively:

if
$$X_i = Y_{i-1,}$$
 $Y_i = X_i$
otherwise, $Y_i \sim Bernouli(\frac{1}{2})$

intuition?

• Feedback capacity is the capacity of the Z channel

$$C_{fb} = -\log_2 0.8 = 0.3219$$

channel probing ([Asnani, Permuter and W. 2011])

$POST(\alpha)$ channel

• C_{FB}

• C_{NFB}

• $C_{FB} > C_{NFB}$?

Theorem

Feedback does not increase the capacity of the POST(α) channel.

main idea

show:

$$\max_{P(x^n||y^{n-1})} I(X^n \to Y^n) = \max_{P(x^n)} I(X^n \to Y^n)$$

Necessary and sufficient for $\max I(X^n \to Y^n)$

Theorem

A set of necessary and sufficient conditions for an input probability $P(x^n||y^{n-1})$ to maximize $I(X^n \to Y^n)$ is that for some numbers $\beta_{y^{n-1}}$

$$\sum_{y_n} p(y^n || x^n) \log \frac{p(y^n || x^n)}{ep(y^n)} = \beta_{y^{n-1}}, \ \forall x^n, y^{n-1}, \ \text{if} \ p(x^n || y^{n-1}) > 0$$
$$\sum_{y_n} p(y^n || x^n) \log \frac{p(y^n || x^n)}{ep(y^n)} \le \beta_{y^{n-1}}, \ \forall x^n, y^{n-1}, \ \text{if} \ p(x^n || y^{n-1}) = 0$$

where $p(y^n) = \sum_{x^n} p(y^n || x^n) p(x^n || y^{n-1})$. The solution of the optimization is

$$\max_{P(x^n||y^{n-1})} I(X^n \to Y^n) = \sum_{y^{n-1}} \beta_{y^{n-1}} + 1.$$

the case n=1

[Gallager 1968]

4.5 Finding Channel Capacity for a Discrete Memoryless Channel

Theorem 4.5.1. A set of necessary and sufficient conditions on an input probability vector $\mathbf{Q} = [Q(0), \ldots, Q(K-1)]$ to achieve capacity on a discrete memoryless channel with transition probabilities P(j|k) is that for some number C,

I(x = k; Y) = C; all k with Q(k) > 0 (4.5.1)

 $I(x = k; Y) \le C;$ all k with Q(k) = 0 (4.5.2)

in which I(x = k; Y) is the mutual information for input k averaged over the outputs,

$$I(x = k; Y) = \sum_{j} P(j \mid k) \log \frac{P(j \mid k)}{\sum_{i} Q(i)P(j \mid i)}$$
(4.5.3)

Necessary and sufficient for $\max I(X^n \to Y^n)$

Theorem

A set of necessary and sufficient conditions for an input probability $P(x^n||y^{n-1})$ to maximize $I(X^n \to Y^n)$ is that for some numbers $\beta_{y^{n-1}}$

$$\sum_{y_n} p(y^n || x^n) \log \frac{p(y^n || x^n)}{ep(y^n)} = \beta_{y^{n-1}}, \ \forall x^n, y^{n-1}, \ \text{if} \ p(x^n || y^{n-1}) > 0$$
$$\sum_{y_n} p(y^n || x^n) \log \frac{p(y^n || x^n)}{ep(y^n)} \le \beta_{y^{n-1}}, \ \forall x^n, y^{n-1}, \ \text{if} \ p(x^n || y^{n-1}) = 0$$

where $p(y^n) = \sum_{x^n} p(y^n || x^n) p(x^n || y^{n-1})$. The solution of the optimization is

$$\max_{P(x^n||y^{n-1})} I(X^n \to Y^n) = \sum_{y^{n-1}} \beta_{y^{n-1}} + 1.$$

key tool

Corollary

Let $P^*(x^n || y^{n-1})$ achieve the maximum of $\max_{P(x^n || y^{n-1})} I(X^n \to Y^n)$ and let $P^*(y^n)$ be the induced output pmf. If there exists an input probability distribution $P(x^n)$

such that

$$p^*(y^n) = \sum_{x^n} p(y^n || x^n) p(x^n),$$

then

$$\max_{P(x^n||y^{n-1})} I(X^n \to Y^n) = \max_{P(x^n)} I(X^n \to Y^n)$$

route for showing $C_{NFB} = C_{FB}$

Find:

•
$$p^*(y^n)$$
• P_n^{-1} (where $P_n(y^n, x^n) = P(y^n | x^n)$)
• $P_n^{-1} \cdot p^*(y^n)$
• $P_n^{$

is
$$P_n^{-1} \cdot p^*(y^n) \ge 0$$
?

if yes
$$\forall n \Rightarrow C_{NFB} = C_{FB}$$

specifically, for POST

- simple structure and evolution of:
 - optimal output distribution
 - channel matrix
 - its inverse

Simple POST channel

Binary symmetric Markov $\{Y\}_{i\geq 1}$ with transition probability 0.2 can be described recursively

$$P_0(y^n) = \begin{bmatrix} 0.8P_0(y^{n-1}) \\ 0.2P_1(y^{n-1}) \end{bmatrix} \qquad P_1(y^n) = \begin{bmatrix} 0.2P_0(y^{n-1}) \\ 0.8P_1(y^{n-1}) \end{bmatrix},$$

where $P_0(y^0) = P_1(y^0) = 1$.

(matrix of the) Simple POST channel

$$P_{n,0} = \begin{bmatrix} 1 \cdot P_{n-1,0} & \frac{1}{2} \cdot P_{n-1,0} \\ 0 \cdot P_{n-1,1} & \frac{1}{2} \cdot P_{n-1,1} \end{bmatrix} P_{n,1} = \begin{bmatrix} \frac{1}{2} \cdot P_{n-1,0} & 0 \cdot P_{n-1,0} \\ \frac{1}{2} \cdot P_{n-1,1} & 1 \cdot P_{n-1,1} \end{bmatrix}$$

$$P_{n,0}^{-1} = \begin{bmatrix} 1 \cdot P_{n-1,0} & \alpha \cdot P_{n-1,0} \\ 0 \cdot P_{n-1,1} & \bar{\alpha} \cdot P_{n-1,1} \end{bmatrix}^{-1} = \begin{bmatrix} P_{n-1,0}^{-1} & -\frac{\alpha}{\bar{\alpha}} P_{n-1,1}^{-1} \\ 0 & \frac{1}{\bar{\alpha}} P_{n-1,1}^{-1} \end{bmatrix}$$

$$P_{n,1}^{-1} = \begin{bmatrix} \bar{\alpha} \cdot P_{n-1,0} & 0 \cdot P_{n-1,0} \\ \alpha \cdot P_{n-1,1} & 1 \cdot P_{n-1,1} \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{\bar{\alpha}} P_{n-1,0}^{-1} & 0 \\ -\frac{\alpha}{\bar{\alpha}} P_{n-1,0}^{-1} & P_{n-1,1}^{-1} \end{bmatrix}$$

using:

$$P_0(x^n) = P_{n,0}^{-1} P_0(y^n), P_1(x^n) = P_{n,1}^{-1} P_1(y^n)$$

we obtain:

$$P_0(x^n) = \begin{bmatrix} 0.8P_0(x^{n-1}) - 0.2P_1(x^{n-1}) \\ 0.4P_1(x^{n-1}) \end{bmatrix}$$
$$P_1(x^n) = \begin{bmatrix} 0.4P_0(x^{n-1}) \\ 0.8P_1(x^{n-1}) - 0.2P_0(x^{n-1}) \end{bmatrix}$$

Feedback does not increase capacity of $POST(\alpha)$

The feedback and the non-feedback capacity of POST(α) channel is the same as of the memoryless *Z* channel with parameter α , which is $C = -\log_2 c$ where

$$c = (1 + \bar{\alpha}\alpha^{\frac{\alpha}{\bar{\alpha}}})^{-1}$$

POST(a, b) channel

$$y_{i-1} = 0$$

the input distribution

$$P_0(x^n) = \frac{1}{(a+b-1)(\gamma+1)} \begin{bmatrix} b\gamma P_0(x^{n-1}) - \bar{b}P_1(x^{n-1}) \\ -\bar{a}\gamma P_0(x^{n-1}) + aP_1(x^{n-1}) \end{bmatrix}$$

$$P_1(x^n) = \frac{1}{(a+b-1)(\gamma+1)} \begin{bmatrix} aP_0(x^{n-1}) - \bar{a}\gamma P_1(x^{n-1}) \\ -\bar{b}P_0(x^{n-1}) + b\gamma P_1(x^{n-1}) \end{bmatrix}$$

$$\gamma = 2^{\frac{H(b) - H(a)}{a + b - 1}}$$

In order to prove that $P(x^n)$ is valid we needed:

•
$$\gamma \geq \frac{\overline{b}}{\overline{b}}$$

• $\gamma \leq \frac{a}{\overline{a}}$
• $\gamma \geq \frac{a}{\overline{b}}$ for $a \geq \overline{b}$
• $\gamma^2 \leq \frac{a^2}{\overline{ba}}$ for $a \geq \overline{b}$
• $\frac{\gamma(\overline{a}+b)}{2\overline{b}} \geq 1$ for $a \geq \overline{b}$ and $a\overline{a} \leq b\overline{b}$
• $\gamma^2(\overline{a}+b)^2 - 4a\overline{b} \geq 0$
• $\gamma(\overline{a}+b) - \sqrt{\gamma^2(\overline{a}+b)^2 - 4a\overline{b}} \leq 2\overline{b}$, for $a \geq \overline{b}$ and $a\overline{a} \leq b\overline{b}$

where

$$\gamma = 2^{\frac{H(b) - H(a)}{a + b - 1}}.$$

Feedback does not increase capacity of a POST(a, b) channel

The feedback and the non-feedback capacity of POST(a, b) channel is the same as of a binary DMC channel with parameters (a, b), which is given by

$$C = \log \left[2^{\frac{\bar{a}H_b(b) - bH_b(a)}{a+b-1}} + 2^{\frac{\bar{b}H_b(a) - aH_b(b)}{a+b-1}} \right]$$

can feedback help for a general POST channel?

large alphabet

	upper bound on capacity	lower bound on C_{fb}
m	$\frac{1}{6} \max_{s_0} \max_{P(x^6)} I(X^6; Y^6 s_0)$	$R = \frac{\log_2 m}{3}$
2^9	2.5376	3.0000

is the sufficient condition necessary?

- we didn't know
- numerics in binary case were inconclusive

condition is necessary and sufficient

Theorem:

Let $C_{FB} = \max_{p(x_1|y_0)} I(X_1; Y_1|Y_0)$ and let $p^*(y_0)$ be induced by $p^*(x_1|y_0)$. $C_{FB} = C_{NFB}$ if and only if $\forall n$: Can induce $p^*_{fb}(y^n)$ without feedback and without knowledge of $Y_0 \sim p^*(y_0)$.

implication

 \exists binary POST channels with $C_{FB} > C_{NFB}$

conclusions

- $C_{FB} = C_{NFB} \Leftrightarrow$ can induce $p_{fb}^*(y^n)$ without feedback $\forall n$
- $C_{FB} = C_{NFB}$ for binary POST(a, b) channels
- \exists POST channels with $C_{FB} > C_{NFB}$

questions

- crisper necessary and sufficient condition for $C_{FB} = C_{NFB}$
- capacity achieving schemes