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Abstract We study the mean square estimate for the twisted automor-
phic L-functions averaged over Hecke eigencuspforms at large weight. The
upper bound obtained is quite sharp, and a direct application yields an
unconditional version for a result of Kohnen and Sengupta.

1. Introduction. Let k£ be an even positive integer. The space of all holomor-
phic cusp forms of weight k with respect to the full modular group has a basis By of
normalized Hecke eigencuspforms. More explicitly, for f € By, Tnf = A f(n)n("‘_l)/ 2f

where T,, (n =1,2,---) are the Hecke operators, and f has the Fourier series

Z )‘f k 1)/2 ( )
where e(a) = €2™®. The eigenvalues A¢(n) are all real, and furthermore, A¢(1) = 1 and

[Ar(n)] < d(n) (1.1)

(Deligne’s bound) where d(n) = }_,, 1 is the divisor function.
Let x be a primitive Dirichlet character of conductor D > 1. We associate each f

with a twisted L-function

o0

L(f®x,s ZX s (Res > 1). (1.2)

Analogously to the classical L-functions, the twisted automorphic L-function factors

into an Euler product. Moreover, let us define

A(f @ x,8) = (o T(s + (k= 1/2)L(F @ x5),

The completed function A(f ® x, s) can be holomorphically continued to the whole C.

It is bounded on any vertical strip, and satisfies the functional equation

Af@x;8) = es(OAMf O X, 1 =) (1.3)



where €,(x) = i*7(x)?/D and 7(x) is the Gaussian sum (see [3, Theorem 7.6]). In
addition to this similarity, it is conjectured that the Grand Riemann Hypothesis holds,

and
L(f ®x,1/2+1it) < (k(1+t]))° (1.4)

for any € > 0. These (twisted) automorphic L-functions play an important role in
G Loy theory and are interesting; for example, their values at the central point reveal
arithmetical information.

When yx is quadratic, Kohnen and Sengupta [6] proved that

STL(f®x,1/2) <ep KT (k= 00, D > 0), (1.5)
fEB

and deduced that under the assumption L(f ® x,1/2) <s.p k? where § > 0,

#{f € By L(f ®x,1/2) # 0} >5p k' %/ logk. (1.6)

Our main objective is to establish a mean square estimate for L(f ® x,1/2 + it)
averaging over the basis By on the weight aspect. We obtain an estimate (see Theorem
2 below) which supports the validity of (1.4) on the weight aspect. An application is
to yield an unconditional lower bound for (1.6).

Now let us fix our notation: denote by D(k) a positive increasing function such that
log D(k) = o(log k), and define for f € By,

I'k-1)
(4m)E= L2
where || f||> = [ y*7?|f(2)|? dzdy. (F is the fundamental domain for the full modular
group.) The first theorem is a weighted form for (1.5) in the critical strip, and the next

wy =

theorem on mean square estimate is our main result.

Theorem 1 Let any A > 0 and any arbitrarily small € > 0 be given. Let k be any
sufficiently large even integer. Suppose 1/2 < Res < 1 and x is a primitive character
of conductor D with 1 < D < D(k). Then,

N =

fEB
+ O(‘S‘ek‘_A + ’8’2%65+A+6k—2(§]‘€es+A))

where the implied constant in the O-term depends on € and A but is uniform for 1 <

D < D(k). (Recall By, is the basis containing all normalized Hecke eigencuspforms.)



Remark. Due to (1.3), there is no loss of generality to assume 1/2 < Res < 1.
Taking s = 1/2 + it, the second term in Theorem 1 is < 1. Hence, for any A > 0,

S wiL(f@x,1/2+it) L a ltlT+1 (Jt] < KHA/OH),
fEBk

i.e. the left-side satisfies the Lindelof hypothesis for |t| < k2~¢ by setting A = (1 —¢)/e.
Here and in the sequel, we write <, to specify the dependence of the implied constant

on x.

Theorem 2 Under the same assumptions as in Theorem 1, we have for any e > 0,

> wilL(f@x,1/2+ i) < kIt + 1> (teR)
fEB

where the implied constant depends only on € but is uniform in t.

The case t = 0 yields (1.5) immediately by the Cauchy-Schwarz inequality and
> fes, Wf < 1, see (2.6) below. Another consequence is about the non-vanishing of

the central values.
Corollary 3 Under the assumptions in Theorem 1, it holds that for any e > 0
#{f € Br: L(f ® x,1/2) # 0} > |1+ er(x)|*k' .

Proof. Taking s = 1/2 in Theorem 1 and using the Cauchy-Schwarz inequality, we
obtain that

2

T+ —0k™) < |3 wil(fox.1/2)
fEB
< (X w) (X wlrex1/2P).
feBy feB
L(f®x,1/2)#0

Together with the bound w¢ < log k/k (see [6]), it follows that for any ¢ > 0,

Z 1> |1+ e ()P

feBy,
L(f®x,1/2)#0

This completes the proof.
Remark. Note that € (x) = i*D/|D| for real x. This gives (1.6) an unconditional

lower bound with essentially the same quality.



Finally we outline the proof of the main result Theorem 2. We represent the value
of L(f ® x,1/2+it) by a fast convergent series. Averaging over By enables us to apply
the Petersson trace formula. It turns up a sum that involves the Kloosterman sum
and the Bessel function. The next process is to delve the possible cancellations, like
[1] and [5] but these articles focus on the level aspect, not on the weight. In [4] there
is a tool to treat the case of averaging over weights but not for individual. Hence
we need different auxiliary tools for our situation, as follows: Using the periodicity of
the Kloosterman sum, we pass to an exponential sum over an arithmetic progression.
Then the resulting exponential integral will be handled in Lemma 2.1 by a ‘saddle-point’
theorem [2, Theorem 2.2].

2. Some Preparations. Our key tool is the Petersson trace formula [3, Theorem
3.6]:

Z WA (M)A (n) = Sy + 210" Z c1S(m,n, c)Jp_1(
feBy c>1

4m/mn

p ) (2.1)
where 0, ,, is the Kronecker delta, S(m,n,c) is the Kloosterman sum and Jj;_; is the
Bessel function of order &£ — 1. Note that

1S(m,n,c)| < (m,n, )2 2d(c). (2.2)

(d(+) is the divisor function.) We derive some estimates for the Bessel function with
large k, based on the integral representations:

1

" or

(i) Jp—1(x) / e~ Wh=)0+izsing qg for o > 0 (see [8, §17.23]),

(i) Jr(@) = = (2

VL (k —1/2) (g)kfl /1 (1- t2)k73/2 cos(xt) dt from [8, §17.3 Corol-
g - —1

lary].

Writing f(0) = (k — 1)0 + xsin 6, then f’ is monotonic and f'(6) > k —1 for 2 > 0
and 0 € [0, 7/2]. This yields

/2
/ O dp < sup  |f1(0) 7 < k7 (2.3)
0 9e[0,7/2]

by the first derivative test ([7, Lemma 4.3]). In addition, it follows from the same
argument that, for z < k'™ where 0 < § < 1,

/2
/ / eizsine—i(k—l)@ do < k’_l.
w/2—k—40



(Note that 2 cos — (k—1) < —k+O(k'=3%) < —k/2 this time.) Dividing the #-integral
in (i) into suitable ranges, we see that for any 0 < § < 1 and 0 < z < k'*9,

1 [r/2—k% (b 1)0 i sin 0
Jeo1(z) = Re= / e~ h=1)0Fiwsin gg 4 (k7). (2.4)
0

™

Stirling’s formula [2, (A.33)] gives T'(k — 1/2) > 37kk*~1. Apparently (ii) yields

(g)’H < (2—“@)’“‘1. (2.5)

1
kal(a:) < T A

(k—1/2)
As A\¢(1) =1, taking m =n =1 in (2.1), it follows immediately from (2.2) and (2.5)
2\ k-1 1/2—k
> wp< 14 () > et Rd(e) < 1. (2.6)
fEBy c>1
The next lemma is another main tool, used in the proof of Theorem 2.

Lemma 2.1 Let p, ¢ € C with Rep,Req < 1 and 0 < 0 < 1 be any fixred number.
Suppose 1 < 2 < Q < K. Then, for any e > 0,

1
2\
/ S w2 )| ax < (] + 1) (] + 1) LY R
0 K<m,n§2<K) ¢ ¢
m=a,n=b(Q

where the implied constant depends on € and 6 only.

Proof. We only need to consider the case for large K. Stieltjes integration with by

parts gives

B
Z h_(“”)e(\/ﬁgb):/A y'd Z h~"e(Vhe)

A<h<B A<h<y
h=~(A) h=v(A)
B
= B Z h_"e(\/ﬁgb)%—v/ y vt Z h~"e(Vhe) dy.
A<h<B A A<h<y
h=~ () h=v (&)

Applying it with u = 1/2, v = p for the sum over m, and u = 0, v = ¢ for the sum over



n, the integrand is expressed as

2A
E m~ V2P e(Z2/mn)
K<m,n<2K ¢
m=a, n=b (Q)

= (2K)" (Pt Z m1/2 Z e(%\/min)

K<m<2K K<n<2K ¢
m=a (Q) n=b(Q)
2K 2)
+p(2K)™1? / g7 Z m~Y? Z e(—+/mn) dx
K C
K<m<ax K<n<2K
m=a (Q) n=b(Q)
2K 2)
—i—q(ZK)_p/ y e Z m~1/? Z e(—+/mn) dy
K C
K<m<2K K<n<y
m=a (Q) n=b(Q)
2K 2K 2\
+pq/ / TR Z m~Y? Z e(—+v/mn) dx dy
K K K<m<zx K<n<y ¢
m=a (Q) n=b(Q)

Integrating with respect to A, we obtain for some M, N € [K,2K],

! 2)
/ Z m V2P0 (Z2/mn)| dA
0 K<mn<2K ¢

m=a,n=b(Q)

< (ol 00al+ DR [1ST t S oA a2

0 | K<m<m K<n<N ¢
m=a (Q) n=b(Q)

We proceed to transform the sum over n in (2.7) by an extension of [7, Lemma 4.7],

namely, for any a € Z and 3 € N,

b rvr (097
S elgn) = 3 / e(g(x) — 2y dz - =e(%L)

a<n<b Qg’'(b)—1/2<v<Qg’(a)+1/2
+0(log(Q(g'(a) — ¢'(0) +2))

where g is twice continuously differentiable with decreasing ¢’. This yields

%mn = -1 ey—b Ne%m—y—t
> v = Q@Y [ eCavmi-Gar

K<n<N U(m)<v<V(m) @ ¢

n=b(Q)
+ O(log K) (2.8)

(ascnggKa,K<m§2K) where

Ulm) = ACQ\/E— % and  V(m) = ACQ\/E+ % < % (2.9)

6



Let us remind the values of different parameters:
K<m<M<2K K<n<N<2K,1<P<Q<K’(0<6<1),0<A<1.

The term for v = 0 (if exists) is handled, as follows:

N9 N
/ e(—\/mt)dt<<min(ﬁ LN < min(K, A7)

K C

by the first derivative test (see (2.3)) and the trivial estimate. Thus, (2.8) becomes

14 N 14
> v = @Y [ vmi- Dy

K<n<N v>1 Q c Q
n=b(Q) U(m)<r<V(m)
+ O(Kmin(K, ¢|\|™1)). (2.10)

To make use of the sum over v, we need to evaluate the exponential integral in a quite
precise form. To this end, we apply [2, Theorem 2.2] with ®(z) =1, F(z) = AK/c and
wu(x) = /2 to the complex conjugate of the integral in (2.10). It is not difficult to see
that o = m(AQ/(cv))? in [2, Theorem 2.2], and on the right-side of [2, (2.16)], the

first O-term is

1
veK

(v < Q by (2.9)) for some absolute constant Cy and the second O-term is

m,Q A Q 1
< E(;)Z\/ K (;)2\/?-

Taking complex conjugate again, it follows from [2, Theorem?2.2] that

/Ne(”‘\/nﬁ_”t)dt — \/%i (Q>3/26(Q)\2m_1)

K c Q c \v vc? 8
Q1
v2 /K

where, after some simplification, we can take

Q

v

)2

N
< / exp(—Covz/Q) dz < Qv exp(—CovK' ™) < (
K

+0(

PRy

—1
A
Eym(Ah) = c ( o\'m K> . (2.12)

+ B\ K) + Eym(A, N)) (2.11)

(Remark. The classical formula [7, Lemma 4.6] is not sufficient, its error term involving

the third derivative is too big.)



Inserting (2.11) into (2.10), we have

1
/‘ >oomT2 N e(?\/mn)‘d)\<<\/@h+Kﬁlz+Q1[3 (2.13)
0

C

K<m<M K<n<N
m=a(Q) n=b(Q)
where
1 )\2 b
L = / )\‘ Z Z V73/2€(Q72m+i)’d)\ (2.14)
0 K<m<M v>1 ve Q
m=a (Q) U(m)<v<V(m)
I > m_1/2/1(min(K “)+ @ )d)\
2 - T I
K<m<2K 0 Al VeK
1
I = > m'? / S (Bum\NE)+ Eym(\N))dX - (2.15)
K<m<2K 0 v>1

U(m)<v<V(m)

Apparently Iy < cKY2te +Q /+v/c. Observing that for any real number H,

/1 a < KW/ d/\+/ _a
0 |A— H|+/A/K o<a<t /) A I A — H]|

A\—H|<K—1

< logK,
we infer that I3 < QK¢ by (2.9), (2.12) and (2.15), hence
K+ Q 'I; < cK'V/** 4 Q/ e < K'?+Q)e. (2.16)

Finally we estimate I. Interchanging the summations, the double sum in (2.14)
equals
b A2
Y ()Y e(Q—Qm) (2.17)

Q ve
v>1 mel
U(K)<v<V (M)

where m runs over the arithmetic progression Z = {m =a (mod Q) : X <m <Y},

with

c(v—1/2)
QA

It is not hard to show that for any o € Z and ¢ € R,

c(v+1/2)

K < X = max{K,( )

2K}, Y = min{M, ( 2N} < 2K.

Y eng) < min(l + |z — o] /Q, |sin(xQg)| ).

n<x
n=a(Q)
Applying it to (2.17), it follows that the double sum (in (2.14)) is
2)\2
—3/2 . K . Q -1
< E v min (K, |sin(m o2 ) ).

v>1
U(K)<v<V(M)



We conclude that

1 2
L < jﬁ ;g; V‘g/Zan(Kl]sHﬂ%%%;AQN‘l))XdA
U(K)<v<V(M)

< log K. (2.18)

The last line follows from Q?/(vc?) < 1 and the estimate

a—+1

1
/)\min(K,]sin(wa)\z)\_l)d)\ <

/2
/ min (K, |sinu| ') du < log K
0 0

for any a > 1. This completes the proof in view of (2.7), (2.13), (2.16) and (2.18).
Remark: In view of (2.16), it is possible to get a better upper estimate in Lemma 2.1,

but we take this for simplicity.

Lemma 2.2 Let B be a fixed positive number. Let H > 2B + 4 be any large number.
Suppose a, 3 € C satisfy Rea, Re 5 € [-B, B]. Then,

I'H+ 6+ «)
I'(H + B)

where 0 < € < 1 s arbitrary and the implied constant depends on € and B.

<o (18] + 1D)(H + 8% ([Tm o + 1)1/2¢rlimal/2

Proof. Firstly we note that for any o, t € R with |o| < B,

T(H + o +it)

T(H + it) <p (H +t)°, (2.19)

with the implied constant uniform in ¢. This is done by applying Stirling’s formula (see
(A.33) in the appendix of [2]) to Re (logT'(H + o +it) — logT'(H + it)).

It is known that for Rex and Rey > 0, I'(x)['(y)/T'(z + y) fo t*= (1 —t)vy—tdt,
see [2, (A.31)]. Let a = Rea + €. Then,
(H+ﬁ+0[ a—a / aal H+pB+a—-1
| T(H + 3+ a) =]/ —t) U
! ['(H + Re (8 + a))
= /0 (1-19) T(H 1 Refta) L ©

Multiplying both sides by |I'(H + 8+ a)|/|I'(H + 8)I'(a — «)| gives
F(H+ﬂ+oz)<< I'(H+Re(B+a)T((H+ Rel)+a+ilmp)
I'(H + ) CT(H+ReB+a) T((H+RepB)+ilmp)

By (2.19), the first two fractions on the right are respectively <. H®*~¢ and (H +
|3])?, which is < (H(|8] + 1))*%¢*(H 4 |8])%¢*. Our result follows after evaluating
the last Gamma factor with [2, (A.34)] — for |o] < 1 and || > 1,

IT(e —iIma)| ™t

IT(0 +it)| = [¢]7~Y/2e7IH/2, (2.20)



Remark: From Lemma 2.2 and (1.3), it follows that L(f ® x, —e+it) < (k+[t])**.
Then Phragmén-Lindel6f theorem yields the convexity bound

L(f @ x,1/2+it) <. (k+ [t])Y/?+e (2.21)

3. Proof of Theorems. We assume 1/2 < Res < 1. Given any number A > 0,
we set Ag = (2+35+ A)/d (> 3+ A) where 0 < § < 1 is a parameter to be chosen at

our disposal. Then we consider the integral

s [ A2t WG e G = LTl

Here the contour R is the positively oriented rectangle with vertices at +2 + ¢7T'.
Inside the strip —Ag < Rew < Ap, G(w) has only one simple pole at w = 0 and by
(2.20), we have the rapid decay of G(w) along Im w,

G(w) < w7 (|Imw]| + 1)2A0—te=mlmwl (3.1)

which assures the damping down of the Gamma factors from A(f ® x;, -), see (3.4).

Now we apply the residue theorem to express L(f®x, s) as a convergent series. From
[3, Theorem 7.6], A(f ® x,-) is bounded and R is inside the strip —Ay < Rew < Ap.
We take T' — oo, and apply the functional equation (1.3) to get

(D/(2m))*T(s + (k = 1)/2)L(f @ x; 5)
1

1 _
= 5= (Q)A(f®X,S—i—w)G(w)dw—|—ek(X)2ﬂ_i/(Z)A(f®x,1—S—l—w)G(w)dw.

With (1.2), this leads to

[ee} [e.e]

prexs = 3 Oy )4y MOy ) 3
n=1 n=1
where
1 D\"P " Tz+w+(k-1)/2) _,

Observing [I'(z +w + (k—1)/2)| = |T((k —1)/2+ s + (W + Re (z — s)))| for the case

z=1—s, Lemma 2.2 implies that for z = s or 1 — s, and |Re w| < Ay,

T(z+w+ (k—1)/2)
T(s+ (k—1)/2)

Ley |8k + s (JIm | + 1)1/2emtmel/2 - (3.4)

10



for all large enough k(> 249 +4). In view of (3.1) and (3.4), we obtain by moving the
line of integration to Rew = o € (0, Ag) that as D7 < D(k)7 < 4, k¢,

V(y) oo (Bls) Y7 (k + |s)7HReCEe), (3:5)
Moreover, shifting the integral path to Rew = —A — 1 > — Ay, we obtain by (3.4),

v = () TSNS owttie iy o

The first term comes from the simple pole of G(w).

We truncate the series in (3.2) and estimate the contribution of the tails. By (3.5)
with Re s < 0 < Ap and (1.1), the tails of the sums in (3.2) are

< (k[sD(k+s])7 Y d(nyn~(Festo)
n>N

+ (k|8|)e(l{i + |8|)172§?es+0 Z d(n)nf(lfﬂ%eera)
n>N

< (kls|)*(log N) ((k + |s])7 N1 =HRes=0 4 (g  |s]) 12 Resto yRes—o)
< (Kls])“(k + [s])7 N+~ log N. (3.7)
The last estimate is a bit loose but convenient for later calculation. Note also that for

Res > 1/2, Res+ o0 >1—Res+ o > 1 which is needed for the convergence of (3.7).
With the choice N = k9 (for the same § as above), it follows from (3.2) that

Lfoxs = Y MOy,

n§k1+5
Ar(n)x(n
vato Y MOy ) pBgar @)
n
n§k1+6
where E(|s|, k) < (k|s|)<(k 4 |s|)7k(1FDFes=9) and Re s < o < Ay.

To prove Theorem 1, we choose 6 = (A+1)/(A+1+-¢), so 0 is quite close to 1. (Small
e is assumed.) Choosing o = (A+e+(149)Re s)/d, then Res < 0 < 2Re s+A+3e < Ay

and 0 + (14 6)(Res — o) = —A — €. Hence

E(|s|, k) < (k[s|)(1+ (|s|/k)7) k7T < s e(1 4 (|s] /)RR~ (3.9)
Summing over f € By, we obtain by (2.1)

ST wiL(f@x.s) = Vi(1)+elx)Vios(1)

feBy
_kz +k()()vls()>
n<kl+s
X Zc (1,n,c)Jx— 1(47T;/ﬁ)+E(|s|,k).
c>1

11



(Note that >, wy < 1 by (2.6).) From (2.5), we see that for n < k1o,
Je_1(dmy/njc) < 2k~ (A=0k/2=1
Also, Vi(n),Vi_s(n) < (k|s|)?*n~¢ by (3.5) with ¢ = ¢, the double sum above is hence

Led ‘8‘262kk7(176)k/2 Z nflfe Zd(c)cf3/2 < |S|2eka’
n<klt+s c>1
with (2.2), for sufficiently large k > ko(e, A). By (3.6) and (3.9), we obtain

ST wrL(f @ x,5) = Va(1) + e (x)Vizs(1) + E(|s], k)
fEBk

— 1+elx )(

D\1-25T(1 — s + (k — 1)/2)
277) T(s+ (k—1)/2)

after replacing € by €/4. This completes the proof of Theorem 1.

+O(Is[(1+ (|l /k)*Fe R4

Next we prove Theorem 2 and let s = 1/2 + it. It suffices to consider the case
|t| < k'/2, for otherwise, L(f ® x,1/2 + it) < [t|**€ by (2.21) and Theorem 2 follows
immediately with (2.6).

We shall take § = € (close to 0) and fix A =1, so Ap = 1+ 3/J which is very large.
For s = 1/2 + it (< kY?), the last term of (3.8) is E(|s|,k) <5 (k|s|)¢ by selecting
o=0":=(1+0)/(20) € (0, Ap), i.e. ' +(146)(1/2—0") = 0. For simplicity, we write

)V

Wa(m,n) Vi(m)Vy(n) = Vi(m)Vs(n), that is,
B D(k/2 + it +w)T(k/2 — it +wy) [ D\
Wolmn) = e /a>/ T(k/2 + it) 2 o
x G(w1)G(wg)m~ Wt p=(w2=1) gy du, (3.10)
and denote
x(m)x(n)
Skl* = > W (mn) Y wpdp(m)Ag(n). (3.11)
K<mn<2K mn feBL

Apparently, we can shift the line of integration in (3.10) to conclude W, = W, for any
0 <o < Ag. By D < k¢ and again |s| < k'/2,

Wy (m,n) <q e (mn) k2T, (3.12)

We divide the sums in (3.8) of the form ) 116 iNt0 Y jeor p14s D gep<ox Where

K runs over all powers of two in [271, k'*%). Cauchy-Schwarz inequality implies
| Y oneits [P <1ogk Yk or pivs | Do gen<ox |°- Hence, we obtain by (3.8),

S wilL(f@x,1/2+it))> < > [Skl*logh + k> (3.13)
feBy K=2r<[1+6

12



In view of (3.11), it follows by (2.1) that

|SK|2 — Z |X(;L)|

K<n<2K

vt S y(mye(n) L) 5 SO g ATV, (g 4y

v mn
K<mmn<2K c>1

2

Wy (n,n)

Taking o = € in (3.12), the first sum in (3.14) is < k. When K < k'~ we take 0 = 1
in (3.12) and obtain by (2.5),

YooY < BPEErETORY YT (mn) 2D d(e)et

K<mn<2K c>1 mn<kl—20 e>1

< k! (3.15)

for all sufficiently large k > ko(d). It is enough for our purpose.
It remains to consider the range k'=20 < K < k. Similarly to (3.15), one can

see (with 0 = 1) that the contribution from large ¢ is negligible,

)/ 8akd b
Z Z <« jHE Z (mn)—3/2zd\([c)<80k )k 1

K<mn<2K ¢>k3% m,n<kl+s c>k30
< (8m)FEMOETOR « kL (3.16)

The remnant of the double sum in (3.14), which we need to consider, is

S Y <+t Y Z‘Wiﬁ%n)”s(m’cn’cﬂ (3.17)

K<mn<2K c<k396 K<mn<2K c<k3d

by (2.4). Writing fmn(0) = 4rc=ty/mnsing — (k — 1), J is given by

J = (m)x(n)——=——
K<m,zn§21< o vmn

S(m,n,c m/2—k .
Xy (C)/ exp(ifmn(0)) d6, (3.18)
c<k36 0

the treatment of which is the main difficulty in the proof. The other summand can be
easily handled: by (3.12) with o = ¢, the second term on the right side of (3.17) is

< k¥ Z (mn)*l/2 Z d(c)cfl/2

K<m,n<2K c<k38
< KEO2 og ke < EA0+3e, (3.19)
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To deal with 7, the periodicity of S(-,-,¢) and x(-) enables us to express (3.18) as

J = Y ¢ 'Sla,ane) Y x(B)X(B2)

c<k3S 61,82 (D)
aq,ag (c)

W.(m,n) [™/27+" 2\/ —i(k—1)0
x Felm,n) e n)e o (3.20)

K<m,n<2K

where the condition (%) denotes m = a; (¢), m = 1 (D) and n = a2 (¢), n = [
(D). The congruence system m = «; (¢) and m = (; (D) is solvable if and only if
(¢, D)|(a1 — B1). Assume (¢, D)|(a1 — f1). The solution is given by m = 1 (cd) for
some v where d = D/(c¢, D). Similarly, the system n = «as (¢) and n = (2 (D) is given
by n = 72 (ed) for some 7,. Hence, with (3.10) we can write the sum over m, n in
(3.20) into

D(k/2 4+ it + wi)T(k/2 — it + w2)
(e) J(e) ‘F( /2+Zt)’2
w1+w2
X <2 ) H(wl,UJQ)G(wl)G(’LUQ) dwldwz (3.21)
7T

where H(wi,w2) denotes the integral

C

m/2—k—48
/ / Z m71/27it7w1n71/2+it7w26(2\/ mn sin 9)671(1%1)9 do
0

K<m,n<2K
m=y1,n=73 (cd)

with d = D/(c, D). Substituting A\ = sin#, we have df = (cos0)~'d\ = O(k*) d\ as
0<6<m/2—k* and hence

’LUl,wg

. . 2\
< k45/ ‘ Z m_1/2_”_w1n_1/2+’t_w26(—\/fr%) d\

&
K<m,n<2K
m=y1,n=v2 (cd)

< (lwi] + [t)(Jwa] + |t DR FRelerte)

by Lemma 2.1 and d < D. This gives by Lemma 2.2 and our choice of G(w) that the
integral in (3.21) is < DE*2¢(|t| + 1)>+4¢. Substituting into (3.20), we obtain

T < D3k45+2€(‘t‘ +1)2+46 Z C—l Z ]S(al,ag,c)] < k126+26(‘t‘ +1)2+4e

c<k3d a1,z (c)

by (2.2) and logD = o(logk). Together with (3.19), we see that the right-side of
(3.17) has an upper bound in the above fashion. In view of (3.14) and (3.15), |Sk|? <
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E120+2¢(|¢ 4+ 1)2F4€ for all K < k', Our result follows from (3.13) by the choice § = ¢
and then €/15 in place of e.

1]

[6]
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