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ABSTRACT. In this paper, it is proved that with at most O(N%) exceptions, all even positive
integers up to N are expressible in the form p3 + p3 + pi + pS. This improves a recent result
O(N%“) due to C.Bauer.
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1. INTRODUCTION
In 1951, Roth [14] proved that almost all positive integers n can be written in the form
nzm%%—mg—i—mi—kmg,
where my, are positive integers. Later in 1953, Prachar [11] improved the above result by proving
that
n=ps+ps+pi + P (1.1)
is expressible for almost all positive even integers n. Let E(N) denote the number of even positive
integers n up to N that can not be written as (1.1). Then Prachar proved
E(N) < N(log N)~rte, (1.2)
where £ > 0 is arbitrary. In another paper [12], Prachar considered the expression

n = pi +p3 +ps + pi + v, (1.3)

and showed that all large odd integers n can be written in this way. Recently, Bauer [1] improved
(1.2) to

E(N) < Niomo <, (1.4)
Here we note that 19193/19200 > 1 — ¢ with 6 = 1/2742.

In this paper, we give the following improvement on (1.4).
Theorem 1. Let E(N) be defined as above. Let 6 = 1/66. Then we have

E(N) < N179.

By a standard argument, we deduce from Theorem 1 the second result of Prachar.

Corollary. All large odd integers n can be expressed as (1.3).

We prove Theorem 1 by the circle method. A result of this strength needs efforts in two aspects.
On one hand, we have to enlarge the major arcs, to which the Siegel-Walfisz theorem does not apply.
Usually, one treats the enlarged major arcs by employing the Deuring-Heilbronn phenomenon. Here
we attack the major arcs by a different approach, which has been successfully applied in several
other occasions, for example [8], [9], and [13]. The key point of this approach is that one can

save the factor 1y "< (see, for example, Lemma 4.2 ). With this saving, the enlarged major arcs
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can be treated by the classical zero-density estimates (see, for example, Lemma 3.3) and zero-free
region for the Dirichlet L-functions (as is defined in (4.19)). Previously, the factor ry **¢ is divided
equally to each variable (see, for example, p. 121 in [13]), and this causes some waste. In this

—a+e
0 for

paper, we develop an iterative procedure, and hence make full use of the minus power in 7,
each variable. For this, Huxley’s zero-density estimate involving arithmetic progressions is applied
(see Lemma 3.4). In addition to the iterative procedure, another advantage of our method comes
from the skilful handling of (14 |y|)~¢ in the proof of Lemma 4.1, where v is the imaginary part of
a non-trivial zero of the Dirichlet L-functions. Besides, the technique of truncating the summation
over ¢ in (4.15) is also crucial in our argument. On the other hand, in handling the minor arcs, we
employ result of Kawada and Wooley [7] to give the upper bound estimate for trigonometric sums
over primes (see Lemma 2.1). This in combination with invoking of Lemma 5 in Roth [14] leads to

a better minor arcs estimate than in Bauer [1].
We prove Theorem 1 in detail in Sections 2-6.

Notation. As usual, ¢(n) and A(n) stand for the function of Euler and von Mangoldt, respec-
tively, and d(n) is the divisor function. We use y mod ¢ and x° mod ¢ to denote respectively a
Dirichlet character and the principal character modulo ¢, and L(s, x) is the Dirichlet L-function.
We write e(r) for exp(i27r) and write L for log N with a large positive integer N. Further, r ~ R
means R < r < 2R. The symbols ¢; denote unspecified fixed constants. The letters e and A de-
note positive constants, which are arbitrarily small and arbitrarily large, respectively. We may not

distinguish cA and A for positive constant ¢. This is also applied to e.

2. OUTLINE OF THE METHOD

For large positive integer N, set
P=N’ Q=NP U+ where §=2/33+17, n=10". (2.1)

By Dirichlet’s lemma on rational approximations, each « € [1/Q, 1+ 1/Q] may be written in the

form
a=a/g+A [N <1/¢Q (2.2)

for some integers a,q with 1 < a < ¢ < @ and (a,q) = 1. We denote by 9(q,a) the set of «
satisfying (2.2), and write 91 for the union of all M(g, a) with 1 < a < g < P. The minor arcs m
are defined as the complement of 9 in [1/Q, 1+ 1/Q)]. It follows from 2P < ) that the major arcs
M(q, a) are mutually disjoint.

For k = 2,3,4,5, let

Uy = (N/32)% , (2.3)

and let

r(n) = > (logpy)- - (logps).
n:pg +p§ -&-zojlL +pg
Pr~Uk
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Define

Gil@) = ) (logple(pta),  Sp(a) = Y A(m)e(m‘a). (2.4)

p~Uyg m~Up

r(n) :/11+é2 (,f[QGk(a)> e(—na)da:/m—i-/m. (2.5)

Q

Then

To handle the integral on the major arcs, we need the following.

Theorem 2. Let N/2 <n < N. Then for all n but at most O(NP_%"‘E) exceptions, we have

5
/ (H Gk(a)> e(—na)da = &(n)I(n) + O (NtngL*A> . (2.6)
M \k=2

Here &(n) is the singular series defined by (5.1) which satisfies
(loglogn) ™ < &(n) < d(n),
for even integers n and some absolute positive constant c*; and J(n) is defined by (6.2) and satisfies

N < J(n) < Nw.

To deal with the minor arcs, we make use of the following result of Kawada and Wooley in [7].
Lemma 2.1. Let U > 2 be a real number. Suppose that « is a real number, and that there exist

integers a and q satisfying
(a,q) =1, 1<q<U? and |go—al<U 2 (2.7)

Then one has

i

e 1 1 5
Y (logple(ap’) < U+ + 4 ) Uilogl) T
U<p<2U (1+Ut|a—a/q|)?

where w(q) is a multiplicative function defined by

dutoy _ ) 4p 2, u>0, and v=1;
) {P_u_l, u>0, and 2<v<d4.

Proof of Theorem 1. By Bessel’s inequality, we have

5
Z / H Gr(a) | e(—na) da
™ \k=2

N/2<n<N
By Dirichlet’s lemma on rational approximations, for each o € m, there exist positive integers a

and ¢ satisfying (2.7). Since a € m, we conclude that ¢ > P, or ¢ < P but |ag — a| > 1/Q. So by
Lemma 2.1, we have

2 1
< sup |Ga(a)? /0 1G(0)Gs(a)Gs() da.  (2.8)

aem

31
sup |G4(a)] < Uf2+€ + U}

tepTs < UMtPTs. (2.9)
acm
3



Moreover, by Lemma 5(b) in Roth [14], one has
1
/ 1Ga(0) G (@) Gs()* da < N1+, (2.10)
0

Inserting (2.9) and (2.10) into (2.8), the right-hand side of (2.8) becomes O(N%%P_i). Therefore,
for even integers n € [N/2, N| with at most O(NPfiJFE) = O(N%) exceptions, one has the estimate

HGk —na)da <<N60 £,

This in combination with Theorem 2 and (2.5) shows that for those unexceptional n, the expression

(1.1) holds and the number of expressions satisfies
r(n) = &(n)3(n) + O(N & L~4).
The assertion of Theorem 1 now follows by summing over dyadic intervals. [
3. AN EXPLICIT EXPRESSION

The purpose of this section is to establish in Lemma 3.2 an explicit expression for the left-hand
side of (2.6).
For x mod ¢ and x° mod ¢, define

g k
am
= 2 xm ( ) L Cga) = G a). (3.1
=1
Then Vinogradov’s estimate (see for example [16], Ch.VI, problem 14b(«)) gives
ICr(x,a)| < 2q%dtk(q) with ¢, = log k/log 2. (3.2)
Define
20, 2U},
Br()) = / cOuM)du,  Up(hp) = / WLk du, (3.3)
Uk Uy
and write
Cr(q,a
vy = e 0w Z Cr(x,a) Y Ti(A,p), (3.4)
(q) 1
xmo q IyI<T

where 3. -7 denotes summation with respect to non-trivial zeros p = B+iv of L(s, x) for |y| < T
and 0 < 8 < 1. For k =2,3,4,5, we set

Ty, = P, where as=a3=3/2+4+2n, o4=a5=1+2n. (3.5)
Writing Wi () = Wi (A, Tx) for simplicity, we have the following.
Lemma 3.1. For o = a/q+ \ with (a,q) =1, we have
Gr(a) = Vi(A) + Wi(A) + Ri(X),
where

Uk
Ri() < gF<ZE 1+ PN L



Proof. By (2.4), we have

Uk
2
|Sk () — o)l < E E logp < UPL < — T,
h= 2p NUk

Introducing Dirichlet characters, Si(«) can be rewritten as (see [2], §26, (2))
sk<“ ) Y Glca) X Amix(me () +0 (27) (3.7)
q X mod ¢ m~Uyg
Now we apply the explicit formula (see [2], §17, (9)-(10); §19, (4)-(9))
xf z(log qxT)?
3 xmAm) =sa— 3 =40 <(gTQ) + (log qx)2> ,
m<z v <T P

where d, = 1 or 0 according as y = x" or not. The inner sum in (3.7) therefore becomes

2U;, 2Uy
/ e(w)d{z X(m)A(m)} =0, Pe(A\) = > Tr(A,p) / e(AuF)dr(u),

Uk m<u v LT
where 7(x) is the O-term in the above explicit formula. The last integral is then

U,
< [P(2U)| + [F(U)| + UEIA| max [F(u)] < 22 (1+ [AN)Z?
u~Ug

By making use of (3.2) and letting 7" = T}, we thus get
U
Sia) = AO) + W) +0 (3 DL+ M2
k

This together with (3.6) finishes the proof of Lemma 3.1. [
Now we state the main result of this section.
Lemma 3.2. Let N/2 <n < N. Then we have

5

- ¥ e<“”) /Q {H(Vk()\)Jer()\))}e(n)\)d)\JrO(NéSL‘A). (3.8)
T qQ

k=2

To prove this result, we need the following lemmas on zero-density estimates.
Let N(o,T, x) denote the number of zeros of L(s,x) in the region o < Res <1, |[Ims| < T. Let

N(o,T,q)= »_ N(o,T.x), N (T, X,d= > Z N(o,T, %),

d d
xmocaq q= O(modd)xmo a

and write N*(o,T, X) = N*(0,T, X, 1), where * means that the summation is restricted to primitive
characters x mod gq.
Lemma 3.3. Let 1/2 < o < 1. Then we have

N(0,T,q) < (qT){5+0=),
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and
A(o)+e)(1—0)

where
| 20/9, 3/4<0o<1;
Alo) = { 5/(3—0), 1/2<0 <3/,

In particular A(c) < 20/9 holds for all o € [1/2,1].

Proof. The first conclusion follows easily from (1.1) of Huxley [5] and Theorem 1 of Jutila [6].
The second result is an immediate consequence of Theorem 2 in Heath-Brown [3]. O

Lemma 3.4. Let T > 1 and 1 <d < X. Then for1/2<oc<1-—m,

12 £ —0
N*(o,T, X,d) < (X2T/d)" s 7907, (3.9)
and for1 —n <o <1,

N*(0,T, X, d) < (x37%) 7907 (3.10)

Proof. For 1/2 <o <1 -1, (3.9) follows easily from (1.1) of Huxley [5]. For 1 —n <o <1,
the left-hand side of (3.10) is bounded by N*(o, T, X), which admits the following estimate (see p.
54 in [6])

N*(0,T, X) < (x372) =0 O

Proof of Lemma 3.2. We have

[ oo}
; Zq; < >/_i{]}i[2Gk<Z+)\>}e(—n>\)d)\.

(a,9)=1

So by Lemma 3.1, the difference between the two main terms in (3.8) is

303 /1{\11 )|+ |20 >|+\13<A>\+I4<A>r}dx,

<P o
where
Li(A) = {H (Ve(A) + Wk()\))}RS()‘)a (3.11)
k=2
i a
L) = {H (Vi) + Wm))}mmas) (q ¥ A) , (3.12)
k=2



Therefore to prove Lemma 3.2, we only need to prove

> Z /QQ (N d\< NoL™4, for j=1,2 3, 4. (3.13)

<p a1
= Go=1

To this end, we first establish the following estimates: For A € R, and ¢ € N,

_1 Uk
A te_ " for k=2, ..,5; 14
Vk( )<<q 2 1+|)\|N7 or ) 757 (3 )

and, for |\| < 1/¢Q with 1 < ¢ < P,

L for k=2,3,4;
Wir(\) < q%+€L2{ v1+lAlN (3.15)
W, for k=25.
One can easily obtain (3.14) from (3.3) and (3.4) by using (3.2) and the following obvious estimate
® Lt aydu < Oy in {1, 3.16
k()\)_k/U]j ure(Au)du < kmln{ 7|>\|U;§} (3.16)

To prove (3.15), we apply Lemmas 4.3 and 4.5 in Titchmarsh [15], to get

(2Ug)*

1 5_
Ui\, p) = ]{J/Uk uk ()\U—F%logu)d
k
Uk Uk
< U;f_kmin{U,f, k ’f } (3.17)
+ 2kmAu
pranmt e 1 Gl

Let Ty be as defined in (3.5). Since

koo < k.
min |y + 2kmu| >>{ INUE, if |y] < kx| AUF;

U <u<(2U))" Iy, if |y] > 4km(A[(20)",
one derives from (3.17) and (2.3) that
Uy , for |y| <207A\|N;
Ui p) < § VN (3.18)
S for 20mAIN < ] < T

Therefore by applying (3.2), we get from (3.4) that

Wir(\) < q_é+€Uk{

VIt NN Z Z vl

x mod q |v|<207|A|N

L 1+R)! us—ty 3.19
SN - SAYACRE I DR DR } (3.19)

x mod q |v|<2R
7



By integrating by parts, the first double sum in (3.19) is estimated as

1 _1
= _ﬁ U,jldN(a,20w|A|N,q)+O<Uk 2N(1/2,207r)\|N,q)>

2
1 _1
< (logUk)[ U 'N (0,207 | AN, q)do + U, > N(1/2,207|AIN, q). (3.20)
2

Making use of Lemma 3.3, we see that the right-hand side of (3.20) is
_1
<L {1 + (@A) TEU, } <L {1 + p3Uamtey, 2} < I,

on recalling (2.1) and (2.3).
Similarly, the second quantity in the bracket of (3.19) is

L2
L —
(14 [A|N)™ 1<%l§£/2
L? 6 cmitmte, —1
- 1 P +€T5 U 2
< <1+1A|N>me{ T
L2
NPT

to\»—‘

Rnkfl {1+ (qR) +EU

|

provided that 7o = 13 = ny = 1/2, and 15 = 1/5. This proves (3.15).
Now we come to prove (3.13). By (3.14) and (3.15), we have for |\| < 1/¢Q with 1 < ¢ < P,

L for k=23, 4;
Vi) + Wi(\) < g 2502 VTN . o (3.21)
7(1+‘/\|N)1/5, for k=>5.
Thus, by (3.11) and Lemma 3.1, we get

77
Neo

L\ < ¢ T L —e,

B R

and therefore,

" I1 d\ < No T ' [8pz(i+n) —2te « N L4,
q

<P a=1 - <p
= (a,q)=1 =

on noting T5 = P27 in the last step.
Next, by (3.12) and Lemma 3.1, we have



On using (3.21), the last expression is
N

em—1m—178 ATl
—(1+|>\|N)1/5+q T, Ty "L°Nwo(1+ |AIN).

B P

Thus, on recalling Ty = T5 = P27, we get

3 Z /qQ I (\)] dX

<p a-1
= Go=1

< N8 Tyipstm 3 g5t 4 T T pR() S gt
=P q<P

< N L4,

Similar arguments also show that

77
N oo

(1+[AIN)/5

L) < ¢ Tyt

+ T TN (14 AN
T T T VLN (1 4+ | AN 2,

and since Ty = P3/2+21,

D3 /QQ T5(\)d

=P om
< NwL? {nglPH’7 + Ty T pio () TngleglP%(””)}
< N LA,

Finally, we have analogously

3 Z /qQ 114(0)] dA

g<P o=t
< N® L8 {T2—1P1+’7 + T T PR o pr ()
—|—T2_1T3_1T;1P1??(1+’7) + T;nglT;nglPE’(l*”)}
< N&w L4,
on noting Ty = P3/221_ This proves (3.13), and thus finishes the proof of Lemma 3.2. [

Define A(X) by

TT Ve + Wi (A H Vi(A (3.22)



and let

=y i e (—“:) /_"(‘f (ﬁ Vk()\)> e(—nA) dA, (3.23)

Then by Lemma 3.2, we have

/ (ﬁ Gk(a)> e(—na)da=T+J+0 (N%L—A) . (3.24)
M \ k=2

In the following sections, we will prove that I gives the main term while J contributes to the

error term.

4. ESTIMATION OF J

Lemma 4.1. For all but O(NPf%“) exceptional integers n € [N/2, N|, we have

J < Nt LA,

To prove Lemma 4.1, we need some preparations.

Let Ck(x,a) and Ci(g,a) be as defined in (3.1). For characters x; mod ¢, we define

q

5
B(n,q,X2, - X5) = »_ € <—aqn> I ¢ (xns ). (4.1)
k=2

a=1
(a,q)=1

Lemma 4.2. Let x; be primitive characters modr; with j = 2,...,5, and X" be the principal
character modgq. Denote rog = [ra, ..., 5], the least common multiple of o, ...,15. Then for any real

number x > 2 and positive integer n up to N, one has

1 _

> =B, g, x2x% - xsx )| < g log® . (4.2)

q<lzx SD (q)

rola

Proof. By (3.2), one has
g 5
B(n, ¢, x2X"; - x5x") < > H (x’ a)| < ¢*d"(q).
S
So the left-hand side of (4.2) is
< Z ¢ << ro T log x Z o T log® . O
q<z q<z

rola



Lemma 4.3. Let 1 < Y3 < U< N,1<T <N and g > 1. Then for 6n < a < 12/5 and
3n < €< 6/5, we have

yh-1 5
Slor™ Y Y e <9 00 E YT UL
r<Y x mod r |y|<T
where

G(a, f, Y, T, U) =1+ U‘%Y%+€—min(a7%)T§—f+;

In particular, for k=2, 3,4, and p < 6/7, we have

G(1—¢,&, P’ Ty, Ur) < 1, (4.3)
and
G(6/5 — e, & P, Ty, Uy) < 1, (4.4)
where
§2="5n, &=1/5-0n, & =2/5. (4.5)

Proof. We have [g,7] = gr(g,r)™*

Yl 33 Uﬂmé—g_aZdQZ DRI i (4.6)

, and so

r<Y x mod r \'y\<T dsy r<Y x mod r |'y|<T ”7|
dlg dlr
Moreover
_ Ups-1
RIS DI Pt
r<Y ’}/
i x mod r |y|<T
logY)(log T R 14+T)7% TN us 47
< (log¥)(logT) max R max (1+T) oy > (4.7)

r~R y modr |y|~T
d|r

By integrating by parts, one has

>y yur

r<2R y mod r |y|<2T
d|r

1

—/ U dN* (o, 2F,2R,d)+0(U’%N*(l/Q,QF,ZR, d))
1
2

1 1
<L UzN*(1/2,2F,2R,d)+/ U 'N*(0,2T, 2R, d)do ; .
1

2

An application of Lemma 3.4 gives

S4e
N*(1/2,21,2R,d) < {R’T/d}5"
11



n 1
UTINY (0,27 2R, d)do < {UTH /) 4} 4 [um (RPr g e}

ww\
2
|

< U 2(RT/d)3T + UT31(R2 /)3
and

1
/ U ~IN*(0,2T, 2R, d)do < 1+ {U Y (R’ T?)!*e}" < 1 4 y=psng3iten,
1-n

Therefore

> Yy e

r<2R xy mod r |y|<2I'
d|r

<L {1 +UT3(RAD/d)5+ + U="T3(R2 Jd)n + U‘”F3’7R3(1+‘5)"} ,
and (4.7) thus becomes

LD DD DRt

T;‘Y Xx mod r |'y|<T h/|

< L3{d—a + U—%y%—a-‘ra‘T _§+Ed 5 U~ nd3(1+a‘) }7

since 6n < o < 12/5 and 3n < ¢ < 6/5. Putting this in (4.6) and noticing Y37 < U, we get the
desired inequality.
To check (4.3) and (4.4), we observe that when p < 6/7,

G<1 - €7§k7Pp7Tk7Uk) S G(l - E7£k7PguTk7Uk) S G(6/5 - E,gk,P, Tk)Uk)a

so we only need to check (4.4), which is an easy exercise. O
Lemma 4.4. Let 1 <U < N,2<2X <Y <N and1<T < N. Then fora>0 and £ > 0,

we have

6_
oy Ty Zu < H(o,&,X,Y,T,U)L°

X<rY x mod r \7\<T

where

H(a,§,X,Y,T,U)=X"“4+ max o -1y max{0, 25 —adte} pmax{0, 25 =2 —¢+e}
’» S s Ly Ly 1/2§U§3/4

In particular, for k =2,...,5, and p < 4/5, one has

H(l —¢e,&, X, PP, Ty, Up,) < X' £ N7, (4.8)
and

H(6/5—e,& X, P, T, Uy) < X 545 4 N1, (4.9)

where for k =2, 3, 4, & are defined by (4.5), and & = 2/5.
12



Proof. First we have

IR DD B

X<rY x mod r |y|<T

< (logY)(logT) max R™® max (1+F)7gz Z " Z Ub-t,

X<RLY/2 1<T<T/2
SR<Y/ - / r~Rxmodr |y|<2T

By integrating by parts, we have

)SID DD SN

r<2Rx mod r |y|<2T
1 1
<L U—zN*(1/2,2r,2R)+/ U°"N*(0,2I',2R)do ¢ .
1
2

By Lemma 3.3, one has

2 6 (1+€)
N*(1/2,2,2R) < (RT?)
and
3 5(1—0) 1 5
/4 < max U1 (R2rg> e / <14+U% (R2F2)9+€.
1 leg<3 3
2 2—="—4 4
Therefore

>

2R x mod r |y|<2T

% 6 5(3170')_’_8
E UP 1< L{1+ max U} (RQFB) - .
<
g <

o<

D=
NI

By inserting this estimate into (4.10), one yields the desired inequality.
To prove (4.8) and (4.9), we note that for p < 4/5,

H(l—¢,&, X, PP, T, Up) < H(1 — ¢,&, X, P5, Ty, Uy,
and also
H(6/5—¢,&, X, P, T, Uy) < H(1 — 22, &, X, P5, Ty, Uy),
because for o > 1/2,

101-0) 6 _4[100-0) .
3—0o 5~ 5 3—0¢ '

So it remains to check (4.8) for p = 4/5. We have

H(l _€7€k7X7P%7Tk7Uk)

6(1 o')

8(1—0) 4
=X "+ max U7 'P e 5710
1/2<0<3/4

—&kte

< X+ N° max N7
1/2<0<3/4

fk(0)20_1+{8(1_0)—4+04k (6’(1—0)_&)}9.

k 3—0 5 3—0
13
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By checking the sign of f; (o), we find that for k =2, ..., 5,

< —1073.
e, k(o)

This finishes the proof of Lemma 4.4. [J

Proof of Lemma 4.1. We see from (3.22) that A(\) consists of fifteen terms of the form
[To—s Zi(N) with Zx(A) = Vi(\) or Wi(\) except the case [To_y Zk(A) = [T5—y Vi(A). So if we can
prove that for all n € [N/2, N] but at most O(NP_%+5) exceptions,

> Z ( )/_q@ (sz > —nA)dA < Nw L4 (4.11)

q<P 1

holds for all the above fifteen terms, then Lemma 4.1 follows. We will deal with the most compli-
cated case [[5_y Zr(A) = [Io_, Wi()) in detail, and give only a sketch for the other cases since the
proofs are similar and allow better ranges of 6.

Denote by J,(n) the left-hand side of (4.11) with [[j_y Zx(\) = [Th—y Wk(A). Then by (3.4)

and (4.1), one has

=D > > nq’XZ"’M S > nipasnps),  (412)

q<P x2 mod ¢ x5 mod g [v2|<T» |v5|<Ts

where

J(n; p2,..ey p5) / {H Ui (A, pi } —nA)dA. (4.13)

Now we give an upper estimate for J(n; pa, ..., ps).
By (3.18), we have for k =2, ..., 5,

Ui

4.14
AT He+ A2 & (4.14)

where & is as defined in Lemmas 4.3 and 4.4. Therefore

3(1: p2s s p5)] € 2 > /QQ

<<N —k
(T+rhe (4D g (T AN) H(Hml)

Now we recall that if a primitive character x mod r induces a character ¢ mod ¢, then 7|t and
1 = X", where x° is the principal character modulo t. Collecting all contributions made by an

individual primitive character, we get

UﬁQ 1
Juln) < N® 33T SOOI U
rs<P d (1+ |75‘ U+ bl
5<P x5 mod 5 |5 \<T r2<P x2 mod r2 |’Y2|<T
B n, , s ey 0 17
<3 |B(n.g X{f XX . N8 (Ja(n) + Jua(n)), (4.15)
~ ©*(q)
rola

14



where Jy,1(n) and Jy2(n) denote the contributions from rg < P% and P5 < 1 < P, respectively.
Here rg = [ro,r3,7r4,75]. So we are reduced to proving that for all n € [N/2, N] but at most

O(NPf%) exceptions
Ju1(n), Jua(n) < L™4. (4.16)

We first consider J,1(n). By Lemma 4.2, one has

Juwt <<LCOZ S Z 1+|%| Z > Z 1+|72 e ro e,

r5<P5 x5 mod r5  |y5|<Ts 7‘2<P5 X2 mod vy |y2|<Ts
Note that 79 = [r5,74,73,72] = [[r5,74,73],72], so by Lemma 4.3, the last triple sum is
4
& [rs,ra, 3] T TTEG(L — €, &9, P35, Ty, U L? < [r5,74, 73] 1 T2 L3,

Repeating the above process for the triple sums over (rx, xx, |7x|) for K = 3 and k = 4 successively,

one finally achieves

Uﬁ5 1
IR YR LD DI pipe s
r5<P5 x5 mod 75 |fy5\<T 75
< LTI+ Tai) (4.17)
where J; and J;;] represent the contributions from those with 75 < LP and those with L? < r5 <
P%, respectively for B = 2A. Applying Lemma 4.4 to J}, one has
< I3H(1—e,&, LB, P35, Ty, Us) < L™ (4.18)

Now we turn to J;. By Satz VIIL.6.2 of Prachar [10], there exists a positive constant ¢; such

that ] L(s, x) is zero-free in the region

x mod ¢
o >1— ¢/ max{logq, log% N}, |t| <N, (4.19)

except for the possible Siegel zero. But by Siegel’s theorem (see [2], §21), the Siegel zero does not
exist in this situation, since ¢ < L. Let n(N) = ¢; log_% N. Then by Lemma 3.3,

(F+e)(1-0)
. * g1 2875 =
L LT
DD DD DR A 1/2§c?%a1}5n(N)< 5) "

r<LB xmodr |y|<Ts

< I  max NG5 o IN-U < 4 (4.20)
1/2<0<1-3(N)

Inserting (4.18) and (4.20) into (4.17), we have proved that

Jui(n) < L™, for all ne[N/2,N].
15



Now it remains to estimate Jy2(n). By Cauchy’s inequality, one has

o ()

< Z Z 1+\’Y5\ D Z Z +”Y2 DD 7 3(q)

rs<P x5 modrs |y5|<T5 ro<P x2 mod 2 |y2|<Th fSP
P5 <rglq

DD SN DL D S SN DL

r5<P x5 mod rs |y5|<Ts ro<Px2 mod ry |y2|<T>

Q
> 0 2 (@IB(n, g, x2x% - xsX ).
a<P

4
P5 <rglq

4
We have for rg > P53,

_3 3+ _6 -S4
> oT2(q) <1y 2 < PTmr
q<P
role

Writing

= YT e T e

r5<P x5 mod 5 |y5|<T}5 ro<P x2 modrz |y2|<T>

we have

Z Jiz(n)

N/2<n<N

Uo_l 2
iy YUY Sy y oy

r5<P x5 modrs |y5|<Ts ro<P x2 mod r2 |y2|<T»

Z SD_T(Q) Z |B(7’L, q, X2X07"'3X5X0)|2' (421)
iISP N/2<n<N
P5 <rglq

1

By definition (4.1)

> B, g, x2x° s x5x°)I
N/2<n<N

S | UMD ot Gt )

q
=1 j=2 N/2<n<N
(@@)=1 (bg)=1" /2<ns

For 1 < a, b < g, the last sum over n is O(q) unless a = b, in which case it is O(N). So by (3.2),

one has

> 1B g xax’, s xsxX)P < NgPdY(q) + ¢"d" (q) < N¢**,
N/2<n<N
16



4
since ¢ < P < N3. Therefore for ro > P53,

_13 _3 _6 —S4¢
Dozl D> B g xax" o xsxX))P <N DY g2t < NPT 8
qS‘P N/2<n<N qS‘P
rola rola

Putting this in (4.21), we get
Y J2h(n) < N{P %3} =NP 5§
N/2<n<N

We now estimate § in the same way as for Jy,1(n) in (4.17)-(4.20). Making use of Lemma 4.3 to
the triple sums over (g, Xk, |v|x) for £ = 2, 3, 4 in § successively, and then Lemma 4.4 for k = 5,

we finally arrive at
S< L°H(6/5—¢,&,1,P,T5,Us) < L°,
and hence

S JZy(n) < NPTHL.
N/2<n<N

By a standard argument, this proves that for all n € [N/2, N| with at most O(N pte ) exceptions,
one has
Jua(n) < L™,

This finishes the estimate for Jy,2(n), and hence for J,,(n).

To conclude the proof of Lemma 4.1, we need to sketch how to bound the other terms in J.
As an example, we consider the case szz Zi(N) = Wao(M)W3(A)Wy(A)Vs(N). Denote by J,(n) the
corresponding term in (4.11). Similar to (4.12) and (4.13), we have

=2 > > nq’Xz’( DX X Z © Y 3(nipa, e pas 1),

q<P x2 mod q x4 mod ¢ [v2|<T> [va|<Ty

with

J(n; p2, ey pa, 1 / {H Ui (A, pr } s5(N)e(—nN)dA.

By (3.16) and (4.14), the above right-hand side is

UL Uk /qig dA S
< U, <<N —_—
T pae W e, ey < Ve Il
Therefore
17 Uﬁzl
Jy(n) <« Neo
moewiyY y oy Uy B

r4<P x4 modry |y4|<Ty ro<Px2 modry |y2|<T>

B(n,q, 2o xXax2, X0 17
L X2><4 XX N8 (1 () + Jua(n),
q<P v (Q)

rola

o
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where Jy,1(n) and Jy2(n) denote the contributions from those with ro < Ps and P5 < 1y < P,
respectively. Here rg = [rg,73,74]. By similar method as used previously in estimating Jy,1(n)
and Jy2(n), we get Jy1(n), Jy2(n) < L= for §# = 2/33 +n and for all n € [N/2, N] but at most
O(N Pf%“) exceptions. This completes the proof of Lemma 4.1. [J

5. THE SINGULAR SERIES

Let B(n,q) = B(n,q,x°, ...,x") be defined by (4.1). Define

o0

Aln,q) = L8 = An,q). (5.1)
qg=1

This &(n) is the singular series appearing in Theorem 2.
Lemma 5.1. A(n,q) is multiplicative in q.

Proof. Suppose ¢ = ¢q1¢2 with (¢1,¢2) = 1. Then

B(n,q1q2) = (hi:j (gck(%QmG))e(—an)

— q1492
(a,q192)=1
Kk K& 5 ain asn
= > Y (H Cr(q1g2, a1g2 + a2q1)> e <—> e <—> - (5.2)
ay=1 ag=1 k=2 ql Q2
(a1,91)=1 (ag,q2)=1
For (q1,q2) = 1, it is easy to check that
Cr(q192, 0192 + a2q1) = Ci(q1,a1)Cx (g2, az).
Thus it follows from (5.2) that
B(n, q1g2) = B(n,q1)B(n, ¢2),
and consequently
A(n, q1q2) = M = A(n, q1)A(n, g2). O
©*(q192)

The following lemma is Lemma 8.3 in Hua [4].
Lemma 5.2. Let p be a prime and p®||k. Suppose pta. Then Cy(pt,a) = 0 whenever

a+3, if p=2andk is even;
t> .
— | a+2, otherwise.

Lemma 5.3. Let A(n,q) be as defined in (5.1). Then

(i) We have
> 1A 0)l = 0 (X5 <d(n))
q=X

Hence .2, A(n, q) is absolutely convergent and &(n) < d(n).

(ii) There exists an absolute positive constant c¢* such that, for n = 0(mod2),

S(n) > (loglogn)~ . (5.3)
18



Proof. By Lemmas 5.1 and 5.2, one has

Y Amg = > A (5.4)

q square— free

Write

p 5
pa = Ze<am ) ) and mpa Hck b,a Hsk’(paa)
m=1 k=2

Then

A(n,p) _14%5{1'[5”, } ( a;)+@_11yl§m(p,a)e<—?). (5.5)

Applying (3.2) and noticing that Sk(p,a) = Ck(p,a) + 1, we find that the second term in (5.5)
is < czp_%, since Sk(p, a) < p'/2. On the other hand, by Lemma 20 in Roth [14], for p { n, one has

g{ﬁ@m a)/p>} (-2

k=2

w

sc3p 2.

3

So the first term in (5.5) is also < ¢4p~2. Let ¢5 = 2max(c2,cq), then we have proved that for

pin,

3
|A(n,p)| < csp™ 2. (5.6)
Moreover, an application of (3.2) reveals that |B(n,p)| < 2048p?(p — 1), and therefore
|A(n,p)| < cep™". (5.7)

Let ¢7 = max(cs, ¢g). Then for square-free g,

A(n,q)] = (Hmm,p)\) (HA<n,p>|) < (H (cm%)> (H <c7p1)>

pla pla pla

pin pln pin pln
3 1 3 1
= &% (H]ﬂ)( 11 p2> <q 2" (n,q)2.
plg p|(n,q)

Hence by (5.4),
oo ) 3
S Mgl < S Hmgb =Y e Y g it
=X >X i Sk

< XT3N dmitt < XrtEd(n).
din

This proves Lemma 5.3 (i).
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To prove (ii) of Lemma 5.3, we first note that

&(mn) = [[+AMnp) = ( 11 <1+A<n,p>>>

p <2c7
X ( I @ +A(n,p))> < IT a+ A(n,p)))
p>2cy p>2cy
pin pln
By (5.6) and (5.7), one has
H (1+ A(n,p)) > H (1 - C7p7%> > cg >0, (5.8)
p>2cy p>2cy
pin
and
H (1+ A(n,p)) > H (1- C7p_1) > co(loglogn) 7. (5.9)
p>|267 p>|2c7
pin pln

Moreover, let M (n,p) denote the number of solutions of the equation
22 + % + 2 + w® = n(modp), with 1 < z,y,z,w <p— 1.

Then 1+ A(n,p) = pp~4(p)M(n,p). By Prachar [11], one has M (n,p) > 0 for p > 2; while a direct
calculation shows that M(n,2) =1 for n = 0(mod2). Therefore

( H (1+ A(n,p))) > c10 > 0. (5.10)

p<2c7

Collecting estimates (5.8)-(5.10) and writing ¢* = ¢7, we come to the desired conclusion. [J
6. ESTIMATION OF I AND THE PROOF OF THEOREM 1
Lemma 6.1. Let I be as defined in (3.23). Then for even integers n € [N/2, N|, we have
[=6n)3n)+0 (N%L—A) ,
where J(n) is a mutiple integral which satisfies

N& < J(n) < N, (6.1)

Proof. By definition

Define

3(n) = / T By(0) - 5(A)e(—nA)dA. (6.2)



Then by making use of (3.16) and on recalling (2.1), we have

> *© Uy---Us i ¢
Do(N) - DP5(N)| dA —— AN <K N0 ———
/1 ’ 2( ) 5( )‘ <</1 (1—}—’)\’]\[)4 < 00

qQ

and in view of |B(n,q)| < ¢3¢,

I1=3(n)Y Aln,q) +0 (N%P—n) . (6.3)
q<P
Moreover by Lemma 5.3,
> A(n,q) = &(n) + O (P74 d(n) ),
q<P
with &(n) satisfies (5.3). So (6.3) becomes

I=6n)3(n)+0 (N%L—A) 7

provided that (6.1) is true, which will be established in the following.

To prove (6.1), one notes that an application of Fourier transformation formula reveals

1 1 2 3
J(n) =— / Uy g Fuy * (N —ug —ug — U4)7%dUQd’u,3dU4,
120 /o

where © is the set of all vectors (ug,us, us4) subject to
UF <up < QUR)Y, k=2, 3,4, and U2 <n—up—uz—uy < (2Us)°.
From this the second inequality in (6.1) follows immediately. To bound J(n) from below, we define
D% = {(ug, ug, ug) : UF < up < (3U/2)% k=2, 3, 4}.
Then for (ug, us, us) € D*, one easily deduces from N/2 < n < N and UF = N/32 that
U55 <n-—ug—u3—us < (2U5)5.

Thus ©* is a subset of ®, and consequently

1 _1 _2 _3 _4 17
J(n) > 120/ Uy 2 Ug Py *us ° dugdugduy > N0,
@*

This proves (6.1). O
Proof of Theorem 2. The absolute convergence and positivity of &(n) have been proved in
Lemma 5.3. Other assertions of Theorem 2 follow from (3.24), Lemmas 4.1 and 6.1. O
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