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Differential entropy and entropy power

Let X be an Rn-valued random variable with density f .

The differential entropy of X is

h(X) := E [− log f (X)] .

The entropy power of X is

N(X) :=
1

2πe
e

2
n
h(X) .
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Shannon’s entropy power inequality

Theorem (Entropy Power Inequality)

If X and Y are independent Rn-valued random variables, then

e
2
n
h(X+Y) ≥ e

2
n
h(X) + e

2
n
h(Y),

with equality if and only if X and Y are Gaussian with proportional
covariance matrices.
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Notable applications of the EPI-1
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Notable applications of the EPI-2

V. Jog and V. Anantharam (UC Berkeley) EPI December 12, 2013 7 / 57



Notable applications of the EPI-3
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Notable applications of the EPI-4
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The Minkowski sum of two subsets of Rn

Minkowski sum of a square and a circle

In general the Minkowski sum of two sets A,B ⊆ Rn is

A + B := {a + b : a ∈ A and b ∈ B} .
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The Brunn Minkowski inequality

Let A,B ⊂ Rn be convex bodies (compact convex sets with
nonempty interior).
Then

Vol(A + B)
1
n ≥ Vol(A)

1
n + Vol(B)

1
n .

Equality holds iff A and B are homothetic, i.e. equal up to
translation and dilation.
An equivalent form is that for convex bodies A,B ⊂ Rn and
0 < λ < 1 we have

Vol((1− λ)A + λB)
1
n ≥ (1− λ)Vol(A)

1
n + λVol(B)

1
n .

Another equivalent form is that for convex bodies A,B ⊂ Rn

and 0 < λ < 1 we have

Vol((1− λ)A + λB)
1
n ≥ min(Vol(A),Vol(B)) .
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Parallels between the EPI and the Brunn

Minkowski inequality

The distribution of a random variable corresponds to a
(measurable) subset of Rn.

Addition of independent random variables corresponds to the
Minkowski sum.

Balls play the role of spherically symmetric Gaussians.

For instance, an equivalent form of the EPI is that if X and Y are
independent Rn-valued random variables, and 0 < λ < 1, then

h(
√
λX +

√
1− λY) ≥ λh(X) + (1− λ)h(Y) .

V. Jog and V. Anantharam (UC Berkeley) EPI December 12, 2013 13 / 57



Parallels between the EPI and the Brunn

Minkowski inequality

The distribution of a random variable corresponds to a
(measurable) subset of Rn.

Addition of independent random variables corresponds to the
Minkowski sum.

Balls play the role of spherically symmetric Gaussians.

For instance, an equivalent form of the EPI is that if X and Y are
independent Rn-valued random variables, and 0 < λ < 1, then

h(
√
λX +

√
1− λY) ≥ λh(X) + (1− λ)h(Y) .

V. Jog and V. Anantharam (UC Berkeley) EPI December 12, 2013 13 / 57



Parallels between the EPI and the Brunn

Minkowski inequality

The distribution of a random variable corresponds to a
(measurable) subset of Rn.

Addition of independent random variables corresponds to the
Minkowski sum.

Balls play the role of spherically symmetric Gaussians.

For instance, an equivalent form of the EPI is that if X and Y are
independent Rn-valued random variables, and 0 < λ < 1, then

h(
√
λX +

√
1− λY) ≥ λh(X) + (1− λ)h(Y) .

V. Jog and V. Anantharam (UC Berkeley) EPI December 12, 2013 13 / 57



Parallels between the EPI and the Brunn

Minkowski inequality

The distribution of a random variable corresponds to a
(measurable) subset of Rn.

Addition of independent random variables corresponds to the
Minkowski sum.

Balls play the role of spherically symmetric Gaussians.

For instance, an equivalent form of the EPI is that if X and Y are
independent Rn-valued random variables, and 0 < λ < 1, then

h(
√
λX +

√
1− λY) ≥ λh(X) + (1− λ)h(Y) .

V. Jog and V. Anantharam (UC Berkeley) EPI December 12, 2013 13 / 57



Parallels between the EPI and the Brunn

Minkowski inequality

The distribution of a random variable corresponds to a
(measurable) subset of Rn.

Addition of independent random variables corresponds to the
Minkowski sum.

Balls play the role of spherically symmetric Gaussians.

For instance, an equivalent form of the EPI is that if X and Y are
independent Rn-valued random variables, and 0 < λ < 1, then

h(
√
λX +

√
1− λY) ≥ λh(X) + (1− λ)h(Y) .

V. Jog and V. Anantharam (UC Berkeley) EPI December 12, 2013 13 / 57



Outline
1 Setting the stage

2 The Brunn Minkowski inequality

3 Proofs of the EPI

4 Mrs. Gerber’s Lemma

5 Young’s inequality

6 Versions of the EPI for discrete random variables

7 EPI for Groups or Order 2n

8 The Fourier transform on a finite abelian group

9 Young’s inequality on a finite abelian group

10 Brunn Minkowski inequality on a finite abelian group

11 Speculation

V. Jog and V. Anantharam (UC Berkeley) EPI December 12, 2013 14 / 57



Some history

The EPI was conjectured by Shannon, who showed that X and
Y being Gaussian with proportional covariance matrices is a
stationary point of the difference between the entropy power of
the sum and sum of the entropy powers. This did not exclude
the possibility of it being a local maximum or a saddle point.

Stam gave the first rigorous proof of the EPI in 1959, using de
Bruijn’s identity which relates Fisher information and differential
entropy.

Blachman’s 1965 paper gives a simplified and succinct version of
Stam’s proof.

Subsequently, several proofs have appeared, some of which will
be mentioned here for our story.
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Blachman’s (1965) proof strategy for the EPI

following Stam (1959)

Step 1: Prove de Bruijn’s identity for scalar random variables
Let Xt = X +

√
tN , where N ∼ N (0, 1). Let X ∼ p(x), and

X +
√
tN ∼ pt(xt).

De Bruijn’s Identity

d

dt
h(Xt) =

1

2
J(Xt) =

1

2

∫ ∞
−∞

(
∂

∂xt
pt(xt))2 dxt

pt(xt)

The proof follows from differentiating

h(Xt) = −
∫ ∞
−∞

pt(xt) log pt(xt)dxt ,

with respect to t, and using the heat equation

∂

∂t
pt(xt) =

1

2

∂2

∂t2
pt(xt).
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Blachman’s proof strategy (contd.)

Step 2: Prove Stam’s inequality

If X and Y are independent, and Z = X + Y then

Stam’s Inequality
1

J(Z)
≥ 1

J(X )
+ 1

J(Y )

The proof goes by showing that

E
(
a
p′X (x)

pX (x)
+ b

p′Y (y)

pY (y)
|Z = z

)
= (a + b)

p′Z (z)

pZ (z)
,

for all a, b. Then squaring both sides, using Jensen’s inequality
and optimizing over the choice of a, b establishes the inequality.
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Blachman’s proof strategy (contd.)

Step 3: Set up the one parameter flow defined by the heat equation
starting with the two initial distributions, with suitable time
reparametrizations f (t), g(t) for each, respectively

Let f (t) and g(t) be increasing functions tending to infinity with
t, and consider the function

s(t) =
e2h(Xf ) + e2h(Yg )

e2h(Zf +g )
.

Intuitively, limt→∞ s(t) = 1, since both initial distributions
become increasingly Gaussian as time progresses along the flow.

Choosing f ′(t) = exp(2h(Xf )) and g ′(t) = exp(2h(Yg )), and
using Stam’s inequality gives s ′(t) ≥ 0. This gives s(0) ≤ 1,
proving the EPI.
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Intuitively, limt→∞ s(t) = 1, since both initial distributions
become increasingly Gaussian as time progresses along the flow.

Choosing f ′(t) = exp(2h(Xf )) and g ′(t) = exp(2h(Yg )), and
using Stam’s inequality gives s ′(t) ≥ 0. This gives s(0) ≤ 1,
proving the EPI.
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Lieb’s EPI proof as interpreted by Verdú and Guo

Reparametrization of the de Bruijn identity gives the
Guo-Shamai-Verdú I-MMSE relation:

d

dγ
I (X ;

√
γX + N) =

1

2
mmse(X , γ),

and thus

h(X ) =
1

2
log 2πe − 1

2

∫ ∞
0

1

1 + γ
−mmse(X , γ)dγ.

The EPI in its equivalent form,

h(X1 cosα + X2 sinα) ≥ cos2 αh(X1) + sin2 αh(X2),

can be proved using these ideas.
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Verdú and Guo’s proof: Proof strategy

h(X1 cosα + X2 sinα) ≥ cos2 αh(X1) + sin2 αh(X2) =

1

2

∫ (
mmse(X1 cosα + X2 sinα)− cos2 α mmse(X1, γ)

+ sin2 α mmse(X2, γ)

)
dγ

Consider Z1 =
√
γX1 + N1, Z2 =

√
γX2 + N2 and

Z = Z1 cosα + Z2 sinα. Then

mmse(X1 cosα + X2 sinα|Z ) ≥ mmse(X |Z1,Z2)

immediately gives the term inside the integral is ≥ 0.
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Szarek and Voiculescu’s proof of the EPI

Szarek and Voiculescu (1996) give a proof of the EPI working
directly with typical sets, using a ‘restricted’ version of the
Brunn-Minkowski inequality.

The restricted Minkowski sum of sets A and B , based on
Θ ⊆ A× B is defined as

A +Θ B := {x + y : (x , y) ∈ Θ} .

Szarek and Voiculescu’s restricted B-M inequality says: For every
ε, there exists δ such that if Θ is large enough, viz
V2n(Θ) ≥ (1− δ)nVn(A)Vn(B), then

Vn(A +Θ B)
2
n ≥ (1− ε)(Vn(A)

2
n + Vn(B)

2
n ).
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Szarek and Voiculescu’s proof (contd.)

To prove the EPI, Szarek and Voiculescu replace A and B by
typical sets for n i.i.d. copies of X and Y respectively, and
define Θ as all pairs (xn, yn) (each marginal typical) such that
xn + yn is typical for X + Y .

For this choice of restriction, they determine suitable sequence
of typicality defining constants (εn, δn) going to 0, thus proving
the EPI.
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Mrs. Gerber’s Lemma for Gaussian random

variables

n
2

log(e
2
n
x + e

2
n
y ) is the minimum achievable differential entropy

of X + Y where X and Y are independent Rn-valued random
variables with differential entropies x and y respectively.

Note that
(x , y) 7→ n

2
log(e

2
n
x + e

2
n
y )

is convex in (x , y).

In particular, for fixed x ,

y 7→ n

2
log(e

2
n
x + e

2
n
y )

is convex in y and for fixed y ,

x 7→ n

2
log(e

2
n
x + e

2
n
y )

is convex in x .
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Young’s inequality

The Hausdorff-Young inequality gives an estimate on the norm
of the Fourier transform: ‖F f ‖p′ ≤ ‖f ‖p , for 1 ≤ p ≤ 2.

The sharp constant in the inequality was found by Beckner

‖F f ‖p′ ≤ Cp‖f ‖p , where Cp :=
√
|p|1/p
|p′|1/p′ .

This leads to Young’s inequality. If p, q, r > 0 satisfy
1
p

+ 1
q

= 1 + 1
r
, then

‖f ∗ g‖r ≤
CpCq

Cr
‖f ‖p‖g‖q , if p, q, r ≥ 1 ,

‖f ∗ g‖r ≥
CpCq

Cr
‖f ‖p‖g‖q , if 1 ≥ p, q, r .

The second half of this is called the reverse Young’s inequality.
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EPI from the Young’s inequality

For p > 1, hp(X) := p
1−p‖f ‖p is called the Renyi entropy of

X ∼ f .

Np(X) := 1
2π
p−p

′/p‖f ‖−2p′/n
p is the Renyi entropy power of

X ∼ f .

As p → 1 these converge respectively to the differential entropy
and the entropy power of X.

Given r > 1 and 0 < λ < 1 define p(r) := r
(1−λ)+λr

and

q(r) := r
λ+(1−λ)r

.

Young’s inequality gives

Nr (X + Y) ≥
(
Np(X)

1− λ

)1−λ(
Nq(Y)

λ

)λ
.

Optimize over λ and let r → 1 to get the EPI.
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Brunn Minkowski inequality from the reverse

Young’s inequality

The limit as r → 0 in Young’s inequality leads to the
Prékopa-Leindler inequality: If 0 < λ < 1 and f , g , h are
nonnegative integrable functions on Rn satisfying

h((1− λ)x + λy) ≥ f (x)1−λg(y)λ

for all x , y ∈ Rn, then∫
Rn

h(x)dx ≥
(∫

Rn

f (x)dx

)1−λ(∫
Rn

g(x)dx

)λ
.

Setting f := 1A, g := 1B , and h := 1(1−λ)A+λB , this gives

Vol((1−λ)A+λB) ≥ Vol(A)1−λVol(B)λ ≥ min(Vol(A),Vol(B)) .
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Mrs. Gerber’s lemma

Let h be the binary entropy function, and h−1 be its inverse.
Wyner and Ziv (1973) showed that for a binary X and arbitrary
U , if Z ∼ Bern(p) is independent of (X ,U) then

h(X ⊕ Z |U) ≥ h(h−1(H(X |U) ? p).

The result follows immediately from the following lemma, using
Jensen’s inequality -

Lemma
The function

x 7→ h(h−1(x) ? p)

is convex on 0 ≤ x ≤ log 2.
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Wyner and Ziv’s proof of Mrs. Gerber’s lemma

Introduce the parametrization α = 1−h−1(x)
2

, let p = 1−a
2

, and
differentiate wrt α, to get that

f ′′(x) ≥ 0 ⇐⇒ a(1− α2) log
1 + α

1− α
≤ (1− aα)2 log

1 + aα

1− aα
,

which can be verified using the series expansion of log 1+x
1−x .
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Shamai and Wyner’s EPI

Shamai and Wyner show that -

EPI for binary sequences

For binary independent processes with entropies H(X ) and H(Y ),

σ(Z ) ≥ σ(X ) ? σ(Y ),

where Z = X ⊕ Y and σ(X ) = h−1(H(X )), σ(Y ) = h−1(H(Y ) and
σ(Z ) = h−1(H(Z )).
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Shamai and Wyner’s proof strategy for the binary

EPI

H(Z0|Z−1
−n ) ≥ H(Z0|Z−1

−n ,X
−1
−n ,Y

−1
−n ) = H(Z0|X−1

−n ,Y
−1
−n ),

=
∑

P(X−1
−n = x)P(Y −1

−n = y)H(Z0|X−1
−n = x ,Y −1

−n = y)

=
∑

P(X−1
−n = x)P(Y −1

−n = y)h(α(x) ? β(y))

Where α(x) = P(X0 = 1|X−1
−n = x), β(x) = P(Y0 = 1|Y −1

−n = y).

Using convexity in MGL twice, summing over x and then y , we
get

H(Z0|Z−1
−n ) ≥ h(h−1(H(X0|X−1

−n ) ? h−1(H(Y0|Y −1
−n )).

Taking n→∞ proves the result.
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Harremoës’s EPI for the Binomial family

Let Xn ∼ Binomial(n, 1
2
), then for all m, n ≥ 1,

e2H(Xn+Xm) ≥ e2H(Xn) + e2H(Xm).

The proof follows by showing that Yn = e2H(Xn)

n
is an increasing

sequence, and thus is super additive, i.e Ym+n ≥ Ym + Yn.

Figure : Values of Yn
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Our approach

Suppose the random variables take values on a finite abelian group G .
We define the function fG : [0, log |G |]× [0, log |G |]→ [0, log |G |] by

fG (x , y) = min
H(X )=x ,H(Y )=y

H(X + Y )

We now ask the questions-

Does fG have a succinct description?

Does fG have any nice properties?

We try to exploit the group structure to answer these questions.
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Mimicking Blachman’s proof?

Find a 1-parameter group to evolve the probability distributions
towards the uniform distribution on the group?

Perhaps the analogs of the Gaussian distributions are the
distributions of the form

p(0) = 1− ε , p(g) =
1

|G | − 1
ε for g 6= 0 , 0 ≤ ε ≤ |G | − 1

|G |
?

But these are not extremal for the EPI. For instance, for
G = Z2 ⊕ Z2, if ε is chosen so that h(ε) + ε log 3 = log 2 (note
that ε < 3

4
), then we have

h(1− 2ε +
4

3
ε2) + 2ε(1− 2

3
ε) log 3 > log 2 .

However, for the uniform distribution on a subgroup, its
convolution with itself has entropy log 2.
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Mimicking Lieb’s proof?

Given group valued random variables X1 and X2, what is the
analog of X1 cosα + X2 sinα?

There is a version of Stam’s inequality for finite abelian groups
(Gibilisco and Isola, 2008). Given a set of generators
Γ := {γ1, γ2, . . . , γm} for the group G , define the “Fisher
information” of a random variable X by

J(X ) :=
∑
γ∈Γ

∑
g∈G

(
pX (g)− pX (γ−1g)

pX (g)

)2

pX (g) .

Then one has 1
J(X1+X2)

≥ 1
J(X1)

+ 1
J(X2)

for independent G -valued
random variables X1 and X2.

However this notion of “Fisher information” is merely mimicking
formal properties of the Fisher information from the continuous
case. It seems to have little to do with estimation, which, for
finite groups ought to refer to likelihood ratio type quantities.
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Mimicking Szarek and Voiculescu’s proof?

This is a promising direction.

The question remains, what is the correct analog of the
restricted Minkowski sum?

The key lemma driving the proof of Szarek and Voiculescu
appears to be Euclidean in character.
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Our results

For a group G of order 2n, we explicitly describe fG in terms of
fZ2 .

We also describe the minimum entropy achieving distributions
on G , these distributions are analogs of Gaussians in this sense.

The fG (x , y) function obtained has the property that it is convex
in x for a fixed y . This is yet another version of Mrs. Gerber’s
Lemma.
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Statement of our results

Theorem
fG depends only on the size of G , and is denoted by f2n , where

f2n(x , y) =


f2(x − k log 2, y − k log 2) + k log 2,

if k log 2 ≤ x , y ≤ (k + 1) log 2 ,

max(x , y) otherwise.
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Visualizing our results
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Visualizing our results (contd.)
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A conjecture

Generalized Mrs. Gerber’s Lemma
If G is a finite group, then fG (x , y) is convex in x for a fixed y , and
by symmetry convex in y for a fixed x .

If one is less optimistic, one might make this conjecture only for
finite abelian groups.

Simulations for Z3 and Z5 seem to support this conjecture.

We saw already that f2n satisfies the conjecture.
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EPI for abelian groups of order 2n: proof strategy

First observe that for Z2 the function fZ2(x , y) is explicitly given
by

fZ2(x , y) = h(h−1(x) ? h−1(y)).

The proof proceeds by first proving the EPI for Z4, using
convexity properties of fZ2 and concavity of entropy.

We then use induction, where we assume that the result holds
for all groups of size 2n and prove it groups of size 2n+1.

The induction part of the proof has almost exactly the same
structure as the proof for Z4. Thus proving the result for Z4 is
the key step in our proof.
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Proof for Z4

For Z4, splitting the support of distributions on Z4 into two
parts, {0, 2} (even part) and{1, 3} (odd part) and using
precisely two ingredients: concavity of entropy, and convexity in
MGL we arrive at the lower bound

Lower bound

f4(x , y) ≥ min
u,v

f2(u, v) + f2(x − u, y − v)

To evaluate the minimum, we prove some additional properties
of fZ2 , specifically regarding its behavior along lines through the
origin. The key Lemma we use is

Lemma
∂fZ2

∂x
(and by symmetry,

∂fZ2

∂y
) strictly decreases along lines through the

origin
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Proving the lemma

We use the parametrization h−1(x) = p and h−1(y) = q. Our
strategy involves brute force differentiation, and a series of steps
where we conclude that proving the lemma is equivalent to
proving

F (p) = p2(log(p))2 − (1− p)2(log(1− p))2+

(1− 2p) (log(p) log(1− p) + p log(p) + (1− p) log(1− p))

≤ 0

We show that proving F (p) ≤ 0 is the same as proving
d5

dp5F (p) ≤ 0, we differentiate F five times, use a polynomial
approximation of log, and finally use Sturm’s theorem to prove
that the resulting polynomial is non-positive.
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Norm of the Fourier transform on a finite abelian

group

Every finite abelian group G has a dual group Ĝ comprised of
the characters of G , i.e. the homomorphisms from G to the unit
circle in the complex plane.

Ĝ has the same cardinality and structure as G and G can be
thought of as the dual of Ĝ .

The Fourier transform on the group is the map from functions on
G to functions on Ĝ given by F(f )(γ) := 1

|G |−1/2

∑
g γ(g)f (g).

With counting measure on G and Ĝ , we have, for p, q > 0,
F : Lp(G ) 7→ Lq(Ĝ ). What is the norm of this map?

Resolved by Gilbert and Rzeszotnik (2010).
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the characters of G , i.e. the homomorphisms from G to the unit
circle in the complex plane.
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Visualizing the norm of the FT on a finite abelian

group

Norm of the Fourier Transform on a finite abelian group
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Young’s inequality on a finite abelian group

There is a forward Young’s inequality, which reads: For every
p, q, r ≥ 1 such that 1

p
+ 1

q
= 1 + 1

r
we have

‖f ∗ g‖r ≤ ‖f ‖p‖g‖q .
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Brunn Minkowski inequality on a finite abelian

group

For a finite abelian group G , consider the function

µG (r , s) := min{|A + B | : A,B ⊂ G , |A| = r , |B | = s} .

Then we have µG (r , s) = min
d divides |G |

(
d r
d
e+ d s

d
e − 1

)
d .

In particular for G a finite abelian group of size n = 2k , we have

µG (r , s) = r ◦ s

where r ◦ s is the Hopf-Stiefel function defined as the smallest
positive integer m for which the polynomial (x + y)m falls in the
ideal generated by x r and y s in the polynomial ring F2[x , y ].

Involved history of partial results. See Eliahu and Kervaire
(2007) for the history.
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Questions

What form does the reverse Young’s inequality take on finite
abelian groups?

Less ambitiously, what form does the reverse Young’s inequality
take on finite groups of size 2k?

Is the EPI we proved for finite abelian groups of size 2k derivable
as a limit from the Young’s inequality for such groups?

Is the Brunn Minkowski inequality for finite abelian groups of
size 2k (expressed via the Hopf-Stiefel function) derivable as a
limit from the appropriate reverse Young’s inequality for such
groups?

Is the general Brunn Minkowski inequality for finite abelian
groups derivable as a limit from the appropriate reverse Young’s
inequality for such groups?

Will a limit of the Young’s inequality for a general finite Abelian
group give rise to an EPI for each such group?
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The End
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