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Introduction

Let C be a smooth projective curve of genus g ≥ 2 and L be a line bundle on C
of degree d. Let M := UC(r,L) be the moduli space of stable vector bundles on C
of rank r and with the fixed determinant L. Assume that (r, d) = 1, then M is a
smooth projective Fano variety with Picard number 1. For any projective curve on
M , we can define its degree with respect to the ample anti-canonical line bundle
−KM . The first result of this paper determines all rational curves of minimal
degree passing through a generic point of M , which answers a question of Jun-Muk
Hwang (see Question 1 in [Hw]).

Theorem 1. Any rational curve in M passing through the generic point has degree
at least 2r. If g ≥ 3, then it has degree 2r if and only if it is a Hecke curve.

On the other hand, a general problem (see Problem 1.13 of [Ko]) about low
degree rational curves on Fano varieties is: Does there exist a rational curve `, on
any smooth Fano variety X with Picard number 1, such that −KX · ` equals to the
index of X ? According to [Ko], we call such curve a line on X. The existence
of lines is already implicit in Section 2 of [Ra] and part of Lemma 3.1 was made
there (thanks to J.-M. Hwang and S. Ramanan for pointing this out). By using
the proof of Theorem 1, we determine all lines on the moduli space M . There are
unique 0 < r1 < r, d1 such that r1d − rd1 = 1. Let r2 = r − r1, d2 = d − d1

and UC(r1, d1) (resp. UC(r2, d2)) be the moduli space of stable vector bundles with
rank r1 (resp. r2) and degree d1 (resp. d2). Let R ⊂ UC(r1, d1) × UC(r2, d2) be
the closed subvariety consisting of (V1, V2) satisfying det(V1) ⊗ det(V2) = L. We
construct a projective bundle q : P →R. The lines in its fibers q−1(•) ∼= Pr1r2(g−1)

are simply called lines on P .

Theorem 2. There exist a morphism Φ : P → M such that for any line P1 ⊂ P its
image Φ(P1) is a line on M and Φ|P1 : P1 → Φ(P1) is its normalization. Conversely,
for any line ` ⊂ M on M , there is a line P1 ⊂ P on P such that Φ(P1) = `.

When g ≥ 4, the variety of Hecke curves passing through a generic point [W ] ∈ M
is isomorphic to a (double) projective bundle P(ΩW ) over C. Thus Theorem 1 can
be used to give a simple proof of non-abelian Torelli theorem (Corollary 1.3) and
the description of automorphisms of UC(r,L) (Corollary 1.4).
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The proofs of our theorems are elementary. If E is a vector bundle on X = C×P1

that induces the morphism of P1 to M . Then a simple computation shows that its
degree equals to the second Chern class of End(E). If the restriction of E to the
generic fiber of ruled surface f : X → C is semistable, then one sees easily that
c2(End(E)) is at least 2r, and it is 2r if and only if c2(E) = 1 (after tensoring E
by suitable line bundle pulling back from P1). This will force E to be an extension

0 −→ f∗V i−→ E
φ−→ O{p}×P1(−1) −→ 0,

where V is a bundle on C. That is, after performing elementary transformation on
E once along one fiber, E becomes a pullback of a vector bundle on C. For any
x ∈ P1, restricting above sequence to C × {x} and denote E|C×{x} by Ex, we have

0 −→ V
ix−→ Ex

φx−→ O{p}×P1(−1)x −→ 0.

Let ιx : Vp → Ex|p = E(p,x) be the homomorphism between the fibers at p induced
by the sheaf map ix. Then the right Hecke modifications {(W̃ ker(ιx))∨; x ∈ P1} of
V along {ker(ιx) ⊂ Vp; x ∈ P1} are exactly {Ex; x ∈ P1}. Thus the given curve
is a Hecke curve by definition. If the restriction of E to the generic fiber is not
semistable, then using relative Harder-Narasimhan filtration we are able to prove
that c2(End(E)) > 2r when g ≥ 3. In the case g = 2, we can only prove that
c2(End(E)) ≥ 2r.

In Section 1, we recall the definitions of Hecke curves and show the two applica-
tions of Theorem 1. We prove Theorem 1 and Theorem 2 respectively in Section 2
and Section 3.

§1 Hecke curves

For a vector bundle V on a smooth curve C and a subspace K ⊂ Vp, where Vp

is the fiber of V at a point p ∈ C, there two canonical constructions called Hecke
modifications defined as follows:
(I) We call V L := Ker(V → Vp → Vp/K) the left Hecke modification of V along
K ⊂ Vp at p ∈ C, which is the vector bundle satisfying

0 −→ V L φ−→ V −→ (Vp/K)⊗Op −→ 0

with φp(V L
p ) = K.

(II) Let (V ∨)L be the left Hecke modification of V ∨ along (Vp/K)∨ ⊂ V ∨
p . Note

that (Vp/K)∨ = K⊥, the subspace annihilated by K. We call its dual, denoted by
V R, the right Hecke modification of V along K at p ∈ C, which satisfies

0 −→ V
φ−→ V R −→ (V R

p /(K⊥)∨)⊗Op −→ 0

with ker(φp) = K.
In what follows, we adopt notations of [Hw] and [HR]. For any [W ] ∈ M , let

P(W ) be the projective bundle consisting of lines through the origin on each fiber.
For p ∈ C and ζ ∈ P(W∨

p ), define a vector bundle W ζ , which is the left Hecke
modification of W along ζ⊥ ⊂ Wp, by

(1.1) 0 → W ζ → W → (Wp/ζ⊥)⊗Op → 0
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where ζ⊥ denotes the hyperplane in Wp annihilated by ζ. Let ι : W ζ
p → Wp be the

homomorphism between the fibers at p induced by the sheaf injection W ζ → W .
The kernel ker(ι) of ι is a 1-dimensional subspace of W ζ

p and W is in fact the right

Hecke modification of W ζ along ker(ι) ⊂ W ζ
p . Let H be a line in P(W ζ

p ) containing
the point [ker(ι)]. For each point [l] ∈ H corresponding to a 1-dimensional subspace
l ⊂ W ζ

p , define a vector bundle W̃ l by

(1.2) 0 → W̃ l → (W ζ)∨ → ((W ζ)∨p /l⊥))⊗Op → 0

where l⊥ ⊂ (W ζ)∨p is the hyperplane annihilating l. The bundle (W̃ l)∨ is the right

Hecke modification of W ζ along l ⊂ W ζ
p and, for l = ker(ι),

(1.3) W̃ ker(ι) ∼= W∨.

Thus, if it happens that (W̃ l)∨ is a stable bundle for each [l] ∈ H, then

{(W̃ l)∨ ; l ∈ H}
will define a rational curve passing through [W ] ∈ M . Such a rational curve in M
is called a Hecke curve. By [NR], it can be shown that a Hecke curve is smooth and
has degree 2r with respect to −KM . We will see in the following that, for generic
[W ] ∈ M , (W̃ l)∨ is always a stable bundle for each [l] ∈ H.

Given two nonnegative integers k, `, a vector bundle W of rank r and degree d
on C is (k, `)-stable, if, for each proper subbundle W ′ of W , we have

deg(W ′) + k

rk(W ′)
<

deg(W ) + k − `

r
.

The usual stability is equivalent to (0, 0)-stability. The dual bundle of a (k, `)-stable
bundle is (`, k)-stable. The proofs of following lemmas are easy and elementary.

Lemma 1.1 ([NR]). If g ≥ 4, a generic point [W ] ∈ M corresponds to a (1, 1)-
stable bundle W .

Lemma 1.2 ([NR]). Let 0 → V → W → Op → 0 be an exact sequence, where
Op is the 1-dimensional skyscraper sheaf at p ∈ C. If W is (k, `)-stable, then V is
(k, `− 1)-stable.

If we choose a generic point [W ] ∈ M such that W is a (1, 1)-stable bundle, then
W ζ is a (1, 0)-stable bundle by Lemma 1.2 and (W ζ)∨ is a (0, 1)-stable bundle.
Thus {(W̃ l)∨ ; l ∈ H} is a family of stable bundles, which defines a Hecke curve
passing through [W ] ∈ M . Let P(W∨) → C be the projection and ΩW be its
relative cotangent bundle. The projective bundle P(ΩW ) over P(W∨) is a smooth
projective variety of dimension 2r−2. Then the variety of all Hecke curves through
[W ] ∈ M is naturally isomorphic to P(ΩW )

p−→ C. Thus Theorem 1 can be used to
prove the following known results (see [NRa], [KP] and [HR]).

Corollary 1.3. Let C and C ′ be two smooth projective curves of genus g ≥ 4. If
UC(r,L) ∼= UC′(r,L′), then C ∼= C ′.

Proof. Let [W ′] ∈ UC′(r,L′) be the image of [W ]. Then UC(r,L) ∼= UC′(r,L′)
induces an isomorphism between the varieties of rational curves of degree 2r pass-
ing through [W ], [W ′] respectively. By Theorem 1, it induces an isomorphism
P(ΩW ) ∼= P(ΩW ′) between the varieties of Hecke curves passing through [W ], [W ′]
respectively. Thus it induces an isomorphism C ∼= C ′.
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Corollary 1.4. Let C be a smooth projective curves of genus g ≥ 4. If r > 2,
then the group of automorphisms of UC(r,L) is generated by automorphisms of the
following two types:

(1) W 7→ γ∗W where γ is an automorphism of C.
(2) W 7→ W ⊗ τ where τ is an r-torsion of the Jacobian J0

C .

When r = 2, additional generators of the type (3) are needed: (3) W 7→ W∨ ⊗ L
where L is a line bundle of degree d with L⊗2 = L⊗2.

Proof. Let σ be an automorphism of M = UC(r,L) and [W ] ∈ M a generic point.
Then σ induces an isomorphism G : P(ΩW ) ∼= P(Ωσ(W )). Thus there is an auto-
morphism γ : C ∼= C (being independent of generic [W ] since Aut(C) is finite) such
that

P(ΩW ) G−−−−→ P(Ωσ(W ))

p

y p′
y

C
γ−−−−→ C

and G induces either P(W∨) ∼= P(σ(W )∨) or P(W∨) ∼= P(σ(W )) (see Lemma 5.4
of [HR]). Thus either W ∼= γ∗σ(W ) ⊗ τ or W ∼= γ∗σ(W )∨ ⊗ L for lines bundles
τ , L. Since W and σ(W ) have the fixed determinant L, τ , L must satisfy the
requirements in the corollary. The proof is finished.

§2 generic minimal rational curves on the moduli space

For any rational curve P1 ⊂ M through a general point of M , let E be the
vector bundle on X := C × P1, which induces the embedding P1 ⊂ M . Let π :
X = C × P1 → P1 be the projection and E ⊂ End(E) be the subbundle of trace
free. Then, since π∗(E) = 0, we have TM |P1 = R1π∗E and, by using Leray spectral
sequence and Riemann-Roch theorem,

−χ(E) = χ(R1π∗E) = −KM · P1 + (r2 − 1)(g − 1).

By using χ(E) = deg(ch(E) · td(TX))2, noting c1(E) = c1(End(E)) = 0, we get

(2.1) −KM · P1 = c2(E) = 2rc2(E)− (r − 1)c1(E)2 := ∆(E).

Let f : X = C × P1 → C be the projection. Then, for any torsion free sheaf E
on the ruled surface X, its restriction to a generic fiber f−1(ξ) = Xξ has the form

E|Xξ
=

n⊕

i=1

OXξ
(αi)⊕ri , α1 > · · · > αn.

The α = (α⊕r1
1 , ..., α⊕rn

n ) is called the generic splitting type of E. In our case,
tensoring E by π∗O(−αn), we can (and we will) assume that αn = 0. Any such E
admits a relative Hardar-Narasimhan filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E
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of which the quotient sheaves Fi = Ei/Ei−1 are torsion free with generic splitting
type (α⊕ri

i ) respectively. Then it is easy to see that

2c2(E) = 2
n∑

i=1

c2(Fi) + 2
n∑

i=1

c1(Ei−1)c1(Fi)

= 2
n∑

i=1

c2(Fi) + c1(E)2 −
n∑

i=1

c1(Fi)2.

Thus

∆(E) = 2r

n∑

i=1

c2(Fi) + c1(E)2 − r

n∑

i=1

c1(Fi)2.

Let F ′i = Fi ⊗ π∗OP1(−αi) (i = 1, ..., n), thus they have generic splitting type
(0⊕ri) respectively. Let c1(Fi) = f∗OC(di)+π∗OP1(riαi), where OC(di), OP1(riαi)
are divisors of degree di, riαi on C, P1 respectively. Here we remark that for any
torsion free sheaf Fi on X we have c1(Fi)|f−1(•) = c1(Fi|f−1(•)) for general points
on C (resp. c1(Fi)|π−1(•) = c1(Fi|π−1(•)) for general points on P1). Therefore di

are the degrees of Fi on the general fiber of π respectively. Without confusion,
we denote the degree of Fi (resp. Ei) on the generic fiber of π by deg(Fi) (resp.
deg(Ei)). Consequently, µ(Ei), µ(E) denote the slope of restrictions of Ei, E to
the generic fiber of π respectively. Note that

c2(F ′i ) = c2(Fi)− (ri − 1)c1(Fi)π∗OP1(αi) = c2(Fi)− (ri − 1)diαi,

c1(Fi)2 = 2ridiαi and c1(E)2 = 2d
∑n

i=1 riαi, we have

∆(E) = 2r

(
n∑

i=1

c2(F ′i ) + µ(E)
n∑

i=1

riαi −
n∑

i=1

diαi

)
.

Let rk(Ei) denote the rank of Ei, note that ri = rk(Ei) − rk(Ei−1) and di =
deg(Ei)− deg(Ei−1), we have

(2.2) ∆(E) = 2r

(
n∑

i=1

c2(F ′i ) +
n−1∑

i=1

(µ(E)− µ(Ei))(αi − αi+1)rk(Ei)

)
.

Lemma 2.1. Any torsion free sheaf E of rank r on a ruled surface f : X → C,
with generic splitting type (0⊕r), must have c2(E) ≥ 0 and c2(E) = 0 if and only if
E = f∗V where V is a locally free sheaf on C.

Proof. The argument is in fact contained in the proof of Lemma 1.4 of [GL]. If E
has rank r = 1, then c2(E) = `(E∨∨/E) ≥ 0 and c2(E) = 0 if and only if E = E∨∨ is
a pullback of line bundle on C.

If E has rank r > 1, one can choose a rank 1 subsheaf O(D) ⊂ E such that
E/O(D) is torsion free and c1(O(D)) = D consists of fibers. Since E/O(D) has
generic splitting type (0⊕(r−1)), by induction hypothesis on rank, we can assume
that c2(E/O(D)) ≥ 0 and it is zero if and only if E/O(D) is the pullback of a local
free sheaf V1 on C. Hence

c2(E) = c2(O(D)) + c2(E/O(D)) + D · (c1(E)−D) = c2(E/O(D)) + c2(O(D)) ≥ 0,

and c2(E) = 0 if and only if c2(O(D)) = c2(E/O(D)) = 0. Then O(D) = OX(D),
E/O(D) = f∗V1, which imply that E has constant splitting type (0⊕r) on each
fiber. Thus E = f∗V for some locally free sheaf V on C.
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Proposition 2.2. If the rational curve passes through the generic point, then

∆(E) ≥ 2r.

When g ≥ 3, then the equality holds if and only if E has generic splitting type (0⊕r)
and c2(E) = 1.

Proof. If ∆(E) < 2r, then, by the equality (2.2), we have n ≥ 2 and

(2.3)
n∑

i=1

c2(F ′i ) = 0,

n−1∑

i=1

(µ(E)− µ(Ei))(αi − αi+1)rk(Ei) < 1.

By Lemma 2.1, there are vector bundles Vi on C such that Fi = f∗Vi⊗ π∗OP1(αi),
where Vi has degree di and rank ri. Thus the rational curve P1 parametrizes a
family of stable bundles that are obtained by iterating extensions of Vi and Vi+1.
Such bundles in M form a locally closed subset R(di)

(ri)
of codimension at least

(g−1)
n−1∑

i=1

(ri+1 + · · ·+rn)ri +n−1+
n−1∑

i=1

(
d1 + · · ·+ di

r1 + · · ·+ ri
− d

r
)(r1 + · · ·+ri)(ri+1 +ri).

By (2.3), deg(Ei) = d1 + · · ·+ di, rk(Ei) = r1 + · · ·+ ri, we have

(2.4)
n−1∑

i=1

(
d1 + · · ·+ di

r1 + · · ·+ ri
− d

r
)(r1 + · · ·+ ri)(ri+1 + ri) > −ri0+1 + ri0

where ri0+1 + ri0 = max{ri+1 + ri | i = 1, ..., n}. Thus, by using the fact that
xy ≥ x + y − 1 for any positive integers x and y, we have

Codim(R(di)
(ri)

) > (g− 2)
n−1∑

i=1

(ri+1 + · · ·+ rn)ri +
n−1∑

i 6=i0

(ri+1 + · · ·+ rn)ri + n− 2 ≥ 0.

For all possible {ri}i, {di}i satisfying (2.4), we get a countable locally closed
subsets R(di)

(ri)
of positive codimensions. What we proved above is that if ∆(E) <

2r, then the rational curve falls in these given locally closed subsets of positive
codimension. Thus if the rational curve passes through the generic point, then
∆(E) ≥ 2r.

If E has generic splitting type (0⊕r) and c2(E) = 1, then it is obvious that
∆(E) = 2r. Conversely, if ∆(E) = 2r and the rational curve passes through the
generic point, then it is easy to see that n = 1 under the assumption g ≥ 3.
Otherwise the rational curve will fall in a R(di)

(ri)
of positive codimension. The proof

is finished.

From now on, we assume that E has generic splitting type (0⊕r). If E has a
jumping line Xp = f−1(p) (p ∈ C), i.e.,

E|Xp =
n⊕

i=1

OXp(βi)⊕ri , β1 > · · · > βn

with the type (β⊕r1
1 , · · · , β⊕rn

n ) different from (0⊕r). Then we can perform the
elementary transformation on E along Xp by taking F to be the kernel of the
(unique surjective) homomorphism φ : E → E|Xp → OXp(βn)⊕rn . Clearly,

(2.5) 0 −→ F −→ E
φ−→ OXp(βn)⊕rn −→ 0.

An easy calculation yields



MINIMAL RATIONAL CURVES ON MODULI SPACES OF STABLE BUNDLES 7

Lemma 2.3. c1(F ) = c1(E)− rnXp and c2(F ) = c2(E) + rnβn.

Proof. By the exact sequence (2.5), the computation is straightforward.

Lemma 2.4. If c2(E) = 1 and E has generic splitting type (0⊕r), then E has
exactly one jumping line Xp and the elementary transformation F along Xp is
isomorphic to f∗V for a vector bundle V over C.

Proof. The E has at least one jumping line. Otherwise, E will be a pullback of a
vector bundle over C, which is impossible. At any jumping line Xp, with splitting
type (β⊕r1

1 , · · · , β⊕rn
n ), we must have βn < 0. Hence, by Lemma 2.3 and Lemma

2.1, E has a unique jumping line Xp with βn = −1 and rn = 1. Then F has no
jumping line, thus F = f∗V for a vector bundle V over C.

Therefore by Proposition 2.2 and Lemma 2.4, if ∆(E) = 2r and g ≥ 3, we have

(2.6) 0 −→ f∗V −→ E
φ−→ OXp(−1) −→ 0.

Proposition 2.5. If g ≥ 3 and ∆(E) = 2r, then the rational curve is a Hecke
curve.

Proof. For any x ∈ P1, let Ex denote E|C×{x}. Restrict the sequence (2.6) to
π−1(x) = C × {x}, we get

(2.7) 0 −→ V −→ Ex
φx−→ OXp(−1)x −→ 0.

Let ιx : Vp → Ex|p = E(p,x) be the homomorphism between the fibers at p induced
by the sheaf injection V → Ex in sequence (2.7). Then the kernel ker(ιx) is a
1-dimensional subspace of Vp. When x moves on P1, these [ker(ιx)] ∈ P(Vp) form
a line H ⊂ P(Vp). Note that here V corresponds to W ζ in (1.1). It is easy to check
that, as the same as (1.3), for any x ∈ P1

W̃ ker(ιx) ∼= E∨
x .

Thus {(W̃ ker(ιx))∨; [ker(ιx)] ∈ H} defines the given rational curve. That is, the
given rational curve is a Hecke curve.

Theorem 2.6. Any rational curve of M passing through the generic point of M
has at least degree 2r with respect to −KM . If g ≥ 3, then it has degree 2r if and
only if it is a Hecke curve.

Proof. By (2.1), the degree −KM · P1 equals to ∆(E). Then, by Proposition 2.2,
it has degree at least 2r. If it has degree 2r, then by Proposition 2.5 it must be a
Hecke curve. It was known that any Hecke curve has degree 2r. We are done

§3 lines on the moduli spaces

Since (r, d) = 1, it is easy to see that there are unique d1 and 0 < r1 < r such
that r1d− rd1 = 1. Let r2 = r − r1 and d2 = d− d1. Then

(3.1) r1d− rd1 = 1, r1d2 − d1r2 = 1.

Let UC(r1, d1) (resp. UC(r2, d2)) be the moduli space of stable vector bundles with
rank r1 (resp. r2) and degree d1 (resp. d2). Then, by (3.1), they are smooth
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projective varieties and there are universal vector bundles V1, V2 on C×UC(r1, d1)
and C × UC(r2, d2) respectively. Consider the morphism

UC(r1, d1)× UC(r2, d2)
det(•)×det(•)−−−−−−−−−→ Jd1

C × Jd2
C

(•)⊗(•)−−−−−→ Jd
C

and let R be its fiber at [L] ∈ Jd
C . We still use V1, V2 to denote the pullback

on C × R by the projection C × R → C × UC(ri, di) (i = 1, 2) respectively. Let
p : C × R → R and G = R1p∗(V∨2 ⊗ V1). Then, by (3.1), G is a vector bundle of
rank r1r2(g−1)+1. Let q : P = P(G∨) →R be the projective bundle parametrzing
1-dimensional quotients of G∨. Let

f : C × P → C, π : C × P → P

be the projections. Then there exists a universal extension

0 → (id× q)∗V1 ⊗ π∗OP (1) → E → (id× q)∗V2 → 0

on C × P such that for any x = ([V1], [V2], [e]) ∈ P , where [Vi] ∈ UC(ri, di) with
det(V1) ⊗ det(V2) = L and [e] ⊂ H1(C, V ∨

2 ⊗ V1) being a line through the origin,
the bundle E|C×{x} is the isomorphic class of vector bundles E given by extensions

(3.2) 0 → V1 → E → V2 → 0

that defined by vectors on the line [e] ⊂ H1(C, V ∨
2 ⊗ V1).

Lemma 3.1. Let Vi be vector bundles of rank ri and degree di (i = 1, 2), where ri,
di satisfy (3.1). Let 0 → V1 → V → V2 → 0 be a non-trivial extension. Then V is
stable if and only if V1 and V2 are stable bundles.

Proof. Assume that V1, V2 are stable bundles, we prove that V is a stable bundle.
Let V ′ ⊂ V be a proper subbundle of rank r′ and V ′

2 ⊂ V2 be its image with rank
r′2. Then we have 0 → V ′

1 → V ′ → V ′
2 → 0, where V ′

1 ⊂ V1 has rank r′1. If V ′
1 = 0,

then V ′ ∼= V ′
2 is a proper subsheaf of V2 since the extension is non-trivial. Thus

r2r
′
2(µ(V2)−µ(V ′

2)) ≥ 1 by the stability of V2 (note that the left side is an integer).
On the other hand, by (3.1), we have

(3.3) µ(V1) = µ(V )− 1
r1r

, µ(V2) = µ(V ) +
1

r2r
.

Therefore, µ(V ′) = µ(V ′
2) ≤ µ(V ) + 1/r2r − 1/r2r

′
2 < µ(V ). If V ′

2 = 0, it is clear
that µ(V ′) < µ(V ). Then we assume that V ′

i 6= 0 (i = 1, 2). If V ′
2 = V2, then

V ′
1 6= V1 and µ(V ′

1) ≤ µ(V1)− 1/r′1r1. Thus, combining with (3.3), we have

µ(V ′) = µ(V ′
1)

r′1
r′

+ µ(V ′
2)

r′2
r′
≤ µ(V )− r′1

r1rr′
+

1
rr′

− 1
r1r′

< µ(V ).

If V ′
1 = V1, one can check that µ(V ′) < µ(V ) similarly. Thus we assume that

V ′
i 6= Vi (i = 1, 2). Then µ(V ′

i ) ≤ µ(Vi)− 1/r′iri (i = 1, 2). By (3.3), we have

µ(V ′) = µ(V ′
1)

r′1
r′

+ µ(V ′
2)

r′2
r′
≤ µ(V )− 1

rr′
< µ(V ).
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Assume that V is stable, we show that V1, V2 must be stable. For any proper
subbundle V ′

1 ⊂ V1 of rank r′1, by using stability of V and (3.3), we have

µ(V ′
1) ≤ µ(V )− 1

r′1r
= µ(V1) +

1
r1r

− 1
r′1r

< µ(V1).

Thus V1 is stable. For any proper subbundle V ′
2 ⊂ V2 of rank r′2, let V ′ ⊂ V be

defined such that 0 → V1 → V ′ → V ′
2 → 0 being exact. Then, by using (3.3) and

the stability of V : µ(V ′) ≤ µ(V )− 1/r′r where r′ = rk(V ′), we have

µ(V ′
2) =

r′

r′2
µ(V ′)− r1

r′2
µ(V ) +

1
r′2r

≤ µ(V ) < µ(V2).

Thus V2 is stable. We are done.

By the Lemma 3.1, the vector bundle E given by the universal extension on C×P
defines a morphism

(3.4) Φ : P → UC(r,L) = M.

Definition 3.2. A smooth rational curve P1 ⊂ P is called a line on P if

OP (1)|P1 = OP1(1).

Thus it is contained in a fiber of q : P →R.

Lemma 3.3. For any line P1 ⊂ P , its image Φ(P1) is a line on M and

Φ|P1 : P1 → Φ(P1)

is the normalization of Φ(P1).

Proof. Let q(P1) = (V1, V2) ∈ R and E = E|C×P1 . Then the morphism

Φ|P1 : P1 → M

is defined by E, which fits in the exact sequence

(3.5) 0 → f∗V1 ⊗ π∗OP1(1) → E → f∗V2 → 0,

where f : C × P1 → C and π : C × P1 → P1 are the projections. Thus

c1(E)2 = 2r1d, c2(E) = r1d− d1.

Then, by (2.1), the degree of Φ∗(−KM )|P1 equals to

∆(E) = c2(End(E)) = 2rc2(E)− (r − 1)c1(E)2 = 2(r1d− rd1) = 2,

which in particular implies that Φ(P1) is a curve on M of degree 2 and Φ|P1 is its
normalization morphism. We finished the proof.
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Theorem 3.4. There exist lines on the moduli space M . For any line ` ⊂ M ,
there is a line P1 ⊂ P such that Φ(P1) = `.

Proof. The existence is just Lemma 3.3. For any line ` on M , let φ : P1 → ` ⊂ M be
its normalization. Let E be the vector bundle on C×P1 that defines the morphism
φ. Then we have ∆(E) = φ∗(−KM ) = −KM · ` = 2. Using the equality (2.2),

(3.6) r

n∑

i=1

c2(F ′i ) + r

n−1∑

i=1

(µ(E)− µ(Ei))(αi − αi+1)rk(Ei) = 1.

Then we must have that n = 2, α1 = 1 (E is choosed so that αn = 0), and
c2(F ′1) = c2(F ′2) = 0. By Lemma 2.1, there are vector bundles V1, V2 on C such
that F1 ⊗ π∗OP1(−1) = F ′1 = f∗V1, F2 = F ′2 = f∗V2. Thus E satisfies

0 → f∗V1 ⊗ π∗OP1(1) → E → f∗V2 → 0

where, by (3.6), V1, V2 must have rank r1, r2 and degree d1, d2 satisfying (3.1).
Then, by Lemma 3.1, V1 and V2 must be stable bundles satisfying

det(V1)⊗ det(V2) = L

since E|C×{x} are stable (x ∈ P1) with determinant L. Thus φ : P1 → M factors
through Φ : P → M . We are done.
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