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Abstract. For a complex semisimple Lie group G and a real form G0 we define a
Poisson structure on the variety of Borel subgroups of G with the property that all G0-
orbits in X as well as all Bruhat cells (for a suitable choice of a Borel subgroup of G)
are Poisson submanifolds. In particular, we show that every non-empty intersection of a
G0-orbit and a Bruhat cell is a regular Poisson manifold and we compute the dimension
of its symplectic leaves.

Dedicated to Alan Weinstein on

the occasion of his 60th Birthday.

1. Introduction.

Let G be a connected and simply connected complex semisimple Lie group with Lie

algebra g, and let X be the variety of Borel subalgebras of g. In this paper we use a

real form g0 of g to define a Poisson structure on X. This Poisson structure depends on

a choice of a Borel subalgebra b of g such that g0 ∩ b is a maximally compact Cartan

subalgebra of g0. Instead of dealing with each real form individually, we fix a Borel

subalgebra b of g and a Cartan subalgebra h ⊂ b. Then, as is shown in [6], a real from gv

of g can be constructed from each Vogan diagram v for g such that gv ∩ b is a maximally

compact Cartan subalgebra of gv. The corresponding Poisson structure on X is denoted

by Πv.

Let Gv be the real form of G corresponding to gv, and let B be the Borel subgroup of G

with Lie algebra b. The Poisson structure Πv has the property that each Gv-orbit as well

as each B-orbit in X is a Poisson submanifold. The B-orbits in X will be referred to as

the Bruhat cells. We compute the rank of Πv. In particular, if Gv-orbit O meets a Bruhat

cell C, they intersect transversally, and we find that all the symplectic leaves in O ∩ C
have the same dimension, so O∩C is a regular Poisson manifold. Moreover, we show that
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all symplectic leaves in each connected component of O ∩ C are translates of each other

by elements of a Cartan subgroup of Gv. We also show that the Gv-invariant Poisson

cohomology for each open Gv-orbit in X is isomorphic to the de Rham cohomology of X.

Throughout this paper, if V is a set and σ is an involution on V , we will use V σ to

denote the fixed point set of σ in V .

2. Real forms of g and Vogan diagrams

Let g be a complex simple Lie algebra. In this section we recall the classification of real

forms of g by Vogan diagrams. Details can be found in [6, Chapter 6].

Suppose that g0 is a real form of g and that τ0 is the corresponding complex-conjugate

linear involution on g. Let θ0 be a Cartan involution of g0, and let h0 be a θ0-stable

maximally compact Cartan subalgebra of g0. Set t0 = hθ0
0 and a0 = h−θ0

0 so that h0 =

t0 + a0. Let γ0 be the complexification of θ0. Then the Cartan subalgebra h = h0 + ih0

of g is γ0-stable. Let ∆ be the root system for (g, h). Since h0 is a maximally compact

Cartan subalgebra of g0, there exists x0 ∈ it0 that is regular for ∆. Define the subset

∆+ of positive roots in ∆ by α ∈ ∆+ if and only if α(x0) > 0. Then γ0(∆
+) = ∆+.

Let Σ ⊂ ∆+ be the set of simple roots in ∆+. Then γ0(Σ) = Σ, so γ0 gives rise to an

involutive automorphism of the Dynkin diagram of g. Let I be the set of non-compact

imaginary simple roots. The Vogan diagram of g0 associated to the triple (θ0, h0, ∆
+) is

the Dynkin diagram D(g) of g together with an involutive automorphism γ0 on D(g) and

the vertices corresponding to the simple roots in I painted black.

In general, a Vogan diagram for g is defined to be a triple (D(g), d, I), where D(g) is

the Dynkin diagram of g, d is an involutive automorphism of D(g), and I is a subset of

vertices of D(g) such that d(α) = α for each α ∈ I. Every Vogan diagram for g comes

from a real form of g (see below), although two different Vogan diagrams can come from

isomorphic real forms. A non-redundant list of Vogan diagrams with the corresponding

isomorphism class of real forms for all simple Lie algebras is given in [6]. Every Vogan

diagram in the list in [6] is normalized in the sense that at most one vertex is painted

black.

For the purpose of defining Poisson structures on the variety of Borel subalgebras of

g, we now recall the explicit construction of a real form of g from a Vogan diagram [6,

Theorem 6.88]. We need to fix the following data for g.

Choose a Cartan subalgebra h of g and let ∆ be the root system for (g, h). Fix a choice

of positive roots ∆+ and let Σ be the basis of simple roots. Let ¿, À be the Killing

form of g and let root vectors {Eα : α ∈ ∆} be chosen such that [Eα, E−α] = Hα for

each α ∈ ∆+, where Hα is the unique element of h defined by ¿ H, Hα À= α(H) for all

H ∈ h, and such that the numbers mα,β given by [Eα, Eβ] = mα,βEα+β when α + β ∈ ∆
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are real. Define a compact real form k of g as

k = spanR{iHα, Xα := Eα − E−α, Yα := i(Eα + E−α)} ,

and let θ be the complex conjugation of g defining k. If d is an involutive automorphism

of the Dynkin diagram of g, define γd to be the unique automorphism of g satisfying

γd(Hα) = Hd(α) and γd(Eα) = Ed(α) for each simple root α.

Given a Vogan diagram v for g, not necessarily normalized, with the involutive diagram

automorphism d, let tv be the unique element in the adjoint group of g such that

Adtv(Eα) =

{
Eα if α is a blank vertex in v

−Eα if α is a painted vertex in v

Define a complex conjugate linear involution

τv := Adtv ◦ γd ◦ θ.

Notation 2.1. We use gv = gτv to denote the real form of g defined by τv. Set θv = θ|gv .

Then θv is a Cartan involution of gv, and hτv is a θv-stable maximally compact Cartan

subalgebra of gv, with h = hτv + ihτv . The complexification of τv is

(2.1) γv := τvθ = θτv = Adtvγd.

Since γv(∆
+) = ∆+, the Vogan diagram of gv associated to the triple (θv, h

τv , ∆+) is v.

One of the advantages of introducing the real form gv is as follows. We say that a real

subalgebra l of g is Lagrangian if its real dimension is equal to the complex dimension

of g and if Im ¿ x1, x2 À= 0 for all x1, x2 ∈ l. A decomposition g = l1 + l2 is called a

Lagrangian splitting if both l1 and l2 are Lagrangian. Let n be the subalgebra of g spanned

by the set of all positive root vectors for ∆+. The following fact is easy to prove.

Lemma 2.2. Let ld := h−τv + n. Then g = gv + ld is a Lagrangian splitting of g.

Let a = spanR{iHα : α ∈ Σ}, and let t = ia. We note that since

h−τv = h−γd◦θ = t−γd + aγd ,

the Lagrangian complement ld of gv depends only on d, and in the case when d = 1, we

have ld = a + n. Note that hτv = hγd◦θ = tγd + a−γd also depends only on d.

Remark 2.3. Recall [2, Definition 6.10] that two real forms τ1 and τ2 are said to be

in the same inner class if there exists g ∈ Int(g), the adjoint group of g, such that

τ1 = Adgτ2. Inner classes of real forms are in one-to-one correspondence with involutive

automorphisms of the Dynkin diagram of g [2, Proposition 6.12]. Let d be an involutive

automorphism of D(g). Then as v runs over the collection of all Vogan diagrams with d

as the diagram automorphism, the real form gv runs over all Int(g)-conjugacy classes of

real forms of g in the inner class corresponding to d.
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3. The Poisson structure Πv on X.

Let g be a complex semi-simple Lie algebra, and let X be the variety of all Borel

subalgebras of g. We keep the notation from Section 2. Let v be a Vogan diagram for

g and gv = gτv be the real form of g constructed in Section 2. Let G be the connected

and simple connected Lie group with Lie algebra g. Without any risk of confusion, we

shall also denote by τv the lift of τv from g to G, and we set Gv = Gτv . It follows from [5,

Theorem 8.2, p. 320] that the group Gv is connected.

In this section, we will start with a Vogan diagram v for g and define a Poisson structure

Πv on X such that every Gv-orbit in X is a Poisson submanifold. This Poisson structure

comes from an identification of X with the G-orbit through t + n inside the variety L of

Lagrangian subalgebras of g, which was studied in [3]. We now recall the relevant details.

Set n = dimCg and let GrR(n, g) be the Grassmannian of real n-dimensional subspaces

of g. The set L of all Lagrangian subalgebras of g is naturally a real subvariety of GrR(n, g).

The natural action of G on GrR(n, g) gives rise to a Lie algebra anti-homomorphism κ

from g to the Lie algebra of vector fields on GrR(n, g), whose extension from ∧2g to the

space of bi-vector fields on GrR(n, g) will also be denoted by κ. Given a Lagrangian

splitting g = l1 + l2, we define the element Rl1,l2 ∈ ∧2g by:

(3.1) 〈Rl1,l2 , (x1 + ξ1) ∧ (x2 + ξ2)〉 = 〈ξ2, x1〉 − 〈ξ1, x2〉, x1, x2 ∈ l1, ξ1, ξ2 ∈ l2,

where 〈 , 〉 = Im ¿ , À. Set Πl1,l2 = 1
2
κ(Rl1,l2). Clearly, Πl1,l2 is tangent to every G-orbit

in GrR(n, g), so it is tangent to L.

Theorem 3.1. [3, Theorems 2.14 and 2.18] The bi-vector field Πl1,l2 restricts to a Poisson

structure on L. If L1 and L2 are the connected subgroups of G with Lie algebras l1 and

l2 respectively, then all the L1- as well as L2-orbits in L are Poisson submanifolds with

respect to Πl1,l2.

For l ∈ L, let n(l) be the normalizer subalgebra of l in l1. Let m(l) be the annihilator

of n(l) in l, i.e. m(l) = {x ∈ l : 〈x, y〉 = 0 ∀y ∈ n(l)} ⊂ l, and let V(l) = n(l) + m(l).

Proposition 3.2. [3, Theorem 2.21] [9, Corollary 7.3] For each l ∈ L, the space V(l) is

a Lagrangian subalgebra of g. The co-dimension of the symplectic leaf of Πl1,l2 through l

in the orbit L1 · l is equal to dim(V(l) ∩ l2).

Notation 3.3. Let v be a Vogan diagram for g. We denote by Πv the Poisson structure

on L defined by the Lagrangian splitting g = gv + ld in Lemma 2.2. Let H, N , and B

be respectively the connected subgroups of G with Lie algebras h, n, and b = h + n, so

B = HN . Identify the G-orbit through t + n ∈ L with G/B ∼= X. The induced Poisson

structure on X will also be denoted by Πv. Let H−γd◦θ = {h ∈ H : γd ◦ θ(h) = h−1} and

let Ld = H−γd◦θN . By the Bruhat lemma, orbits of Ld in X ∼= G/B, which are the same
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as the N -orbits in X, are labeled by the elements in the Weyl group W of ∆. We refer

to these N -orbits as the Bruhat cells in X.

By [3, Theorem 2.18], we have

Proposition 3.4. Each Gv-orbit in X as well as each Bruhat cell in X is a Poisson

submanifold with respect to Πv.

When v is the Vogan diagram with d = 1 and no vertex painted, we have τv = θ, so

gv = k. The Poisson structure Πv in this case was first introduced in [11] and [13], and it

has the property that its symplectic leaves are precisely the Bruhat cells (hence the name

“Bruhat Poisson structure” in [11]). In [3] and [10] this Poisson structure was related to

some earlier work of Kostant [7] and of Kostant-Kumar [8] on the Schubert calculus on

X.

The splitting g = gv + ld naturally defines a Lie bialgebra structure on gv and therefore

a Poisson Lie group structure on Gv [11]. All the Gv-orbits in L become Gv-Poisson

homogeneous spaces [3, 9]. We remark that in [1], Andruskiewitsch and Jancsa classified

non-triangular Lie bialgebra structures on gv using Belavin-Drinfeld triples. The one

defined by the splitting g = gv + ld comes from the standard Belavin-Drinfeld triple. We

refer to [1] for details.

Example. Here we take g = sl(2,C) and

gv = su(1, 1) =

{(
ix y + iz

y − iz −ix

)
: x, y, z ∈ R

}
.

Then d = 1 and ld = a + n consists of upper triangular matrices in sl(2,C) with real

diagonal entries. Identify G/B with P1 via the action
(

a b
c d

)
· [w0 : w1] = [aw0 + bw1 : cw0 + dw1]

of G on P1 and by taking [1 : 0] ∈ P1 as the basepoint. There are two Bruhat cells: the

zero-dimensional basepoint [1 : 0], and the other being the rest:

U1 = P1\{[1 : 0]} = {[w0 : w1], w1 6= 0}.
In terms of the holomorphic coordinate z on U1 given by z = w0/w1 the Poisson structure

Πv, up to a scalar multiple, is given by:

Πv = i(1− |z|2) ∂

∂z
∧ ∂

∂z̄
.

Setting u = 1/z, we see that in the u-coordinate on the open set

U0 = {[w0 : w1] ∈ P1, w0 6= 0} = {[1 : u], u ∈ C},
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we have

Πv = i(|u|2 − 1)|u|2 ∂

∂u
∧ ∂

∂ū
.

Thus Πv vanishes precisely at the basepoint [1 : 0] and at every point of the form [z : 1]

with |z| = 1. If we identify P1 with the unit sphere S2 in R3 via:

(3.2) P1 −→ S2 : [w0, w1] 7−→
(

2Re(w0w1)

|w0|2 + |w1|2 ,
2Im(w0w1)

|w0|2 + |w1|2 ,
|w0|2 − |w1|2
|w0|2 + |w1|2

)
,

then we see that Πv vanishes at the “North pole” (0, 0, 1) and at every point on the

Equator x3 = 0. Under this identification, there are exactly three orbits of SU(1, 1) on

S2: the Northern hemisphere, the Equator, and the Southern hemisphere. Each one of

these three orbits is clearly a Poisson submanifold.

4. Symplectic leaves of Πv in X.

Suppose that O is a Gv-orbit in X and C is a Bruhat cell such that O ∩ C 6= ∅. Since

g = gv + ld, O and C intersect transversally. By Proposition 3.4, O ∩ C is a Poisson

submanifold of Πv. In this section we show that (O∩C, Πv) is a regular Poisson manifold

and we compute the dimension of its symplectic leaves.

It is well-known [14] that there are only finitely many Gv-orbits in X. We first recall

from [12, Section 6] some facts about these orbits.

Let NG(h) be the normalizer subgroup of h in G. Set

Z = {g ∈ G : g−1τv(g) ∈ NG(h)}.
Then H acts on Z from the right by right multiplication, and Gv acts on Z from the left

by left multiplication. Let Z be the double coset space

Z = Gv\Z/H.

For each z ∈ Z, choose any gz ∈ Z in the double coset z and define Oz to be the Gv-orbit

in X through gzB ∈ X ∼= G/B. Clearly, Oz is independent of the choice of gz. According

to [12, Theorem 6.1.4], the map z 7→ Oz is a one-to-one correspondence between the set

Z and the set of Gv-orbits in X. Let W = NG(h)/H be the Weyl group. Thus we also

have the map

ϕ : Z −→ W : z = GvgzH 7−→ g−1
z τv(gz)H ∈ W.

According to [12, Theorem 6.4.2], the codimension of the Gv-orbit Oz in X equals l(ϕ(z)),

where l is the length function on the Weyl group W . We also introduce the map:

σz = ϕ(z)τv : h −→ h.

For any gz in the double coset z, we also have σz = Ad−1
gz
◦τv ◦Adgz , so σz is an involution.
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Assume now that z ∈ Z and w ∈ W are such that Oz ∩Cw 6= ∅, where Cw is the Bruhat

cell in X corresponding to w, i.e. the N -orbit through w ∈ G/B. Then dimRCw = 2l(w),

and since Oz and Cw intersect transversally, we have

dim(Oz ∩ Cw) = 2l(w)− l(ϕ(z)).

Define now

δz,w = dim(hwσzw−1 ∩ h−τv).

Theorem 4.1. Each symplectic leaf in the intersection Oz ∩ Cw has dimension equal to

dim(Oz ∩ Cw)− δz,w = 2l(w)− l(ϕ(z))− δz,w.

Proof. We use Proposition 3.2 to compute dimensions of the symplectic leaves in Oz∩Cw.

Let x = gzB ∈ X be a point in Oz ∩ Cw, where gz ∈ Z lies in the double coset z. Let

lx = Adgz(t + n) ∈ L. Let n(lx) = gv ∩ Adgz(h + n) be the normalizer subalgebra of lx in

gv, m(lx) the annihilator subspace of n(lx) in lx, and V(lx) = n(lx)+m(lx). We claim that

V(lx) = Adgz(h
σz + n). Indeed, it follows from the definition of σz that

Adgz(h
σz) ⊂ gv ∩ Adgz(h + n) = n(lx) .

It is also clear that Adgzn ⊂ m(lx), so

Adgz(h
σz + n) ⊂ n(lx) + m(lx) = V(lx) .

Since both Adgz(h
σz + n) and V(lx) have the same dimension, they must coincide.

Let now Sx be the symplectic leaf of Πv in X through x. By Proposition 3.2, the

codimension of Sx in Oz is equal to dim(V(lx)∩ ld). Let ẇ ∈ NG(h) be a representative of

w in K. Since x ∈ Cw, there exist n ∈ N and b ∈ B such that gz = nẇb. Then we have

V(lx) ∩ ld = (Adnẇb(h
σz + n)) ∩ (h−τv + n)

= Adn

(
(Adẇ(hσz + n)) ∩ (h−τv + n)

)

= Adn

(
hwσzw−1 ∩ h−τv + (Adẇn) ∩ n

)
,

where in the last line we have the direct sum of vector spaces. Since

dim(Adẇn) ∩ n = dimRX − dimRCw ,

we have

dim(V(lx) ∩ ld) = δz,w + dimRX − dimRCw ,

and thus

dimSx = dimOz − dim(V(lx) ∩ ld) = dim(Oz ∩ Cw)− δz,w.

¤
Note, that the number δz,w depends only on d and the two Weyl group elements ϕ(z)

and w. Define d : W → W by d(w) = γdwγd. Following [12], we say that w ∈ W is a
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d-twisted involution if d(w) = w−1. Denote by Id the set of all d-twisted involutions in

W . Clearly, every ϕ(z) is in Id. The Weyl group W acts on Id by

w1 ∗ w = w1wd(w−1
1 ) for w1 ∈ W, and w ∈ Id ,

and the set ϕ(Z) ⊂ Id is W -invariant. In fact, the W -action on G/H, given by w · gH =

gw−1H, commutes with the left action of Gv by left multiplication, and thus induces a

left action of W on Z, which we denote by w · z for w ∈ W and z ∈ Z. It is also easy to

see that ϕ : Z → W is W -equivariant, i.e. ϕ(w · z) = w ∗ ϕ(z) for all w ∈ W and z ∈ Z.

Similarly, the involution τv : G → G gives rise to an involution on Z which depends only

on d. Denote this involution by z → d(z). Then we also have ϕ(d(z)) = dϕ(z) = ϕ(z)−1.

As maps on h, we see that wσzw
−1 = (w ∗ ϕ(z))τv. Thus we also have:

δz,w = dim(h(w∗ϕ(z))τv ∩ h−τv).

Corollary 4.2. 1) When w ∗ ϕ(z) = 1, symplectic leaves of Πv in Oz ∩ Cw are precisely

its connected components.

2) Every open orbit Oz has an open symplectic leaf Oz ∩ Cw0, where w0 is the longest

element in W ;

3) If d = 1, symplectic leaves in an open orbit Oz are precisely the connected components

of intersections of Bruhat cells with Oz.

Proof. 1) When w ∗ ϕ(z) = 1, we have δz,w = 0, so every symplectic leaf in Oz ∩ Cw is

open in Oz ∩ Cw.

2) Since Cw0 is dense in X, it intersects with every open orbit Oz. Since an orbit Oz is

open if and only if ϕ(z) = 1, statement 2) follows from 1) and the fact that w0 commutes

with d. The fact that Cw0 ∩ Oz is connected follows from the observation that Oz is a

connected open complex submanifold of X and thus Oz ∩ (X \ Cw0) is a divisor in Oz.

3) follows directly from 1). ¤

Consider now the group Hτv = H∩Gv. The Poisson structure Πv on X is Hτv -invariant.

Indeed, let R ∈ ∧2g be the element given in (3.1) for l1 = gv and l2 = ld. We can also

represent R as R =
∑

i ξi ∧ yi, where {yi} is a basis of gv, and {ξi} is the dual basis of

ld with respect to the pairing between gv and ld given by 〈 , 〉, the imaginary part of the

Killing form on g. If h ∈ Hτv , then {Adhyi} is a basis of gv, and {Adhξi} is its dual basis.

Thus AdhR = R. It follows that the Poisson structure Πv on X is Hτv -invariant.

Assume now that z ∈ Z and w ∈ W are such that Oz ∩ Cw 6= ∅. Clearly, Hτv leaves

Oz ∩Cw invariant. Since the Poisson structure Πv is Hτv -invariant, if Sx is the symplectic

leaf of Πv through x, then hSx := {hx1 : x1 ∈ Sx} is the symplectic leaf of Πv through
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hx. Let Hτv
0 be the identity connected component of Hτv , and for x ∈ X define:

Fx :=
⋃

h∈Hτv
0

hSx .

Proposition 4.3. For any x ∈ X, the set Fx is a connected component of Oz ∩ Cw.

Proof. It is easy to see that if Fx1 ∩ Fx2 6= ∅, then Fx1 = Fx2 . The statement would

follow once we prove that Fx is an open subset of Oz ∩ Cw for each x.

Let x = gzB ∈ Oz ∩ Cw with gz ∈ Z in the double coset z. For y ∈ hτv , let Xy

be the vector field on X generating the action of exp(ty) ∈ Hτv
0 on X. We claim that

Xy(x) ∈ TxSx if and only if y ∈ p(h(w∗ϕ(z))τv), where p : h → hτv is the projection with

respect to the decomposition h = hτv + h−τv . Assume the claim. Then since the kernel of

the map p : h(w∗ϕ(z))τv → hτv has dimension dim(h(w∗ϕ(z))τv ∩ h−τv) = δz,w, the image of

the map

Jx : hτv −→ TxOz/TxSx : y 7−→ Xy(x) + TxSx

has dimension equal to dim(hτv)− dim(h(w∗ϕ(z))τv) + δz,w = δz,w. Thus Jx is onto, and the

Hτv
0 -orbit in Oz ∩Cw through x is transversal to the symplectic leaf Sx. It follows that Fx

is open in Oz ∩ Cw.

It remains to prove the claim. Denote also by p : g → gv the projection with respect to

the decomposition g = gv + ld, and let q be the projection q : gv → gv/gv∩Adgzb
∼= TxOz.

Then by [9, Corollary 7.3], we have TxSx = (q ◦ p)(V(lx)), where, as in the proof of

Theorem 4.1, V(lx) = Adgz(h
σz + n). Let y ∈ hτv . If Xy(x) ∈ TxSx, then there exist

y1 ∈ ld and y2 ∈ gv with y1 + y2 ∈ V(lx) such that y − y2 ∈ gv ∩ Adgzb ⊂ V(lx). Thus

y+y1 = y−y2+y1+y2 ∈ V(lx). Write y1 = ξ1+u1, where ξ1 ∈ h−τv and u1 ∈ n. Then there

exist ξ2 ∈ hσz and u2 ∈ n such that y + ξ1 + u1 = Adgz(ξ2 + u2). Write gz = nẇb, where

n ∈ N, b ∈ B, and ẇ is a representative of w in K. Write Adn−1(y + ξ1 +u1) = y + ξ1 +u′1
and Adb(ξ2 + u2) = ξ2 + u′2, where u′1, u

′
2 ∈ n. Then we have

y + ξ1 + u′1 = Adẇ(ξ2 + u′2).

Since y+ξ1, Adẇξ2 ∈ h and u′1, Adẇu′2 ∈ n+n−, where n− = θ(n), we have y+ξ1 = Adẇξ2 ∈
h(w∗ϕ(z))τv . Thus y ∈ p(h(w∗ϕ(z))τv). Conversely, if y ∈ hτv is such that y+ξ1 ∈ h(w∗ϕ(z))τv =

Adẇhσz for some ξ1 ∈ h−τv , write y + ξ1 = Adẇξ2 for ξ2 ∈ hσz . Let Adb−1ξ2 = ξ2 + u2 for

some u2 ∈ n. We then have

Adn(y + ξ1) = Adnẇb(ξ2 + u2) ∈ V(lx).

On the other hand, let Adn(y+ξ1) = y+ξ1+u1 with u1 ∈ n. We see that y = p(Adn(y+ξ1))

so Xy(x) ∈ TxSx. ¤
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5. Invariant Poisson cohomology of open orbits.

Let Oz be a Gv-orbit in X equipped with the Poisson structure Πv. Then (Oz, Πv) is

a Poisson homogeneous space for the Poisson Lie group Gv. The Gv-invariant Poisson

cohomology of (Oz, Πv), denoted by H•
Πv ,Gv

(Oz), is defined as the cohomology of the

cochain complex (χ•Gv
(Oz), ∂Πv), where χ•(Oz)

Gv is the space of all Gv-invariant complex

multi-vector fields on Oz, dΠv(V ) = [Πv, V ], and [·, ·] is the Schouten bracket of the

multi-vector fields.

Proposition 5.1. When Oz is an open Gv-orbit in X, the Gv-invariant Poisson coho-

mology H•
Πv ,Gv

(Oz) is isomorphic to the de Rham cohomology of X.

Proof. As in the proof of Theorem 4.1, let x = gzB ∈ X be an arbitrary point in

Oz, where gz ∈ Z is in the coset z, and let V(lx) = Adgz(h
σz + n). Since Oz is open,

the stabilizer subalgebra of gv at x is gv ∩ V(lx) = Adgz(h
σz). By [9, Theorem 7.5], the

Gv-invariant Poisson cohomology H•
Πv ,Gv

(Oz) is isomorphic to the relative Lie algebra

cohomology of the Lie algebra V(lx)⊗C relative to the subalgebra (Adgz(h
σz))⊗C. Thus

the Gv-invariant Poisson cohomology is isomorphic to the h-invariant part of the Lie

algebra cohomology of the direct sum Lie algebra n ⊕ n with coefficients in C, which by

Kostant’s theorem [7], is isomorphic to the de Rham cohomology of X. ¤

6. Remarks.

We have constructed a Poisson structure Πv on X for each Vogan diagram v for g

(which is not necessarily normalized). In particular, each Bruhat cell Cw in X carries the

Poisson structure Πv. It would be interesting to study connections between the Poisson

structures for different v. Especially interesting are the properties of Πv that depend only

on the inner class d of the real form gv. We also remark that the Poisson structure Πv

is defined on the whole variety L of Lagrangian subalgebras of g. We have only been

looking at the restriction of Πv to a particular G-orbit, namely the G-orbit through the

Lagrangian subalgebra t + n. There are many other interesting G-orbits in L, such as the

G-orbit through a given real form of g. It would be interesting to study the properties of

the Poisson structure Πv on these orbits as well as on their closures with respect to both

the classical topology and the Zariski topology.
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