
Equivalence of polynomials under automorphisms of

K[x, y]

Leonid Makar-Limanov∗ Vladimir Shpilrain†

Jie-Tai Yu◦

Abstract. Let K[x, y] be the algebra of polynomials in two variables over an
arbitrary field K. We show that if the maximum of the x- and y-degrees of a given
polynomial p(x, y) cannot be decreased by a single triangular or linear automor-
phism of K[x, y], then it cannot be decreased by any automorphism of K[x, y]. If
K is an algebraically closed constructible field, this result yields an algorithm for
deciding whether or not two polynomials p, q ∈ K[x, y] are equivalent under an
automorphism of K[x, y].

We also show that if there is an automorphism of K[x, y] taking p to q, then it is
“almost” unique. More precisely: if an automorphism α of K[x, y] is not conjugate
to a triangular or linear automorphism, then any polynomial invariant (or even
semiinvariant) under α is a constant.

1 Introduction

Let K[x, y] be the algebra of polynomials in two variables over an arbitrary field K.

For a polynomial p = p(x, y) ∈ K[x, y] denote by degx(p) the x-degree of p, i.e.,

the highest exponent on x that occurs in monomials of p. The y-degree degy(p) is

defined similarly. One more piece of terminology: when degx(p) = degy(p), we say

that max(degx(p), degy(p)) = degx(p) if the highest degree monomial of p with respect

to the lexdeg ordering with x > y is xnym, the highest degree monomial of p with

respect to the lexdeg ordering with y > x is xsyn, and m > s. Similarly, by somewhat

abusing notation, we write max(degx(p), degy(p)) > max(degx(q), degy(q)) in the case

where, say, max(degx(p), degy(p)) = degx(p) = degx(q) = max(degx(q),degy(q)), but

degy(p) > degy(q).
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It is a well-known result of Jung and van der Kulk that every automorphism of

K[x, y] is a product of triangular and linear automorphisms. To be more specific, we

call an automorphism of K[x, y] triangular if it is of one of the following two types:

(T1) (x, y) −→ (ax + f(y), by), a, b ∈ K∗.

(T2) (x, y) −→ (ax, by + f(x)).

Our main result is as follows.

Theorem 1. Let p = p(x, y) ∈ K[x, y]. If the maximum of degx(p) and degy(p) cannot

be decreased by a single triangular or linear automorphism of K[x, y], then it cannot

be decreased by any automorphism of K[x, y].

Note that max(degx(p), degy(p)) ≤ deg(p) ≤ 2max(degx(p), degy(p)). The example

of p(x, y) = x3 + y3 + x2y2 shows that the inequalities can be strict. Here degx(p) =

degy(p) = 3, and deg(p) = 2 + 2 = 4.

Our proof of Theorem 1 is based on a simple but powerful idea of “peak reduction”

[12] which goes back to Whitehead (see [7]). In the context of the present paper this

means the following. If at some point of applying a sequence of triangular or linear

automorphisms to p, max(degx(p), degy(p)) goes up (or remains unchanged) before

eventually going down, then there must be a pair of subsequent automorphisms in

this sequence (a “peak”) such that one of them increases max(degx(p), degy(p)) of the

current polynomial (or leaves it unchanged), and then the other one decreases it. We

show that such a peak can always be reduced, i.e., can be replaced by a single triangular

or linear automorphism that decreases max(degx(p),degy(p)) of the current polynomial.

We note that, upon replacing max(degx(p),degy(p)) by deg(p), the result of Theo-

rem 1 was obtained by Wightwick [15] in the case where K = C. She also used “peak

reduction” motivated by our earlier paper [11] where we addressed the same problem

for a special class of polynomials, namely those whose Newton polygon is a trian-

gle. Wightwick’s proof is rather complicated, and it uses a subtle analysis of Newton

polygons. She notes that the complexity of the corresponding algorithm for solving the

automorphic conjugacy problem (see below) can be reduced if one uses another ingredi-

ent, called splice diagrams, see [5]. It appears however that using max(degx(p),degy(p))
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instead of deg(p) as the parameter of “peak reduction” does make a difference, and the

proof becomes easier.

Theorem 1 leads to a solution of the automorphic conjugacy problem for K[x, y],

i.e., to an algorithm that, given two polynomials p, q ∈ K[x, y], decides whether or not

ϕ(p) = q for some automorphism ϕ of K[x, y]. This algorithm is in two parts. In the

first part of the algorithm, one reduces p(x, y) to p′(x, y) by applying a sequence of

triangular or linear automorphisms reducing max(degx, degy) at every step, such that

max(degx(p′), degy(p′)) cannot be reduced any further. Similarly, one reduces q(x, y)

to q′(x, y) with minimum possible max(degx, degy).

Corollary 1. Let p = p(x, y) and r = r(x, y) be two polynomials equivalent under an

automorphism of K[x, y], and assume that max(degx(r),degy(r)) cannot be reduced by

any automorphism of K[x, y]. Then there exists a series of triangular automorphisms

φ1, . . . , φn such that, for p′ = (φ1 ◦ . . . ◦ φn)(p), one has

max(degx(p′), degy(p
′)) = max(degx(r),degy(r))

and

max(degx, degy)((φ1 ◦ . . . ◦ φi)(p)) > max(degx, degy)((φ1 ◦ . . . ◦ φi+1)(p))

for all i = 1, . . . , n− 1.

If max(degx(p′), degy(p′)) 6= max(degx(q′), degy(q′)), then p and q are inequiva-

lent. If max(degx(p′), degy(p′)) = max(degx(q′), degy(q′)), then one applies the second

part of the algorithm to the polynomials p′(x, y) and q′(x, y) of the same minimum

max(degx,degy). This second part is rather straightforward theoretically but usually

has a higher computational complexity than the first part of the algorithm. We note

that for either part of the algorithm to work, the ground field K has to be algebraically

closed because one should be able to determine whether or not a given system of poly-

nomial equations over K is consistent (cf. [15, p. 360] or our Section 4). Of course, the

ground field K also has to be constructible, i.e., given two elements of K, one should

be able to tell whether or not they are equal. Thus, we have:

3



Corollary 2. Let K be an algebraically closed constructible field, and let p, q ∈ K[x, y].

Then there is an algorithm that decides whether or not ϕ(p) = q for some automorphism

ϕ of K[x, y].

We also note that if max(degx(p′),degy(p′)) = 1 (i.e., if p′ is just a linear com-

bination of variables), then the second part of the algorithm is not needed and, in

particular, the ground field K does not have to be algebraically closed. If a polynomial

p is equivalent to a variable, it is called coordinate. Thus, our Corollary 1 provides,

in fact, yet another algorithm for recognizing coordinate polynomials in K[x, y] for an

arbitrary field K. See [9] for a survey of previously known algorithms for recognizing

coordinates in K[x, y].

Finally, we show that if there is an automorphism of K[x, y] taking p to q, then it is

“almost” unique. To make a precise statement, we recall that a polynomial p ∈ K[x, y]

is called invariant under if α(p) = p and semiinvariant if α(p) = λp for some λ ∈ K∗.

Theorem 2. Let K be any field, and let α be an automorphism of K[x, y] which is not

conjugate to a triangular or linear automorphism. Then any polynomial p ∈ K[x, y]

semiinvariant under α is a constant.

We note that in the case where K has characteristic 0, this statement was proved,

with some additional conditions on α, by M. Smith [13]. She also remarks that W.

Dicks had pointed out to her that a proof of this fact, without additional conditions

on α, was given in Lane’s thesis [6], but was never published. Finally, we note that

there is a similar result for automorphisms of the free associative algebra K〈x, y〉 which

appears as Corollary 6.9.8 to Theorem 6.9.7 in Cohn’s monograph [3]. Note that the

statement of Theorem 2 does not hold verbatim for K〈x, y〉 because the commutator

xy−yx is semiinvariant under any automorphism of K〈x, y〉 (see [3, 4, 8]), so the correct

statement is: if α is an automorphism of K〈x, y〉 which is not conjugate to a triangular

or linear automorphism, and p ∈ K〈x, y〉 does not belong to the K-subalgebra of

K〈x, y〉 generated by xy − yx, then p cannot be semiinvariant under α.
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2 Proof of Theorem 1

As we have mentioned in the Introduction, we are going to use the idea of “peak reduc-

tion” [12]. More specifically, we assume that max(degx(p), degy(p)) can be decreased by

an automorphism ϕ of K[x, y], which is not a single triangular or linear automorphism.

Then ϕ can be factored as a product of triangular and linear automorphisms, and there

must be a pair of subsequent automorphisms in this factorization (a “peak”) such that,

for example, one of them increases, say, degx of the current polynomial (or leaves it

unchanged), and then the other one decreases it. We show that such a peak can always

be reduced, i.e., can be replaced by a single triangular or linear automorphism that

decreases max(degx,degy) of the current polynomial.

Before we consider different possibilities for a “peak”, we are going to break up linear

automorphisms into “simple” and “flip” automorphism. Simple linear automorphisms

are similar to triangular ones; they are either of the form (x, y) −→ (a1x + a2y, by)

(type I) or (x, y) −→ (ax, b1y + b2x) (type II). Flip automorphisms are of the form

(x, y) −→ (b · y, a · x).

Now flip automorphisms can be “moved forward”, so that no triangular automor-

phism is applied after a flip automorphism. The relevant procedure is straightforward;

e.g. a flip automorphism followed by a triangular of type I is equal to a triangular

automorphism of type II followed by a flip.

After we move all flip automorphisms forward, we need to do one more thing with

linear automorphisms, based on the following simple observation:

Lemma 1. Let α : (x, y) −→ (a11x+a12y, a21x+a22y) be a linear automorphism such

that a11 6= 0, a22 6= 0. Then α can be factored as a product τ1τ2 as well as a product

τ ′2τ
′
1, where τ1, τ

′
1 are simple linear automorphisms of type I, and τ2, τ

′
2 are simple linear

automorphisms of type II.

The proof is a straightforward computation; we omit the details. Now we do the

following. Suppose in our factorization of a given automorphism, there is a subproduct

of the form ρ1αρ2, where ρ1 is a triangular non-linear automorphism of type I, say, α is

a linear automorphism as in Lemma 1, and ρ2 is a triangular non-linear automorphism
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of type II, say. Then we factor α as a product τ1τ2 (by Lemma 1), and get

ρ1αρ2 = ρ1τ1τ2ρ2 = ρ′1ρ
′
2,

where ρ′1, ρ
′
2 are triangular non-linear automorphisms. If ρ2 was triangular of type I,

then we get

ρ1αρ2 = ρ1τ1τ2ρ2 = ρ′1τ2ρ2.

Other combinations are treated similarly. Thus, we end up with a product of simple

linear and triangular non-linear automorphisms, where no simple linear automorphism

is immediately followed by another simple linear.

This leaves us with just two principal cases to consider: where a triangular non-

linear automorphism is followed by another triangular (of different type), and where

a simple linear automorphism is followed by a triangular non-linear automorphism of

different type.

(1) The main case is where a triangular automorphism of degree ≥ 2 is followed by

another triangular (of different type). Assume, without loss of generality, that a trian-

gular automorphism of type I is applied first. Suppose there is a polynomial u = u(x, y),

a triangular automorphism α : (x, y) −→ (ax + f(y), by) of type I, and a triangular

automorphism β : (x, y) −→ (ax, by + h(x)) of type II such that

max(degx,degy)(β(α(u))) < max(degx, degy)(α(u)).

For max(degx, degy) to drop after applying β, either degx or degy has to drop.

However, degy cannot change after a triangular automorphism of type II is applied.

Therefore, we are going to focus on degx. Since a triangular automorphism of type I

cannot change degx, that means degx(u) = max(degx(u), degy(u)). Thus, the proof in

this case will be complete if we establish the following

Lemma 2. Let u = u(x, y) be such that max(degx(u), degy(u)) = degx(u) > 1. Let

α : (x, y) −→ (ax + f(y), by) be a triangular automorphism with deg(f) ≥ 2. Then

degy(α(u)) > degx(α(u)).
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Proof. For notational convenience, we shall assume that a = b = 1; obviously, the

values of a and b do not change degree considerations.

Let f(y) =
∑k

i=0 ci · yi, k ≥ 2. Applying α is equivalent to applying a sequence of

αi : (x, y) −→ (x + ci · yi, y). We start with αk, followed by automorphisms of smaller

degree. Denote ck 6= 0 by c, to simplify the notation. Thus, αk : (x, y) −→ (x+c·yk, y).

Let xnym, n ≥ 1, be the highest degree monomial of u with respect to the lexdeg

ordering with x > y. Let F (x, y) be the (k, 1)-homogeneous form of u(x, y) containing

the monomial xnym (i.e., the weight of x is assumed to be k and the weight of y is as-

sumed to be 1). Thus, the weight of a monomial xiyj is ki+j, so that, for example, the

polynomial x+ yk is homogeneous with respect to this weight. Furthermore, under the

automorphism αk the weight of any (k, 1)-homogeneous form does not change and dif-

ferent (k, 1)-homogeneous forms stay different. Therefore, to prove that degy(αk(u)) >

degx(αk(u)), it is sufficient to show that degy(F (x + c · yk, y)) > degx(F (x, y)).

Over the algebraic closure of the ground field K, one can factor F (x, y) as follows:

F (x, y) = xayb(x− c · yk)s
N∏

i=1

(x− λiy
k), (1)

where λi 6= c, λi 6= 0. Then F (x + c · yk, y) = (x + c · yk)aybxs
∏N

i=1(x− (λi − c)yk).

Since we assumed that n = degx(u) ≥ degy(u), we have

n = a + s + N ≥ b + (s + N)k.

If degx(F (x, y)) ≥ degy(F (x + c · yk, y)) then a + s + N ≥ (a + N)k + b, therefore

2(a + s + N) ≥ (a + s + N)k + 2b + Nk. Since k > 1, this implies b = N = 0

and, if k > 2, then also s = N = a = 0. In the latter case, n = a + s + N = 0,

contrary to the assumption n > 1. If k = 2, then a + s ≥ 2s (from the displayed

inequality) and a + s ≥ 2a (from the inequality a + s + N ≥ (a + N)k + b). Therefore,

s = a and F (x, y) = (x2 − cxy2)a, where a > 0. This contradicts the assumption

degx(F (x, y)) > degy(F (x, y)).

Thus, degx(F (x, y)) < degy(F (x + c · yk, y)), as was to be shown.

Now we have to study the effect of applying an αi, i < k, to αk(u). Consider two

cases:
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(i) F (x, y) is the leading (k, 1)-homogeneous form (i.e., the (k, 1)-homogeneous form

of maximum (k, 1)-weight) of u(x, y). Then applying αi, i < k, will not affect the

leading monomial xsyb+k(a+N) of F (x + c · yk, y) in the sense that this monomial will

be the monomial with the smallest y-degree (and the largest x-degree) in any (i, 1)-

homogeneous form with i < k.

(ii) F (x, y) is not the leading (k, 1)-homogeneous form of u(x, y). Let G(x, y) be the

leading (k, 1)-homogeneous form of u(x, y); then w(G) > w(F ), where w denotes the

(k, 1)-weight of the corresponding form. Over the algebraic closure of the ground field

K, factor G(x, y) as follows:

G(x, y) = xdye(x− c · yk)f
M∏

i=1

(x− µiy
k), (2)

where µi 6= c, µi 6= 0. By our assumptions, n ≥ degy(G(x, y)), so n ≥ e + k(f + M). If

we also assume that degy(G(x + c · yk, y)) ≤ n, then n ≥ e + k(d + M). Hence

2n ≥ 2e + k(d + f + 2M) = w(G) + e + kM > w(F ) = kn + b.

Since k > 1, this is a contradiction, so that our last assumption was incorrect,

whence degy(G(x + c · yk, y)) > n. As above, applying any further automorphism αi

with i < k will not change the leading monomial of G(x+ c · yk, y). This completes the

proof of the lemma. 2

(2) Suppose a simple linear automorphism is followed by a triangular non-linear au-

tomorphism of different type. Assume, without loss of generality, that a simple linear

automorphism ρ of type I is applied first, followed by a triangular non-linear automor-

phism β of type II. Then degx(ρ(u)) = degx(u). If degy(ρ(u)) > degx(ρ(u)), then, since

applying an automorphism of type II cannot change degy, we would have

max(degx(β(ρ(u))), degy(β(ρ(u))) > max(degx(ρ(u)),degy(ρ(u))), contrary to the def-

inition of the peak.

Thus, we may assume that degy(ρ(u)) ≤ degx(ρ(u)). If degy(ρ(u)) = degx(ρ(u)),

then β would increase max(degx(ρ(u)), degy(ρ(u))) by Lemma 2, so again there would

be no peak.
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Thus, we assume that degy(ρ(u)) < degx(ρ(u)). If this is the case, that means the

argument from the proof of Lemma 2 in the previous Case (1) fails for k = 1 for our

polynomial u(x, y). Let ρ be the automorphism (x, y) −→ (x + cy, y), c ∈ K∗. Let

xnym, n ≥ 1, be the highest degree monomial of u with respect to the lexdeg ordering

with x > y. Let F (x, y) be the (1, 1)-homogeneous form of u(x, y) containing the

monomial xnym. Recall the factorization (1) from Case (1) upon taking k = 1:

F (x, y) = xayb(x− c · y)s
N∏

i=1

(x− λiy), (3)

where λi 6= c, λi 6= 0. Retracing the computations given after the factorization (1),

we see that the only situation where the argument can fail for k = 1 is where s > b.

However, if this is the case, we claim that the following (simple linear) automorphism

would reduce max(degx(u),degy(u)) in the first place: τ : (x, y) −→ (x, y + 1
cx).

Indeed, this automorphism would obviously reduce degx(F (x, y)). Assume that, like in

the case (ii) in the proof of Lemma 2, F (x, y) was not the leading (1, 1)-homogeneous

form of u(x, y). Let G(x, y) be another (1, 1)-homogeneous form:

G(x, y) = xdye(x− c · y)f
M∏

i=1

(x− µiy), (4)

where µi 6= c, µi 6= 0. Then a direct computation shows that

degx(τ(G(x, y))) = degy(ρ(G(x, y))) = d + e + M.

At the same time, we have

degy(τ(G(x, y))) = degy(G(x, y))

because applying τ does not change the y-degree. Since degy(ρ(u)) < degx(ρ(u)) =

degx(u) (see above), the last two displayed equalities imply degx(τ(u)) < degx(u). If

degy(u) < degx(u), this implies max(degx(τ(u)), degy(τ(u))) < max(degx(u), degy(u)),

as was to be shown. If degy(u) = degx(u), then degy(τ(u)) = degy(u) = degx(u) and

since degx(τ(u)) < degx(u), we again have

max(degx(τ(u)), degy(τ(u))) < max(degx(u), degy(u))
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by our notational agreement (see the Introduction).

This completes the proof of Theorem 1. 2

3 Proof of Theorem 2

First of all, we observe that if αi is not conjugate to a triangular or linear automorphism,

then α has infinite order. This follows from the fact that the group Aut(K[x, y]) is a

free product with amalgamation; see e.g. [16] for details.

Let p = p(x, y) ∈ K[x, y] be (semi)invariant under α. If p = pd1
1 . . . pdk

k is a fac-

torization of p into a product of irreducible polynomials, then a power of α fixes all

pdi
i , up to a constant factor. Therefore, without loss of generality, we may assume that

α(pi) = λipi. From now on, we assume that p is irreducible and α(p) = λp.

Clearly, α induces an automorphism β of the algebra B = K[x, y]/〈p〉, where 〈p〉 is

the ideal of K[x, y] generated by p. Our first goal is to show that β has infinite order.

If β has finite order, then, upon replacing α by its appropriate power, we have α(x)−
x ≡ 0 (mod 〈p〉) and α(y) − y ≡ 0 (mod 〈p〉). Then also α(x)− x ≡ 0 (mod P )

and α(y)− y ≡ 0 (mod P ), where u here means the leading homogeneous form of a

polynomial u with respect to any choice of weights for x and y. Now choose positive

weights for x and y so that either α(x) or α(y) is not a monomial; this is always possible

except for some trivial cases.

Consider now two cases:

(1) Either α(x)− x = α(x) or α(y)− y = α(y). Suppose, say, α(x)− x = α(x).

Then, since p divides α(x)− x (see above), we get that p divides α(x). Then, for

an appropriate choice of weights, p = (ax + byk)n or p = (axk + by)n; in either case

the degree of p can be reduced by an automorphism, call it ϕ. Then the polynomial

q = ϕ(p) satisfies ϕαϕ−1(q) = q, i.e., the polynomial q and the automorphism ϕαϕ−1

satisfy the conditions of Theorem 2, but q has lower degree than p does. Thus, the

proof in this case can be completed by induction, with p = x as the base of induction

(in which case an automorphism fixing p must be triangular).

(2) α(x)− x 6= α(x) and α(y)− y 6= α(y). Then one should have α(x) = ax + byk,

α(y) = cy + dxl for some k, l. Again, consider two cases:
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(i) α(x) = ax + byk, ab 6= 0, k > 1. If a 6= 1, then p = (a − 1)x + byk, so that the

degree of p can be reduced by an automorphism. Therefore, we can ignore this case

(see above).

If a = 1, then p = cyi. Then, since p divides α(y)− y, we must have α(y)− y =

yi · h(x, y) for some polynomial h(x, y). Since we are under the assumption α(y)− y 6=
α(y), this implies i = 1, in which case p is of the form by + h(x). Then p can be taken

to x by an automorphism of K[x, y], which implies (as above) that α is conjugate to a

triangular automorphism, a contradiction with our assumption.

(ii) α(x) = ax + by, ab 6= 0. As in the previous case (i), we can focus on a = 1. Then

α(x)− x = by, hence p = cy, so that p can be taken to x by an automorphism of K[x, y],

which implies that α is conjugate to a triangular automorphism. This contradiction

completes the proof in this case.

Thus, we have shown so far that α induces an automorphism β of infinite order

of the algebra K[x, y]/〈p〉. Now we use a result of [10] saying that the only algebraic

plane curves with infinite group of automorphisms are affine line and affine line with

one puncture. We consider two cases accordingly:

(1) Let K[x, y]/〈p〉 ∼= K[t] and let π be the corresponding projection. Denote X(t) =

π(x), Y (t) = π(y). Let, say, deg(X) > deg(Y ). We may assume that deg(Y ) does not

divide deg(X) since otherwise, a relevant automorphism of K[x, y] would reduce the

degree of p. (We note that for a ground field of characteristic 0, deg(Y ) would divide

deg(X) in this case by the Abhyankar-Moh-Suzuki theorem [1, 14], but in positive

characteristic we do not have this facility.)

Thus, let deg(X) = nk, deg(Y ) = mk, where min(n,m) > 1 and (n,m) = 1.

Since p is irreducible and parametrizable by one-variable polynomials, the leading

form of p is (axm + byn)k (see [17]). Now recall (see e.g. [3]) that, for an appropriate

choice of weights, the leading form of α(x) is c ·h(x, y)r and the leading form of α(y) is

d ·h(x, y)s, where h(x, y) is either (a1x + b1y
l) or (a1y + b1x

l), and either r divides s or

s divides r. In either case, the leading form of α(p) is either h(x, y)rmk or h(x, y)snk.

Therefore, since we have assumed that α(p) = λp, this implies that the leading form

of p is either h(x, y)rmk or h(x, y)snk, in which case an appropriate automorphism of
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K[x, y] would reduce the degree of p. This completes the proof in this case.

(2) Let K[x, y]/〈p〉 ∼= K[t, t−1] and let π be the corresponding projection. Again,

denote X(t) = π(x), Y (t) = π(y), and let deg(X) = nk, deg(Y ) = mk, where

min(n,m) > 1 and (n,m) = 1. Assume that either deg(X) and deg(Y ) have dif-

ferent signs or they are both positive. (Both deg(X) and deg(Y ) cannot be negative

because t ∈ K[X, Y ]). Also, as in the previous case, recall that, for an appropriate

choice of weights, α(x) is c · h(x, y)r and α(y) is d · h(x, y)s, where h(x, y) is either

(a1x + b1y
l) or (a1y + b1x

l), and either r divides s or s divides r.

The automorphism α induces an automorphism β on F [t, t−1] such that β(t) = λt,

where λ is not a root of 1 since we have shown before that β has infinite order. (We

cannot have β(t) = λt−1 since such an automorphism has order 2.) Note that we have

π(α(x)) = β(X(t)). (5)

We are now going to show that (5) yields a contradiction. Obviously, deg(β(X)) =

deg(X). Now let h(x, y) denote either (ax + byl) or (ay + bxl). Since α(x) = h(x, y)r,

we have deg(π(α(x))) = deg(π(h(x, y)r)). If h(x, y) = ax + byl, then deg(X) = nk =

r · max(nk, lmk) = deg(π(α(x))). Therefore, r = 1 and nk > lmk. Similarly, we get

deg(Y ) = mk = s ·max(nk, lmk) = deg(π(α(y))), and either m = sn contrary to our

assumption (n, m) = 1, or s = 1 and lmk > nk. The latter contradicts the inequality

nk > lmk established before.

In a similar way, one can bring to a contradiction the case where h(x, y) = (ay+bxl).

Thus, we conclude that there is no choice of weights for x and y such that α(x) =

c · h(x, y)r and α(y) = d · h(x, y)s, where h(x, y) is either (a1x + b1y
l) or (a1y + b1x

l).

That means α is either triangular or linear automorphism. This contradiction completes

the proof of Theorem 2. 2

4 Proofs of Corollaries

Corollary 1 follows immediately from Theorem 1; we singled it out into a separate state-

ment just to better explain how our algorithm for solving the automorphic conjugacy

problem in K[x, y] works.
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Proof of Corollary 2. Based on Corollary 1, we can reduce given polynomials p, q ∈
K[x, y] to polynomials p′, q′, respectively, such that neither max(degx(p′), degy(p′)) nor

max(degx(q′), degy(q′)) can be reduced by any automorphism of K[x, y]. In the course

of this reduction we apply, alternatingly, triangular automorphisms of types I and II.

More specifically, a triangular automorphism of type I, say, is applied to a polynomial

u(x, y) in the course of this procedure if and only if

max(degx(u(x, y)), degy(u(x, y))) > max(degx(u(ax+f(y), by)), degy(u(ax+f(y), by)))

(6)

for some a, b ∈ K∗, f(y) ∈ K[y]. To find out whether such a, b, and f(y) exist for

a given u = u(x, y), one has to observe first that the degree of f(y) can be bounded

as follows. Let xnym, n ≥ 1, be the highest degree monomial of u with respect to the

lexdeg ordering with x > y, and let d = degy(u). Then, if k = deg(f(y)) > d, the

monomial ykn+m arising from the expansion of (ax + f(y))nym cannot cancel out with

any other monomial in u(ax+f(y), by), whence degy(u(ax+f(y), by)) > degy(u(x, y)).

Since degx(u(ax + f(y), by)) = degx(u(x, y)), this contradicts the condition (6) above.

Thus, deg(f(y)) is bounded by d = degy(u), and therefore, one can look for f(y) in

the form f(y) =
∑d

i=0 ci · yi with indeterminate coefficients ci. Then the condition (6)

translates into a system of polynomial equations in the indeterminates ci. If the ground

field K is constructible and algebraically closed, one can find out whether or not this

system is consistent (see e.g. [2]). If it is not, then the first part of the algorithm is

complete. If it is consistent, then, in general, one cannot find an “explicit” solution,

but this is not a problem for our algorithm. We just keep all ci as indeterminates and

proceed to the next step of the procedure. At the next step, we are going to have

some extra indeterminates, call them c′i, and again we have to find out whether or not

a relevant system of polynomial equations is consistent, only this time we are going

to have more indeterminates, namely, c′i as well as ci. Continuing this way, we shall

eventually end up either with a one-variable polynomial or with an inconsistent system

of equations. In either case, the first part of the algorithm is complete; the output of

this part is a pair p′, q′ of polynomials such that neither max(degx(p′), degy(p′)) nor
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max(degx(q′), degy(q′)) can be reduced by any automorphism of K[x, y].

The second part of the algorithm applies to the polynomials p′ and q′. If

max(degx(p′), degy(p′)) 6= max(degx(q′), degy(q′)), then the given p and q were inequiv-

alent. If max(degx(p′), degy(p′)) = max(degx(q′), degy(q′)), then one has to find out

whether or not there is a single linear or a single triangular automorphism of K[x, y]

taking p′ to q′. If it is a single triangular automorphism, then its degree is bounded, as

above. Thus, the problem amounts again to deciding whether or not a relevant system

of polynomial equations is consistent. 2
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