Capacity of a POST Channel with and without Feedback

Workshop On Coding and Information Theory

The University of Hong Kong, December 2013

Tsachy Weissman
based on joint work with:
Haim Permuter
Himanshu Asnani

directed information

$$
I\left(X^{n} \rightarrow Y^{n}\right) \triangleq \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right)
$$

directed information

$$
I\left(X^{n} \rightarrow Y^{n}\right) \triangleq \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right)
$$

compare to:

$$
I\left(X^{n} ; Y^{n}\right)=\sum_{i=1}^{n} I\left(X^{n} ; Y_{i} \mid Y^{i-1}\right)
$$

Directed Information
[Massey90] inspired by [Marko 73]

$$
\begin{aligned}
I\left(X^{n} \rightarrow Y^{n}\right) & \triangleq H\left(Y^{n}\right)-H\left(Y^{n} \| X^{n}\right) \\
I\left(X^{n} ; Y^{n}\right) & \triangleq H\left(Y^{n}\right)-H\left(Y^{n} \mid X^{n}\right)
\end{aligned}
$$

Causal Conditioning
[Kramer98]

$$
\begin{aligned}
H\left(Y^{n} \| X^{n}\right) & \triangleq E\left[-\log P\left(Y^{n} \| X^{n}\right)\right] \\
H\left(Y^{n} \mid X^{n}\right) & \triangleq E\left[-\log P\left(Y^{n} \mid X^{n}\right)\right] \\
P\left(y^{n} \| x^{n}\right) & \triangleq \prod_{i=1}^{n} P\left(y_{i} \mid x^{i}, y^{i-1}\right) \\
P\left(y^{n}| | x^{n-1}\right) & \triangleq \prod_{i=1}^{n} P\left(y_{i} \mid x^{i-1}, y^{i-1}\right)
\end{aligned}
$$

causal conditioning

$$
\begin{gathered}
P\left(y^{n} \| x^{n}\right) \triangleq \prod_{i=1}^{n} P\left(y_{i} \mid x^{i}, y^{i-1}\right) \\
P\left(y^{n} \| x^{n-1}\right) \triangleq \prod_{i=1}^{n} P\left(y_{i} \mid x^{i-1}, y^{i-1}\right) \\
p\left(x^{n}, y^{n}\right)=p\left(x^{n} \| y^{n-1}\right) p\left(y^{n} \| x^{n}\right)
\end{gathered}
$$

why directed information?

consider, e.g.:

$$
\begin{gathered}
\operatorname{BSC}(1 / 2) \\
X_{i}=Y_{i-1} \\
I\left(X^{n} ; Y^{n}\right)=? \\
I\left(X^{n} \rightarrow Y^{n}\right)=?
\end{gathered}
$$

optimization

$$
\max _{p\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

note:

- concavity of the function
- convexity of the set

on capacity

$$
C=\begin{gathered}
\text { (under conditions) } \\
\lim _{n \rightarrow \infty} \max \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right)
\end{gathered}
$$

[Massey 1990], [Kramer 1998], [Chen and Berger 2005](%5B), [Tatikonda and Mitter 2010], [Kim 2010], [Permuter, Goldsmith and W. 20I0]

Finite State Channels

$$
P\left(y_{i}, s_{i} \mid x^{i}, s^{i-1}, y^{i-1}\right)=P\left(y_{i}, s_{i} \mid x_{i}, s_{i-1}\right)
$$

explicit computations

- memoryless channels
- mod-additive channels
- Gaussian with and without FB
- trapdoor with FB
- Ising with FB
- some more

POST channel
 Previous Output is the STate

$$
\begin{gathered}
S_{i}=Y_{i-1} \\
\Leftrightarrow \\
p\left(y_{i} \mid x^{i}, y^{i-1}\right)=p\left(y_{i} \mid x_{i}, y_{i-1}\right)
\end{gathered}
$$

$\left[\begin{array}{c}\text { T. Berger, } 2002 \text { Shannon lecture } \\ \text { "living information theory" }\end{array}\right]$

motivation

- simple
- good model
- to feed or not

"To Feed or Not to Feed Back"

questions for the POST channel

- $C_{F B}$
- $C_{N F B}$
- $C_{F B}>C_{N F B}$?

feedback capacity of the POST channel

C_{F B}=\max _{p\left(x_{1} \mid y_{0}\right)} I\left(X_{1} ; Y_{1} \mid Y_{0}\right)
\]

(under benign conditions)

$\operatorname{POST}(\alpha)$ channel

(simple) $\operatorname{POST}\left(\alpha=\frac{1}{2}\right)$

alternatively:

$$
\begin{array}{lr}
\text { if } X_{i}=Y_{i-1}, & Y_{i}=X_{i} \\
\text { otherwise, } & Y_{i} \sim \operatorname{Bernouli}\left(\frac{1}{2}\right)
\end{array}
$$

intuition?

- Regular capacity

$$
C=\max _{P(x)} I(X ; Y, S)=H_{b}\left(\frac{1}{4}\right)-\frac{1}{2}=0.3111
$$

- Feedback capacity is the capacity of the Z channel

$$
C_{f b}=-\log _{2} 0.8=0.3219
$$

channel probing (IAsnani, Permuter andW. 201I])

$\operatorname{POST}(\alpha)$ channel

$$
y_{i-1}=0
$$

- $C_{F B}$
- $C_{N F B}$
- $C_{F B}>C_{N F B}$?

Theorem
Feedback does not increase the capacity of the $\operatorname{POST}(\alpha)$ channel.

main idea

show:

$$
I\left(X^{n} \rightarrow Y^{n}\right)=\max _{P\left(x^{n}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

Necessary and sufficient for $\max I\left(X^{n} \rightarrow Y^{n}\right)$

Theorem

A set of necessary and sufficient conditions for an input probability $P\left(x^{n} \| y^{n-1}\right)$ to maximize $I\left(X^{n} \rightarrow Y^{n}\right)$ is that for some numbers $\beta_{y^{n-1}}$

$$
\begin{aligned}
& \sum_{y_{n}} p\left(y^{n} \| x^{n}\right) \log \frac{p\left(y^{n} \| x^{n}\right)}{e p\left(y^{n}\right)}=\beta_{y^{n-1}}, \forall x^{n}, y^{n-1}, \text { if } p\left(x^{n} \| y^{n-1}\right)>0 \\
& \sum_{y_{n}} p\left(y^{n} \| x^{n}\right) \log \frac{p\left(y^{n} \| x^{n}\right)}{e p\left(y^{n}\right)} \leq \beta_{y^{n-1}}, \forall x^{n}, y^{n-1}, \text { if } p\left(x^{n} \| y^{n-1}\right)=0
\end{aligned}
$$

where $p\left(y^{n}\right)=\sum_{x^{n}} p\left(y^{n} \| x^{n}\right) p\left(x^{n} \| y^{n-1}\right)$. The solution of the optimization is

$$
\max _{P\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)=\sum_{y^{n-1}} \beta_{y^{n-1}}+1
$$

the case $n=1$

[Gallager 1968]

4.5 Finding Channel Capacity for a Discrete Memoryless Channel

Theorem 4.5.1. A set of necessary and sufficient conditions on an input probability vector $\mathbf{Q}=[Q(0), \ldots, Q(K-1)]$ to achieve capacity on a discrete memoryless channel with transition probabilities $P(j \mid k)$ is that for some number C,

$$
\begin{array}{ll}
I(x=k ; Y)=C ; & \text { all } k \text { with } Q(k)>0 \\
I(x=k ; Y) \leq C ; & \text { all } k \text { with } Q(k)=0 \tag{4.5.2}
\end{array}
$$

in which $I(x=k ; Y)$ is the mutual information for input k averaged over the outputs,

$$
\begin{equation*}
I(x=k ; Y)=\sum_{j} P(j \mid k) \log \frac{P(j \mid k)}{\sum_{i} Q(i) P(j \mid i)} \tag{4.5.3}
\end{equation*}
$$

Necessary and sufficient for $\max I\left(X^{n} \rightarrow Y^{n}\right)$

Theorem

A set of necessary and sufficient conditions for an input probability $P\left(x^{n} \| y^{n-1}\right)$ to maximize $I\left(X^{n} \rightarrow Y^{n}\right)$ is that for some numbers $\beta_{y^{n-1}}$

$$
\begin{aligned}
& \sum_{y_{n}} p\left(y^{n} \| x^{n}\right) \log \frac{p\left(y^{n} \| x^{n}\right)}{e p\left(y^{n}\right)}=\beta_{y^{n-1}}, \forall x^{n}, y^{n-1}, \text { if } p\left(x^{n} \| y^{n-1}\right)>0 \\
& \sum_{y_{n}} p\left(y^{n} \| x^{n}\right) \log \frac{p\left(y^{n} \| x^{n}\right)}{e p\left(y^{n}\right)} \leq \beta_{y^{n-1}}, \forall x^{n}, y^{n-1}, \text { if } p\left(x^{n} \| y^{n-1}\right)=0
\end{aligned}
$$

where $p\left(y^{n}\right)=\sum_{x^{n}} p\left(y^{n} \| x^{n}\right) p\left(x^{n} \| y^{n-1}\right)$. The solution of the optimization is

$$
\max _{P\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)=\sum_{y^{n-1}} \beta_{y^{n-1}}+1
$$

key tool

Corollary

Let $P^{*}\left(x^{n} \| y^{n-1}\right)$ achieve the maximum of $\max _{P\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)$ and let $P^{*}\left(y^{n}\right)$ be the induced output pmf. If there exists an input probability distribution $P\left(x^{n}\right)$ such that

$$
p^{*}\left(y^{n}\right)=\sum_{x^{n}} p\left(y^{n} \| x^{n}\right) p\left(x^{n}\right)
$$

then

$$
\max _{P\left(x^{n} \| y^{n-1}\right)} I\left(X^{n} \rightarrow Y^{n}\right)=\max _{P\left(x^{n}\right)} I\left(X^{n} \rightarrow Y^{n}\right)
$$

route for showing $C_{N F B}=C_{F B}$

Find:
(1) $p^{*}\left(y^{n}\right)$
(2) $P_{n}^{-1} \quad\left(\right.$ where $\left.P_{n}\left(y^{n}, x^{n}\right)=P\left(y^{n} \mid x^{n}\right)\right)$
(3) $P_{n}^{-1} \cdot p^{*}\left(y^{n}\right)$
is $P_{n}^{-1} \cdot p^{*}\left(y^{n}\right) \geq 0$?
if yes $\forall n \Rightarrow C_{N F B}=C_{F B}$

specifically, for POST

- simple structure and evolution of:
- optimal output distribution
- channel matrix
- its inverse

Simple POST channel

Binary symmetric Markov $\{Y\}_{i \geq 1}$ with transition probability 0.2 can be described recursively

$$
P_{0}\left(y^{n}\right)=\left[\begin{array}{c}
0.8 P_{0}\left(y^{n-1}\right) \\
0.2 P_{1}\left(y^{n-1}\right)
\end{array}\right] \quad P_{1}\left(y^{n}\right)=\left[\begin{array}{c}
0.2 P_{0}\left(y^{n-1}\right) \\
0.8 P_{1}\left(y^{n-1}\right)
\end{array}\right],
$$

where $P_{0}\left(y^{0}\right)=P_{1}\left(y^{0}\right)=1$.

(matrix of the) Simple POST channel

$$
\begin{gathered}
P_{n, 0}=\left[\begin{array}{ll}
1 \cdot P_{n-1,0} & \frac{1}{2} \cdot P_{n-1,0} \\
0 \cdot P_{n-1,1} & \frac{1}{2} \cdot P_{n-1,1}
\end{array}\right] P_{n, 1}=\left[\begin{array}{cc}
\frac{1}{2} \cdot P_{n-1,0} & 0 \cdot P_{n-1,0} \\
\frac{1}{2} \cdot P_{n-1,1} & 1 \cdot P_{n-1,1}
\end{array}\right] \\
P_{n, 0}^{-1}=\left[\begin{array}{ll}
1 \cdot P_{n-1,0} & \alpha \cdot P_{n-1,0} \\
0 \cdot P_{n-1,1} & \bar{\alpha} \cdot P_{n-1,1}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
P_{n-1,0}^{-1} & -\frac{\alpha}{\bar{\alpha}} P_{n-1,1}^{-1} \\
0 & \frac{1}{\bar{\alpha}} P_{n-1,1}^{-1}
\end{array}\right] \\
P_{n, 1}^{-1}=\left[\begin{array}{ll}
\bar{\alpha} \cdot P_{n-1,0} & 0 \cdot P_{n-1,0} \\
\alpha \cdot P_{n-1,1} & 1 \cdot P_{n-1,1}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{1}{\bar{\alpha}} P_{n-1,0}^{-1} & 0 \\
-\frac{\alpha}{\bar{\alpha}} P_{n-1,0}^{-1} & P_{n-1,1}^{-1}
\end{array}\right]
\end{gathered}
$$

using:

$$
P_{0}\left(x^{n}\right)=P_{n, 0}^{-1} P_{0}\left(y^{n}\right), \quad P_{1}\left(x^{n}\right)=P_{n, 1}^{-1} P_{1}\left(y^{n}\right)
$$

we obtain:

$$
\begin{aligned}
& P_{0}\left(x^{n}\right)=\left[\begin{array}{c}
0.8 P_{0}\left(x^{n-1}\right)-0.2 P_{1}\left(x^{n-1}\right) \\
0.4 P_{1}\left(x^{n-1}\right)
\end{array}\right] \\
& P_{1}\left(x^{n}\right)=\left[\begin{array}{c}
0.4 P_{0}\left(x^{n-1}\right) \\
0.8 P_{1}\left(x^{n-1}\right)-0.2 P_{0}\left(x^{n-1}\right)
\end{array}\right]
\end{aligned}
$$

Feedback does not increase capacity of $\operatorname{POST}(\alpha)$

The feedback and the non-feedback capacity of POST (α) channel is the same as of the memoryless Z channel with parameter α, which is $C=-\log _{2} c$ where

$$
c=\left(1+\bar{\alpha} \alpha^{\frac{\alpha}{\bar{\alpha}}}\right)^{-1}
$$

$\operatorname{POST}(a, b)$ channel

$$
y_{i-1}=1
$$

the input distribution

$$
\begin{gathered}
P_{0}\left(x^{n}\right)=\frac{1}{(a+b-1)(\gamma+1)}\left[\begin{array}{c}
b \gamma P_{0}\left(x^{n-1}\right)-\bar{b} P_{1}\left(x^{n-1}\right) \\
-\bar{a} \gamma P_{0}\left(x^{n-1}\right)+a P_{1}\left(x^{n-1}\right)
\end{array}\right] \\
P_{1}\left(x^{n}\right)=\frac{1}{(a+b-1)(\gamma+1)}\left[\begin{array}{c}
a P_{0}\left(x^{n-1}\right)-\bar{a} \gamma P_{1}\left(x^{n-1}\right) \\
-\bar{b} P_{0}\left(x^{n-1}\right)+b \gamma P_{1}\left(x^{n-1}\right)
\end{array}\right] \\
\gamma=2^{\frac{H(b)-H(a)}{a+b-1}} .
\end{gathered}
$$

In order to prove that $P\left(x^{n}\right)$ is valid we needed:

- $\gamma \geq \frac{\bar{b}}{b}$
- $\gamma \leq \frac{a}{\bar{a}}$
- $\gamma \geq \frac{a}{b}$ for $a \geq \bar{b}$
- $\gamma^{2} \leq \frac{a^{2}}{b \bar{a}}$ for $a \geq \bar{b}$
- $\frac{\gamma(\bar{a}+b)}{2 b} \geq 1$ for $a \geq \bar{b}$ and $a \bar{a} \leq b \bar{b}$
- $\gamma^{2}(\bar{a}+b)^{2}-4 a \bar{b} \geq 0$
- $\gamma(\bar{a}+b)-\sqrt{\gamma^{2}(\bar{a}+b)^{2}-4 a \bar{b}} \leq 2 \bar{b}$, for $a \geq \bar{b}$ and $a \bar{a} \leq b \bar{b}$
where

$$
\gamma=2^{\frac{H(b)-H(a)}{a+b-1}} .
$$

Feedback does not increase capacity of a POST (a, b) channel

The feedback and the non-feedback capacity of $\operatorname{POST}(a, b)$ channel is the same as of a binary DMC channel with parameters (a, b), which is given by

$$
C=\log \left[2^{\frac{\bar{a} H_{b}(b)-b H_{b}(a)}{a+b-1}}+2^{\frac{\bar{b} H_{b}(a)-a H_{b}(b)}{a+b-1}}\right] .
$$

can feedback help for a general POST channel?

large alphabet

m	upper bound on capacity	
$\frac{1}{6} \max _{s_{0}} \max _{P\left(x^{6}\right)} I\left(X^{6} ; Y^{6} \mid s_{0}\right)$	lower bound on $C_{f b}$ $R=\frac{\log _{2} m}{3}$	
2^{9}	2.5376	3.0000

is the sufficient condition necessary?

- we didn't know
- numerics in binary case were inconclusive

condition is necessary and sufficient

Theorem:

Let $C_{F B}=\max _{p\left(x_{1} \mid y_{0}\right)} I\left(X_{1} ; Y_{1} \mid Y_{0}\right)$ and let $p^{*}\left(y_{0}\right)$ be induced by $p^{*}\left(x_{1} \mid y_{0}\right)$. $C_{F B}=C_{N F B}$ if and only if $\forall n$:
Can induce $p_{f b}^{*}\left(y^{n}\right)$ without feedback and without knowledge of $Y_{0} \sim p^{*}\left(y_{0}\right)$.

implication

\exists binary POST channels with $C_{F B}>C_{N F B}$

conclusions

- $C_{F B}=C_{N F B} \Leftrightarrow$ can induce $p_{f b}^{*}\left(y^{n}\right)$ without feedback $\forall n$
- $C_{F B}=C_{N F B}$ for binary $\operatorname{POST}(a, b)$ channels
- \exists POST channels with $C_{F B}>C_{N F B}$

questions

- crisper necessary and sufficient condition for $C_{F B}=C_{N F B}$
- capacity achieving schemes

