Mean square estimate for twisted automorphic L-functions on weight aspect

Yuk-Kam Lau

Email: yklau@maths.hku.hk

Department of Mathematics, The University of Hong Kong

Pokfulam Road, Hong Kong

Abstract We study the mean square estimate for the twisted automorphic L-functions averaged over Hecke eigencuspforms at large weight. The upper bound obtained is quite sharp, and a direct application yields an unconditional version for a result of Kohnen and Sengupta.

1. Introduction. Let k be an even positive integer. The space of all holomorphic cusp forms of weight k with respect to the full modular group has a basis \mathcal{B}_k of normalized Hecke eigencuspforms. More explicitly, for $f \in \mathcal{B}_k$, $T_n f = \lambda_f(n) n^{(k-1)/2} f$ where T_n $(n = 1, 2, \cdots)$ are the Hecke operators, and f has the Fourier series

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e(nz)$$

where $e(\alpha) = e^{2\pi i\alpha}$. The eigenvalues $\lambda_f(n)$ are all real, and furthermore, $\lambda_f(1) = 1$ and

$$|\lambda_f(n)| \le d(n) \tag{1.1}$$

(Deligne's bound) where $d(n) = \sum_{d|n} 1$ is the divisor function.

Let χ be a primitive Dirichlet character of conductor $D \geq 1$. We associate each f with a twisted L-function

$$L(f \otimes \chi, s) = \sum_{n=1}^{\infty} \chi(n) \lambda_f(n) n^{-s} \qquad (\Re e \, s > 1). \tag{1.2}$$

Analogously to the classical L-functions, the twisted automorphic L-function factors into an Euler product. Moreover, let us define

$$\Lambda(f \otimes \chi, s) = (\frac{D}{2\pi})^s \Gamma(s + (k-1)/2) L(f \otimes \chi, s).$$

The completed function $\Lambda(f \otimes \chi, s)$ can be holomorphically continued to the whole \mathbb{C} . It is bounded on any vertical strip, and satisfies the functional equation

$$\Lambda(f \otimes \chi, s) = \epsilon_k(\chi) \Lambda(f \otimes \overline{\chi}, 1 - s) \tag{1.3}$$

where $\epsilon_k(\chi) = i^k \tau(\chi)^2/D$ and $\tau(\chi)$ is the Gaussian sum (see [3, Theorem 7.6]). In addition to this similarity, it is *conjectured* that the Grand Riemann Hypothesis holds, and

$$L(f \otimes \chi, 1/2 + it) \ll_{\epsilon} (k(1+|t|))^{\epsilon}$$
(1.4)

for any $\epsilon > 0$. These (twisted) automorphic L-functions play an important role in GL_2 theory and are interesting; for example, their values at the central point reveal arithmetical information.

When χ is quadratic, Kohnen and Sengupta [6] proved that

$$\sum_{f \in \mathcal{B}_h} L(f \otimes \chi, 1/2) \ll_{\epsilon, D} k^{1+\epsilon} \qquad (k \to \infty, i^k D > 0), \tag{1.5}$$

and deduced that under the assumption $L(f \otimes \chi, 1/2) \ll_{\delta,D} k^{\delta}$ where $\delta \geq 0$,

$$\#\{f \in \mathcal{B}_k : L(f \otimes \chi, 1/2) \neq 0\} \gg_{\delta D} k^{1-\delta}/\log k.$$
 (1.6)

Our main objective is to establish a mean square estimate for $L(f \otimes \chi, 1/2 + it)$ averaging over the basis \mathcal{B}_k on the weight aspect. We obtain an estimate (see Theorem 2 below) which supports the validity of (1.4) on the weight aspect. An application is to yield an unconditional lower bound for (1.6).

Now let us fix our notation: denote by D(k) a positive increasing function such that $\log D(k) = o(\log k)$, and define for $f \in \mathcal{B}_k$,

$$w_f = \frac{\Gamma(k-1)}{(4\pi)^{k-1} \|f\|^2}$$

where $||f||^2 = \int_F y^{k-2} |f(z)|^2 dxdy$. (F is the fundamental domain for the full modular group.) The first theorem is a weighted form for (1.5) in the critical strip, and the next theorem on mean square estimate is our main result.

Theorem 1 Let any $A \ge 0$ and any arbitrarily small $\epsilon > 0$ be given. Let k be any sufficiently large even integer. Suppose $1/2 \le \Re e \, s \le 1$ and χ is a primitive character of conductor D with $1 \le D \le D(k)$. Then,

$$\sum_{f \in \mathcal{B}_k} w_f L(f \otimes \chi, s) = 1 + \epsilon_k(\chi) \left(\frac{D}{2\pi}\right)^{1 - 2s} \frac{\Gamma(1 - s + (k - 1)/2)}{\Gamma(s + (k - 1)/2)} + O(|s|^{\epsilon} k^{-A} + |s|^{2\Re \epsilon \, s + A + \epsilon} k^{-2(\Re \epsilon \, s + A)})$$

where the implied constant in the O-term depends on ϵ and A but is uniform for $1 \leq D \leq D(k)$. (Recall \mathcal{B}_k is the basis containing all normalized Hecke eigencuspforms.)

Remark. Due to (1.3), there is no loss of generality to assume $1/2 \le \Re e s \le 1$. Taking s = 1/2 + it, the second term in Theorem 1 is $\ll 1$. Hence, for any $A \ge 0$,

$$\sum_{f \in \mathcal{B}_k} w_f L(f \otimes \chi, 1/2 + it) \ll_{\epsilon, A} |t|^{\epsilon} + 1 \quad (|t| \le k^{1 + A/(1 + A)}),$$

i.e. the left-side satisfies the Lindelof hypothesis for $|t| \le k^{2-\epsilon}$ by setting $A = (1-\epsilon)/\epsilon$. Here and in the sequel, we write \ll_* to specify the dependence of the implied constant on *.

Theorem 2 Under the same assumptions as in Theorem 1, we have for any $\epsilon > 0$,

$$\sum_{f \in \mathcal{B}_k} w_f |L(f \otimes \chi, 1/2 + it)|^2 \ll_{\epsilon} k^{\epsilon} (|t| + 1)^{2 + \epsilon} \qquad (t \in \mathbb{R})$$

where the implied constant depends only on ϵ but is uniform in t.

The case t=0 yields (1.5) immediately by the Cauchy-Schwarz inequality and $\sum_{f\in\mathcal{B}_k} w_f \ll 1$, see (2.6) below. Another consequence is about the non-vanishing of the central values.

Corollary 3 Under the assumptions in Theorem 1, it holds that for any $\epsilon > 0$

$$\#\{f \in \mathcal{B}_k : L(f \otimes \chi, 1/2) \neq 0\} \gg_{\epsilon} |1 + \epsilon_k(\chi)|^2 k^{1-\epsilon}.$$

Proof. Taking s=1/2 in Theorem 1 and using the Cauchy-Schwarz inequality, we obtain that

$$|1 + \epsilon_k(\chi)|^2 - O(k^{-1}) \leq \left| \sum_{f \in \mathcal{B}_k} w_f L(f \otimes \chi, 1/2) \right|^2$$

$$\leq \left(\sum_{\substack{f \in \mathcal{B}_k \\ L(f \otimes \chi, 1/2) \neq 0}} w_f \right) \left(\sum_{f \in \mathcal{B}_k} w_f |L(f \otimes \chi, 1/2)|^2 \right).$$

Together with the bound $w_f \ll \log k/k$ (see [6]), it follows that for any $\epsilon > 0$,

$$\sum_{\substack{f \in \mathcal{B}_k \\ L(f \otimes \chi, 1/2) \neq 0}} 1 \gg_{\epsilon} |1 + \epsilon_k(\chi)|^2 k^{1 - \epsilon}.$$

This completes the proof.

Remark. Note that $\epsilon_k(\chi) = i^k D/|D|$ for real χ . This gives (1.6) an unconditional lower bound with essentially the same quality.

Finally we outline the proof of the main result Theorem 2. We represent the value of $L(f \otimes \chi, 1/2 + it)$ by a fast convergent series. Averaging over \mathcal{B}_k enables us to apply the Petersson trace formula. It turns up a sum that involves the Kloosterman sum and the Bessel function. The next process is to delve the possible cancellations, like [1] and [5] but these articles focus on the level aspect, not on the weight. In [4] there is a tool to treat the case of averaging over weights but not for individual. Hence we need different auxiliary tools for our situation, as follows: Using the periodicity of the Kloosterman sum, we pass to an exponential sum over an arithmetic progression. Then the resulting exponential integral will be handled in Lemma 2.1 by a 'saddle-point' theorem [2, Theorem 2.2].

2. Some Preparations. Our key tool is the Petersson trace formula [3, Theorem 3.6]:

$$\sum_{f \in \mathcal{B}_k} w_f \lambda_f(m) \lambda_f(n) = \delta_{m,n} + 2\pi i^{-k} \sum_{c \ge 1} c^{-1} S(m,n,c) J_{k-1}(\frac{4\pi\sqrt{mn}}{c})$$
 (2.1)

where $\delta_{m,n}$ is the Kronecker delta, S(m,n,c) is the Kloosterman sum and J_{k-1} is the Bessel function of order k-1. Note that

$$|S(m, n, c)| \le (m, n, c)^{1/2} c^{1/2} d(c). \tag{2.2}$$

 $(d(\cdot))$ is the divisor function.) We derive some estimates for the Bessel function with large k, based on the integral representations:

(i)
$$J_{k-1}(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(k-1)\theta + ix\sin\theta} d\theta$$
 for $x > 0$ (see [8, §17.23]),

(ii)
$$J_{k-1}(x) = \frac{1}{\sqrt{\pi}\Gamma(k-1/2)} (\frac{x}{2})^{k-1} \int_{-1}^{1} (1-t^2)^{k-3/2} \cos(xt) dt$$
 from [8, §17.3 Corollary].

Writing $f(\theta) = (k-1)\theta + x\sin\theta$, then f' is monotonic and $f'(\theta) \ge k-1$ for x > 0 and $\theta \in [0, \pi/2]$. This yields

$$\int_0^{\pi/2} e^{\pm if(\theta)} d\theta \ll \sup_{\theta \in [0, \pi/2]} |f'(\theta)|^{-1} \ll k^{-1}$$
 (2.3)

by the first derivative test ([7, Lemma 4.3]). In addition, it follows from the same argument that, for $x \ll k^{1+\delta}$ where $0 < \delta < 1$,

$$\int_{\pi/2 - k^{-4\delta}}^{\pi/2} e^{ix \sin \theta - i(k-1)\theta} d\theta \ll k^{-1}.$$

(Note that $x\cos\theta - (k-1) \le -k + O(k^{1-3\delta}) \le -k/2$ this time.) Dividing the θ -integral in (i) into suitable ranges, we see that for any $0 < \delta < 1$ and $0 < x \ll k^{1+\delta}$,

$$J_{k-1}(x) = \Re e^{\frac{1}{\pi} \int_0^{\pi/2 - k^{-4\delta}} e^{-i(k-1)\theta + ix\sin\theta} d\theta + O(k^{-1}).$$
 (2.4)

Stirling's formula [2, (A.33)] gives $\Gamma(k-1/2) \gg 3^{-k} k^{k-1}$. Apparently (ii) yields

$$J_{k-1}(x) \ll \frac{1}{\Gamma(k-1/2)} (\frac{x}{2})^{k-1} \ll (\frac{2x}{k})^{k-1}.$$
 (2.5)

As $\lambda_f(1) = 1$, taking m = n = 1 in (2.1), it follows immediately from (2.2) and (2.5)

$$\sum_{f \in \mathcal{B}_k} w_f \ll 1 + \left(\frac{2}{k}\right)^{k-1} \sum_{c \ge 1} c^{1/2 - k} d(c) \ll 1.$$
 (2.6)

The next lemma is another main tool, used in the proof of Theorem 2.

Lemma 2.1 Let $p, q \in \mathbb{C}$ with $\Re e \, p, \Re e \, q \ll 1$ and $0 < \theta < 1$ be any fixed number. Suppose $1 \leq c^2 \leq Q \leq K^{\theta}$. Then, for any $\epsilon > 0$,

$$\int_{0}^{1} \left| \sum_{\substack{K < m, n \leq 2K \\ m \equiv a, \ n \equiv b \ (Q)}} m^{-1/2 - p} n^{-q} e(\frac{2\lambda}{c} \sqrt{mn}) \right| d\lambda \ll (|p| + 1)(|q| + 1) \frac{Q}{c} K^{1/2 + \epsilon - \Re e(p + q)}$$

where the implied constant depends on ϵ and θ only.

Proof. We only need to consider the case for large K. Stieltjes integration with by parts gives

$$\sum_{\substack{A < h \le B \\ h \equiv \gamma \, (\Delta)}} h^{-(u+v)} e(\sqrt{h}\phi) = \int_A^B y^{-v} \, d \sum_{\substack{A < h \le y \\ h \equiv \gamma \, (\Delta)}} h^{-u} e(\sqrt{h}\phi)$$

$$= B^{-v} \sum_{\substack{A < h \le B \\ h \equiv \gamma \, (\Delta)}} h^{-u} e(\sqrt{h}\phi) + v \int_A^B y^{-v-1} \sum_{\substack{A < h \le y \\ h \equiv \gamma \, (\Delta)}} h^{-u} e(\sqrt{h}\phi) \, dy.$$

Applying it with u = 1/2, v = p for the sum over m, and u = 0, v = q for the sum over

n, the integrand is expressed as

$$\sum_{\substack{K < m, n \leq 2K \\ m \equiv a, n \equiv b(Q)}} m^{-1/2 - p} n^{-q} e(\frac{2\lambda}{c} \sqrt{mn})$$

$$= (2K)^{-(p+q)} \sum_{\substack{K < m \leq 2K \\ m \equiv a(Q)}} m^{-1/2} \sum_{\substack{K < n \leq 2K \\ n \equiv b(Q)}} e(\frac{2\lambda}{c} \sqrt{mn})$$

$$+ p(2K)^{-q} \int_{K}^{2K} x^{-1 - p} \sum_{\substack{K < m \leq x \\ m \equiv a(Q)}} m^{-1/2} \sum_{\substack{K < n \leq 2K \\ n \equiv b(Q)}} e(\frac{2\lambda}{c} \sqrt{mn}) dx$$

$$+ q(2K)^{-p} \int_{K}^{2K} y^{-1 - q} \sum_{\substack{K < m \leq 2K \\ m \equiv a(Q)}} m^{-1/2} \sum_{\substack{K < n \leq y \\ n \equiv b(Q)}} e(\frac{2\lambda}{c} \sqrt{mn}) dy$$

$$+ pq \int_{K}^{2K} \int_{K}^{2K} x^{-1 - p} y^{-1 - q} \sum_{\substack{K < m \leq x \\ m \equiv a(Q)}} m^{-1/2} \sum_{\substack{K < n \leq y \\ n \equiv b(Q)}} e(\frac{2\lambda}{c} \sqrt{mn}) dx dy$$

Integrating with respect to λ , we obtain for some $M, N \in [K, 2K]$,

$$\int_{0}^{1} \left| \sum_{\substack{K < m, n \leq 2K \\ m \equiv a, n \equiv b \ (Q)}} m^{-1/2 - p} n^{-q} e(\frac{2\lambda}{c} \sqrt{mn}) \right| d\lambda$$

$$\ll \left(|p| + 1 \right) (|q| + 1) K^{-\Re e(p+q)} \int_{0}^{1} \left| \sum_{\substack{K < m \leq M \\ m \equiv a \ (Q)}} m^{-1/2} \sum_{\substack{K < n \leq N \\ n \equiv b \ (Q)}} e(\frac{2\lambda}{c} \sqrt{mn}) \right| d\lambda. (2.7)$$

We proceed to transform the sum over n in (2.7) by an extension of [7, Lemma 4.7], namely, for any $\alpha \in \mathbb{Z}$ and $\beta \in \mathbb{N}$,

$$\sum_{\substack{a < n < b \\ n \equiv \alpha \, (Q)}} e(g(n)) = \sum_{\substack{Qg'(b) - 1/2 < \nu < Qg'(a) + 1/2}} \int_a^b e(g(x) - \frac{\nu x}{Q}) \, dx \cdot \frac{1}{Q} e(\frac{\alpha \nu}{Q}) + O(\log(Q(g'(a) - g'(b)) + 2))$$

where g is twice continuously differentiable with decreasing g'. This yields

$$\sum_{\substack{K < n \le N \\ n \equiv b \ (Q)}} e(\frac{2\lambda}{c} \sqrt{mn}) = Q^{-1} \sum_{\mathcal{U}(m) < \nu < \mathcal{V}(m)} e(\frac{\nu b}{Q}) \int_{K}^{N} e(\frac{2\lambda}{c} \sqrt{mt} - \frac{\nu t}{Q}) dt + O(\log K)$$

$$(2.8)$$

(as $c^2 \le Q \le K^{\theta}$, $K < m \le 2K$) where

$$\mathcal{U}(m) = \frac{\lambda Q}{c} \sqrt{\frac{m}{N}} - \frac{1}{2}$$
 and $\mathcal{V}(m) = \frac{\lambda Q}{c} \sqrt{\frac{m}{K}} + \frac{1}{2} \ll \frac{Q}{c}$. (2.9)

Let us remind the values of different parameters:

$$K \le m \le M \le 2K, \ K \le n \le N \le 2K, \ 1 \le c^2 \le Q \le K^{\theta} \ (0 < \theta < 1), \ 0 < \lambda < 1.$$

The term for $\nu = 0$ (if exists) is handled, as follows:

$$\int_K^N e(\frac{2\lambda}{c}\sqrt{mt})\,dt \ll \min(\frac{c}{|\lambda|}\sqrt{\frac{N}{m}},N) \ll \min(K,c|\lambda|^{-1})$$

by the first derivative test (see (2.3)) and the trivial estimate. Thus, (2.8) becomes

$$\sum_{\substack{K < n \le N \\ n \equiv b \, (Q)}} e(\frac{2\lambda}{c} \sqrt{mn}) = Q^{-1} \sum_{\substack{\nu \ge 1 \\ \mathcal{U}(m) < \nu \le \mathcal{V}(m)}} e(\frac{\nu b}{Q}) \int_{K}^{N} e(\frac{2\lambda}{c} \sqrt{mt} - \frac{\nu t}{Q}) \, dt + O(K^{\epsilon} \min(K, c|\lambda|^{-1})).$$

$$(2.10)$$

To make use of the sum over ν , we need to evaluate the exponential integral in a quite precise form. To this end, we apply [2, Theorem 2.2] with $\Phi(x) = 1$, $F(x) = \lambda K/c$ and $\mu(x) = x/2$ to the complex conjugate of the integral in (2.10). It is not difficult to see that $x_0 = m(\lambda Q/(c\nu))^2$ in [2, Theorem 2.2], and on the right-side of [2, (2.16)], the first O-term is

$$\ll \int_{K}^{N} \exp(-C_0 \nu x/Q) dx \ll Q \nu^{-1} \exp(-C_0 \nu K^{1-\theta}) \ll (\frac{Q}{\nu})^2 \frac{1}{\sqrt{cK}}$$

 $(\nu \ll Q \text{ by } (2.9))$ for some absolute constant C_0 and the second O-term is

$$\ll \frac{m}{K} (\frac{Q}{\nu})^2 \sqrt{\frac{\lambda}{cK}} \ll (\frac{Q}{\nu})^2 \frac{1}{\sqrt{cK}}.$$

Taking complex conjugate again, it follows from [2, Theorem2.2] that

$$\int_{K}^{N} e(\frac{2\lambda}{c}\sqrt{mt} - \frac{\nu t}{Q}) dt = \sqrt{2m} \frac{\lambda}{c} \left(\frac{Q}{\nu}\right)^{3/2} e(\frac{Q\lambda^{2}}{\nu c^{2}}m - \frac{1}{8}) + O(\frac{Q^{2}}{\nu^{2}} \frac{1}{\sqrt{cK}} + E_{\nu,m}(\lambda, K) + E_{\nu,m}(\lambda, N)) \quad (2.11)$$

where, after some simplification, we can take

$$E_{\nu,m}(\lambda,h) = c \left(\left| \lambda - \frac{c\nu}{Q} \sqrt{\frac{h}{m}} \right| + \sqrt{\frac{\lambda}{K}} \right)^{-1}.$$
 (2.12)

(Remark. The classical formula [7, Lemma 4.6] is not sufficient, its error term involving the third derivative is too big.)

Inserting (2.11) into (2.10), we have

$$\int_0^1 \left| \sum_{\substack{K < m \le M \\ m \equiv a \, (Q)}} m^{-1/2} \sum_{\substack{K < n \le N \\ n \equiv b \, (Q)}} e\left(\frac{2\lambda}{c} \sqrt{mn}\right) \right| d\lambda \ll \frac{\sqrt{Q}}{c} I_1 + K^{\epsilon} I_2 + Q^{-1} I_3 \tag{2.13}$$

where

$$I_1 = \int_0^1 \lambda \left| \sum_{\substack{K < m \le M \\ m \equiv a \ (Q)}} \sum_{\substack{\nu \ge 1 \\ \mathcal{U}(m) < \nu \le \mathcal{V}(m)}} \nu^{-3/2} e\left(\frac{Q\lambda^2}{\nu c^2} m + \frac{\nu b}{Q}\right) \right| d\lambda$$
 (2.14)

$$I_2 = \sum_{K < m < 2K} m^{-1/2} \int_0^1 \left(\min(K, \frac{c}{|\lambda|}) + \frac{Q}{\sqrt{cK}} \right) d\lambda$$

$$I_{3} = \sum_{K < m \leq 2K} m^{-1/2} \int_{0}^{1} \sum_{\substack{\nu \geq 1 \\ \mathcal{U}(m) < \nu < \mathcal{V}(m)}} (E_{\nu,m}(\lambda, K) + E_{\nu,m}(\lambda, N)) d\lambda \qquad (2.15)$$

Apparently $I_2 \ll cK^{1/2+\epsilon} + Q/\sqrt{c}$. Observing that for any real number H,

$$\int_0^1 \frac{d\lambda}{|\lambda - H| + \sqrt{\lambda/K}} \ll K^{1/2} \int_{\substack{0 < \lambda < 1 \\ |\lambda - H| \le K - 1}} \frac{d\lambda}{\sqrt{\lambda}} + \int_{\substack{0 < \lambda < 1 \\ |\lambda - H| \ge K - 1}} \frac{d\lambda}{|\lambda - H|} \ll \log K,$$

we infer that $I_3 \ll QK^{1/2+\epsilon}$ by (2.9), (2.12) and (2.15), hence

$$K^{\epsilon}I_2 + Q^{-1}I_3 \ll cK^{1/2+\epsilon} + Q/\sqrt{c} \ll K^{1/2+\epsilon}Q/c.$$
 (2.16)

Finally we estimate I_1 . Interchanging the summations, the double sum in (2.14) equals

$$\sum_{\substack{\nu \ge 1 \\ \mathcal{U}(K) \le \nu \le \mathcal{V}(M)}} \nu^{-3/2} e(\frac{\nu b}{Q}) \sum_{m \in \mathcal{I}} e(\frac{Q\lambda^2}{\nu c^2} m) \tag{2.17}$$

where m runs over the arithmetic progression $\mathcal{I} = \{m \equiv a \pmod{Q} : X < m \leq Y\}$, with

$$K \le X = \max\{K, (\frac{c(\nu - 1/2)}{Q\lambda})^2 K\}, Y = \min\{M, (\frac{c(\nu + 1/2)}{Q\lambda})^2 N\} \le 2K.$$

It is not hard to show that for any $\alpha \in \mathbb{Z}$ and $\phi \in \mathbb{R}$,

$$\sum_{\substack{n \le x \\ n \equiv \alpha(Q)}} e(n\phi) \ll \min(1 + |x - \alpha|/Q, |\sin(\pi Q\phi)|^{-1}).$$

Applying it to (2.17), it follows that the double sum (in (2.14)) is

$$\ll \sum_{\substack{\nu \ge 1 \\ \mathcal{U}(K) < \nu \le \mathcal{V}(M)}} \nu^{-3/2} \min(K, |\sin(\pi \frac{Q^2 \lambda^2}{\nu c^2})|^{-1}).$$

We conclude that

$$I_{1} \ll \int_{0}^{1} \sum_{\substack{\nu \geq 1 \\ \mathcal{U}(K) < \nu \leq \mathcal{V}(M)}} \nu^{-3/2} \min(K, |\sin(\frac{\pi Q^{2}}{\nu c^{2}} \lambda^{2})|^{-1})) \lambda \, d\lambda$$

$$\ll \log K. \tag{2.18}$$

The last line follows from $Q^2/(\nu c^2) \ll 1$ and the estimate

$$\int_{0}^{1} \lambda \min(K, |\sin(\pi \alpha \lambda^{2})|^{-1}) d\lambda \ll \frac{\alpha + 1}{\alpha} \int_{0}^{\pi/2} \min(K, |\sin u|^{-1}) du \ll \log K$$

for any $\alpha \gg 1$. This completes the proof in view of (2.7), (2.13), (2.16) and (2.18).

Remark: In view of (2.16), it is possible to get a better upper estimate in Lemma 2.1, but we take this for simplicity.

Lemma 2.2 Let B be a fixed positive number. Let $H \ge 2B + 4$ be any large number. Suppose $\alpha, \beta \in \mathbb{C}$ satisfy $\Re \alpha, \Re \alpha \beta \in [-B, B]$. Then,

$$\frac{\Gamma(H+\beta+\alpha)}{\Gamma(H+\beta)} \ll_{\epsilon,B} (|\beta|+1)^{\epsilon} (H+|\beta|)^{\Re e \, \alpha} (|\operatorname{Im} \alpha|+1)^{1/2} e^{\pi |\operatorname{Im} \alpha|/2}$$

where $0 < \epsilon < 1$ is arbitrary and the implied constant depends on ϵ and B.

Proof. Firstly we note that for any σ , $t \in \mathbb{R}$ with $|\sigma| \leq B$,

$$\frac{\Gamma(H+\sigma+it)}{\Gamma(H+it)} \ll_B (H+|t|)^{\sigma}, \tag{2.19}$$

with the implied constant uniform in t. This is done by applying Stirling's formula (see (A.33) in the appendix of [2]) to $\Re e \left(\log \Gamma(H + \sigma + it) - \log \Gamma(H + it) \right)$.

It is known that for $\Re e x$ and $\Re e y > 0$, $\Gamma(x)\Gamma(y)/\Gamma(x+y) = \int_0^1 t^{x-1}(1-t)^{y-1} dt$, see [2, (A.31)]. Let $a = \Re e \alpha + \epsilon$. Then,

$$\left| \frac{\Gamma(H+\beta+\alpha)\Gamma(a-\alpha)}{\Gamma(H+\beta+a)} \right| = \left| \int_0^1 t^{a-\alpha-1} (1-t)^{H+\beta+\alpha-1} dt \right|$$

$$\leq \int_0^1 t^{\epsilon-1} (1-t)^{H+\Re(\beta+\alpha)-1} dt = \frac{\Gamma(H+\Re(\beta+\alpha))}{\Gamma(H+\Re(\beta+a))} \Gamma(\epsilon).$$

Multiplying both sides by $|\Gamma(H+\beta+a)|/|\Gamma(H+\beta)\Gamma(a-\alpha)|$ gives

$$\frac{\Gamma(H+\beta+\alpha)}{\Gamma(H+\beta)} \ll_{\epsilon} \frac{\Gamma(H+\Re e\,(\beta+\alpha))}{\Gamma(H+\Re e\,\beta+a)} \frac{\Gamma((H+\Re e\,\beta)+a+i\mathrm{Im}\,\beta)}{\Gamma((H+\Re e\,\beta)+i\mathrm{Im}\,\beta)} |\Gamma(\epsilon-i\,\mathrm{Im}\,\alpha)|^{-1}.$$

By (2.19), the first two fractions on the right are respectively $\ll_{\epsilon} H^{\Re e \alpha - a}$, and $(H + |\beta|)^a$, which is $\ll (H(|\beta| + 1))^{a - \Re e \alpha} (H + |\beta|)^{\Re e \alpha}$. Our result follows after evaluating the last Gamma factor with [2, (A.34)] – for $|\sigma| \ll 1$ and $|t| \gg 1$,

$$|\Gamma(\sigma + it)| \approx |t|^{\sigma - 1/2} e^{-\pi|t|/2}.$$
 (2.20)

Remark: From Lemma 2.2 and (1.3), it follows that $L(f \otimes \chi, -\epsilon + it) \ll (k + |t|)^{1+\epsilon}$. Then Phragmén-Lindelöf theorem yields the convexity bound

$$L(f \otimes \chi, 1/2 + it) \ll_{\epsilon} (k + |t|)^{1/2 + \epsilon}. \tag{2.21}$$

3. Proof of Theorems. We assume $1/2 \le \Re e s \le 1$. Given any number $A \ge 0$, we set $A_0 = (2 + \delta + A)/\delta$ (> 3 + A) where $0 < \delta < 1$ is a parameter to be chosen at our disposal. Then we consider the integral

$$\frac{1}{2\pi i} \int_{\mathcal{R}} \Lambda(f \otimes \chi, 1/2 + w) G(w) \, dw \quad \text{ where } \quad G(w) = \frac{1}{w} \frac{\Gamma(A_0 - w) \Gamma(A_0 + w)}{\Gamma(A_0)^2}.$$

Here the contour \mathcal{R} is the positively oriented rectangle with vertices at $\pm 2 \pm iT$.

Inside the strip $-A_0 < \Re e \, w < A_0$, G(w) has only one simple pole at w = 0 and by (2.20), we have the rapid decay of G(w) along Im w,

$$G(w) \ll |w|^{-1} (|\operatorname{Im} w| + 1)^{2A_0 - 1} e^{-\pi |\operatorname{Im} w|},$$
 (3.1)

which assures the damping down of the Gamma factors from $\Lambda(f \otimes \chi, \cdot)$, see (3.4).

Now we apply the residue theorem to express $L(f \otimes \chi, s)$ as a convergent series. From [3, Theorem 7.6], $\Lambda(f \otimes \chi, \cdot)$ is bounded and \mathcal{R} is inside the strip $-A_0 < \Re e \, w < A_0$. We take $T \to \infty$, and apply the functional equation (1.3) to get

$$(D/(2\pi))^{s}\Gamma(s+(k-1)/2)L(f\otimes\chi,s)$$

$$= \frac{1}{2\pi i}\int_{(2)}\Lambda(f\otimes\chi,s+w)G(w)\,dw + \epsilon_{k}(\chi)\frac{1}{2\pi i}\int_{(2)}\Lambda(f\otimes\overline{\chi},1-s+w)G(w)\,dw.$$

With (1.2), this leads to

$$L(f \otimes \chi, s) = \sum_{n=1}^{\infty} \frac{\lambda_f(n)\chi(n)}{n^s} V_s(n) + \epsilon_k(\chi) \sum_{n=1}^{\infty} \frac{\lambda_f(n)\overline{\chi}(n)}{n^{1-s}} V_{1-s}(n)$$
 (3.2)

where

$$V_z(y) = \frac{1}{2\pi i} \int_{(2)} \left(\frac{D}{2\pi}\right)^{w+z-s} \frac{\Gamma(z+w+(k-1)/2)}{\Gamma(s+(k-1)/2)} y^{-w} G(w) dw.$$
 (3.3)

Observing $|\Gamma(z+w+(k-1)/2)| = |\Gamma((k-1)/2+s+(\overline{w}+\Re e\,(z-s)))|$ for the case z=1-s, Lemma 2.2 implies that for z=s or 1-s, and $|\Re e\,w| < A_0$,

$$\frac{\Gamma(z+w+(k-1)/2)}{\Gamma(s+(k-1)/2)} \ll_{\epsilon,A_0} |s|^{\epsilon} (k+|s|)^{\Re e(w+z-s)} (|\operatorname{Im} w|+1)^{1/2} e^{\pi |\operatorname{Im} w|/2}$$
 (3.4)

for all large enough $k(>2A_0+4)$. In view of (3.1) and (3.4), we obtain by moving the line of integration to $\Re e \, w = \sigma \in (0,A_0)$ that as $D^{\sigma} \leq D(k)^{\sigma} \ll_{\epsilon,A_0} k^{\epsilon}$,

$$V_z(y) \ll_{\sigma,\epsilon,A_0} (k|s|)^{\epsilon} y^{-\sigma} (k+|s|)^{\sigma+\Re e(z-s)}. \tag{3.5}$$

Moreover, shifting the integral path to $\Re e w = -A - 1 > -A_0$, we obtain by (3.4),

$$V_z(y) = \left(\frac{D}{2\pi}\right)^{z-s} \frac{\Gamma(z+(k-1)/2)}{\Gamma(s+(k-1)/2)} + O(y^{A+1}k^{\Re e(z-s)-A-1}). \tag{3.6}$$

The first term comes from the simple pole of G(w).

We truncate the series in (3.2) and estimate the contribution of the tails. By (3.5) with $\Re e \, s < \sigma < A_0$ and (1.1), the tails of the sums in (3.2) are

$$\ll (k|s|)^{\epsilon} (k+|s|)^{\sigma} \sum_{n\geq N} d(n) n^{-(\Re e \, s+\sigma)}
+ (k|s|)^{\epsilon} (k+|s|)^{1-2\Re e \, s+\sigma} \sum_{n\geq N} d(n) n^{-(1-\Re e \, s+\sigma)}
\ll (k|s|)^{\epsilon} (\log N) \left((k+|s|)^{\sigma} N^{1-\Re e \, s-\sigma} + (k+|s|)^{1-2\Re e \, s+\sigma} N^{\Re e \, s-\sigma} \right)
\ll (k|s|)^{\epsilon} (k+|s|)^{\sigma} N^{\Re e \, s-\sigma} \log N.$$
(3.7)

The last estimate is a bit loose but convenient for later calculation. Note also that for $\Re e \, s \geq 1/2$, $\Re e \, s + \sigma \geq 1 - \Re e \, s + \sigma > 1$ which is needed for the convergence of (3.7). With the choice $N = k^{1+\delta}$ (for the same δ as above), it follows from (3.2) that

$$L(f \otimes \chi, s) = \sum_{n \leq k^{1+\delta}} \frac{\lambda_f(n)\chi(n)}{n^s} V_s(n) + \epsilon_k(\chi) \sum_{n \leq k^{1+\delta}} \frac{\lambda_f(n)\overline{\chi}(n)}{n^{1-s}} V_{1-s}(n) + E(|s|, k)$$
(3.8)

where $E(|s|,k) \ll (k|s|)^{\epsilon} (k+|s|)^{\sigma} k^{(1+\delta)(\Re e \, s - \sigma)}$ and $\Re e \, s \leq \sigma < A_0$.

To prove Theorem 1, we choose $\delta = (A+1)/(A+1+\epsilon)$, so δ is quite close to 1. (Small ϵ is assumed.) Choosing $\sigma = (A+\epsilon+(1+\delta)\Re e\,s)/\delta$, then $\Re e\,s < \sigma < 2\Re e\,s + A + 3\epsilon < A_0$ and $\sigma + (1+\delta)(\Re e\,s - \sigma) = -A - \epsilon$. Hence

$$E(|s|,k) \ll (k|s|)^{\epsilon} (1 + (|s|/k)^{\sigma}) k^{\sigma + (1+\delta)(\Re e \, s - \sigma)} \ll |s|^{4\epsilon} (1 + (|s|/k)^{2\Re e \, s + A}) k^{-A}. \eqno(3.9)$$

Summing over $f \in \mathcal{B}_k$, we obtain by (2.1)

$$\sum_{f \in \mathcal{B}_k} w_f L(f \otimes \chi, s) = V_s(1) + \epsilon_k(\chi) V_{1-s}(1)$$

$$+ 2\pi i^{-k} \sum_{n \le k^{1+\delta}} \left(\frac{\chi(n)}{n^s} V_s(n) + \epsilon_k(\chi) \frac{\overline{\chi}(n)}{n^{1-s}} V_{1-s}(n) \right)$$

$$\times \sum_{c \ge 1} c^{-1} S(1, n, c) J_{k-1}(\frac{4\pi\sqrt{n}}{c}) + E(|s|, k).$$

(Note that $\sum_f w_f \ll 1$ by (2.6).) From (2.5), we see that for $n \leq k^{1+\delta}$,

$$J_{k-1}(4\pi\sqrt{n}/c) \ll 2^k k^{-(1-\delta)k/2} c^{-1}$$
.

Also, $V_s(n)$, $V_{1-s}(n) \ll (k|s|)^{2\epsilon} n^{-\epsilon}$ by (3.5) with $\sigma = \epsilon$, the double sum above is hence

$$\ll_{\epsilon,A} |s|^{2\epsilon} 2^k k^{-(1-\delta)k/2} \sum_{n \le k^{1+\delta}} n^{-1-\epsilon} \sum_{c \ge 1} d(c) c^{-3/2} \ll |s|^{2\epsilon} k^{-A},$$

with (2.2), for sufficiently large $k \geq k_0(\epsilon, A)$. By (3.6) and (3.9), we obtain

$$\sum_{f \in \mathcal{B}_k} w_f L(f \otimes \chi, s) = V_s(1) + \epsilon_k(\chi) V_{1-s}(1) + E(|s|, k)$$

$$= 1 + \epsilon_k(\chi) \left(\frac{D}{2\pi}\right)^{1-2s} \frac{\Gamma(1-s+(k-1)/2)}{\Gamma(s+(k-1)/2)} + O(|s|^{\epsilon} (1+(|s|/k)^{2\Re e \, s+A}) k^{-A})$$

after replacing ϵ by $\epsilon/4$. This completes the proof of Theorem 1.

Next we prove Theorem 2 and let s=1/2+it. It suffices to consider the case $|t| \le k^{1/2}$, for otherwise, $L(f \otimes \chi, 1/2+it) \ll |t|^{1+\epsilon}$ by (2.21) and Theorem 2 follows immediately with (2.6).

We shall take $\delta = \epsilon$ (close to 0) and fix A = 1, so $A_0 = 1 + 3/\delta$ which is very large. For s = 1/2 + it ($\ll k^{1/2}$), the last term of (3.8) is $E(|s|, k) \ll_{\delta} (k|s|)^{\epsilon}$ by selecting $\sigma = \sigma' := (1 + \delta)/(2\delta) \in (0, A_0)$, i.e. $\sigma' + (1 + \delta)(1/2 - \sigma') = 0$. For simplicity, we write $W_{\sigma}(m, n) = V_s(m)\overline{V_s(n)} = V_s(m)V_{\overline{s}}(n)$, that is,

$$W_{\sigma}(m,n) = \frac{1}{(2\pi i)^2} \int_{(\sigma)} \int_{(\sigma)} \frac{\Gamma(k/2 + it + w_1)\Gamma(k/2 - it + w_2)}{|\Gamma(k/2 + it)|^2} \left(\frac{D}{2\pi}\right)^{w_1 + w_2} \times G(w_1)G(w_2)m^{-(w_1 + it)}n^{-(w_2 - it)} dw_1 dw_2$$
(3.10)

and denote

$$|S_K|^2 = \sum_{K < m, n \le 2K} \frac{\chi(m)\overline{\chi}(n)}{\sqrt{mn}} W_{\sigma}(m, n) \sum_{f \in \mathcal{B}_k} w_f \lambda_f(m) \lambda_f(n). \tag{3.11}$$

Apparently, we can shift the line of integration in (3.10) to conclude $W_{\sigma'} = W_{\sigma}$ for any $0 < \sigma < A_0$. By $D \ll k^{\epsilon}$ and again $|s| \leq k^{1/2}$,

$$W_{\sigma}(m,n) \ll_{\sigma,\epsilon} (mn)^{-\sigma} k^{2\sigma+2\epsilon}.$$
 (3.12)

We divide the sums in (3.8) of the form $\sum_{n \leq k^{1+\delta}} \inf \sum_{K < n \leq 2K} \inf K$ runs over all powers of two in $[2^{-1}, k^{1+\delta})$. Cauchy-Schwarz inequality implies $|\sum_{n \leq k^{1+\delta}}|^2 \leq \log k \sum_{K=2^r < k^{1+\delta}} |\sum_{K < n \leq 2K}|^2$. Hence, we obtain by (3.8),

$$\sum_{f \in \mathcal{B}_k} w_f |L(f \otimes \chi, 1/2 + it)|^2 \ll \sum_{K = 2^r < k^{1+\delta}} |S_K|^2 \log k + k^{3\epsilon}.$$
 (3.13)

In view of (3.11), it follows by (2.1) that

$$|S_K|^2 = \sum_{K < n \le 2K} \frac{|\chi(n)|^2}{n} W_{\sigma}(n, n) + 2\pi i^{-k} \sum_{K < m, n < 2K} \chi(m) \overline{\chi}(n) \frac{W_{\sigma}(m, n)}{\sqrt{mn}} \sum_{c > 1} \frac{S(m, n, c)}{c} J_{k-1}(\frac{4\pi\sqrt{mn}}{c}). (3.14)$$

Taking $\sigma = \epsilon$ in (3.12), the first sum in (3.14) is $\ll k^{\epsilon}$. When $K \leq k^{1-2\delta}$, we take $\sigma = 1$ in (3.12) and obtain by (2.5),

$$\sum_{K < m, n \le 2K} \sum_{c \ge 1} \ll k^{2+2\epsilon} (8\pi k^{-\delta})^{k-1} \sum_{m, n \le k^{1-2\delta}} (mn)^{-3/2} \sum_{c \ge 1} d(c) c^{1-k}$$

$$\ll k^{-1} \tag{3.15}$$

for all sufficiently large $k \geq k_0(\delta)$. It is enough for our purpose.

It remains to consider the range $k^{1-2\delta} < K < k^{1+\delta}$. Similarly to (3.15), one can see (with $\sigma = 1$) that the contribution from large c is negligible,

$$\sum_{K < m, n \le 2K} \sum_{c \ge k^{3\delta}} \ll k^{2+2\epsilon} \sum_{m, n \le k^{1+\delta}} (mn)^{-3/2} \sum_{c \ge k^{3\delta}} \frac{d(c)}{\sqrt{c}} \left(\frac{8\pi k^{\delta}}{c}\right)^{k-1}$$

$$\ll (8\pi)^k k^{1+\delta} k^{-\delta k} \ll k^{-1}.$$
(3.16)

The remnant of the double sum in (3.14), which we need to consider, is

$$\sum_{K < m, n \le 2K} \sum_{c < k^{3\delta}} \ll |\mathcal{J}| + k^{-1} \sum_{K < m, n \le 2K} \sum_{c < k^{3\delta}} \frac{|W_{\epsilon}(m, n)|}{\sqrt{mn}} \frac{|S(m, n, c)|}{c}$$
(3.17)

by (2.4). Writing $f_{m,n}(\theta) = 4\pi c^{-1} \sqrt{mn} \sin \theta - (k-1)\theta$, \mathcal{J} is given by

$$\mathcal{J} = \sum_{K < m, n \le 2K} \chi(m) \overline{\chi}(n) \frac{W_{\epsilon}(m, n)}{\sqrt{mn}} \times \sum_{c < k^{3\delta}} \frac{S(m, n, c)}{c} \int_{0}^{\pi/2 - k^{-4\delta}} \exp(if_{m, n}(\theta)) d\theta,$$
(3.18)

the treatment of which is the main difficulty in the proof. The other summand can be easily handled: by (3.12) with $\sigma = \epsilon$, the second term on the right side of (3.17) is

$$\ll k^{2\epsilon - 1} \sum_{K < m, n \le 2K} (mn)^{-1/2} \sum_{c < k^{3\delta}} d(c) c^{-1/2}$$

$$\ll Kk^{3\delta + 2\epsilon - 1} \log k \ll k^{4\delta + 3\epsilon}.$$
(3.19)

To deal with \mathcal{J} , the periodicity of $S(\cdot,\cdot,c)$ and $\chi(\cdot)$ enables us to express (3.18) as

$$\mathcal{J} = \sum_{\substack{c < k^{3\delta} \\ \alpha_1, \alpha_2 (c)}} c^{-1} S(\alpha_1, \alpha_2, c) \sum_{\beta_1, \beta_2 (D)} \chi(\beta_1) \overline{\chi}(\beta_2)
\times \sum_{\substack{(*) \\ K < m, n < 2K}} \frac{W_{\epsilon}(m, n)}{\sqrt{mn}} \int_0^{\pi/2 - k^{-4\delta}} e(\frac{2\sqrt{mn}}{c} \sin \theta) e^{-i(k-1)\theta} d\theta \quad (3.20)$$

where the condition (*) denotes $m \equiv \alpha_1$ (c), $m \equiv \beta_1$ (D) and $n \equiv \alpha_2$ (c), $n \equiv \beta_1$ (D). The congruence system $m \equiv \alpha_1$ (c) and $m \equiv \beta_1$ (D) is solvable if and only if $(c, D)|(\alpha_1 - \beta_1)$. Assume $(c, D)|(\alpha_1 - \beta_1)$. The solution is given by $m \equiv \gamma_1$ (cd) for some γ_1 where d = D/(c, D). Similarly, the system $n \equiv \alpha_2$ (c) and $n \equiv \beta_2$ (D) is given by $n \equiv \gamma_2$ (cd) for some γ_2 . Hence, with (3.10) we can write the sum over m, n in (3.20) into

$$\frac{1}{(2\pi i)^2} \int_{(\epsilon)} \int_{(\epsilon)} \frac{\Gamma(k/2 + it + w_1)\Gamma(k/2 - it + w_2)}{|\Gamma(k/2 + it)|^2} \times \left(\frac{D}{2\pi}\right)^{w_1 + w_2} H(w_1, w_2)G(w_1)G(w_2) dw_1 dw_2 \tag{3.21}$$

where $H(w_1, w_2)$ denotes the integral

$$\int_0^{\pi/2 - k^{-4\delta}} \sum_{\substack{K < m, n \le 2K \\ m \equiv \gamma_1, n \equiv \gamma_2 \ (cd)}} m^{-1/2 - it - w_1} n^{-1/2 + it - w_2} e(\frac{2\sqrt{mn}}{c} \sin \theta) e^{-i(k-1)\theta} d\theta$$

with d = D/(c, D). Substituting $\lambda = \sin \theta$, we have $d\theta = (\cos \theta)^{-1} d\lambda = O(k^{4\delta}) d\lambda$ as $0 < \theta < \pi/2 - k^{-4\delta}$, and hence

$$H(w_{1}, w_{2})$$

$$\ll k^{4\delta} \int_{0}^{1} \left| \sum_{\substack{K < m, n \leq 2K \\ m \equiv \gamma_{1}, n \equiv \gamma_{2} \ (cd)}} m^{-1/2 - it - w_{1}} n^{-1/2 + it - w_{2}} e(\frac{2\lambda}{c} \sqrt{mn}) \right| d\lambda$$

$$\ll (|w_{1}| + |t|)(|w_{2}| + |t|)Dk^{4\delta} K^{\epsilon - \Re e(w_{1} + w_{2})}$$

by Lemma 2.1 and $d \leq D$. This gives by Lemma 2.2 and our choice of G(w) that the integral in (3.21) is $\ll Dk^{4\delta+2\epsilon}(|t|+1)^{2+4\epsilon}$. Substituting into (3.20), we obtain

$$\mathcal{J} \ll D^3 k^{4\delta + 2\epsilon} (|t| + 1)^{2+4\epsilon} \sum_{c < k^{3\delta}} c^{-1} \sum_{\alpha_1, \alpha_2 (c)} |S(\alpha_1, \alpha_2, c)| \ll k^{12\delta + 2\epsilon} (|t| + 1)^{2+4\epsilon}$$

by (2.2) and $\log D = o(\log k)$. Together with (3.19), we see that the right-side of (3.17) has an upper bound in the above fashion. In view of (3.14) and (3.15), $|S_K|^2 \ll$

 $k^{12\delta+2\epsilon}(|t|+1)^{2+4\epsilon}$ for all $K \leq k^{1+\delta}$. Our result follows from (3.13) by the choice $\delta = \epsilon$ and then $\epsilon/15$ in place of ϵ .

References

- [1] J.B. Conrey and H. Iwaniec, The cubic moment of central values of automorphic *L*-functions. Ann. of Math. (2) 151 (2000), 1175–1216.
- [2] A. Ivić, The Riemann Zeta-function, John Wiley & Sons, New York, 1985.
- [3] H. Iwaniec, Topics in Classical Automorphic Forms, AMS, 1997.
- [4] H. Iwaniec, W. Luo and P. Sarnak, Low lying zeros of families of *L*-functions. IHES Publ. Math. (2001), 55–131.
- [5] H. Iwaniec and P. Michel, The second moment of the symmetric square *L*-functions. Ann. Acad. Sci. Fenn. Math. 26 (2001), 465–482.
- [6] W. Kohnen and J. Sengupta, On quadratic character twists of Hecke L-functions attached to cusp forms of varying weights at the central points, Acta Arith. 99 (2001), 61–66.
- [7] E.C. Titchmarsh, The theory of the Riemann Zeta-function, 2nd edition revised by D.R. Heath-Brown, Oxford, 1986.
- [8] E.T. Whittaker and G.N. Watson, A course of Modern Analysis, 4th edition, Cambridge, 1927.