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Abstract. We consider in this article rigidity problems on Hermitian locally
symmetric spaces of the noncompact type, i.e., quotients of bounded symmet-
ric domains by torsion-free discrete groups of biholomorphic automorphisms.
On the one hand we give an introduction to differential-geometric techniques
on rigidity problems, on the other hand we quickly lead the reader to more
recent rigidity results. Topics discussed include local rigidity of complex struc-
ture, metric rigidiy, extremal bounded holomorphic functions, and gap rigidity,
which is related to the characterization of compact totally geodesic complex
submanifolds. In relation to local rigidity we adopt a proof which exploits the
structure of zeros of holomorphic bisectional curvatures of the Bergman metric.
This paves the way to the proof of various forms of metric rigidity, which in
its optimal form can be applied to the study of extremal problems on bounded
holomorphic functions on irreducible bounded symmetric domains Ω of rank
≥ 2 with applications to proving embedding theorems. As regards gap rigidity,
we sample a number of available techniques for proving differential-geometric
or algebro-geometric versions of gap rigidity, formulating at the same time a
related problem on almost holomorphic G-structures modelled on irreducible
bounded symmetric domains of rank ≥ 2.

Rigidity problems are of fundamental importance in Complex Geometry. They
have been widely studied, especially in the case of model manifolds, including com-
pact Hermitian locally symmetric spaces. There are a wide range of rigidity prob-
lems on such manifolds. Some concern only the complex structure, such as local
rigidity, rigidity under deformation, and uniqueness results on complex structures.
For the treatment of such problems on model manifolds often one makes use of
canonical metrics on the model manifolds or associated holomorphic vector bundles,
and derive the rigidity results using differential-geometric techniques. Other rigid-
ity problems are by their very formulation differential-geometric in nature. This
includes problems on metric rigidity and on the characterization of compact to-
tally geodesic complex submanifolds. They may however have consequences which
concern primarily the complex structure, such as rigidity results on holomorphic
mappings, which follow from metric rigidity.

In this article we consider exclusively rigidity problems on Hermitian locally
symmetric spaces of the noncompact type, i.e., quotients of bounded symmetric
domains by torsion-free discrete groups of biholomorphic automorphisms. It is our
purpose to give on the one hand an introduction to differential-geometric techniques
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on rigidity problems on such model manifolds, and on the other hand to quickly
lead the reader to more recent rigidity results concerning holomorphic mappings
and extremal bounded holomorphic functions (Mok [Mok4,5]), and on the charac-
terization of compact totally geodesic complex submanifolds (Mok [Mok4, 2002],
Eyssidieux-Mok [EM2, 2004]). We will start with a proof of local rigidity of compact
quotients of irreducible bounded symmetric domains of dimension ≥ 2, a special
case of a celebrated result proven by Calabi-Vesentini [CV, 1960]) in the case of
classical domains and by Borel ([Bo1, 1960]) in the case of exceptional domains.
Then we establish Hermitian metric rigidity (Mok [Mok1, 1987]) and derive a gener-
alization applicable to continuous complex Finsler metrics ([Mok4,5]), which in its
optimal form allows the author to study extremal bounded holomorphic functions
([Mok5, 2004]) and deduce an embedding theorem for liftings to universal covers
of nonconstant holomorphic mappings into quotients of bounded (not necessarily
symmetric) domains. In the last section we study the gap phenomenon for pairs of
bounded symmetric domains. In its original form in Eyssidieux-Mok ([EM1, 1995])
gap rigidity is said to hold for a pair of bounded symmetric domains Ω′ ⊂ Ω if any
compact complex submanifold S ⊂ X := Ω/Γ locally resembling Ω′ ⊂ Ω is neces-
sarily totally geodesic. This may be termed gap rigidity in the complex topology,
which amounts to a strong form of pinching theorem for certain compact complex
submanifolds of quotients of bounded symmetric domains. There is also in some
cases a stronger form of gap rigidity, in terms of intersection theory (Eyssidieux
[Eys1,2], Mok [Mok4], Eyssidieux-Mok (EM2]), which we call gap rigidity in the
Zariski topology. We give in this section a survey of techniques of proving gap rigid-
ity and explain also the construction of a counter-example to the gap phenomenon
as given in [EM2].

A few words on the organization and in the choice of materials are in order. For
rigidity results concerning the complex structure we give in §1 a proof of the most
basic result of local rigidity, but completely leave aside strong rigidity of compact
Kähler manifolds as developed by Siu ([Siu1, 1980; Siu2, 1981]) using harmonic
maps (for which a number of surveys ([Siu3,4], [Mok3]) are available). In the proof
of local rigidity we adopt however the proof of the ∂∂-Bochner-Kodaira formula as
given in [Siu3], the idea of which originated from Siu’s work on harmonic maps.
For the proof of local rigidity in the locally irreducible case of rank ≥ 2, in place
of the computations of Calabi-Vesentini [CV] and Borel [Bo1] of eigenvalues of
curvature operators we give a proof basing on the study of the structure of zeros
of holomorphic bisectional curvature in Hermitian symmetric spaces of the non-
compact type. This derivation, while applied only to the proof of local rigidity,
is also applicable to prove vanishing theorems for higher cohomology groups in a
more general setting (Siu [Siu3]). Here the variation of proof of local rigidity in
the Hermitian locally symmetric case paves the way for the proof of Hermitian and
Finsler metric rigidity in §2, for which the structure of the zeros of holomorphic
bisectional curvatures play a crucial role. In §2 on metric rigidity we restrict our
attention to compact quotients of irreducible bounded symmetric domains of rank
≥ 2. We start with a formulation of Finsler metric rigidity in the smooth case,
viz., the fact that lengths of minimal characteristic vectors (cf. (2.1)) with respect
to a smooth complex Finsler metric of nonpositive curvature must agree up to a
fixed multiplicative constant with those given by the Kähler-Einstein metric. We
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give a deduction of Hermitian metric rigidity and its consequences by a polariza-
tion argument already introduced in §1 in connection with local rigidity. We then
strengthen Finsler metric rigidity in two senses, requiring the complex Finsler met-
ric only to be continuous or assuming a definition of the metric and nonpositivity
of its curvature only on leaves of a canonical foliation of the minimal characteristic
bundle (cf. (2.1)). This strengthening of metric rigidity is then applied to the study
of holomorphic mappings into quotients of bounded domains, where we construct
such “partial” continuous Finsler metrices on the domain manifold by means of
the given holomorphic mappings. The use of such metrics brings in the role of ex-
tremal bounded holomorphic functions for which we sketch some ideas introducing
the reader to the original article ([Mok5]). The embedding theorem in the latter
article leads then to natural unresolved questions of rigidity when target manifolds
are quotients of bounded homogeneous domains. We also give an application of
the embedding theorem to study holomorphic mappings onto normal projective
spaces, using a result of Margulus [Mar], to show that they must be unramified
covering maps unless the target manifolds have finite fundamental groups. In §3 on
gap rigidity it is our intention to provide some motivation on the problem, and to
explore different strategies of proof, with the hope to shed some light on the gen-
eral problem, which remains largely unexplored. For these reasons we sketch the
original proof of gap rigidity in the complex topology in the Siegel modular case,
even though the result itself has now been superseded. This is done through the
study of solutions of certain second-order elliptic equations. In this light we also
sketch a differential-geometric proof of a result of Shioda’s [Sh, 1972] in relation
to finiteness of Mordell-Weil groups over modular curves. The proof makes use of
eigensection equations which we relate to Eichler’s automorphic forms (cf. Silver-
berg [Sil, 1985]). We also include generalizations along this line to general Kuga
families as given in Mok-To [MT, 1993]. A counter-example to the general Gap
Phenomenon in the complex topology ([EM2]) is given, motivating the formulation
of a more restricted conjectural version of gap rigidity. We present in some details,
together with an introduction to the algebraic background on bounded symmetric
domains, the verification of gap rigidity in the Zariski topology for pairs (Ω, Ω′) ob-
tained from diagonal embeddings (cf. (3.6)) through the use of the Poincaré-Lelong
equation, leaving aside in the case of higher-dimensional submanifolds discussions
involving Geometric Invariant Theory to the original article [EM2]. We explain
a link between metric rigidity and gap rigidity as given by an application to the
study of holomorphic mappings ([Mok4]), and another link as given by a proof of
gap rigidity in relation to quadric structures ([Mok4]), where metric rigidity and
results on Kähler-Einstein metrics are used. This latter approach leads to a natural
question involving almost holomorphic geometric structures modelled on bounded
symmetric domains which we formulate at the end of the article.

Table of Contents

1 Local rigidity of complex structure under deformation
2 Metric rigidity and extremal bounded holomorphic functions on arithmetic

varieties of rank ≥ 2
3 Gap rigidity for pairs of bounded symmetric domains
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1. Local rigidity of complex structure under deformation

(1.1) Rigidity problems are of fundamental importance in Complex Geometry. In
this article we discuss a number of rigidity problems on Hermitian locally symmetric
spaces of the noncompact type X, i.e., quotients of bounded symmetric domains by
torsion-free discrete groups of biholomorphic automorphisms. These manifolds are
of particular importance as space forms in differential geometry and often as moduli
spaces for certain algebro-geometric classification problems, e.g., Siegel modular
varieties as parameter spaces for polarized Abelian varieties. In this section we will
be solely concerned with the case where X is compact. We start with the classical
local rigidity theorem of Calabi-Vesentini [CV] and Borel [Bo1]. For a compact
complex manifold X, local rigidity of complex structure follows from the vanishing
of H1(X, TX) for the holomorphic tangent bundle TX . In differential-geometric
terms vanishing theorems most often arise from special curvature properties of
canonical metrics. Let (V, h) be a Hermitian holomorphic vector bundle over a
complex manifold X and denote by Θvwαβ the curvature tensor of (V, h); v, w ∈ Vx;
α, β ∈ Tx(X); x ∈ X. We have at x ∈ X the Hermitian bilinear form Qx on
Vx ⊗ Tx(X) defined by Qx(v ⊗ β, w ⊗ α) = Θvwαβ and extended by Hermitian
bilinearity. We say that (V, h) is of nonpositive (strictly negative) curvature in
the dual sense of Nakano if and only if Qx is negative semidefinite (resp. negative
definite) at each point x ∈ X. We have

Theorem 1. Let (X, g) be a compact Kähler manifold of complex dimension
at least 2, and (V, h) be a Hermitian holomorphic vector bundle on X of strictly
negative curvature in the dual sense of Nakano. Then, H1(X,V ) = 0.

The usual proof of Theorem 1 is by means of a Bochner-Kodaira formula. After
Siu [Siu1] obtained a ∂∂-Bochner formula for proving strong rigidity of compact
Kähler manifolds using harmonic maps, he realized that the same approach could
have yielded vanishing theorems for Hermitian holomorphic vector bundles. There
is the conceptual advantage that by this approach, in that one knows a priori
that the resulting integral formula will only involve the curvature of the Hermitian
holomorphic vector bundle (V, h) and not the curvature of (X, g). We will present
this proof here.

Proof of Theorem. Let u be a V -valued harmonic (0, 1)-form with respect
to (X, g) and the Hermitian metric h on V , i.e., ∂u = ∂

∗
u = 0, where ∂

∗
stands for

the adjoint operator of ∂ with respect to the given metrics. Write

u =
∑

i,α

uα
i
eα ⊗ dzi . (1)

Associated to u we have a real (1,1)-form η and a real (2,2)-form ξ defined by

ξ =
√−1

∑

i,j,α,β

hαβuα
j
uβ

i
dzi ∧ dzj ; η =

√−1∂∂ξ . (2)

Let x ∈ X. Choose holomorphic fiber coordinates adapted to (V, h) at x so that
hαβ(x) = δαβ and dhαβ(x) = 0. Taking derivatives and adopting the Einstein
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convention for summations, we have

−η = (∂k∂`hαβ)uα
j
uβ

i
dzk ∧ dz` ∧ dzi ∧ dzj . . . (I)

+ hαβ(∂kuα
j
)(∂`u

β

i
)dzk ∧ dz` ∧ dzi ∧ dzj . . . (II)

+ hαβ(∂`u
α
j
)(∂kuβ

i
)dzk ∧ dz` ∧ dzi ∧ dzj . . . (III)

+ hαβ(∂k∂`u
α
j
)uβ

i
dzk ∧ dz` ∧ dzi ∧ dzj . . . (IV)

+ hαβuα
j
(∂k∂`u

β

i
)dzk ∧ dz` ∧ dzi ∧ dzj . . . (V)

(3)

We assert that all terms on the right-hand side vanish except for the first two.
Regarding (III), from ∂u = 0 it follows that ∂`u

α
j

= ∂ju
α
`
, i.e., we have symmetry

in the pair (j, `) of indices. On the other hand,

dzk ∧ dz` ∧ dzi ∧ dzj = −dzk ∧ dzj ∧ dzi ∧ dz` . (4)

Summing up over j, ` we observe the vanishing of (III). Regarding (IV), observing
the symmetry of ∂k∂`u

α
j

in (j, `) the same argument applies. As to (V), it suffices

to write ∂k∂`u
β

i
= ∂`∂kuβ

i
and use the symmetry in (k, i) to conclude its vanishing.

It follows from (3) that

−η ∧ ωn−2 = [(I) + (II)] ∧ ωn−2 = Curvature term + Gradient term . (5)

At x ∈ X choose a system of complex geodesic coordinates (zi) such that gij(x) =
δij and dgij(x) = 0, so that the Riemann-Christoffel symbols Γk

ij vanish at x. Write

ω =
√−1

∑

i,j

gijdzi ∧ dzj (6)

for the Kähler form ω of (X, g). From the harmonicity of u we have

0 = ∂
∗
u = −

∑

i,j

(
gij∇iu

α
j

)
eα , (7)

which at x translates into

0 =
∑

i,α

(∇iu
α
i

)
eα =

∑

i,α

(
∂iu

α
i

)
eα . (8)

For the expression involving (II) in (5) we have at x

(II) ∧ ωn−2 =
∑

k,j

(
∂kuα

j
∂kuα

j
dzk ∧ dzk ∧ dzj ∧ dzj

) ∧ ωn−2

−
∑

k,j

(
∂kuα

k
∂juα

j
dzk ∧ dzk ∧ dzj ∧ dzj

) ∧ ωn−2

= (n− 2)!
∑

k,j

∣∣∂kuα
j

∣∣2dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn ,

(9)

where we have simplified the expression using (8). Therefore,
∫

X

−η ∧ ωn−2

(n− 2)!
=

∫

X

Curvature term +
∫

X

‖∇u‖2 ωn

n!
. (10)
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Write Θ for the curvature form of (V, h) so that with respect to the chosen base
and fiber holomorphic coordinate systems we have Θαβk`(x) = −∂k∂`hαβ(x). At x
we have

(I) ∧ ωn−2

(n− 2)!
=

∑

k,`,α,β

(
Θαβk`u

α
k
uβ

`
−Θαβkkuα

`
uβ

`

)ωn

n!
(11)

Since η =
√−1∂∂ξ, hence dη = 0, dividing (5) by (n− 2)! and integrating over X

we obtain by Stokes’ Theorem

0 =
∫

X

−η∧ ωn−2

(n− 2)!
=

∫

X

( ∑

k,`,α,β

(
Θαβk`u

α
k
uβ

`
−Θαβkkuα

`
uβ

`

)
+‖∇η‖2

)
ωn

n!
, (12)

Recall the Bochner-Kodaira formula for the (1,0)-gradient

∫

X

∥∥∂u
∥∥2 +

∥∥∂
∗
u
∥∥2 =

∫

X

K(u, u) +
∥∥∇η

∥∥2
, (13)

where in the integrals the volume form ωn

n! is implicit. (12) is simply the Bochner-
Kodaira formula (13) in the case where u is harmonic. Write Θk` :=

∑
α,β hαβΘαβk`.

We have (Θkl) < 0 whenever (V, h) is of strictly negative curvature in the dual sense
of Nakano. When V = L is a holomorphic line bundle, taking at x ∈ X α = e1

to be of unit length, writing uk for u1
k
, and choosing furthermore local holomor-

phic coordinates (zk) such that at x the Hermitian matrix
(
Θk`

)
is diagonalized,

Θk` = −ckδk`, we have

K(u, u) =
( ∑

k

ck

)(∑

l

|u`|2
)
−

∑

k

ck|uk|2 =
∑

k

(c− ck)|uk|2 (14)

where −c = −∑
k ck > 0 is the scalar curvature. This gives Kodaira’s Vanishing

Theorem for negative line bundles, which holds true more generally for (L, h) on
an n-dimensional compact Kähler manifold, n ≥ 2, such that at each point the sum
of any n − 1 eigenvalues of the curvature form is negative. In the general case of
a Hermitian holomorphic vector bundle (V, h) of strictly negative curvature in the
dual sense of Nakano, it remains to prove that

(†) K(u, u) =
∑

k 6=`

(
−

∑

α,β

Θαβkkuα
`
uβ

`
+

∑

α,β

Θαβk`u
α
k
uβ

`

)
> 0

whenever (uα
i
) 6= 0. Pick any pair of indices (k, `), k 6= `. Consider the matrix(

Aγi
)

=
(
Aγi

k`

)
, where

Aγk = uγ

`
, Aγ` = −uγ

k
; Aγi = 0 whenever i 6= k, ` . (15)
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Then,

0 ≤
∑

α,β,i,j

−ΘαβijA
αj Aβi

= −
∑

α,β

ΘαβkkAαk Aβk −
∑

α,β

Θαβ``A
α` Aβ`

−
∑

α,β

Θαβk`A
α` Aβk −

∑

α,β

Θαβ`kAαk Aβ`

= −
∑

α,β

Θαβkkuα
`
uβ

`
−

∑

α,β

Θαβ``u
α
k
uβ

k

+
∑

α,β

Θαβk`u
α
k
uβ

`
+

∑

α,β

Θαβ`kuα
`
uβ

k

= 2
(
−

∑

α,β

Θαβkkuα
`
uβ

`
+

∑

α,β

Θαβk`u
α
k
uβ

`

)
.

(16)

Summing up over (k, `), k 6= `, it follows from (16) that K(u, u) ≥ 0 and that
equality holds if and only if each

(
Aγi

k`

)
vanishes for each choice of (k, `), i.e., if

and only if u = 0. We have thus verified (†) and shown that H1(X,V ) = 0 on an
n-dimensional compact Kähler manifold X, n ≥ 2, whenever (V, h) is of strictly
negative curvature in the dual Nakano sense, proving Theorem 1.

(1.2) We will now give a proof of the local rigidity of compact quotients of irreducible
bounded symmetric domains of complex dimension ≥ 2. More precisely, we have

Theorem 2. Let Ω be an irreducible bounded symmetric domain of complex
dimension ≥ 2 and Γ ⊂ Aut(Ω) be a torsion-free cocompact lattice, X := Ω/Γ.
Then, H1(X,TX) = 0. In particular, local rigidity holds for X.

Theorem 2 is a special case of a vanishing theorem on cohomology groups
originally proved by Calabi and Vesentini [CV] for classical bounded symmetric
domains and by Borel [Bo2] for exceptional domains. Their proofs involved the
computation of eigenvalues of certain Hermitian bilinear forms associated to the
curvature tensor. We will now give a proof basing on Theorem 1 by considering the
kernel of the Hermitian bilinear form K in the Bochner-Kodaira formula discussed
in the above.

Proof of Theorem 2 for Type I domains. The tangent bundle TX ,
equipped with the Hermitian metric given by the Bergman metric g on X, is of
nonpositive curvature in the dual sense of Nakano. Fix x ∈ X and let Q be the
curvature operator on X regarded as a Hermitian bilinear form on Tx ⊗ Tx, i.e., Q
is defined by Q(ξ⊗ η; ξ′⊗ η′) = Rξηη′ξ′ for decomposable elements; η, η′, ξ, ξ′ ∈ Tx;
and extended to Tx ⊗ Tx by Hermitian sequilinearity. We consider now first of all
the special case where Ω is a bounded symmetric domain of Type I and of dimension
> 1, given by

Ω = DI
m,n =

{
m× n matrices Z : I − Z

t
Z > 0

}
, m ≥ n ; m > 1 .

When n = 1 we have the m-ball Bm which is of strictly negative curvature in the
dual sense of Nakano, so that Theorem 1 applies immediately. For the purpose
of proving Theorem 2 for bounded symmetric domains of Type I we will restrict
ourselves to n ≥ 2 in what follows. Up to a scalar multiple the Kähler form for the



8 NGAIMING MOK

Bergman metric of DI
m,n is given by ω =

√−1∂∂ϕ, ϕ = − log det(I − Z
t
Z). Note

that the Euclidean coordinate system is a complex geodesic coordinate system at
the origin o of Ω. A direct computation at o using the potential function ϕ shows
that

Rij,k`,pq,rs = −δikδprδjsδlq − δirδpkδj`δqs

which gives
∑

Rij,k`,pq,rsA
ij,k` Ars,pq = −

( ∑
Aij,i` Apj,p` +

∑
Aij,kj Aiq,kq

)
≤ 0 (1)

showing the nonpositivity of Q, i.e., that (X, g) is of nonpositive curvature in the
dual sense of Nakano. We note in particular that

Bisect(X, Y ) = RXXY Y

= Q(X ⊗ Y , X ⊗ Y )

= −‖XY
t‖2 − ‖XtY ‖2

(2)

As an example if we let

Xo =
[∗ 0
0 0

]
and Yo =

[
0 0
0 ∗

]
, (3)

then
XoYo

t
= Xt

oYo = 0 (4)
showing that Bisect(Xo, Yo) = 0. We note that in general from the nonpositivity
of Q it follows that

X ⊗ Y ∈ Ker(Q) whenever Bisect(X, Y ) = 0 . (5)

Let now
u =

∑

i,j,k,`

uk`
ij

∂

∂zk`
⊗ dzij (6)

be a TX -valued harmonic (0,1)-form. By the proof of Theorem 1, K(u, u) = 0
everywhere on X, and we have

u

(
∂

∂zij

)
⊗ ∂

∂zk`
− u

(
∂

∂zk`

)
⊗ ∂

∂zij
∈ Ker(Q) . (7)

Writing uij = u
(

∂
∂zij

)
, etc. we assert that in the special case where i = j, k = `,

i 6= k, we have

(]) uii ⊗
∂

∂zkk
; ukk ⊗

∂

∂zii
∈ Ker(Q) .

From the identity

Q(A + B, A + B) = Q(A, A) + Q(B, B) + 2ReQ(A,B)

to deduce (]) from (7) it suffices to show that Q
(
uii ⊗ ∂

∂zkk
, ukk ⊗ ∂

∂zii

)
= 0. This

is indeed the case because Bisect
(

∂
∂zii

, ∂
∂zkk

)
= 0, so that ∂

∂zii
⊗ ∂

∂zkk
∈ Ker(Q) by

(5), which implies

Q

(
uii ⊗

∂

∂zkk
, ukk ⊗

∂

∂zii

)
= Q

(
∂

∂zii
⊗ ∂

∂zkk
, ukk ⊗ uii

)
= 0 . (8)

Let α, ζ be unit vectors in To(Ω) such that Bisect(α, ζ) = 0. Representing α resp.
ζ as m× n-matrices X resp. Y , there exist unitary matrices U ∈ U(m), V ∈ U(n)
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such that UXV resp. UY V can be put in the form Xo resp. Yo as in (3) and (4).
It follows from the argument giving (]) that

u(α)⊗ ζ ∈ Ker(Q) whenever Rααζζ = 0 .

For any α ∈ To(Ω), we define Nα to consist of all β ∈ To(Ω) such that Rααββ = 0.
A vector α ∈ To(Ω) is said to be a minimal characteristic vector at o if and only
if it corresponds to a matrix of rank 1. Given a complex vector space V and
π : V −{0} → PV the canonical projection, for any A ⊂ PV we write Ã for π−1(A),
the homogenization of A. Denote by Mo ⊂ PTo(X) the projective submanifold
consisting of projectivizations of minimal characteristic vectors. For α ∈ M̃o of
unit length, up to unitary transformations U ∈ U(m) and V ∈ U(n) we may
assume α to be ∂

∂z11
. From this it is immediate to check that

⋂
β∈Nα

Nβ = Cα. It
follows that

u(α) = λ(α)α (9)

for some smooth function λ on M̃o. We assert that (9) implies that u = 0. To see
this let αo ∈ M̃o, η ∈ To(Ω) be a nonzero vector tangent to M̃o at αo and not
proportional to αo. From (9) it follows that at αo we have

0 = (∂ηλ)αo + λ(αo)η (10)

which is impossible unless λ(αo) = 0. This implies that λ and hence u vanishes
identically on M̃o, as asserted.

(1.3) To prove Theorem 2 for the general case of an irreducible bounded symmetric
domain Ω of rank ≥ 2 the proof given above for Type I domains works equally
well. We take this occasion to consider irreducible bounded symmetric domains
Ω in general and discuss properties of the curvature operator shared by Bergman
metrics on all such domains. To start with we have the following complete list of the
set of all irreducible bounded symmetric domains. Here we denote the Euclidean
space of all m×n-matrices with complex coefficients by M(m, n;C). Furthermore,
given a simple Lie algebra g over C, we say that an irreducible bounded symmetric
domain Ω is of type g to mean that Auto(Ω) := G is a Lie group whose Lie algebra is
a real form of g. The following is a complete list of irreducible bounded symmetric
domains:

Irreducible Classical Symmetric Domains

DI
m,n := {Z ∈ M(m,n;C) : I − Z

t
Z > 0} , m, n ≥ 1;

DII
n := {Z ∈ DI

n,n : Zt = −Z} , n ≥ 2;

DIII
n := {Z ∈ DI

n,n : Zt = Z} , n ≥ 1;

DIV
n :=

{
(z1, . . . , zn) ∈ Cn : ‖z‖2 < 2 ;

‖z‖2 < 1 +
∣∣∣1
2

n∑

i=1

z2
i

∣∣∣
2}

, n ≥ 3 .

Exceptional Domains

DV , of type E6, dimC
(
DV

)
= 16 ;

DV I , of type E7, dimC
(
DV I

)
= 27 .
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There is some duplication in the listing, viz. DI
1,1

∼= DII
2
∼= DIII

1
∼= ∆, the unit

disk, DII
3
∼= DI

3,1
∼= B3, the 3-dimensional unit ball, DIII

2
∼= DIV

3 , DI
2,2
∼= DIV

4 and
DII

4
∼= DIV

6 . Sometimes it is more natural to make use of an unbounded realization
of a Hermitian symmetric space of the noncompact type. This is the case of the
Siegel upper half-plane Hn of genus n defined by

Hn :=
{
τ ∈ M(n, n;C) : τ t = τ ; Im(τ) > 0

}
,

the natural parameter space for principally polarized n-dimensional Abelian vari-
eties, where each τ represents the lattice Lτ ⊂ C spanned by the unit vectors and
the column vectors of the matrix τ . The conditions of symmetry and positivity of
the imaginary part are the Riemann bilinear relations which guarantee that C/Lτ

admits by a positive line bundle E such that (c1(E))n

n! = 1. The Siegel upper half-
plane is biholomorphic to the bounded symmetric domain DIII

n , as given by the
Cayley transform Z = (τ − iIn)(τ + iIn)−1, where In stands for the identity n× n
matrix.

(1.4) Write now G = Auto(Ω) for the identity component of the automorphism
group of Ω, g for its Lie algebra, and by K ⊂ G the isotropy group at o = eK,
so that Ω = G/K. Denote by Bg the Killing form on the simple Lie algebra g.
Let g0 be any G-invariant Kähler metric on Ω, which is necessarily Kähler-Einstein
and just a constant multiple of the Bergman metric. The structure of (Ω, g0) as a
Riemannian symmetric manifold is defined by a Cartan involution σ on g whose
fixed point set is precisely k. Denote by θ the involution on G such that dθ = σ.
Let g = k + m be the Cartan decomposition of g with respect σ. k is reductive
with a one-dimensional centre z corresponding to a circle group Z ⊂ K, and the
almost complex structure on Ω is defined by an element ι of order 4 in z such
that ι2 = θ. Let mC := m ⊗R C = m+ ⊕ m− be the eigenspace decomposition of
mC into eigenspaces corresponding to the eigenvalues i resp. −i. Then, we can
identify m+ with T 1,0

o (Ω) and m− with T 0,1
o (Ω). We will identify canonically the

(1,0)-component of the complexified tangent bundle TΩ of Ω with the holomorphic
tangent bundle TΩ, so that the (0,1)-component T 0,1

Ω is canonically identified with
TΩ. An element of To(Ω) ⊗ To(Ω) corresponds to an element A of m+ ⊗ m−. The
Lie bracket on g, extended to its complexification gC, yields a complex linear map:
[·, ·] : m+ ⊗ m− → kC. From a standard formula for the Riemannian curvature
tensor on a Riemannian symmetric manifold (cf. Wolf [Wo, Thm.(841), p.245-246])
for the curvature operator Q on To(Ω)⊗ To(Ω) we have

Q(A, A) = −c
∥∥[A, A]

∥∥2

where ‖ · ‖ on kC is induced by the Killing form Bg, and c > 0 is a constant.
This shows that for any (not necessarily irreducible) bounded symmetric domain Ω
equipped with the Kähler-Einstein metric g0, (Ω, g0) is of nonpositive curvature in
the dual sense of Nakano. In particular, it is of nonpositive holomorphic bisectional
curvature. For the proof of Theorem 2 in general we will need to study the structure
of the zeros of bisectional curvature. Since Q is negative semi-definite, Rααζζ = 0
implies Q(α⊗ ζ; α⊗ ζ) = 0, so that α⊗ ζ lies on Ker(Q). We have the analogue of
the notion of the minimal characteristic subvariety Mx ⊂ PTx(X) (cf. (2.1)). Let
now E ⊂ Tx(X)⊗ Tx(X) be defined by

E = {α⊗ ζ : α ∈ M̃x, Rααζζ = 0} .
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Then, E =
(M̃x ⊗ Tx(X)

) ∩ Ker(Q) is an analytic subvariety of (Tx(X) − {o}) ×
Tx(X). In particular, as α varies holomorphically in M̃x, ζ varies holomorphically
in Tx(X), i.e., ζ varies anti-holomorphically in Tx(X). If we take a smooth point
(αo, βo) of A the orbit of αo resp. ζo must generate To(Ω) since K acts on To(Ω)
irreducibly. To complete the proof of Theorem 2 we will use the following general
lemma on polarization.

Lemma 1 (the polarization argument). Let V and W be finite-dimension-
al complex vector spaces. Denote by W ′ the complex vector space which agrees with
W as a real vector space but is endowed with the conjugate complex structure of that
of W . (In other words, denoting by JW resp. JW ′ the almost complex structures of
W resp. W ′ , we have JW ′ = −JW .) Let E ⊂ V ×W ′ a connected complex-analytic
submanifold of some open subset of V ×W ′. Regarding E as a subset of V ×W
and denoting by prV : E → V , prW : E → W the canonical projections, assume
that prV (E) resp. prW (E) spans V resp. W as a complex vector space. Write
E# ⊂ V ⊗W for the subset {α⊗ β : (α, β) ∈ V ×W}. Then, E# spans the tensor
product V ⊗W as a complex vector space.

Proof. The complex linear span of E is completely determined by its germ at
any base point. Pick now (α0, β0) ∈ E so that prV |E : E → V ×W , prW ′ |E : E →
W ′ are of maximal rank at (α0, β0). Shrinking E if necessarily we may assume
that prV |E is a holomorphic submersion onto a locally closed complex submanifold
Σ ⊂ V . Let now α range over a sufficiently small open neighborhood U of α0

in Σ and (α, β(α)) ∈ E, β(α0) = β0, be chosen such that β : U → W ′ is a
holomorphic map, i.e., β : U → W is an anti-holomorphic map. Then, Span(E]) ⊃
Span{α ⊗ β(α) : α ∈ U}. Hence, Span(E]) contains α0 ⊗ β0 and any partial
derivative of α ⊗ β(α) at α0 with respect to a choice of holomorphic coordinates
(zk) on U . In particular, taking partial derivatives in the (1, 0) direction and using
the fact that β is anti-holomorphic we conclude that Span(E]) contains every γ⊗β0

where γ is a partial derivative of α at α0 in the (1, 0) direction. For instance
∂

∂zk
(α⊗ β(α))

∣∣∣
α=α0

=
∂α

∂zk
(α0)⊗ β0.

But the complex linear span of α0 and all such γ agrees with that of E, which is
by assumption the same as V . Thus, Span(E]) ⊃ V ⊗ {β0}. Varying now β0 and
using the assumption that prW (E) spans W we conclude that Span(E]) = V ⊗W ,
as desired.

Proof of Theorem 2 continued. It suffices to consider the case where Ω is
an irreducible bounded symmetric domain of rank ≥ 2. In this case the curvature
operator Q as a Hermitian form on To(Ω) ⊗ To(Ω) negative semi-definite with a
nonzero kernel. By the same argument in the case of Ω = DI

m,n, m ≥ n > 1, we
have the analogue of (]′′) there, viz., for any harmonic TX -valued (0,1)-form on X
we have

u(α)⊗ ζ ∈ Ker(Q) whenever Rααζζ = 0 . (]′′)

By considering the set E =
(M̃x⊗Tx(X)

)∩Ker(Q) and applying the polarization
argument (Lemma 1) we conclude that u(ξ) ⊗ η ∈ Ker(Q) for any ξ, η ∈ To(Ω).
This implies that Im(u) ⊂ To(Ω) consists of vectors µ such that Rµµηη = 0 for every
η ∈ To(Ω), which contradicts with the fact that (Ω, g0) is of constant negative Ricci
curvature unless u ≡ 0. ¤
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2. Metric rigidity and extremal bounded holomorphic functions on
arithmetic varieties of rank ≥ 2

(2.1) Let Ω be an irreducible bounded symmetric domain. When Ω is of rank
1, i.e., Ω is an n-dimensional complex unit ball Bn, any two unit (1,0) tangent
vectors are equivalent to each other under the automorphism group of Ω. This is
the case because the isotropy group at the origin o ∈ Bn is the unitary group. In
the case of Ω of higher rank this is no longer the case. In the notations of (1.3)
for Ω = DI

m,n; m,n ≥ 1; SU(m) × SU(n) acts (with a finite kernel) as the full
isotropy group at o ∈ DM

m,n by the action (A,B) · X = AXB where A ∈ SU(m),
B ∈ SU(n) and X ∈ M(m,n;C). Thus, in particular the rank of the matrix
X, which represents a (1,0) tangent vector at the origin, is unchanged under the
action of the isotropy group. As in (1.5) we have the Harish-Chandra and Borel
embeddings DI

m,n ⊂ M(m,n;C) ∼= Cmn ⊂ G(n,m), where G(n,m) stands for
the Grassmannian of complex n-planes in Cm+n. In this case SL(m + n;C) acts
(with a finite kernel) as the full group GC of biholomorphisms so that the parabolic
(isotropy) subgroup P ⊂ GC at o ∈ G(n,m) is the subgroup generated by the
reductive group L ⊂ GL(mn;C) which is the image of GL(m,C)×GL(n,C) under
the action (A,B)·Z = AZB, and by the unipotent subgroup U ∼= M(m,n;C) where
C ∈ U ∼= M(m,n;C) acts on G(n, m) by C ·Z = Z(In+CtZ)−1. Elements of U ⊂ P
are characterized by the fact that their Jacobian matrices at the fixed point o are the
identity matrix. From this description it follows that the rank of X ∈ M(m,n;C)
is actually invariant under the parabolic subgroup P . This observation leads to
the construction of GC-invariant subvarieties of the projectivized tangent bundle
of G(n,m). With the proper definition of the rank of a (1,0) tangent vector the
construction applies to any bounded symmetric domain Ω and its dual M , which
is a Hermitian symmetric manifold of the compact type. When restricted to Ω
and passing to quotient manifolds they lead to holomorphic bundles, to be called
minimal characteristic bundles, which served in [Mok1,2,4,5] as the source of various
forms of metric rigidity with applications to rigidity phenomena for holomorphic
mappings. In what follows we will give a general description of the construction of
characteristic bundles. This relies on some basic facts about Lie algebras relevant
to the study of bounded symmetric domains, as can be found for instance in [Mok2,
Chapter 3 and 5]. Geometrically we have the following basic statement about totally
geodesic polydisks on a bounded symmetric domain.

Polydisk Theorem (cf. Wolf [Wo, p.280]). Let Ω be a bounded symmetric
domain of rank r, equipped with the Kähler-Einstein metric g. Then, there exists an
r-dimensional totally geodesic complex submanifold Π biholomorphic to the polydisk
∆r. Moreover, the identity component Auto(Ω) of Aut(Ω) acts transitively on the
space of all such polydisks.

In our study of metric rigidity we make use of ergodic-theoretic properties of
the action of an irreducible lattice Γ ⊂ Auto(Ω) := G on right homogeneous spaces
G/H where H ⊂ G is a noncompact closed subgroup. For instance, by the Polydisk
Theorem the space of maximal polydisks on a bounded symmetric domain Ω of rank
≥ 2 can be identified as such a right-homogeneous space G/H. A basic result in
this context is given by

Moore’s Ergodicity Theorem. (cf. Zimmer [Zi, Thm. (2.2.6), p.19])
Let G be a semisimple real Lie group and Γ be an irreducible lattice on G, i.e., Γ\G



RIGIDITY PROBLEMS ON BOUNDED SYMMETRIC DOMAINS 13

is of finite volume in the left invariant Haar measure. Suppose H ⊂ G is a closed
subgroup. Consider the action of H on Γ \G by multiplication on the right. Then,
H acts ergodically if and only if H is noncompact.

For other related results in Ergodic Theory relevant to metric rigidity we refer
the reader to [Mok5, (3.1)] and the references cited there from Zimmer [Zim].

Characteristic bundles
Write G for Auto(Ω) and let K ⊂ G be the isotropy subgroup at a point o ∈ Ω,
so that Ω = G/K. Ω is a Hermitian symmetric space with respect to the Bergman
metric. K acts faithfully on the real tangent space TRo (Ω). Let a be a maximal
abelian subspace of the real tangent space, whose dimension r is the rank of Ω as
a Riemannian symmetric space. Then, TRo (Ω) =

⋃
k∈K ka. We have a ∩ Ja = 0

for the canonical complex structure J on Ω. The complexification (a + Ja) ⊗R C
decomposes into a+ ⊕ a+, where a+ ⊂ To(Ω), the holomorphic tangent space at
o, so that To(Ω) =

⋃
k∈K ka+. Thus, any (1,0) tangent vector ξ at o is equivalent

under the action of the isotropy group to some η ∈ a+. By the Polydisk Theorem,
there exists a totally geodesic (holomorphic) polydisk Π ∼= ∆r passing through o,
Π ⊂ Ω, such that To(Π) = a+. With respect to Euclidean coordinates on Π ∼= ∆r,
we can write η = (η1, ..., ηr). For η 6= 0 we will say that η is of rank k, 1 ≤ k ≤ r,
if and only if exactly k of the coefficients ηj are non-zero. The automorphisms of
Π extend to global automorphisms of Ω belonging to G. Thus, any η ∈ To(Ω) is
equivalent under K to a unique vector η = (η1, ..., ηr), such that each coefficient is
real and η1 ≥ η2 · · · ≥ ηr ≥ 0. We call η the normal form of ξ under K.

By means of the Borel embedding we consider now Ω as an open subset of its
compact dual M , which is a Hermitian symmetric manifold of the compact type.
For instance, for Ω = DI

m,n, the compact dual M is the Grassmannian manifold
G(n,m), and for Ω = DIV

n , M is the n-dimensional hyperquadric Qn. Write GC

for the identity component of the automorphism group of M and P ⊂ GC for
the isotropy subgroup at o. GC ⊃ G is a complexification of G. Consider the
action of P on PTo(M). Let L be a Levi subgroup of P , i.e., L ⊂ P is a maximal
reductive subgroup. L can be taken to be a complexification of K. We write
L := KC. We have P = KC ·M−, where M− is the unipotent radical of P . M−

is abelian and acts trivially on To(M) = To(Ω). Let Ho be the identity component
of the automorphism group of the polydisk D, H ⊂ G. Then, H ∼= SU(1, 1)r.
Its complexification HC inside C, H ∼= SL(2,C)r, acts transitively on a polysphere
Σ ∼= Pr

1 such that (Π; Σ), Π ⊂ Σ, is a dual pair of Hermitian symmetric spaces. Since
H contains C∗ × · · · × C∗ (r times), any η = (η1, ..., ηr) in the normal form under
K must be equivalent under KC to a vector of the form η(k) = (1, ...1; 0, ...0), with
exactly the first k entries being equal to 1, where k is the rank of η. In particular,
two non-zero vectors of the same rank in To(Ω) = To(M) are equivalent under KC

and hence under P . Moreover, using the action of (C∗)r, for k < r any non-zero
vector of rank k is a limit of vectors of rank k +1. Furthermore, any two vectors in
To(M) of different ranks are not equivalent under P . In the case of M = G(m,n)
this follows from taking the rank to mean the usual rank of a matrix. In general,
this can be checked using Lie algebras.

For the action of P on PTo(M) it follows from the above that there are precisely
r orbits Ok, 1 ≤ k ≤ r, such that the topological closures Ok form an ascending
chain of subvarieties of PTo(M), with Or = PTo(M). Here Ok = P [η] for any
[η] ∈ PTo(M) of rank k. Given any η of rank k, k < r, the closure of the G-orbit
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of its projectivization [η] defines a holomorphic bundle of projective subvarieties
Sk(M) ( PTM , called the k-th characteristic bundle, where Sk,o(M) = Ok. The
restrictions Sk(Ω) to Ω are invariant under the action of G. Their quotients under
Γ ⊂ G will be denoted by Sk(X).

A (1,0)-vector η is said to be a generic vector if and only if it is of rank r. A
(1,0)-vector η of rank k will be called a k-th characteristic vector, and a nonzero
vector will be called a characteristic vector whenever it is a k-th characteristic vector
for some k, 1 ≤ k < r. (This is a deviation from the usage in earlier articles, where
the term ‘characteristic vector’ was used only for the case k = 1). We write S(X) for
Sk−1(X), etc., and call S(X) the maximal characteristic bundle. (It was called the
highest characteristic bundle in [Mok4]). It consists precisely of projectivizations
of characteristic vectors η. A first characteristic vector is also called a minimal
characteristic vector. We write M(X) for S1(X), etc. and also call it the minimal
characteristic bundle. M(M) consists precisely of projectivizations of (1,0)-vectors
tangent to minimal rational curves on M , i.e., lines on M with respect to the first
canonical projective embedding of M . M(Ω) corresponds on the other hand to
tangents of minimal disks on Ω.

The minimal characteristic bundle as a foliated manifold

Let g0 be a canonical Kähler-Einstein metric on Ω, and denote by g the induced
Kähler-Einstein metric on the quotient manifold X. Write ω for the Kähler form
of (X, g). We denote by R the curvature tensor of (Ω, g0) or that of (X, g). Write
M := M(X) for the minimal characteristic bundle on X. We assume now that Ω is
of rank ≥ 2. There is a canonical foliation N on M whose leaves can be described
as follows. For any [η] ∈ PTo(Ω) let Nη = {ζ ∈ To(Ω) = Rηηζζ = 0}, the null-space
of η. Write q = dim(Ωo). Let 4 ⊂ Ω be the unique minimal disk passing through
o such that To(4) = Cα. Then, there exists a unique totally geodesic complex
submanifold Ωo passing through o such that To(Ωo) = Nα. Moreover, Cα ⊕Nα is
tangent to a unique totally geodesic (q+1)-dimensional complex submanifold which
can be identified with 4×Ωo. The above description is clear for the case of Type-I
domains DI

m,n, m ≥ n ≥ 2, in which case, taking α without loss of generality to
be the matrix E11 (the matrix with (1, 1) entry equal to 1 and all other entries
equal to 0), Nα is nothing other than the complex vector space of matrices with
vanishing first row and first column, thus Nα = To(Ωo), where Ωo can be identified
with DI

m−1,n−1, and ∆ × Ωo sits in Ω as a totally geodesic complex submanifold.
The same type of verification works out for classical domains, and a verification
applicable to any Ω can be obtained from root space decompositions.

Identify {o} × Ωo with Ωo. For every z ∈ Ωo write [α(z)] := PTz(4× {z}) ∈
Mz(Ω). As z runs over Ωo, this defines a lifting of Ωo to a complex submanifold
F ⊂M(Ω) which is precisely the leaf of the lifting of N to M(Ω) passing through
[α]. Note that G acts transitively on M(Ω). Let H ⊂ G be the closed subgroup
which fixes Ωo as a set. The leaf space of the lifted foliation on Ω can be identified
as the homogeneous space G/H. Set-theoretically the leaf space of N is then given
by Γ \G/H.

There is a description of the distribution [α] → N[α] which does not involve
curvature. For a point z on the compact dual M of Ω let α ∈ M̃z be a minimal
characteristic vector, and C ⊂ M be the unique minimal rational curve (line) on M
passing through z and tangent to α. Write TM |C ∼= O(2)⊕O(1)p⊕Or. Let Pα stand
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for the fiber of the positive part O(2)⊕O(1)p at z, which is well-defined independent
of the choice of the Grothendieck decomposition. From the deformation theory of
rational curves we have T[α](Mo) = Pα/Cα, so that Pα varies holomorphically
as α varies over M̃(M). Suppose now z ∈ Ω ⊂ M . Then, r = q and the null-
space Nα of α is nothing other than the orthogonal complement of Pα in Tz(Ω)
with respect to the Kähler-Einstein metric g0, While leaves of the foliation N are
holomorphic, from the above description it is easy to see that the foliation itself is
not holomorphic. In fact, denoting by π : M → X the canonical projection, the
assignment [α] → N[α] = dπ(N[α]) already fails to be holomorphic when restricted
to one fiber Mx.

The foliated minimal characteristic bundle with a transverse measure

The foliation N on M as defined is not holomorphic, while all leaves are holomor-
phic. A typical example of such foliations arises from the nontrivial kernel of a
nonpositive (1,1)-form which is of constant rank as a Hermitian bilinear form. We
will see that this is indeed the case.

The holomorphic tangent bundle TX defines the tautological line bundle L over
PTX , and the Hermitian metric on TX defined by g then corresponds to a Hermit-
ian metric ĝ on L, and we call (L, ĝ) the Hermitian tautological line bundle. Since
(TX , g) is of nonpositive curvature in the sense of Griffiths, (L, ĝ) is of nonpositive
curvature (cf. [Mok2, (4.2), Proposition 1]) so that −c1(L, ĝ) ≥ 0. with a kernel
at [α] ∈ M, to be denoted A[α] ⊂ T[α](X), such that dπ(A[α]) = Nα (cf. [Mok2,
loc. cit.]). Thus A[α] is a lifting to Mx of Nα which can be determined, as follows.
Choose a holomorphic coordinate system at x which is complex geodesic at x with
respect to the Kähler metric g. Then, A[α] ⊂ T[α](X) is ‘horizontal’ with respect
to the local holomorphic trivialization of PTX on a neighborhood of x defined by
the chosen holomorphic coordinate system. Now the Euclidean coordinate system
for Ω ⊂ Cn given by the Harish-Chandra realization serves as a complex geodesic
coordinate system at o ∈ Ω. This is the case because the symmetry at o is given by
the mapping z → −z in terms of Harish-Chandra coordinates, implying that the
Taylor expansion at o of the Kähler metric g has no odd-order terms, in particular
dgij(o) = 0. Now the ‘horizontal’ lifting of N[α] with respect to Harish-Chandra co-
ordinates agrees precisely with N[α], since the totally geodesic complex submanifold
Ωo ⊂ Ω (which passes through o ∈ Ω) used in the definition of N sits in Ω as the in-
tersection of Ω with a complex linear subspace, implying therefore that A[α] = N[α].
In particular, we have demonstrated that −c1(L, ĝ)|M is positive semi-definite with
precisely a q-dimensional kernel at each point, and the foliation N on X is nothing
other than the foliation defined by the smooth d-closed (1,1)-form −c1(L, ĝ)|M.

The closed (1,1)-form λ := −c1(L, ĝ)|M is a real 2-form on the real 2(n + p)-
dimensional underlying smooth manifold of the minimal characteristic bundle M.
As a skew-symmetric bilinear form on M, λ is of constant rank 4p+2. The foliation
N is precisely defined by the distribution Ker(λ), which is integrable because λ is
d-closed. For the corresponding foliation Ñ on M(Ω), the leaves are closed, and
the leaf space can be given the structure of a smooth real (4p + 2)-dimensional
manifold of G/H. The real skew-symmetric bilinear form λ corresponds to some
λ̃ on M(Ω). G/H is then endowed with a quotient skew-symmetric bilinear form,
to be denoted by λ. λ is G-invariant by definition non-degenerate everywhere on
G/H, and ∧4p+2λ = dµ is a G-invariant volume form on the homogeneous space
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G/H. Since Γ acts ergodically on G/H the leaf space Γ\G/H of N on M does not
carry the structure of a smooth manifold. In this sense λ does not descend to the
leaf space of N . However, the structure of M as a foliated manifold in the small
lifts to M(Ω), and as far as integration on M is concerned we can sometimes make
use of the volume form dµ on local pieces of M as will be seen in (2.2).

(2.2) For a locally irreducible compact Hermitian locally symmetric manifold X :=
Ω/Γ of rank ≥ 2 we will now make use of the structure of its minimal characteristic
bundle M as a foliated manifold to establish results on metric rigidity. To start
with we prove a form of metric rigidity implicit in [Mok 2, (3.1)] for smooth complex
Finsler metrics. The original result on Hermitian metric rigidity [Mok 1] follows
readily from Finsler metric rigidity by the polarization argument ([(1.4), Lemma 1]).
For applications to rigidity problems related to bounded holomorphic functions a
key ingredient is a generalization of Finsler metric rigidity, which we will be discuss
in (2.3). We have

Theorem 3. Let Ω be an irreducible bounded symmetric domain of rank ≥ 2
and Γ ⊂ Aut(Ω) be a torsion-free cocompact lattice, X := Ω/Γ. Let g be a canonical
Kähler-Einstein metric on X, and h be any smooth complex Finsler metric on X
of nonpositive curvature. Denote by ‖ · ‖g resp. ‖ · ‖h lengths of vectors measured
with respect to g resp. h. Then, there exists a positive constant c such that for any
minimal characteristic vector α ∈ T (X) we have ‖α‖h = c‖α‖g.

Proof. Let ν be a Kähler form on the minimal characteristic bundle π : M→
X. For instance, we may take ν = −c1(L, ĝ) + π∗ω. π : M → X is of fiber
dimension p and of total dimension n + p = 2n− q − 1. We have∫

M
−c1(L, h) ∧ (−c1(L, ĝ))2n−2q−1 ∧ νq−1

=
∫

M
(−c1(L, ĝ))2n−2q ∧ νq−1 = 0.

(1)

The integrand of the left-hand side of is then a nonnegative, and (1) forces the
identical vanishing

−c1(L, h) ∧ (− c1(L, ĝ)
)2n−2q−1 ≡ 0 on M. (2)

Write h = eug on M. Then, −c1(L, h) = −c1(L, ĝ) +
√−1
2π ∂∂u. It follows from (2)

that √−1∂∂u ∧ (− c1(L, ĝ)
)2n−2q−1 ≡ 0 on M. (3)

Mutiplying the left-hand side of (3) by u and taking exterior product with νq−1,
we conclude by integrating by part that∫

M

√−1∂u ∧ ∂u ∧ (−c1(L, ĝ))2n−2q−1 ∧ νq−1 = 0. (4)

forcing the function u to be constant on every local leaf of N . Thus, we may regard
u as a function on the leaf space of N , which can be identified with Γ\G/H, where
H is noncompact. By Moore’s Ergodicity Theorem Γ acts ergodically on G/H,
i.e., any Γ-invariant measurable subset of G/H is either of full or zero measure on
G/H with respect to the measure induced by the Haar measure on G. (Here by full
measure we mean that the complement is of measure zero.) WriteM(Ω) = G/E for
some compact subgroup E ⊂ K, and write ϕ : G → G/E = M(Ω) for the canonical
projection. If the (continuous) function u were nonconstant, some sublevel set
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{a < (π ◦ ϕ)∗u < b} would give an open subset of G which is of neither full nor
zero measure, contradicting Moore’s Ergodicity Theorem. In other words, we have
shown that u must be a constant on M, proving that for any α ∈ M̃, ‖α‖h = c‖α‖g

for some global constant c > 0, as desired.
We now deduce Hermitian metric rigidity in its original form, together with its

corollary giving a rigidity result for holomorphic mappings.

Theorem 4 ([Mok1, 1987]). Let Ω be an irreducible bounded symmetric
domain of rank ≥ 2 and Γ ⊂ Aut(Ω) be a torsion-free cocompact lattice, X := Ω/Γ.
Let g be the canonical Kähler-Einstein metric on X and h be any smooth Hermitian
metric of nonpositive curvature in the sense of Griffiths. Denote by ‖·‖g resp. ‖·‖h

lengths of vectors measured with respect to g resp. h. Then, there exists a positive
constant c such that for any η ∈ T (X), we have ‖η‖h = c‖η‖g. As a consequence,
if f : X → N is a nonconstant holomorphic mapping into a complex manifold N
endowed with a Kähler metric s of nonpositive holomorphic bisectional curvature,
then f : (x, g) → (N, s) is up to a normalizing constant a totally geodesic isometric
immersion.

Proof. Denote by g(·, ·) resp. h(·, ·) the Hermitian inner products with resp.
to the Hermitian metrics g resp. h. By Theorem 3 there exists a constant c > 0
such that h(α, α) = cg(α, α) for any minimal characteristic vector α at x, i.e.
for α ∈ M̃x. At x ∈ X regard both gx and hx as complex bilinear functions
on Tx(X) × Tx(X), i.e., we may regard gx, hx as elements of the complex vector
space T ∗x (X) ⊗ T ∗x (X). Now M̃x(X) = S̃1,x(X) is complex analytic. We have
(hx − cgx)(A) = 0 for any A ∈ Tx(X) ⊗ Tx(X) lying in the complex linear span
of α ⊗ α, α ∈ M̃x(X). When η varies holomorphically on M̃x(X), η varies anti-
holomorphically. Since M̃x is linearly non-degenerate in Tx(X) by the polarization
argument [(1.4), Lemma 1] we conclude that α ⊗ α spans Tx(X) ⊗ Tx(X) as a
complex vector space, so that h(ξ, η) = cg(ξ, η) for any ξ, η ∈ Tx(X). Since x ∈ X
is arbitrary we have h ≡ cg proving the first half of Theorem 4.

For the second half let now f : X → N be a nonconstant holomorphic mapping.
Then h = g + f∗s is a Hermitian metric of nonpositive curvature in the sense of
Griffiths. By Theorem 4 it follows that there exists some constant c > 1 such that
h = cg, i.e. f∗s = c′g; c′ = c−1 > 0; so that f is necessarily an isometric immersion
up to a normalizing constant. Without loss of generality we may take c′ = 1, so
that f is an isometric immersion. Now suppose furthermore that (N, s) is Kähler,
identifying (X, g) locally as a Kähler submanifold of N we have by the Gauss
equation RX

ξξηη
= RN

ξξηη
−‖σ(ξ, η)‖2, where x ∈ X is identified with f(x) ∈ N , and

ξ, η ∈ Tx(X) ⊂ Tx(N), RX resp. RN denote the curvature tensors of (X, g) resp.
(N, s), and σ : S2TX → f∗TN/TX denotes the (2,0) part of the second fundamental
form of the holomorphic isometric immersion X ↪→ N . Write now R for RX . Let
(α, ζ) be a zero of holomorphic bisectional curvatures of (X, g), i.e. Rααζζ = 0.
Since RN

ααζζ
≤ 0 it follows from the Gauss equation that RN

ααζζ
= ‖σ(α, ζ)‖2 = 0,

hence σ(α, ζ) = 0. As in the proof of [(1.4), Theorem 2] for the case of rank ≥ 2 we
know again by the polarization argument [(1.4), Lemma 1] that such decomposable
vectors α ⊗ ζ span Tx(X) ⊗ Tx(X) as a complex vector space. Thus, σ(ξ, η) = 0
for all ξ, η ∈ Tx(X). As x ∈ X is arbitrary the holomorphic isometric embedding
f : (X, g) → (N, s) is actually totally geodesic, as desired.
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Remarks.

(1) One of the motivations for proving Hermitian metric rigidity was to give
an explanation, in terms of Hermitian geometry, of an early result of
Matsushima’s [Ma] according to which the first Betti number of a compact
Kähler manifold (X, g) uniformized by an irreducible bounded symmetric
domain of rank ≥ 2 must necessarily vanish. This results from Hermitian
metric rigidity, since one can construct a non-canonical Kähler metric of
nonpositive curvature on X from a nontrivial (closed) holomorphic 1-form
ν by taking the Kähler form to be

√−1ν∧ν +ω, ω being the Kähler form
of (X, g).

(2) In the second half of Theorem 4, in the event that the target manifold
(N, s) is actually complete and of nonpositive Riemannian sectional cur-
vature, then the lifting F : Ω → Ñ to universal covering spaces is actually
up to a normalizing constant a totally geodesic isometric embedding, in
view of the Cartan-Hadamard Theorem.

(2.3) While the rigidity result in Theorem 4 for holomorphic mappings applies in
particular to holomorphic mappings between Hermitian locally symmetric man-
ifolds of the noncompact type when the domain manifold X is compact and of
rank ≥ 2, it is nonetheless difficult to construct in general Hermitian metrics of
nonpositive curvature on target manifolds. Believing that rigidity for holomorphic
mappings on X should hold under much more general conditions of nonpositivity
of curvature for target manifolds, we study in [Mok5, 2004] holomorphic mappings
of X into quotients of bounded domains in Stein manifolds. For such domains
there is an ample supply of bounded holomorphic functions, and we have on them
Carathéodory metrics, which are continuous complex Finsler metrics of nonpositive
curvature in the generalized sense. A key ingredient in our study is a generalization
of Finsler metric rigidity (Theorem 3) for smooth complex Finsler metrics, in two
senses. First of all, we need to take care of complex Finsler metrics which are only
continuous and of nonpositive curvature in the generalized sense, where we have
in mind the Carathéodory metric, which are actually Lipschitz. Secondly, which
turns out to be crucial, we need to consider new ‘partially defined’ complex Finsler
metrics which are of nonpositive curvature only along leaves of the foliation N as
defined in (2.1). As it turns out, the ‘partially defined’ Finsler metrics are con-
tinuous Hermitian metrics of the Lipschitz class on the tautological line bundle L
defined only on the minimal characteristic bundle M. In relation to Theorem 3 and
in terms of the description of M as a foliated manifold with a transverse measure
as given in (2.1), we formulate our rigidity result in a general form, as follows.

Proposition 1. Let (Z, ω) be an m-dimensional compact Kähler manifold, and
θ be a smooth closed nonnegative (1,1)-form on Z such that Ker(θ) is of constant
rank q > 0 everywhere on Z. Denote by K the foliation on Z with holomorphic
leaves defined by the distribution Re(Ker(θ)). Let u : Z → R be a continuous
function whose restriction to every leaf L of the foliation K is plurisubharmonic.
Then, the restriction of u to every leaf L is pluriharmonic. If in addition du is
locally integrable, then u is constant on every leaf of K. If there is furthermore a
dense leaf of K, then u is constant on Z.

A continuous Hermitian metric h on a holomorphic line bundle E is said to be
of nonpositive curvature in the generalized sense if and only if its curvature current
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is a closed positive current. h is said to be of the Lipschitz class if h = eug for some
smooth Hermitian metric g such that du is bounded. A continuous complex Finsler
metric h on a holomorphic vector bundle V is said to be of nonpositive curvature
in the generalized sense if and only if the induced continuous Hermitian metric ĥ
on the tautological line bundle L over the PV is of nonpositive curvature in the
generalized sense.

Corollary 1. The analogue of Theorem 3 on Finsler metric rigidity holds true
for continuous complex Finsler metrics h of nonpositive curvature in the generalized
sense.

Proof. With the analogous notations as in Theorem 3 and its proof, we write
h = euĝ. The first Chern current of h is given by

c1(L, h) = −
√−1
2π

∂∂u + c1(L, ĝ).

By assumption −c1(L, h) ≥ 0 as a current. Since c1(L, ĝ) is smooth, we conclude
that u is almost plurisubharmonic in the sense that locally u+ϕ is plurisubharmonic
for some smooth function ϕ. Since the gradient of a plurisubharmonic function is
locally integrable, we conclude that du is locally integrable. Hence Proposition 1 is
applicable in the present context in which Z is the minimal characteristic bundle
M on X, θ is −c1(L, ĝ)|M and K is the canonical foliation N on M. Finally, since
Γ acts ergodically on G/H by Moore’s Ergodicity Theorem, there exists a dense
leave Λ on M, and we conclude from Proposition 1 that u is a constant, i.e., h = cg
for some constant c > 0, as desired.

Proposition 1 incorporates [Mok5, Proposition 5], where we further assumed
u to be a Lipschitz function, and an argument of [Mok4, Proposition 3] in which
we require only du to be integrable. [Mok5, loc. cit.] involves the use of closed
currents which are leaf-wise positive. We give here the detailed justification which
was omitted in [Mok5].

Proof of Proposition 1. Consider

T =
√−1∂u ∧ θm−q ∧ ωq−1, S = dT. (1)

Then, S is an (m,m)-current, thus acting on smooth functions. If u is smooth by
by Stokes’ Theorem we have

S(1) =
∫

Z

√−1∂∂u ∧ θm−q ∧ ωq−1 = 0. (2)

The integrand on the right-hand side is nonnegative by the leaf-wise plurisubhar-
monicity of u, and thus it vanishes identically on Z implying that u is pluriharmonic
on each leaf of K. The integration on the right-hand side can be interpreted in terms
of the foliated structure of K in analogy to that of M in (2.1), as follows. Denote
by Bn

C(r) (resp. Bn
R(r)) the n-dimensional complex (resp. real) Euclidean open

ball of radius r > 0, and write Bn
C := Bn

C(1), etc. Let x ∈ X. There exists a
coordinate neighborhood Uo

x of x in X which admits a diffeomorphism Φx onto
V o

x × Bq
C(2) for some open subset V o

x diffeomorphic to and identified with B2s
R (2),

where s = m − q, such that Φ−1
x |{t}×Bq

C
is a biholomorphism onto a leaf of K|Uo

x
.

Shrinking Uo
x we obtain Ux b Uo

x such that Ux corresponds under Φx to Vx × Bq
C,

where Vx b V o
x corresponds to B2s

R b B2s
R (2). We call Vx constructed this way a

priviledged K-box. Z is now covered by a finite number of priviledged K-boxes Ui.
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We can choose open subsets Wi ⊂ Ui such that {Wi} are mutually disjoint, and
such that the complement of

⋃
Wi is a set of measure zero on Z. In the smooth

case the integral over Z in (2) can be decomposed into the sum of the integrals over
the finite number of open subset Wi, over which we can write

∫

Wi

√−1∂∂u ∧ θm−q ∧ ωq−1 =
∫

Vi

( ∫

Lt∩Wi

√−1∂∂u ∧ ωq−1

)
dµ(t). (3)

Here Ui is an open set of the form Ux, and Vi corresponds to Vx, Lt is the leaf of K|Ux

given by Φ−1
x ({t}×Bq

C), and dµ(t) is the transverse measure on a local K-leaf space
obtained in analogy with the local transverse measure (with the same notation) on
the minimal characteristic bundle M by means of a quotient symplectic form λ, as
given in (2.1). In what follows we will drop the subscript i in the notations.

We proceed to justify the analogue of (3) in the case where u is only assumed
to be continuous and leaf-wise plurisubharmonic. It suffices to verify that for any
smooth function ρ of compact support on U we have

(†) S(ρ) =
∫

V

( ∫

Lt

ρ
√−1∂∂ut ∧ ωq−1

)
dµ(t) ,

Here ut means the restriction of u to the local K-leaf Lt. The right-hand side of
(†) has a well-defined meaning, as follows. Each ut being plurisubharmonic on Lt,
Pt :=

√−1∂∂ut is a closed positive current. It is thus a current whose coefficients
are complex measures, and the integral over Lt is the integral of ρ against a positive
multiple of the trace of Pt with respect to ω, which is a nonnegative measure.
Because the (continuous) functions ut, t ∈ V , are uniformly bounded, integrating
by part we conclude that Pt are of uniformly bounded total mass. The leaf-wise
integrals on the right-hand side of (†) are uniformly bounded independent of t, and
the integral in (†) with respect to dµ(t) makes sense. Thus Pt ∧ ωq−1 defines a
positive (q, q)-current, i.e., a positive measure dτt on Lt, and the integral against
dµ(t) defines a measure dτ for which we have by definition the Fubini’s Theorem∫

U
fdτ =

∫
V

(
fdτt

)
dµ(t) for any bounded measurable function f , and in particular

for f = ρ a smooth function of compact support on U as given in (†).
To justify (†) we approximate the function u by smooth functions. Since u is

continuous on X by local smoothing with respect to standard kernels we obtain
a sequence of smooth functions un which converge uniformly on V to u. Thus,
writing un,t := un

∣∣
Lt

we have
∣∣∣∣∣
∫

Lt

ρ
√−1∂∂un,t ∧ ωq−1 −

∫

Lt

ρdτt

∣∣∣∣∣ =

∣∣∣∣∣
∫

Lt

(un,t − ut)
√−1∂∂ρ ∧ ωq−1

∣∣∣∣∣
≤ C(ρ) · εn

(4)

for some positive constant C(ρ) depending only on ρ and for εn = sup
{|un(x) −

u(x)| : x ∈ V
}
, which tends to 0 as n →∞. It follows that

∫

U

ρ
√−1∂∂u ∧ θm−q ∧ ωq−1 =

∫

V

( ∫

Lt

ρ
√−1∂∂ut ∧ ωq−1

)
dµ(t) (5)

holds true for any ρ of compact support on U . This shows that on U ,
√−1∂∂u ∧

θm−q∧ωq−1 is an (m,m)-current of order 0, more precisely the nonnegative measure
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dτ . In particular, applying to the characteristic function χW we obtain the analogue
of (3) for the continuous function u in the hypothesis of Proposition 1.

Under the additional assumption that du is locally integrable we proceed to
deduce that u is constant on each leaf. By local smoothing and partition of unity
there exists a sequence (un) of smooth functions on Z such that un converges to u
uniformly, dun converges to du in L1 and ∂∂un converges to ∂∂u as distributions
of order 0 (i.e., their coefficients converge as measures). Write on Z

Tn =
√−1 ∂un ∧ θm−q ∧ ωq−1 (6)

Then Tn converges to T in L1 and dTn converges to dT = S = 0 as distributions of
order 0. Consider now

√−1d(unTn) =
√−1dun ∧ Tn +

√−1undTn . (7)

Integrating over Z, by Stokes’ Theorem
∫

Z

√−1dun ∧ Tn =
∫

Z

√−1∂un ∧ ∂un ∧ θm−q ∧ ωq−1 → 0 . (8)

Define on Z the Hermitian bilinear form B on smooth (1, 0)-forms ϕ by

B(ϕ,ψ) =
∫

S

√−1ϕ ∧ ψ ∧ θm−q ∧ ωq−1 . (9)

B is positive semi-definite. Note that B(ϕ,ψ) can also be defined for ϕ of class
L1 and ψ smooth. Fix any smooth (1, 0)-form ψ on Z. By the Cauchy-Schwarz
inequality B(∂un, ψ)2 ≤ B(∂un, ∂un)B(ψ,ψ). By (8), B(∂un, ∂un) → 0 as n →∞.
It follows that B(∂un, ψ) → 0 as n →∞. Since ∂un → ∂u as distributions we have
B(∂u, ψ) = 0 for any smooth ψ. Hence the L1 differential form ∂u vanishes almost
everywhere on leaves of K. As a consequence, u is constant on almost every leaf of
K, and thus on every leaf by continuity. Finally, u must be constant on Z whenever
there exists a dense leaf, again by continuity, proving Proposition 1. ¤
(2.4) We now make use of results on metric rigidity as given by [(2.3), Proposition
1] to study holomorphic mappings into complex manifolds whose universal covering
spaces admit nontrivial bounded holomorphic functions, as given in [Mok5]. As an
example, we proved

Theorem 5 (Mok [Mok5, 2004]). Let Ω be an irreducible bounded symmetric
domain of rank ≥ 2 and Γ ⊂ Aut(Ω) be a torsion-free cocompact lattice, X := Ω/Γ.
Let D be a bounded domain in some Stein manifold, Φ ⊂ Aut(D) be a torsion-free
discrete group of automorphisms, N := D/Φ. Let f : X → N be a nonconstant
holomorphic mapping and F : Ω → D be its lifting to universal covering spaces.
Then, F : Ω → D is a holomorphic embedding.

Remarks.

(1) In [(2.2), Theorem 4] the lifted holomorphic mapping to universal cover-
ing spaces is only known to be an immersion. The only instance in which
injectivity was known requires nonpositivity of Riemannian sectional cur-
vatures (cf. Remark (2) there).

(2) The analogue of Theorem 5 holds for any target manifold N provided that
there exists a single bounded holomorphic function h on Ñ such that F ∗h
is nonconstant.
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(3) Theorem 5 generalizes to the case where Ω is reducible and Γ ⊂ Aut(Ω)
is a torsion-free irreducible (not necessarily cocompact) lattice.

To prove Theorem 5, we make use of the Carathéodory metric and a ‘partially
defined’ complex Finsler metrics on X := Ω/Γ, which correspond to a continuous
Hermitian metric of the Lipschitz class on the minimal characteristic bundle M.
For the constructions we consider first of all the following general situation. Let H
be the set of all holomorphic mappings of Ω into the unit disk ∆ endowed with the
the Poincaré metric ds2

∆ of constant curvature −1. The norm ‖ · ‖ on T∆ will be
understood to be in terms of ds2

∆. Let G ⊂ H be a subset satisfying the following
conditions.

(a) For any g ∈ F and any γ ∈ Γ the composite map g ◦ γ : Ω → ∆ lies on F .
(b) If gn are elements of G such that gn converges uniformly on compact

subsets to some g ∈ H, then g ∈ G.

Define now a length function κ(G) on (0,1)-vectors η by ‖η‖κ(G) = sup
{‖dg(η)‖ : g ∈

G}
. When G = H this length function defines precisely the Carathéodory metric κ,

which is a continuous complex Finsler metric on Ω of nonpositive curvature in the
generalized sense. We will call κ(G) the G-Carathéodory metric on Ω. From Cauchy
estimates it follows that κ(G) is of the Lipschitz class. κ is by construction invariant
under Aut(Ω). In general, under the assumption (a), ‖η‖κ(G) is Γ-invariant. Under
the assumption (b), for any (1,0)-vector η, there exists g ∈ G such that ‖η‖κ(G) =
‖dg(η)‖. We call g a κ(G)-extremal (bounded holomorphic) function for η. The
Poincaré metric ds2

∆ is of negative curvature. The length function κ(G) can be
locally represented as the (continuous) supremum of a family of (smooth) log-
plurisubharmonic functions, and as such κ(G) is of nonpositive curvature in the
generalized sense.

To apply the above construction to the study of the holomorphic mapping
f : X → N consider now F = F ∗(HD), where HD stands for the set of holomorphic
maps of the universal covering domain D of N into the unit disk ∆. By Montel’s
Theorem, given any gn := F ∗hn ∈ F with hn ∈ H which converges to some g ∈ F ,
there exists a subsequence of hn which converges uniformly on compact subsets to
some h ∈ HD, as a consequence of which g = F ∗h ∈ F , so that (b) is satisfied.
The F-Carathéodory metric κ(F) reflects properties of the holomorphic mapping.
In fact, κ(F) = F ∗κD, and the F-Carathéodory metric is degenerate at a (1,0)-
vector η if and only if η ∈ Ker(dF ). The same set-up as in Theorem 5 applies
to holomorphic mappings F : Ω → D which are Γ-equivariant, i.e, inducing a
homomorphism F∗ : Γ → Aut(D), and an analogue of Theorem 5 holds for such
mappings F : Ω → N without assuming that F descends to some f : X → N ,
as given in [Mok5, Theorem 5]. From [(2.3), Corollary 1] we concude that for any
minimal characteristic vector α, we have df(α) 6= 0. A generalization of Corollary 1
applied to holomorphic mappings in the proof of [Mok4, Theorem 3] allows one to
conclude that df(η) 6= 0 for any characteristic vector η (i.e., k-characteristic vector
with 1 ≤ k < r), but the argument fails for generic vectors η. Instead we will make
use of the following result on F-Carathéodory extremal functions.

Proposition 2. Let P ⊂ Ω be a maximal polydisk, P ∼= ∆r, and use Euclidean
coordinates of the latter as coordinates for P . Let x ∈ P, x = (x1; x′) and denote by
P ′ ⊂ P the polydisk corresponding to {x1}×∆r−1. Let α be a minimal characteristic
vector at x tangent to the minimal disk ∆α corresponding to ∆× {x′} and denote
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by s a κ(F)-extremal function at x for α. Then s(x1; z2, · · · , zr) = s(x1) for any
(z2, · · · , zr) ∈ P ′.

Proof. By (2.1) we have a totally geodesic complex submanifold ∆×Ωo ⊂ Ω,
such that Ωo is biholomorphic to an irreducible bounded symmetric domain of rank
r− 1. P ′ sits in Ωo as a maximal polydisk. We may assume x to be the origin and
take α to be ∂

∂z1
at 0. By Proposition 1, ‖ ∂

∂z1
‖κ(F) is constant on ∆×Ωo. For any

z ∈ P write αz for ∂
∂z1

at z. At z = (0, z′) we have (2.1).

‖αz‖κ(F) ≥ ‖αz‖s = ‖ds(αz)‖ =
|ds(αz)|

1− |s(0, z′)|2 := eψ(z′) ,

‖αo‖κ(F) =
|ds(αo)|

1− |s(o)|2 = ds(αo) = eψ(o) .

By Proposition 1, ‖αz‖κ(F) is constant on P ′, so that ψ(z′) attains its maximum
on P ′ at the origin. On the other hand, by Lemma 2, ψ(z′) is plurisubharmonic in
z′ ∈ P ′. It follows that ψ ≡ C for some constant C > 0, so that

|ds(αz)| = C(1− |s(0, z′)|2),
which violates the maximum principle for the plurisubharmonic function |ds(αz)|
in z′ unless s(0, z′) = 0 for any z′ ∈ P ′. In other words, we have proven that
s(0, z′) = s(0), as desired.

We proceed to derive from Proposition 2 that F is an immersion by a stream-
lining of the proof given in [Mok5].

Proof that F is an immersion in Theorem 5. Let x ∈ Ω and η ∈ Tx(Ω)
such that dF (η) = 0. Assuming that η 6= 0 we are going to derive a contradiction.
Endow Tx(Ω) with the Hermitian inner product defined by g0. Let α ∈ M̃x be
the point at a minimal distance from η. Then η = α + ζ, where ζ ∈ Nα, the
null-space of ζ. There is a maximal polydisk P ∼= ∆r = ∆×∆r−1 passing through
x such that η ∈ Tx(P ) and α is tangent to the first direct factor. Let s be a
κ(F)-extremal function for η. By Proposition 2 and in the notations there we have
s(x1; z2, · · · , zr) = s(x1), so that ds(ζ) = 0. 0 = ds(η) = ds(α) + ds(ζ) = ds(α).
But as s is an extremal function for α, by Proposition 1 ds(α) 6= 0, a contradiction.
This proves that F : Ω → Ñ is an immersion, as desired. ¤

To prove injectivity of F : Ω → Ñ it is not enough to consider F-Carathéodory
metrics. Instead we will resort to the construction of a ‘partial’ continuous com-
plex Finsler metric which only measures the lengths of minimal characteristic vec-
tors, thus equivalently a continuous Hermitian metric on the minimal character-
istic bundle M(Ω). The metric is Γ-invariant and descends thus to M. Like the
Carathéodory metric it is defined by bounded holomorphic functions, and it turns
out to be a priori of nonpositive curvature only along leaves of the canonical folia-
tion on M as defined in (2.1). The construction goes as follows.

Let G be a Γ-invariant family of holomorphic functions satisfying the conditions
(a) and (b) as in the definition of the G-Carathéodory metric. Let α be a minimal
characteristic vector at x ∈ Ω, ∆α be a the unique minimal disk passing through
x tangent to α, and Ωo ⊂ Ω be the unique totally geodesic complex submanifold
passing through x tangent to the null space Nα, so that ∆ × Ωo ⊂ Ω is a totally
geodesic complex submanifold, as in (2.1). Fix an arbitrary ε > 0. Denote by
Sα,ε the circle on ∆α centred at x of radius ε with respect to the Kähler-Einstein
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metric g0. We define a length function e(G) on M̃, as follows. Let α(ζ) be a
smooth vector field on the geodesic circle Sα,ε of constant length equal to ‖α‖.
For s ∈ G, let ‖α‖′s to be the average of ‖ds(α(ζ))‖ over ζ ∈ Sα,ε with respect to
an S1-invariant metric on Sα,ε, i.e., with respect to polar angles when the latter
is identified with the unit circle S1 in the usual way. We define ‖α‖e(G) to be
sup

{‖α‖′s : s ∈ G}
. Taking the zero vector to be of length 0, the length function

e(G) corresponds to a continuous Hermitian metric on the tautological line bundle
L over the minimal characteristic bundle M̃. By Cauchy estimates we see that
e(G) is of the Lipschitz class. However, as explained in [Mok5, (3.2)] the procedure
of averaging over geodesic circles and taking suprema does not lead a priori to a
Hermitian metric of nonpositive curvature in the generalized sense.

By Γ-invariance e(G) descends to M. Depending on the context we will use the
same notation e(G) both on Ω and on X. We may call e(G) the G-Carathéodory
(S1-averaging) characteristic metric. Strictly speaking, its construction depends on
the choice of some ε > 0, and we may write e(G) = κ(ε,G), the latter notation
suggesting its relationship to the Carathéodory metric κ(G). In fact, κ(ε,G) con-
verges (decreases) uniformly on M̃ to κ(G)|fM. In the sequel as in the case of the
Carathéodory metric we will be making use of e(G) for G = F ∗HD.

Although e(G) is not a priori of nonpositive curvature, it turns out to be of non-
positive curvature in the generalized sense when restricted to leaves of the canonical
foliationN onM. This observation, which is crucial for our purpose, follows readily
from the following lemma on plurisubharmonic functions.

Lemma 2. Let U ⊂ Cn be an open subset, and a, b ∈ R; a < b. Let u : [a, b] ×
U → R be a continuous function such that for any t ∈ [a, b], writing ut(z) := u(t, z),
ut : U → R is plurisubharmonic. Define ϕ : U → R by ϕ(z) := log

∫ b

a
eut(z)dt.

Then, ϕ is plurisubharmonic. Moreover, eϕ
√−1∂∂ϕ ≥ ∫ b

a
eut
√−1∂∂utdt in the

sense of currents.
The basic principle underlying Lemma 2 is the fact that the space of Hermitian

metrics of nonpositive curvature is preserved under taking sums. We sketch a proof
of Lemma 2. For a more detailed geometric proof in terms of Hermitian metrics
and the Gauss equation, we refer the reader to [Mok5, Lemma 4].

Sketch of Proof of Lemma 2. By standard smoothing arguments we
may assume without loss of generality that u is actually smooth. The function ϕ is
defined as an integral, and can thus be approximated by Riemann sums. Expressing
ϕ as a uniform limit of Riemann sums, it suffices to prove the analogue of the lemma
for the sum of a finite number of smooth plurisubharmonic functions in place of an
integral over [a, b]. Thus, we have ui : [a, b]×U → R smooth and plurisubharmonic
for 1 ≤ i ≤ N , and, defining a new ϕ(z) = log(eu1(z) + · · · + euN (z)), we have
to prove that ϕ is plurisubharmonic, and that eϕ

√−1∂∂ϕ ≥ ∑
euk

√−1∂∂uk as
smooth (1,1)-forms. The case of N = 2 follows from

(eu1 + eu2)
√−1∂∂ log(eu1 + eu2)

= eu1
√−1∂∂u1 + eu2

√−1∂∂u2 +
eu1+u2

eu1 + eu2

√−1(∂u1 − ∂u2) ∧ (∂u1 − ∂u2) .

The case of general N follows by induction. ¤
In analogy with Proposition 3 for the Carathéodory metric, which plays a

crucial role in the proof that F is an immersion in Theorem 5, we have the following
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result e(F)-extremal functions, which plays a crucial role in the proof that F is
injective.

Proposition 3. Let P ⊂ Ω be a maximal polydisk, P ∼= ∆r, and use Euclidean
coordinates of the latter as coordinates for P . Let x ∈ P, x = (x1; x′) and denote by
P ′ ⊂ P the polydisk corresponding to {x1}×∆r−1. Let α be a minimal characteristic
vector at x tangent to the minimal disk ∆α corresponding to ∆× {x′} and denote
by s an e(F)-extremal function at x for α. Then s(z1; z2, · · · , zr) = s(z1) for any
(z2, · · · , zr) ∈ P ′.

Proof. We use the notations in the proof of Proposition 2. Let δ > 0 be
such that Sα,ε = {(δeiθ; o) : θ ∈ R} for the geodesic circle Sα,ε ⊂ ∆α. Then, for
z ∈ P ′ ⊂ N , z = (0, z′), and a suitable normalizing constant c > 0 we have

‖αz‖e(F) ≥ ‖αz‖′s = c

∫ 2π

0

‖ds(δeiθ; z′)‖dθ = c

∫ 2π

0

|ds(δeiθ, z′)|
1− |s(δeiθ, z′)|2 dθ := eϕ(z′) ,

‖αo‖e(F) = c

∫ 2π

0

|ds(δeiθ, o)|
1− |s(δeiθ, o)|2 = eϕ(o) .

By Proposition 1, ‖αz‖e(F) is constant on P ′. As a consequence ϕ(z′) ≥ ϕ(o), so
that ϕ(z′) attains its maximum on P ′ at the origin. On the other hand, by Lemma
2, ϕ(z′) is plurisubharmonic in z′ ∈ P ′. It follows that ϕ ≡ C on P ′ for some
constant C > 0. Write euθ(z′) for the integrand in the definition of eϕ(z)and note
that uθ is plurisubharmonic in z. Again by Lemma 2,

eϕ
√−1∂∂ϕ ≥ c

∫ 2π

0

euθ
√−1∂∂uθ dθ ≥ 0

in the sense of currents. It follows that for almost all θ ∈ [0, 2π], uθ is pluriharmonic.
However,

√−1∂∂uθ is the pull-back of the Kähler form of (∆, ds2
∆) by σ

θ
: P ′ → ∆,

given by σ
θ
(y′) = s(δeiθ; y′), so that σ

θ
must be constant for almost all θ ∈ [0, 2π],

hence for all θ by continuity. Thus, the e(F)-extremal function s must be of the
form s(z1; z2, · · · , zr) = s(z1) when restricted to the polydisk P , as desired.

For the proof of Theorem 5 the final step is to derive injectivity of F : Ω → D
from Proposition 3. This step involves a substantial use of Ergodic Theory, applied
in our context to the action of Γ on the left homogeneous spaces G/H for certain
noncompact H ⊂ G. Primarily we make use of Moore’s Ergodicity Theorem and
consequently the density of ‘generic’ leaves of such Γ-actions. We sketch here an
outline of our argument and refer the reader to [Mok5, (2.2) and (3.4)] for details.

Sketch of Proof of injectivity of F in Theorem 5. Let x, y ∈ Ω be
two distinct points. Then F (x) 6= F (y) if and only if F separates x and y. There
exists a maximal polydisk P = ∆ × P ′ containing both x and y such that the
projections to the unit disk ∆ separates x and y. From Proposition 4 it is known
that extremal functions s, when restricted to P , are of the form s(z1; z′) = s(z1),
and we will have shown that F separates points if we can take the function s(z1)
on ∆ to be injective. Actually, it suffices to derive from such extremal functions
some σ ∈ F satisfying σ(z1; z′) = σ(z1) = λz1 on P for some λ 6= 0. We call such
a function σ a special function, which need not be an e(F)-extremal function.

Given a holomorphic function g on the unit disk, by averaging e−iθg(eiθz1)
over eiθ ∈ S1, the unit circle, we obtain a linearization of g at 0 ∈ ∆, which is
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precisely g′(0)z1. Identifying Auto(P ) ∼= SU(1, 1)r in a canonical way as a sub-
group of Auto(Ω) = G, for any θ ∈ R, the biholomorphism ρθ(z1; z′) := (eiθz1; z′)
on the maximal polydisk P extends to an automorphism τθ of Ω. Choosing ε > 0
sufficiently small in the definition of e(F) = κ(ε,F) we derive from Finsler metric
rigidity and Cauchy estimates that for any e(F)-extremal function s as in Propo-
sition 4, s(z1; z′) = s(z1), we have |s′(0)| > c > 0 for some constant c independent
of the maximal polydisk P . Thus, we would be able to produce a special function
σ ∈ F if s ◦ τθ ∈ F , which is however not known.

We note that s ◦ γ ∈ F for any γ ∈ Γ. While Γ ⊂ G is discrete by Moore’s
Ergodicity Theorem, its left action on G/H is ergodic for any noncompact closed
subgroup H ⊂ G. As a consequence, the orbit under Γ of νH ∈ G/H is dense in
G/H, provided that νH lies outside a certain null set E ⊂ G/H. Adopting the
notations of Proposition 4, we fix a triple (P, P ′; α), P = ∆ × P ′, and consider
the subgroup H ⊂ G consisting of µ ∈ G such that µ(P ) = P, µ(P ′) = P ′ and
such that dµ(α) projects to the same vector as α under the canonical projection
π : P → ∆. We may say that the extremal function s in Proposition 4 is adapted to
(P, P ′; α). Since s(z1, z

′) = s(z1), s|P is invariant under the group H. Suppose we
choose γi ∈ Γ such that γiH converges to τθH. Then, by Lemma 3 below, s◦γ−1

i

∣∣
P

converges to s ◦ τ−θ

∣∣
P

, and the S1-averaging argument applies to produce a special
function σ adapted to (P, P ′; α).

It remains to take care of the the null set E. For instance, there may in fact be a
maximal polydisk P such that its orbit under Γ gives a discrete set of maximal poly-
disks on Ω. Then, completing P to a triple (P, P ′; α), the latter corresponds to an
element of G/H whose orbit under Γ is discrete, and the argument above to produce
special functions by S1-averaging fails. However, from the estimate |s′(0)| > c > 0
for the e(F)-extremal function S the S1-averaging argument produces a special
function σ for which |λ| = |S′(0)| is bounded from below independent of (P, P ′, α),
which allows us to take care of the ‘exceptional’ by taking limits to obtain special
functions for every triple (P, P ′;α). This proves that F : Ω → D is injective and
completes the proof of Theorem 5. ¤

We include now the lemma on convergence of extremal functions referred to in
the preceding sketch of proof of Theorem 5, which supplements [Mok5, (3.4), proof
of Theorem 1 in the cocompact case] (where on Page 22, line 16, γ∗i s should have
read (γ−1

i )∗s, i.e., s ◦ γ−1
i ).

Lemma 3. Suppose γi ∈ Γ are such that γiH converges to τθH in G/H.
Then, s ◦ γ−1

i converges to s ◦ τ−θ on P , i.e., s
(
γ−1

i (z; z′)
)

converges to s(e−iθz; z′)
uniformly on compact subsets of P .

Proof. Write γi = λiτθhi, where hi ∈ H and λi ∈ G converges to the identity
element e ∈ G. Then for (z; z′) ∈ P

(s ◦ γ−1
i )

(
λi(z; z′)

)
= s

(
γ−1

i (λi(z; z′)
))

= s
(
h−1

i τ−1
θ λ−1

i

(
λi(z; z′)

))

= s
(
h−1

i τ−θ(z; z′)
)

= s
(
h−1

i (e−iθz; z′)
)

= s
(
e−iθz; µi(z′)

) (1)

for some µi ∈ Aut(P ′). Here we make use of the fact that any h ∈ H preserves P ,
and that h|P is necessarily of the form h(z; z′) =

(
z, ν(z′)

)
, where ν ∈ Aut(P ′). By

Proposition 3, we conclude that

(s ◦ γ−1
i )

(
λi(z; z′)

)
= s(e−iθz; z′) = (s ◦ τ−θ)(z, z′) . (2)
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Fix an arbitrary compact subset Q ⊂ P . Then there exists a compact subset Q′ ⊂ Ω
such that λi(Q) ⊂ Q′ for any i. On the other hand, s ◦ γ−1

i : Ω → ∆, so that by
Cauchy estimates∣∣∣(s ◦ γ−1

i )
(
λi(z; z′)

)− (s ◦ γ−1
i )(z; z′)

∣∣∣ ≤ C(Q′)‖λi(z, z′)− (z; z′)‖ , (3)

where C(Q′) is a constant depending only on Q′ (and independent of i), and ‖ · ‖
denotes the Euclidean norm. Since λi converges to e ∈ G, we conclude that the
right hand side of (3) converges to 0. It follows from (2) that

lim
i→∞

‖(s ◦ γ−1
i )− (s ◦ τ−θ)‖Q = 0

for every compact subset Q ⊂ P , where ‖ · ‖Q denotes the supremum norm for
continuous functions on Q. In other words, s◦γ−1

i converges uniformly on compact
subsets of P to s ◦ τ−θ, as desired.

As pointed out by Qi-Keng Lu, Theorem 5 applies in particular to the case
where D is a bounded homogeneous domain, where in general holomorphic bisec-
tional curvatures with respect to the Bergman metric need not be nonpositive.
Theorem 5 raises the following very interesting question.

Question. If in the statement of Theorem 5 we assume furthermore that D is
a bounded homogeneous domain, is the holomorphic mapping F : Ω → D, which is
now known to be an embedding, necessarily a totally geodesic isometric embedding
up to a normalizing constant with respect to the Bergman metrics on Ω and on D?

It should be noted that, when restricted to minimal characteristic vectors, df
(and hence dF ) preserves lengths up to a fixed normalizing constant with respect
to the Carathéodory metric, by Proposition 1, but the argument there does not
apply in general to the Bergman metric on bounded homogeneous domains.

Theorem 6. In the notations of Theorem 5 write X = Ω/Γ. Let Z be a normal
projective variety, and f : X → Z be a surjective holomorphic map. Then, either
the fundamental group π1(Z) is finite, or f : X → Z is an unramified covering
map.

Sketch of Proof. Let τ : Z ′ → Z be an covering of Z corresponding to the
subgroup f∗(Γ) ⊂ π1(Z). Then, f lifts to a map f ′ : X → Z ′. Since Z is normal,
Z ′ is normal and irreducible, and f ′ : X → Z ′ must be surjective by the Proper
Mapping Theorem, implying that f∗(Γ) ⊂ π1(Z) must be of finite index. By a
result of Margulis [Mar, Chapter VIII, Theorem A, p.258ff.], any normal subgroup
of Γ is either finite or of finite index in Γ. If π1(Z) is infinite, then f∗(Γ) ⊂ π1(Z)
must also be infinite, so that by Margulis’ result Ker(f∗) must be finite, and the
lifting F : Ω → Z̃ to universal covering spaces must be a finite proper surjective
map. We can now construct bounded holomorphic functions h on Z̃ from bounded
holomorphic functions on the bounded symmetric domain Ω by taking elementary
symmetric functions of values of h on general fibers of F and by extension using
the normality of Z̃. The Γ-invariant complex Finsler metric θ on Ω constructed by
pulling back bounded holomorphic functions on Z̃ must be such that ‖η‖θ is nonzero
for every nonzero (1,0)-vector η on Ω, by a slight generalization of Theoroem 5 with
the same proof. But at the ramification locus of F this would contradict with the
construction of θ, proving that F : Ω → Z̃, and hence f : X → Z, must be
unramified. ¤
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3. Gap rigidity for pairs of bounded symmetric domains

(3.1) In this section we consider a rigidity phenomenon on quotients of bounded
symmetric domains which we will call gap rigidity. In oversimplified form it can be
formulated as follows. Let Ω be a bounded symmetric domain and Γ ⊂ Aut(Ω) be
a discrete group of automorphisms acting without fixed points. Writing X := Ω/Γ
and denoting by S ⊂ X a compact complex submanifold of sufficiently small second
fundamental form, we ask whether S ⊂ X is necessarily totally geodesic. An
affirmative answer to this question under certain geometric hypotheses to be made
precise will be called a gap rigidity theorem.

To put things in persepcetive, we consider first a special case of the problem
which remains up to this point completely open. Let Ω be the n-ball Bn, n ≥ 2.
Let S ⊂ Bn/Γ := X be a compact complex submanifold such that the second
fundamental form is everywhere sufficiently small. The question is whether S ⊂ X is
necessarily a totally geodesic submanifold. Because the Bergman metric on Bn is of
constant negative holomorphic sectional curvature, a pointwise bound on the second
fundamental form means exactly a pointwise pinching condition on the holomorphic
sectional curvatures of the complex submanifold S. Here by saying that the second
fundamental form is everywhere “sufficiently small”, we mean that its pointwise
norm is bounded by some absolute constant ε, independent of Γ and thus depending
only on n. We note that the problem is only meaningful when we consider all
compact complex submanifolds S of a fixed dimension, especially we should not
assume any bound on the volume of S. For instance, in the case of n = 2 and
dim(S) = 1, the integral of the square of the norm of the second fundemental
form, suitably normalized, represents the first Chern class, hence the degree, of
some holomorphic line bundle. If the integral is sufficiently small it has to vanish
since the degree here must be a nonnegative integer. Thus, if ε is chosen such
that ε2 · Volume(S) < 2π we conclude readily that S must be totally geodesic.
This question on gap rigidity on Bn raised in the above turns out to be a difficult
problem. For a discussion on some special cases of this unsolved problem we refer
the reader to Eyssidieux-Mok [EM2,§3].

We explain here on the other hand a first positive result together with the
original motivations for studying gap rigidity. It concerns the case where Ω is the
bounded symmetric domain of Type III, which is biholomorphic to the Siegel upper
half-plane, and where S ⊂ X := Ω/Γ is a compact holomorphic curve. As will be
explained in (3.5) this first result has now been superseded by a different method.
However, it is altogether possible that the original line of reasoning remains useful
to attack other cases of the problem.

In Mok [Mok3, 1991] we were studying among other things ramifications of
Hermitian metric rigidity. A natural question arises in the case of the Siegel up-
per half-plane Hn of genus n, which parametrizes polarized Abelian varieties of
dimension n. Let n ≥ 2. Consider the moduli space XΓ := Hn/Γ of principally
polarized Abelian varieties of dimension n with a certain level structure so that
the corresponding discrete group Γ of symplectic transformations is torsion-free.
Then, we have over XΓ a universal family π : AΓ → XΓ of such Abelian varieties.
The universal family admits a projective compactification, which can be regarded
as a geometric model of the universal polarized Abelian variety over the function
field of XΓ. It was known (Shioda [Sh] for n = 1, Silverberg [Sil] in general) that
the Mordell-Weil group of this universal Abelian variety is finite, which means that
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every holomorphic section of the universal family is a section of finite order. In
[Mok3] our perspective was to find a differential-geometric explanation of this in
terms of invariant metrics, thereby to obtain a generalization of a number of known
results at that point to the general case of Kuga families of polarized Abelian vari-
eties without constant parts over Shimura varieties, which are arithmetic quotients
of certain bounded symmetric domains. In Mok-To [MT, 1993] we resolved the last
question, by resorting to considering eigensection equations satisfied by differential
forms arising from global holomorphic sections of the universal family. In Mok
[Mok3] we prove a certain gap rigidity theorem for compact holomorphic curves on
quotients of the Siegel upper half-plane by making use of invariant Kähler metrics
on universal families of polarized Abelian varieties, and in Eyssidieux-Mok [EM1,
1995] we resolved the same problem with effective constants by making use of per-
turbations of eigensection equations. To put our argument in concrete terms we
sketch first of all a differential-geometric proof of Shioda’s result, as follows:

Theorem 7 (Shioda [Sh, 1972]). Let H ⊂ C denote the upper half-plane,
Γ ⊂ PSL(2,Z) be a torsion-free subgroup of finite index, and write XΓ = H/Γ for
the quotient Riemann surface. Denote by π : AΓ → XΓ the universal family, and
let π : AΓ → XΓ be a projective compactification as an elliptic surface, which is a
geometric model for the associated modular elliptic curve AΓ over the function field
C(XΓ). Then, rankZ(AΓ(C(XΓ)) = 0 for the Mordell-Weil group AΓ(C(XΓ)). In
other words, there are only a finite number of holomorphic sections of π : AΓ → XΓ

over XΓ.
The original proof of Shioda’s result was obtained by methods of Algebraic

Geometry which involves a determination of the Néron-Severi group of the elliptic
surface, noting that a holomorphic section of the latter of infinite order leads to an
element of Pic(XΓ)⊗ZQ linearly independent from standard elements of the latter
vector space. Silverberg ([Sil, 1985]) generalized the result among other things
to the case of the Siegel upper half-plane. In her proof she made use of Eichler
automorphic forms. We will sketch a differential-geometric proof of Shioda’s result
here. In the proof we associate to each section of the elliptic surface an eigensection,
corresponding to a negative eigenvalue, of some elliptic operator which is in fact
related to Eichler automorphic forms. To start with we discuss the notion of Eichler
automorphic forms in the case of n = 1 (cf. Gunning [Gu]).

Eichler automorphic forms associated to a rational point of AΓ

A holomorphic section of s of π : AΓ → XΓ lifts to a holomorphic function f : H 7→
C satisfying the functional equation

f(γτ) =
f(τ)

cγτ + dγ
+ Aγ

(aγτ + bγ

cγτ + dγ

)
+ Bγ , (])

where γ(τ) = aγτ+bγ

cγτ+dγ
, γ ∈ Γ. We have

f ′(γτ)
(cγτ + dγ)2

= − cγ

(cγτ + dγ)2
f(τ) +

f ′(τ)
(cγτ + dγ)

+
Aγ

(cγτ + dγ)2
.

Hence
f ′(γτ) = −cγf(τ) + (cγτ + dγ)f ′(τ) + Aγ ,

f ′′(γτ)
(cγτ + dγ)2

= −cγf ′(τ) + cγf ′(τ) + (cγτ + dγ)f ′′(τ) ;
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yielding
f ′′(γτ) = (cγτ + d)3f ′′(τ) . ([)

Thus from the functional equation (]) we obtain the transformation rule ([) for the
ordinary second derivative f ′′ under Deck transformations γ ∈ Γ. In other words
f ′′ defines an Eichler automorphic form α = α(f) on the modular curve XΓ.

We will associate to rational points of AΓ smooth sections of some holomorphic
line bundle which are related to Eichler automorphic forms with respect to covariant
differentiation arising from canonical metrics.

Sketch of a differential-geometric proof of Theorem 7. In what
follows we assume that K

1/2
XΓ

exists, which is the case whenever −1 /∈ Γ. The Eichler

automorphic form α is an element of Γ(XΓ,K
3/2
XΓ

). Such automorphic forms may
exist, and the question is whether they can arise from a section σ of π : AΓ → XΓ.
Over the universal covering space H×C there is the notion of a horizontal section,
viz., the graph of a holomorphic function h on H such that h(τ) = Aτ +B for some
real numbers A and B. There is then a canonical decomposition of TH×C into a
direct sum W ⊕ H, where W stands for the bundle of vertical vectors, i.e., W is
the relative tangent bundle of the canonical projection ρ : H × C → H, and at a
point x ∈ H × C, Hy stands for the tangent space of the unique horizontal section
passing through y. Thus H defines a foliation with 1-dimensional holomorphic
leaves on H × C whose leaves are precisely the horizontal sections. Given a local
holomorphic section s of π : AΓ → XΓ, over U ⊂ XΓ, a point x ∈ U , and ξ ∈ Tx(U),
we can decompose ds(ξ) into vertical and horizontal components according to the
decomposition T (H×C) = W ⊕H, leading to the vertical component η = ηs of ds,
so that η vanishes if and only if s is a horizontal section. η is a smooth V -valued
(0,1)-form, where V stands for the universal line bundle over XΓ. When we have
actually a global holomorphic section s of π : AΓ → XΓ, the restriction of s to XΓ

gives η : TXΓ 7→ T
1/2
XΓ

, noting that the universal line bundle V is a square root of the

tangent bundle. Thus, η ∈ C∞(XΓ,K
1/2
XΓ

). From the fact that s is a holomorphic
section over XΓ, not just XΓ, one can deduce that η is square-integrable with
respect to the canonical metrics on V ad XΓ (cf. Mok-To [MT]), which allows us to
perform integration by parts as if we were dealing with a compact base manifold.
Denote by ∇ the (1,0)-component of covariant differentiation on XΓ arising from
canonical metrics on V and TXΓ . From the definitions of the Eichler automorphic
form it is easy to check that ∇η = cα for some c 6= 0. From the holomorphicity of
α we have

∂α = 0 ⇒ ∂∇η = 0

⇒ ∂ ∂
∗
η = 0 ⇒ ∂

∗
∂η = −η .

Integrating by parts
∫

XΓ

〈∂∗∂η, η〉 = −
∫

XΓ

〈η, η〉 , i.e. ,

∫

XΓ

‖∂η‖2 = −
∫

XΓ

‖η‖2,

which forces η to vanish identically on XΓ. Hence ηs ≡ 0 for every holomorphic
section s of π : AΓ → XΓ. This forces s to be horizontal, and hence of finite order,
proving Theorem 7. ¤
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Along the same line of argument of using eigensection equations of elliptic
differential operators as explained, we established

Theorem 8 (Mok-To [MT, 1993]). Let π : AΓ → XΓ be a Kuga family
of polarized Abelian varieties without locally constant parts and π : AΓ → XΓ be
a projective compactification. Then, rankZ(AΓ(C(XΓ)) = 0 for the Mordell-Weil
group AΓ(C(XΓ)). In other words, there are only a finite number of holomorphic
sections of π : AΓ → XΓ over XΓ.

Sketch of Proof. Consider first of all the case of a Siegel modular variety,
where XΓ = Ω/Γ, Ω ∼= Hn, and Γ a torsion-free subgroup of finite index in Sp(n,Z).
We have over XΓ a universal holomorphic vector bundle V of nonpositive curvature
in the dual sense of Nakano and a universal family of polarized Abelian varieties AΓ.
For a local holomorphic section of AΓ over an open subset U of XΓ we can associate
a smooth V -valued (0,1)-form η which satisfies an eigensection equation for some
locally homogeneous elliptic operator. In the case where n = 1 the equation is
of the form (†) ∂

∗
∂η = −η as explained in the above. For n in general it is

of the form (†′) ∂
∗
∂η = −Aη, where A is a self-adjoint nonnegative operator.

There is a decomposition η = η′ + η′′, corresponding to a canonical decomposition
V ⊗ T = P ′ ⊕ P ′′, such that A is positive on P ′ and vanishes on P ′′. As a
consequence, the integral of 〈−Aη, η〉 over X is positive unless η′ = 0, which in turn
implies that η = 0 [MT, §4]. In the general case of a Kuga family, up to a finite
unramified cover we may assume XΓ ⊂ X ′

Γ′ , where X ′
Γ′ is a Siegel modular variety.

We have analogously a canonical decomposition V ⊗ T = P ′ ⊕ P ′′, η = η′ + η′′;
such that A|P ′ > 0 and A|P ′′ ≡ 0. When V |XΓ has no locally flat component, the
argument that η′ = 0 forces η = 0 remains valid. In general, VXΓ may have flat
factors even when the Kuga family π : AΓ → XΓ does not have locally constant
parts. By a simple algebraic argument [MT, §6] involving taking traces of algebraic
numbers the argument in general can be reduced to the former case. ¤

For a formulation of the result of [EM1] on gap rigidity mentioned in (3.1) note
that on the bounded symmetric domain DIII

n there is a maximal totally geodesic
polydisk of dimension n. An immersed totally geodesic curve on a manifold uni-
formized by DIII

n
∼= Hn is said to be of the diagonal type if it can be lifted to the

diagonal of a maximal polydisk. We have

Proposition 4 (Eyssidieux-Mok [EM1, 1995]). Let n ≥ 2 be an inte-
ger. Let Γ ⊂ Auto(Hn) be a torsion-free discrete group of automorphsms and write
XΓ := Hn/Γ. Normalize the canonical Kähler-Einstein metric on Hn so that a
totally geodesic curve of the diagonal type is of constant holomorphic sectional cur-
vature −1. Let f : C ⊂ XΓ be an immersed compact holomorphic curve such that

−
(
1 +

1
4n

)
< Gauss curvature of C (≤ −1)

Then, C is an immersed totally geodesic curve of the diagonal type.

Sketch of Proof. With reference to the proof in Theorem 8, in the case
where C is a totally geodesic holomorphic curve of the diagonal type, (†′) is exactly
(†) as in the proof of Shioda’s result except that η is vector-valued. More precisely,
the universal vector bundle V splits over C as the direct sum of n Hermitian holo-
morphic line bundles isomorphic to each other, and accordingly η decomposes as
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η = η1 + · · ·+ ηn such that ∂
∗
∂ηi = −ηi for 1 ≤ i ≤ n. In general, for any holomor-

phic curve C ⊂ XΓ and for V -valued (0,1)-form any η obtained from a holomorphic
section of the universal family π : AΓ → XΓ over C we have a perturbed second
order elliptic differential equation ([EM1, §3, Eqn.(8)])

∂
∗
∂η = Φη + Sη . (†′′)

Denote by Θ the End(V )-valued curvature (1,1) form of V . Then, Θ = Φ ⊗ ω
where ω is the Kähler form on C, and S is defined by the second fundamental form
σ of C in XΓ. Φ is always nonpositive, and is strictly negative when C is locally
approximable by a totally geodesic holomorphic curve of the diagonal type. When
the second fundamental form is sufficiently small, integrating (†′′) over X still yields
a contradiction unless η = 0. From this one concludes that any holomorphic section
of AΓ over C is of finite order. The argument is actually stronger. Let π : Hn → XΓ

be the universal covering and denote by C̃ ⊂ Hn a connected component of π−1(C).

Any γ ∈ Γ is of the form
[
Aγ Bγ

Cγ Dγ

]
∈ Sp(n,Z) where Aγ , Bγ , Cγ and Dγ are n×n-

matrices. A global holomorphic section over C can be interpreted as an n-tuple of
global holomorphic functions F : C̃ 7→ Cn satisfying the functional equations

F (γτ) =
[
(Cγτ + Dγ)t

]−1
F (τ) +

(
Aγτ + Bγ)(Cγτ + Dγ

)−1
Pγ + Qγ , (])

where we only require the column vectors Pγ and Qγ to have real coefficients. When
the coefficients of Pγ and Qγ are integers F leads to a bona fide holomorphic section
s of Aγ over C. In the general case s is only ‘multi-valued’, but from the definition
of η as in the proof of Shioda’s result, the smooth tensor η thus associated remains
globally defined on C. The number µ of linearly independent solutions to the per-
turbed eigensection equation (†′′) can be interpreted as a Hodge-theoretic invariant.
In the case where C ⊂ XΓ is a compact holomorphic curve locally approximable
by a totally geodesic holomorphic curve of the diagonal type, this number is com-
putable using the Riemann-Roch Theorem, and is shown to be positive unless S
is totally geodesic. This is a non-vanishing theorem, which contradicts the van-
ishing theorem on µ obtained from the perturbed eigensection equation, proving
by contradiction that any compact holomorphic curve locally approximable by a
totally geodesic holomorphic curve of the diagonal type must necessarily be totally
geodesic. The main result of [EM1] was obtained along this line of argument and
the pinching constants were obtained by an explicit determination and estimates
of the perturbation term in the equation (†′). For details of the argument we refer
the reader to [EM1]. ¤

Problem and Remarks. It will be very interesting to obtain analogues of
Proposition 3 for certain pairs of bounded symmetric domains (Ω, Ω′) by exploiting
the approach of proving both vanishing and non-vanishing theorems for a hypo-
thetical compact almost totally geodesic complex submanifold which is not totally
geodesic. To look for non-vanishing theorems, in place of the geometric perspective
of considering multi-valued sections of the universal family one should use cohomo-
logical interpretations in terms of harmonic forms associated to local systems, and
look for vanishing theorems for higher cohomology groups which are stable in the
sense that they remain valid under a small perturbation arising from the second
fundamental form.
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Taking the above result as a prototype, we formulated in [EM1] a conjectural gap
phenomenon. As a starting point, by standard estimates on solutions of ordinary
linear differential equations we proved.

Lemma 4. Let Ω b CN be a bounded symmetric domain. Fix x0 ∈ Ω and let
B(r) ⊂ Ω denote the geodesic ball (with respect to the Bergman metric) of radius
r and centered at x0. For δ > 0 sufficiently small (δ < δ0) there exists ε > 0 such
that the following holds:

For any ε-pinched connected complex submanifold V ⊂ B(x0; 1),
x0 ∈ V , there exists a unique equivalence class of totally geo-
desic complex submanifold on Ω, to be represented by j : Ω′ ↪→ Ω,
and a totally geodesic complex submanifold Ξ ⊂ B(1) modelled on
(Ω, Ω′; j) such that the Hausdorff distance between Ξ ∩B( 1

2 ) and
V ∩B( 1

2 ) is less than δ.

Here we say that V is ε-pinched to mean that the norm of the second funda-
mental form is less than ε everywhere on V . The distance between a point p and a
set F on a metric space (M, d), to be denoted dist(p, E), is the infimum of distances
from p to points q on E, and the Hausdorff distance between two subsets E,F ⊂ M
is the supremum of dist(p, F ) as p ranges over points on E.

Definition (Gap Phenomenon). Let Ω b CN be a bounded symmetric
domain and j : Ω′ ↪→ Ω be a totally geodesic complex submanifold. We say that
the gap phenomenon holds for (Ω, Ω′; j) if and only if there exists ε < ε(δ0) (δ0 as
in Proposition) for which the following holds:

For any torsion-free discrete group Γ ⊂ Aut(Ω) of automorphisms
and any ε-pinched immersed compact complex submanifold S ↪→
Ω/Γ modelled on (Ω, Ω′; j), S is necessarily totally geodesic.

Proposition 3 can be interpreted as an effective version of the gap phenome-
non for the special case of (Hn,H; j), where j : H → Hn denotes the ‘diagonal’
embedding defined by j(τ) = τIn ∈ Hn. Very recently, we realized that the Gap
Phenomenon in its general form does not always hold. Indeed, it fails for the case
of (∆2, ∆× {0}), as follows.

Theorem 9 (Eyssidieux-Mok [EM2, 2004]). There exist sequences of com-
pact Riemann surfaces Sk, Tk of genus ≥ 2; and branched double covers fk : Sk →
Tk such that, writing ds2

C for the Poincaré metric of Gaussian curvature −2 on a
compact Riemann surface C, and defining

µk := sup
{f∗k ds2

Tk
(x)

ds2
Sk

(x)
: x ∈ Sk

}
,

we have
lim

k→∞
µk = 0 .

As a consequence, gap rigidity fails for (∆2,∆× {0}).
The last statement on the failure of gap rigidity follows readily when we consider

the graphs Γk of fk, as subvarieties of Sk × Tk, which are uniformized by the bi-
disk. The ratio of metrics appearing in the definition of µk is nothing other than
‖dfk‖2, measured with respect to Poincaré metrics of Gaussian curvature −2 on



34 NGAIMING MOK

Sk resp. Tk. A uniform bound on ‖dfk‖2 implies a uniform bound on the second
fundamental form of Γk in Sk × Tk, which tends to zero as µk tends to zero.

In our construction, which is elementary, the target compact Riemann surface
can be taken to be the same for all k. f : Sk → T will be constructed as double
covers branched over sets of points on T to be made precise whose cardinalities
grow to infinity. To put our construction in perspective we consider first of all
any surjective holomorphic map f : S → T between compact Riemann surfaces of
genus ≥ 2. For a compact Riemann surface C we write g(C) for its genus. By the
Riemann-Hurwicz formula,we have

2g(S)− 2 = r(2g(T )− 2) + e ,

where r denotes the sheeting number and e denotes the cardinality of the ramifica-
tion divisor. By the Gauss-Bonnet Theorem on a compact Riemann surface C of
genus ≥ 2 we have

∫

C

−2ds2
C = 4π(1− g(C)); i.e.,

1
π

∫

C

ds2
C = 2g(C)− 2.

On the other hand,

1
π

∫

S

f∗ds2
T =

r

π

∫

T

ds2
T = r(2g(T )− 2)

1
π

∫

S

ds2
S = 2g(S)− 2 .

As a consequence, with respect to the Poincaré metric on S we have

Average
(f∗ds2

T

ds2
S

)
= r

(2g(T )− 2
2g(S)− 2

)
:= ν.

In our construction T is fixed, of genus 2, and r = 2. Denoting by ek the cardinality
of the ramification divisor of fk : Sk → T , and by νk the ratio ν for the map
fk, by the Riemann-Hurwitz formula νk is roughly 4

ek
. A crucial point in our

construction is to find fk : Sk → T such that fk is as uniformly area-decreasing as
possible. Obviously ‖dfk‖ has to vanish at the ramification points, and ‘uniformity’
is relative. In fact, as our example will show, µk does not tend to zero at the same
rate as νk. Beyond uniformity, our construction has to be such that the invariant
metrics can be compared at least asymptotically. We do this by taking T to be a
suitable double cover of an elliptic curve E, and by constructing double branched
covers fk : Sk → T in such a way that the Poincaré metrics on Sk and T all descend
to singular Hermitian metrics of constant negative curvature with prescribed poles
and pole orders. A comparision between Poincaré metrics is then deduced from a
comparison between very special singular metrics on E which are related to each
by homomorphisms of E as an Abelian group.

Proof of Theorem 9. Let L ⊂ C be a lattice and write E = C/L for
the corresponding elliptic curve. Let τ ∈ E be a nonzero 2-torsion point and
h : T → E be a double cover branched over {0, τ}. For a positive integer m we
write Φm : E → E for the homomorphism Φm(x) = mx. For a positive integer m we
define Dm := Φ−1

m ({0, τ}). Note that Card(Dm) = 2m2, D1 = {0, τ}. For a positive
integer m = 2k − 1, we have mτ = 2kτ − τ ≡ −τ ≡ τ mod L, hence Dm ⊃ D1.
Since the cardinality of Dm −D1 is even, there exists a double cover fk : Sk → T
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branched over h−1(Dm − D1). We claim that the sequence of holomorphic maps
fk : Sk → T furnishes an example satisfying the statement of Theorem 9.

Since h : T → E is a double cover, there is an involution switching the two
distinct points h−1(q) for q outside the branch locus of D1 = {0, τ} of h. The
Poincaré metric ds2

T is invariant under the involution and descends to a Hermitian
metric on E−D1 with a singularity of order 1

2 at 0 and at τ , which can be regarded
as a continuous Hermitian metric on TE ⊗ [D1]−

1
2 . Likewise for each k the double

cover fk : Sk → T is invariant under an involution and descends to a continuous
Hermitian metric on TE ⊗ [Dm]−

1
2 . From the uniqueness of singular Hermitian

metrics of curvature −2 with prescribed orders of poles, we conclude that

(h ◦ fk)∗ds2
Sk

= Φ∗m(h∗ds2
T ) (1)

Near 0, we have

Φ∗m
( |dz|2
|z|

)
=

m2|dz|2
|mz| = m

|dz|2
|z| ,

and an analogous statement holds true at τ . On the other hand, outside of two
given small disks centred at 0 resp. τ we have h∗ds2

T ≥ ε · ds2
E for some ε > 0,

where ds2
E denotes the Euclidean metric on E, so that

Φ∗m(h∗ds2
T ) ≥ m2ε · ds2

E , (2)

From (1) and (2) it follows that for some positive constant C, we have µk ≤ C
k → 0

as k →∞, as desired. ¤
Remarks. It is clear from the proof that µk ≥ c

k for some c > 0. Recall
that νk := 2

( 2g(T )−2
2g(S)−2

)
is the average of ‖dfk‖2 over S with respect to the Poincaré

metric ds2
Sk

. Since the cardinality of Dk is of the order of k2, νk is of the order 1
k2 ,

and µk decreases to zero at a rate comparable to the square root of νk.
In view of Theorem 9, gap rigidity does not always hold. Taking into con-

sideration such counter-examples to the gap phenomenon, we have the following
conjectural formulation of a sufficient curvature condition for the validity of gap
rigidity for a pair (Ω,Ω′) of bounded symmetric domains.

Conjecture. Let Ω be a bounded symmetric domain, and Ω′ ⊂ Ω be a totally
geodesic complex submanifold. Denote by N the normal bundle of Ω′ in Ω, equipped
with the Hermitian metric h induced by the Bergman metric g on Ω, so that (N, h) is
a homogeneous holomorphic vector bundle on Ω′. Suppose (N, h) does not contain a
nontrivial flat direct summand, i.e., an isometric direct summand of zero curvature.
Then, gap rigidity in the Zariski topology holds for (Ω,Ω′).

The Conjecture above should more properly be regarded as a Working Hypoth-
esis, and its resolution remains difficult. For instance, the case of (B2, ∆) discussed
in Eyssidieux-Mok [EM2, Section 32] remains unresolved. We will further discuss
some interesting special cases in (3.7).

(3.3) Proposition 3 of (3.2) is an example of a characterization of certain compact
totally geodesic complex submanifolds in terms of a pinching on holomorphic sec-
tional curvatures, and as such is by its very formulation differential-geometric in
nature. This gives an example of gap rigidity in the complex topology. As it turns
out, there is a stronger notion of gap rigidity, which says that certain compact com-
plex submanifolds of quotients of bounded symmetric domains are totally geodesic,
provided that their tangent spaces at all points satisfy a genericity condition in
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algebro-geometric terms. We call this gap rigidity in the Zariski topology. More
precisely, we have

Definition (gap rigidity in the Zariski topology). Let Ω, Ω′ be bound-
ed symmetric domains, j : Ω′ ↪→ Ω be a holomorphic totally geodesic embedding
and identify Ω′ with j(Ω′) ⊂ Ω. Let G be the identity component of the automor-
phism group of Ω. We say that (Ω, Ω′; j); dim(Ω) = n, dim(Ω′) = n′; exhibits gap
rigidity in the Zariski topology if and only if there exists a G-invariant complex-
analytic subvariety ZΩ ⊂ GΩ := Grassmann bundle of n′-planes, which descends
to ZX ⊂ GX := GΩ/Γ for any X = Ω/Γ, such that the following holds:

(a) [To(Ω′)] /∈ ZΩ,o;
(b) For any compact complex n′-dimensional immersed submanifold f : S →

X = Ω/Γ such that
[
df(Tx(S))

]
/∈ ZX,x for all x ∈ S, S must be totally

geodesic.

Remarks. We note that in (b) we do not require that S must be modelled on
(Ω, Ω′; j). There are examples for which there exist two n′-dimensional bounded
symmetric domains Ω′1, Ω

′
2 not biholomorphic to each other, together with holo-

morphic totally geodesic embeddings j1 : Ω′1 ↪→ Ω, j2 : Ω′2 ↪→ Ω; and a G-invariant
complex-analytic subvariety ZΩ ⊂ GΩ, such that (a) holds true for both Ω′1 and Ω′2.
Nonetheless, given a bounded symmetric domain Ω, up to holomorphic isometries
there are only at most a finite number of (n′-dimensional) complex totally geodesic
submanifolds, and (b) says in particular that S is modelled on one of the finitely
many possibilities (Ω, Ω′k; jk) up to holomorphic isometries for which in addition (a)
holds true. In particular, if (Ω,Ω′; j) exhibits gap rigidity in the Zariski topology,
it also exhibits gap rigidity in the complex topology.

When the embedding j is understood, we will just say that (Ω,Ω′) exhibits gap
rigidity in the Zariski topology. To start with we have the simple example of gap
rigidity in the Zariski topology, where the ambient domain Ω is reducible.

Proposition 5. Let D be an irreducible bounded symmetric domain, and
Ω = D × · · · ×D be the Cartesian product of k copies of Ω, where k > 1. Denote
by Ω′ the diagonal of Ω. Then, (Ω, Ω′) exhibits gap rigidity in the Zariski sense.

Proof. Let Γ ⊂ Auto(Ω) be a torsion-free discrete subgroup. Write n′ =
dim(Ω′) = dim(D). Call an n′-plane generic if and only if its projection to each
individual factor Ω is a local biholomorphism. If S ⊂ X = Ω/Γ is such that Tx(S)
is generic for every x ∈ S, dim(S) = n′, then we obtain Kähler-Einstein metrics
by projection onto each of the k individual factors. Proposition 4 follows readily
from the uniqueness of Kähler-Einstein metrics, noting that a holomorphic isometry
between two non-empty open subsets of D is the restriction of an automorphism of
D.

(3.4) Eyssidieux [Eys1, 1997] studied compact Kähler manifolds underlying varia-
tions of Hodge structures by considering Euler-Poincaré characteristics of assoicated
differential complexes. Let (S,V) be a polarized variation of Hodge structures on an
m-dimensional compact Kähler manifold S with immersive period map. Eyssidieux
proved in [Eys1] the Lefschetz-Gromov vanishing theorem for L2-cohomology with
coefficients in V on an appropriate normal cover S̃ of S in degrees 6= m. From this
he deduced Chern number inequalities called Arakelov inequalities. More precisely,
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when one replaces S by a suitable tower of finite covers πn : S → S, S1 = S, asymp-
totically the Euler-Poincaré characteristic χn of some differential complex arising
from V is concentrated in dimension m. This yields (−1)m lim

n→∞
χn

[π1(X):π1(Xn)] ≥ 0

and hence (−1)mχ ≥ 0, χ = χ1, by the multiplicative nature of the Euler-Poincaré
characteristic. The cases of equality leads to characterization of certain totally ge-
odesic compact complex submanifolds of Ω/Γ. We remark that these Chern class
inequalities are in general not local, and the characterization of holomorphic geo-
desic cycles does not follow from the proof of Arakelov inequalities.

Accompanying the Arakelov inequalities and the characterization of certain to-
tally geodesic holomorphic cycles in the case of equality, Eyssidieux [Eys1] obtained
the first examples where gap rigidity in the Zariski topology holds for pairs (Ω,Ω′)
where Ω is irreducible. His results are for the more general context of period do-
mains. In Eyssidieux [Eys2] he produced tables of lists of pair (Ω, Ω′) of bounded
symmetric domains where the methods of [Eys1] apply. Gap rigidity in the Zariski
topology is obtained as follows. The relevant Euler-Poincaré characteristics can be
computed using Gauss-Manin complexes, which are complexes of homomorphisms
of holomorphic vector bundles. When the holomorphic tangent space at each point
is in some precise sense generic, we have an exact sequence of holomorphic vector
bundles, yielding the vanishing of the Euler-Poincaré characteristic in question, and
implying that S ⊂ Ω/Γ is totally geodesic, by the characterization of the equality
case of Arakelov inequalities.

The original Arakelov inequality is the case where Ω is the Siegel upper half-
plain Hn. In this case the holomorphic tangent bundle THn is canonically iso-
morphic to S2V , where V stands for the universal vector bundle on Hn. For
a local holomorphic curve E ⊂ Hn at x ∈ K we have naturally a linear map
Tx(E)⊗ V ∗

x → Vx, i.e., V ∗
x → Vx ⊗Kx, where K denotes the canonical line bundle

of E. For a torsion-free discrete subgroup Γ ⊂ Aut(Hn) and a holomorphic curve
C ⊂ X := Hn/Γ we obtain thus a homomorphism ϕ : V ∗

C → VC ⊗KC where VC

stands for the induced universal vector bundle on C, and KC is the canonical line
bundle. On the Siegel space Hn at x ∈ Hn the tangent space can be identified
with the space of symmetric n-by-n matrices with complex coefficients. The rank
of the matrix is invariant under the action of Aut(Hn) on Hn. As it turns out
0 → V ∗

C

ϕ−→VC ⊗KC → 0 is precisely the Gauss-Manin complex, and this complex
is an exact sequence if and only if each tangent space Tx(C) is generated by a vector
of rank n.

(3.5) While the approach of Eyssidieux [Eys1, 2] provides an ample supply of ex-
amples and yields at the same time the deeper characterization of totally geodesic
holomorphic cycles by the equality case of Arakelov inequalities, there are also many
examples which do not fall into the Hodge-theoretic setting given there. In Mok
[Mok4], partly motivated by a rigidity problem for holomorphic mappings ([3.6,
Theorem 1] here) we considered gap rigidity in the Zariski topology in the setting
of intersection theory using the Poincaré-Lelong equation. For Ω an irreducible
bounded symmetric domain and Ω′ ⊂ Ω of dimension 1 we completely determined
the cases where gap rigidity in the Zariski topology holds for (Ω, Ω′).

Definition (characteristic codimension). Let Ω be an irreducible bound-
ed symmetric domain of rank r ≥ 2, G be the identity component of the automor-
phism group of Ω, and o be any reference point on Ω. Denote by So ⊂ PTo(Ω)
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the (r − 1) − th characteristic subvariety of Ω, also called the maximal (high-
est) characteristic subvariety, as given in (2.1). The positive integer κ(Ω) :=
codim(So in PTo(Ω)) will be called the characteristic codimension of Ω.

In order to apply the Poincaré-Lelong equation to deduce gap rigidity for curves,
we require the ambient domain Ω to be of characteristic codimension 1. We enu-
merate here such bounded symmetric domains.

Complete list of Ω with κ(Ω) = 1:
(1) Ω of Type Im,n with m = n > 1;
(2) Ω of Type IIn with n even, n ≥ 4;
(3) Ω of Type IIIn, n ≥ 3;
(4) Ω of Type IVn, n ≥ 3;
(5) Ω of Type VI (the 27-dimensional exceptional domain pertaining to E7).

As it turns out, from the classification given above, Ω is of characteristic codi-
mension 1 if and only if it is a tube domain. In [Mok4] we proved

Theorem 10 (Mok [Mok4, 2002]). Let Ω be an irreducible bounded symmet-
ric domain, and Γ ⊂ Aut(Ω) be torsion-free discrete subgroup, X := Ω/Γ. Denote
by Sx ⊂ PTx(Ω) the maximal characteristic subvariety and S̃x ⊂ Tx(Ω) − {0} its
homogenization. Let f : C → X be an immersed compact holomorphic curve. Sup-
pose q(Ω) = 1 and, for every point x ∈ C, the tangent space Tx(C) is spanned by
some generic vector η, i.e. η /∈ S̃x. Then, f : C → X is totally geodesic.

Remarks. For irreducible bounded symmetric domains Ω, Theorem 1 is op-
timal for the characterization of (Ω, D; j) exhibiting gap rigidity in the Zariski
topology in the case where D is 1-dimensional. In fact, gap rigidity in the Zariski
topology holds true if and only if q(Ω) = 1 and D is the diagonal of a maximal
polydisk.

Proof of Theorem 10. Assume that q(Ω) = 1. Then, there exists a locally
homogeneous divisor S ⊂ PTX corresponding to the set of projectivizations of non-
generic tangent vectors. We have tautologically S = {s = 0} for some s ∈ Γ(X, [S]).
Denote by π : PTX → X the canonical projection, and by L the tautological line
bundle over PTX . Let M be the compact dual of Ω and identify Ω as a domain on
M by the Borel embedding. On M we have analogously SM ⊂ PTM . Denote by
ρ : PTM → M the canonical projection, and by O(1) the positive generator of the
Pic(M) ∼= Z. We have Pic(PTM ) ∼= Z2, generated by ρ∗O(1) and the tautological
line bundle LM over PTM , and a curvature computation in [Mok4] shows that in
fact

[SM ] ∼= L−r
M ⊗ ρ∗O(2) . (1)

Denote by E the negative locally homogeneous line bundle on X dual to O(1) on
M and write r for rank(Ω). By duality we have

[S] ∼= L−r ⊗ π∗E2 . (2)

Let f : C → X be a compact holomorphic curve and denote by Ĉ ⊂ PTM the
tautological lifting of C. Observe that if C ⊂ X is totally geodesic and of diagonal
type, then [Tx(C)] /∈ Sx for any x ∈ C, so that S ∩ Ĉ = ∅ and [S] · Ĉ = 0. If
[Tx(C)] /∈ Sx for a generic x ∈ C, then,

[S] · Ĉ ≥ 0 . (3)
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On the other hand, the intersection number can be computed from the Poincaré-
Lelong equation

√−1∂∂ log ‖s‖2 = rc1(L, ĝ0)− 2π∗c1(E, h0) + [S] , (4)

so that

[S] · Ĉ = r

∫

Ĉ

c1(L, ĝ0)−2
∫

C

c1(E, h0) =
r

2π

∫

C

Ric(C, g0|C)−2
∫

C

c1(E, h0) . (5)

When f : C → X is an immersed totally geodesic holomorphic curve of diagonal
type, the Gauss curvature is everywhere equal to −2

r . In general, for f : C → X an
immersed holomorphic curve, by the Gauss equation we have

Gauss curvature ≤ −2
r

, (6)

where equality holds if and only if (a) C is tangent to a local totally geodesic
holomorphic curve of diagonal type; (b) the second fundamental form vanishes.
Under the assumption of Theorem 10, S ∩ Ĉ = ∅, and hence [S] · Ĉ = 0. From (3)
and (4) it follows that C must be totally geodesic of diagonal type. ¤

Remarks. The divisor [S] ⊂ PTX is in general not numerically effective. Let
C ⊂ X be a totally geodesic curve descending from a minimal disk (i.e., C is dual
to a minimal rational curve). Then, [S] · Ĉ > 0. On the other hand, let C[ be a
holomorphic lifting of C such that for [β] ∈ C[ lying over x with Tx(C) = Cα, we
have Rααββ = 0. Then, L|C[

∼= O, [S]
∣∣
C[
∼= π∗E2, and hence [S] · C[ < 0.

Theorem 11 (Mok [Mok4, 2002]). Let Ω be an irreducible bounded sym-
metric domain of rank r ≥ 2 and of characteristic codimension 1. Let Γ be a
torsion-free cocompact discrete group of biholomorphic automorphisms of Ω and
write X := Ω/Γ. Let Z be a complex manifold carrying a continuous complex
Finsler metric of nonpositive curvature. Then, any nonconstant holomorphic map
f : X → Z is necessarily an immersion at some point.

Proof. Proposition 1 of (2.3) includes in particular the generalization of
Finsler metric rigidity [(2.2), Theorem 3] for continuous complex Finsler metrics
of nonpositive curvature. When the argument of Finsler rigidity is applied to k-th
characteristic bundles, 1 ≤ k ≤ r − 1, r = rank (Ω), the arguments in [Mok4,
Proposition 4, last paragraphs] shows that, in the notations of Theorem 3 here,
h = eug with u being constant on the image of every G-orbit of a non-generic vec-
tor under the natural projection π : PTΩ → PTX . Denote by F : Ω → Z̃ the lifting
of f : X → Z to universal covering manifolds. If dF (γ) = 0 for some non-generic
nonzero vector γ. Then dF vanishes on the G-orbit of γ, and hence on the GC-orbit
of γ, since the kernel of dF is complex-analytic. This forces a contradiction since
M̃(X) is in the topological closure of each stratum Sk(X)−Sk−1(X), 1 ≤ k ≤ r−1.
We have thus proven that P(Ker(df)) ∩ S = ∅.

Let now X = Ω/Γ where Ω is of characteristic codimension 1, Γ ⊂ Aut(Ω) is
torsion-free and cocompact, and f : X → Z be a nonconstant holomorphic mapping
into a complex manifold Z equipped with a continuous complex Finsler metric θ of
nonpositive curvature. Suppose f : X → Z is of maximal rank < dim(X). Then,
for a general point y of f(X) := Y , the fiber f−1(y) is a smooth p-dimensional
manifold for some p ≥ 1, p = dim(X) − dim(Y ). For x ∈ X, let F x be the
fiber f−1

(
f(x)

)
. For x ∈ X generic, PTx(F x) ∼= Pp−1 must be disjoint from
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Sx ⊂ PTx. Since Sx ⊂ PTx(X) is a hypersurface, we must have p = 1, so that each
irreducible component F x

k of F x must lift tautologically to F̂ x
k ⊂ PT (X) such that

F̂ x
k ∩ S = ∅. By Theorem 9, F x

k ⊂ X is a compact totally geodesic holomorphic
curve of the diagonal type. For such a compact holomorphic curve the normal
bundle NF x

k |X is strictly negative. Varying x we obtain a positive-dimensional
holomorphic family of such compact holomorphic curves. On the other hand, since
NF x

k |X is strictly negative, F x
k ⊂ X is an exceptional curve, and must be the unique

compact holomorphic curve on some tubular neighborhood U of F x
k in X, a plain

contradiction. This means that f : X → Z must be of maximal rank = dim(X) at
some point, i.e., f is generically finite onto its image, as desired.

(3.6) In order to formulate results on gap rigidity in the Zariski topology for higher-
dimensional complex submanifolds we discuss here some further basic facts on holo-
morphic embeddings between bounded symmetric domains. To start with, we col-
lect some basic facts, notions and notations on bounded symmetric domains beyond
those given in (1.4), as follow.

Bounded Symmetric Domains
Let Ω be a bounded symmetric domain, not necessarily irreducible. As in (1.4)
we write Ω = G/K and use the same notations and conventions there, except
that Ω may be reducible. Let g = k ⊕ m be the Cartan decomposition. Choose
H0 ∈ z := Centre (k) such that ad(H0)2 = θ, where ad(H0) defines an integrable
almost complex structure on Ω. We have the decomposition mC = m+⊕m− into ±i-
eigenspaces of ad(H0), mC := m⊗R C. Write o = eK. We call (g,H0) a semisimple
Lie algebra of the Hermitian and noncompact type. We have the following basic
notions regarding embeddings between bounded symmetric domains.

Embedding of Bounded Symmetric Domains
Let (g′,H ′

0), (g,H0) be semisimple Lie algebras of the Hermitian and noncompact
type, and ρ : g′ → g be a Lie algebra homomorphisms

• We say that ρ : (g′,H ′
0) → (g,H0) is an (H1)-homomorphism if and only

if
ad(H0) ◦ ρ = ρ ◦ ad(H ′

0) .

• We say that ρ : (g′,H ′
0) → (g,H0) is an (H2)-homomorphism if and only

if
ρ(H ′

0) = H0 .

An (H1)-homomorphism induces a totally geodesic holomorphic embedding be-
tween bounded symmetric domains associated to (g′,H ′) resp. (g,H0). (H2)-
homomorphisms are (H1) (cf. Satake [Sa, pp 83-88]). In 1965 Satake [Sa] classified
all (H2)-embeddings into classical domains. In 1967 Ihara [Iha] obtained the full
classification of (H2)-embeddings.

For Ω = G/K as in the above, a G-invariant Kähler metric g0 can be determined
on Ω by the Killing form. When Ω is irreducible, g0 is Kähler-Einstein, and the
Einstein constant is fixed. When Ω is irreducible, dim(Ω) = n, writing {e1, . . . , en}
for an orthonormal basis of m+ = T0(Ω), and

∑
(m+) =

√−1
n∑

i=1

[ei, ei], we have
∑

(m+) =
√−1cΩH0 for some cΩ ∈ R. When Ω is reducible, we slightly modify

(H2)-homomorphisms to introduce the notion of (H3)-homomorphisms, as follows.

(H3)-Embeddings
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Let ρ : (g′,H ′
0) → (g,H0) be an (H1)-embedding corresponding to a totally geodesic

holomorphic embedding j : Ω′ → Ω. Write Ω′ = Ω′1×· · ·×Ω′a for the decomposition
of Ω′ into a Cartesian product of irreducible bounded symmetric domains Ω′k, 1 ≤
k ≤ a. Define positive constants dΩ′k,Ω by gΩ

0

∣∣
Ω′k

= dΩ′k,Ω · gΩ′
0

• We say that ρ is an (H3)-embedding if and only if

ρ
( N∑

k=1

cΩ′kdΩ′k,ΩH ′
0k

)
∈ RH0 .

If ρ : (g′,H ′
0) → (g,H0) is an (H3)-embedding, we also call j : Ω → Ω′ an (H3)-

embedding, or a totally geodesic holomorphic embedding of diagonal type. The
lemma below follows readily from the definitions (cf. [EM2, Lemma 3]).

Lemma 5. (H3)-embeddings are (H2). An (H2)-embedding is (H3) if and only
if gΩ

0

∣∣
Ω′ is Einstein.

In order to generalize Theorem 9 to the case where Ω′ ⊂ Ω is of higher dimen-
sion, we will need to make use of results from geometric invariant theory (GIT),
especially involving the moment map. We refer the reader to [EM2, (2.1)-(2.3)] for
details on the arguments involving Geometric Invariant Theory, and to the standard
reference Mumford-Fogarty-Kirwan [MFk] for the necessary background.

Theorem 12 (Eyssidieux-Mok [EM2, 2004]. Let Ω be an irreducible bound-
ed symmetric domain. Let j : Ω′ → Ω be a totally geodesic holomorphic embedding
of the diagonal type, dim(Ω′) = n′, dim(Ω) = n. Then, there exists a nonempty
K-invariant hypersurface Ho ⊂ Gr(n′,Cn) for which the following holds.

(1) [To(Ω′)] /∈ Ho.
(2) Write H → X = Ω/Γ for the corresponding locally homogeneous holo-

morphic subbundle of π : PTX → X. Then, for any n′-dimensional im-
mersed compact complex submanifold f : S → X such that for x ∈ S,
[Tx(S)] /∈ Hx, the compact complex manifold S ⊂ X is totally geodesic.

Sketch of Proof. Denote by l ⊂ k the semisimple part of k, l = [k, k].
Denote by κ : k → l∗ the complex linear map induced by the Killing form. For any
E ∈ Gr(n′, T0(Ω)) = G, choose an orthonormal basis {ei} and set

µ(E) = κ
(
−

∑

i

[ei, ei]
)

,

where {ei}1≤i≤n stands for an orthonormal basis of E. When j : Ω′ → Ω is a totally
geodesic holomorphic embedding of the diagonal type, we have µ([To(Ω′)]) = 0. The
moment map of the adjoint action of U(n) on Mn(C) is given by A 7→ [A,A

t
]. From

this one deduces that µ is the moment map for the Hamiltonian action of K on
the Kähler manifold G (cf. [EM2, Section 2.3]). The Hamiltonian action extends
to a linearizable action of KC on G. The existence of a K-invariant hypersurface
Ho ⊂ Gr(n′,Cn) satisfying (1) amounts to saying that [To(Ω′)] is a semistable
point of the KC action on G in the sense of Geometric Invariant Theory (GIT).
GIT-semistables point of G are points whose KC-orbits meet µ−1(0). In particular,
µ−1(0) are GIT-semistable. In other words, there exists a K-invariant hypersurface
Zo ⊂ Gr

(
n′, To(Ω)

)
such that [To(Ω′)] /∈ Zo.

As in the proof of Theorem 10 we denote by M the compact dual of Ω and
identify Ω as an open subset of M by the Borel embedding. Denote by GM the
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Grassmann bundle of n′-planes on M , ρ : GM → M the canonical projection, and
by LM the tautological line bundle on GM . Let ZM ⊂ GM be the GC-invariant
hypersurface, corresponding to Zo ⊂ Gr

(
n′, To(Ω)

)
. From Pic(GM ) ∼= Z2 the

divisor line bundle [ZM ] must be of the form L−m
M ⊗ ρ∗O(`) for some positive

integers m and `, where O(1) denotes the positive generator of Pic(M). Thus, ZM

is the zero set of some s ∈ Γ(GM , L−m
M ⊗ ρ∗O(`)) which is a GC-invariant sections.

On Ω ⊂ M , s is G-invariant. Denote by Eo the holomorphic negative line bundle
on Ω dual to O(1) on M and ho be a canonical Hermitian metric on Eo. Normalize
the canonical Kähler metric go on Ω so that c1(E, h) = ω for the induced Kähler
form ω on X. In the notations of the proof of Theorem 10, we have

√−1
2π

∂∂ log ‖s‖2 = mc1(L, ĝ)− `c1(π∗E, π∗h) + [ZΩ] . (1)

As opposed to the case of Theorem 10 for curves, it is not clear what m and ` are.
For our purpose it is the ratio between m and ` and not their precise values which
concerns us. By Borel [Bo2, 1963], there exists Γ′ ⊂ Aut(Ω′) such that S0 = Ω′/Γ′

is compact. Since [Tx(S0)] /∈ ZX,x for any x ∈ S0, integrating over the lifting Ŝ0 of
S0 to GX

∣∣
S0

, we have

0 =
∫
bS0

(
mc1(L, ĝ)− `c1(π∗E, π∗h)

) ∧ (π∗ω)n′−1

=
∫

S0

(
mc1(K−1

S0
,det(g|S0))− `c1(E, h)

) ∧ ωn′−1

=
∫

S0

( m

2π
Ric(g|S0)− `c1(E, h)

)
∧ ωn′−1

=
∫

S0

( m

2πn′
K(g|S0) + `

)
ωn′ ,

(2)

where K denotes scalar curvature. By local homogeneity the last integrand vanishes
identically on S0. In other words,

m

2πn′
K(g0|Ω′) + ` ≡ 0 . (3)

Suppose now S ⊂ X = Ω/Γ as in the hypothesis. We have Ŝ ∩ ZX = ∅, so that
∫

S

( m

2πn′
K(g|S) + `

)
ωn′ = 0 . (4)

Define Σ : Gr
(
n′, T0(Ω)

) → k by

Σ(E) =
√−1

n′∑

i=1

[ei, ei] , (5)

where {ei} is any orthonoromal basis.
∥∥Σ(E)

∥∥ is a minimum if Σ(E) ∈ z, thus
whenever E = T0(Ω′), where Ω′ ↪→ Ω is (H3). Now

K
(
g0|Ω′

)
= −C

∥∥Σ(T0(Ω′))
∥∥2 (6)

for a universal constant C. For every x ∈ S by the Gauss equation

K(g|S)x = −C
∥∥Σ(TxS)

∥∥2 − ∥∥σx

∥∥2 ≤ K
(
g0

∣∣
Ω′

)
(7)
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where σ is the second fundamental form. Comparing with (1) and (2) we get

K(g|S)x = K
(
g0

∣∣
Ω′

)
, σx ≡ 0 . (8)

In particular, f : S → X is a totally geodesic immersion, as desired. ¤
Tables of pairs of bounded symmetric domain (Ω, Ω′) exhibiting gap rigidity

in the Zariski topology and arising from (H3)-embeddings i.e., embedding of the
diagonal type, can be read from [EM2, (2.6)]. They are based on Satake [Sa]
and Ihara [Iha]. Explicit examples of gap pairs (Ω, Ω′) in which a KC-invariant
hypersurface Ho in the Grassmannian G is determined, are given in [EM2, (2.5)].
While such hypersurfaces are not in general unique, it is interesting to note that in
these examples Ho is a hypersurface of degree equal to rank(Ω). While in Theorem
11 the arguments leading to GIT-semistability are existential, it is interesting to
answer the following question.

Question. Let Ω be an irreducible bounded symmetric domain, and (Ω,Ω′)
be a gap pair in the Zariski topology arising from an embedding of the diagonal
type.

(1) Is it possible, in terms of Killing forms or other Lie-algebraic data, to
determine an explicit example of a KC-invariant hypersurface Ho ⊂ G
such that [To(Ω′)] /∈ Ho.

(2) Can one always find Ho ⊂ G, either by construction as in (1) or by
existential arguments from Geometric Invariant Theory, to be of degree
equal to rank(Ω)?

(3.7) In (3.3)for any bounded symmetric domain D we have the example (Dk, D; δ),
k > 1, where δ stands for the diagonal embedding, for which gap rigidity holds in
the Zariski topology. In this case the proof makes use of the uniqueness of Kähler-
Einstein metrics on compact Kähler manifolds with ample canonical line bundle.
There is a more interesting situation, where the amibient domain is irreducible, in
which we can deduce gap rigidity in the Zariski topology using Kähler-Einstein met-
rics. This is the case concerning holomorphic quadric structures, which corresponds
to the pair (DIV

n , DIV
k ), k ≥ 3, for which gap rigidity in the Zariski topology was

established in [Mok4] using Hermitian metric rigidity ([Mok1]) and the existence of
Kähler-Einstein metrics, as applied in Kobayashi-Ochiai [KO] in the context of G-
structures modelled on irreducible bounded symmetric domains of rank ≥ 2. This
case for Type-IV domains actually subsumes under the method using the Poincaré-
Lelong equation as explained in (3.6), but the original method of proof in [Mok2]
may be relevant to more general situations. We will sketch here the argument in
the quadric case. Recall that for an n-dimensional complex manifold Z, and a
linear subgroup G of GL(n;C), by a smooth (resp. holomorphic) G-structure we
mean a smooth (resp. holomorphic) reduction of the holomorphic frame bundle,
with structure group GL(n;C), to G. In the case of the Grassmannian G(p, q) or
quotients of its noncompact duals, the Type-I domains DI

p,q, we have G-structures
corresponding to the holomorphic splitting of the tangent bundle T = U ⊗ V into
a tensor product of universal bundles U resp. V , of rank p resp. q, which is a
nontrivial restriction when p, q ≥ 2. In the case of G-structures modelled on the
hyperquadric a holomorphic G-structure is nothing other than a holomorphic con-
formal structure, also called a holomorphic quadric structure, which is equivalently
given by a holomorphic section θ of S2T ∗Z ⊗ L, where L is some holomorphic line
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bundle, such that θ defines (up to scalar multiples) a non-degenerate symmetric
biliner form on each tangent space Tx(Z).

Argument using G-structures in the quadric case

Consider the case of (DIV
n , DIV

k ), k ≥ 3. Let S ⊂ DIV
n /Γ be a k-dimensional

compact complex manifold. DIV
m , m ≥ 3, is an irreducible bounded symmetric

domain of rank 2 and of characteristic codimension 1. Its dual manifold is Qm,
the m-dimensional hyperquadric on which the (minimal) characteristic subbundle
M(Qm) ⊂ PTQm consists precisely of projectivizations of null vectors. Restricting
to the domain DIV

m and in the notations of [(3.5), Proof of Theorem 9], there is
an Aut

(
DIV

m )-invariant section s ∈ Γ(L−2 ⊗ π∗E2), which can be interpreted as a
twisted holomorphic quadratic form on the tangent bundle. In the situation S ⊂
X := DIV

n /Γ we are considering taking m = n and taking s to be the Aut(DIV
n )-

invariant section, by descending to X and restricting to S we obtain a twisted
holomorphic quadratic form θ on S. If we require this θ to be non-degenerate on S,
we obtain a holomorphic quadric structure on S. Since S carries by restriction from
X a Kähler metric of strictly negative curvature, its canonical bundle is ample, and
by Yau [Yau] there exists on X a Kähler-Einstein metric. By Kobayashi-Ochiai
[KO], any compact Kähler-Einstein manifold carrying a holomorphic G-structure
modelled on an irreducible bounded symmetric domain D of rank ≥ 2 must be
biholomorphic to a quotient of D. (We say that the holomorphic G-structure is
integrable.) Thus, S is biholomorphically isomorphic to some quotient Z of DIV

k ,
k ≥ 3, and the inclusion S ⊂ X is then a holomorphic embedding of Z into X.
By Hermitian metric rigidity it follows that S is totally geodesic in X, proving gap
rigidity.

The proof of gap rigidity in relation to quadric structures suggests that there
may be more general situations about gap rigidity concerning G-structures modelled
on irreducible bounded symmetric domains of rank ≥ 2. For instance, when (Ω,Ω′)
is a pair of irreducible bounded symmetric domains such that Ω′ and hence Ω are
of rank ≥ 2, and when the normal bundle of Ω′ in Ω does not have a nontrivial flat
direct summand (as in [(3.4), Conjecture]) one may ask whether gap rigidity holds
for (Ω,Ω′). The case of (DIV

n , DIV
k ); n > k ≥ 3; belongs to this situation, where

we have given a proof of gap rigidity in the Zariski topology, both by using the
Poincaré-Lelong equation and by using holomorphic quadric structures. However,
in many cases, e.g., (DI

m,n, DI
p,n), where m ≥ n ≥ 2, and m > p ≥ 2, the geometric

assumption as in the Conjecture is satisfied while it is not possible to apply the
Poincaré-Lelong equation. In these cases it is tempting to make use of the approach
using G-structures modelled on Ω′. In this situation we are content with considering
gap rigidity in the complex topology, i.e., we consider almost geodesic compact
complex submanifolds S of quotients X of Ω by discrete torsion-free subgroups Γ
of automorphisms, where S is locally modelled on Ω′ ↪→ Ω.

In the case of (DIV
n , DIV

k ), n > k ≥ 3, the canonical quadric structures from the
ambient domain restrict and descend to the compact complex manifold S to give a
holomorphic quadric structure, and we resort to the use of Kähler-Einstein metrics
(Kobayashi-Ochiai [KO]) to conclude that S is itself biholomorphically isomorphic
to a quotient of DIV

k . In the situation of pairs (Ω,Ω′) that we now consider, in
general it does not make sense to restrict holomorphic G-structures. For a bounded
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symmetric domain Ω = G/K (in standard notations) and hence its quotient man-
ifolds we have canonical KC-structures. Write also Ω′ = G′/K ′ (in standard no-
tations), and from now on we write G for K ′C. (G is just a default notation and
has nothing to do with G or G′. When S ⊂ X = Ω/Γ is almost geodesic and
modelled on Ω, Ω′, lifting to the universal covering domain locally we can make
use of approximating totally geodesic complex submanifolds conjugate to Ω′ to de-
fine holomorphic G-structures. Although a priori this cannot be done globally the
local G-structures can be pieced together to yield smooth G-structures which are
in some sense almost holomorphic. One way of piecing the G-structures together
is as follows. Write N = dim(Ω), N ′ = dim(Ω′). Consider on X the Grassmann
bundle G of complex N ′-planes in the holomorphic tangent spaces Tx(X) ∼= CN . In
G there is a smooth locally homogeneous subbundle C ⊂ G whose fiber Cx over each
x ∈ Ω consists of tangent N ′-planes which lift to tangent spaces of totally geodesic
complex submanifolds Σ ⊂ Ω, where Σ = γ(Ω′) for some γ ∈ G. Here and in
what follows ‘locally homogeneous’ refers to the fact that the lifting to the univer-
sal covering domain is invariant under G. There is a locally homogeneous tubular
neighborhood U of C in G which admits a smooth retraction ρ onto C respecting
the canonical projection of U onto X. More precisely, for δ > 0 let Ux ⊂ Gx be
the open subset of all points at a distance less than δ to Cx, where distances are
measured with respect to the Kähler metric on the Grassmannian Gx induced by
the canonical Kähler-Einstein metric on X. For an N ′-plane in Tx(X), we define
ρ([E]) to be the point on Cx at a shortest distance from [E]. ρ is well-defined and
is a smooth retraction provided that δ > 0 is sufficiently small. When S ⊂ X is
ε-geodesic and modelled on (Ω, Ω′), for ε sufficiently small the tangent bundle of S
gives a holomorphic section of G|S lying inside U|S . The smooth retraction then
defines a smooth section µ of C|S which is almost holomorphic. In a sense to be
made more precise below, µ can then be used to define a smooth G-structure which
is almost holomorphic.

Almost-holomorphic G-structures
It remains to formulate properly the notion of ε-holomorphic G-structures in such a
way that when S ⊂ X := Ω/Γ is ε-geodesic and modelled on (Ω, Ω′), then it admits
an ε′-holomorphic geodesic structure, where ε′ tends to 0 as ε tends to 0. For the
formulation we describe first of all some basic facts associated to holomorphic G-
structures coming from irreducible bounded symmetric domains Ω. G ⊂ GL(n;C) is
reductive, and its highest weight orbit defines in the case of Ω and its dual manifold
M precisely the minimal characteristic bundle as a subvariety of the projectivized
tangent bundle. Since this definition is purely representation-theoretic, we can
define the minimal characteristic bundle M(Z) ⊂ PTZ on any complex manifold
Z admitting a holomorphic G-structure. The second symmetric power S2Cn splits
as a direct sum of precisely 2 irreducible G-representation spaces (cf. Borel [Bo1]),
which on Z corresponds to a holomorphic splitting S2TZ = H ⊕ J , where Hx is
spanned by α ◦ α as α ranges over highest weight vectors at x. A smooth G-
structure on a complex manifold Z is defined equivalently by a smooth subbundle
MZ ⊂ PTZ where each fiber Mx ⊂ PTx(Z) over x ∈ Z corresponds to the highest
weight orbit of the G-represenation on Cn, while the variation of these minimal
characteristic subvarieties is only smooth. We still have in this case the splitting
S2TZ = H ⊕ J as a smooth complex vector bundle. This splitting is easily seen
to be holomorphic if and only if the minimal characteristic bundle MZ ⊂ PTZ
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is holomorphic. Consider the canonical projection map µ : S2TZ → H ⊂ S2TZ

as a smooth endomorphism of the holomorphic vector bundle S2TZ . We can now
measure the lack of holomorphicity of the G-structure by the failure of ν to be
holomorphic, as follows.

Definition. Let Z be a compact complex manifold with ample canonical
line bundle, and denote by h the canonical Kähler-Eintein metric on Z of Ricci
curvature −1. We say that Z admits an ε-holomorphic G-structure if it admits a
smooth G-structure, such that, for the smooth decompositionm S2TZ = H ⊕ J ,
and the canonical bundle endomorphism ν : S2TZ → H ⊂ S2TZ , we have ‖∂ν‖ < ε
everywhere on Z.

In the case of ε-geodesic compact Kähler manifolds S ⊂ X := Ω/Γ modelled on
(Ω, Ω′), where we use the notation S for the submanifold in place of the abstract
manifold Z, and the notation Ω′ to stand for a subdomain in the context of gap rigid-
ity in place of the notation D, we can make use of the smooth section µ of C|S over
S to define a smooth G-structure, as follows. At each x ∈ S, [Tx(S)] := τ(x) ∈ Cx,
and define µ(x) := ρ(τ(x)) for the smooth retraction ρ : U → C constructed. To
define a smooth G-structure is equivalently to define a smooth minimal character-
istic bundle on S modelled on Ω′. This can be done by pulling back the minimal
characteristic subvarieties at ρ(τ(x)), provided that we have at the same time a
linear isomorphism λx from Tx(S) to the vector space Ex ⊂ Tx(X) defined by
ρ(τ(x)). Since Tx(S) is sufficiently close to Ex, we can define λx(η) to be the or-
thogonal projection of η to Ex, defined in terms of the canonical Kähler-Einstein on
X. Finally, our notion of ε-holomorphic G-structure has the desired property that
an ε-geodesic compact complex submanifold S ⊂ X := Ω/Γ modelled on (Ω,Ω′)
admits necessarily an ε′-holomorphic G-structure, where ε′ = ε′(ε) tends to 0 as ε
tend to 0, by an analogue of the convergence argument of [EM1, (1.1), Proposition
1]. (The latter is stated as [(3.2), Lemma 3] in the current article.)

Remarks.

(1) In the case of quadric structures in the canonical decompostion S2TZ =
H ⊕ J , J is a complex line bundle. For holomorphic quadric structures
TZ is holomorphically isomorphic to a T ∗Z ⊗ L for some holomorphic line
bundle L, and J ⊂ S2TZ corresponds under the latter isomorphism to a
holomorphic line subbundle of S2T ∗Z⊗L2, which is spanned at every point
by the twisted holomorphic non-degenerate quadratic form defining the
quadric structure.

(2) The direct sum decomposition S2TZ = H ⊕ J is an isometric decom-
position when the background metric h is Kähler-Einstein (cf Siu [Siu4,
Proposition (1.6)]), which forces H to be invariant under holonomy. Con-
sequently, the set of tangent vectors whose squares lie in H is invariant
under holonomy. But this set corresponds precisely to the minimal char-
acteristic bundle, proving the invariance of the latter under holonomy, and
hence restricting the holonomy group at any o ∈ Z to be contained in the
subgroup of GL(To(D)) preserving Mo, which corresponds precisely to G.
It follows readily from Berger’s characterization of Riemannian symmetry
that Z must be uniformized by D if h is of negative Ricci curvature. This
proves the result of Kobayashi-Ochiai [KO] mentioned in the above.
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We have the following general conjecture regarding compact complex manifolds
with ample canonical line bundles admitting almost holomorphic G-structures.

Conjecture. Let D be an n-dimensional irreducible bounded symmetric do-
main of rank ≥ 2. Let o ∈ D be any reference point and denote by K ⊂ Aut(D) the
isotropy subgroup of holomorphic isometries at o. The map Φ : K → GL((To(D))
defined by Φ(γ) = dγ(o) being injective, we identify K as a subgroup of GL(To(D)).
Fixing an identification of To(D) as a complex vector space with Cn we write G ⊂
GL(n;C) for the subgroup corresponding to the complexification KC ⊂ GL(To(D)).
Let now Z be an n-dimensional compact complex manifold with ample canonical
line bundle and write h for the unique Kähler-Einstein metric on Z of constant
Ricci curvature −1. Let ε > 0 and suppose Z admits an ε-holomorphic G-structure.
Then, if ε is sufficiently small, Z admits a holomorphic G-structure and is hence
uniformized by the bounded symmetric domain D.

A positive resolution of the Conjecture would imply that (Ω, D) is a gap pair
for any ambient bounded symmetric domain Ω, not necessarily irreducible, which
contains a totally geodesic complex submanifold biholomorphically isomorphic to
and identified with D. This is the case because of Hermitian metric rigidity [(2.1),
Theorem 4]. For the verification of gap rigidity of (Ω, D) in the complex topol-
ogy it is in fact sufficient to resolve the Conjecture in the affirmative under the
additional assumptions that the curvature tensor is a priori bounded from above
by a prescribed, fixed but arbitrarily small positive number, and that Z admits
some finite covering space of injectivity radius at least equal to 1. For the case of
S ⊂ X = Ω/Γ at hand the latter assumption is valid from the residual finiteness
of the fundamental groups Γ and the pinching condition on second fundamental
forms on Z, while the former assumption follows from solving the Monge-Ampere
equation by the continuity method with estimates, given that S is ε-geodesic for
a sufficiently small ε and modelled on (Ω, D), and the injectivity radius can be
taken to be at least 1. We also note that while in [(3.2), Conjecture] we consider
only the case of pairs of bounded symmetric domains (Ω, D) where the Hermitian
holomorphic normal bundle of D in Ω admits no trivial isometric direct summand,
without which the Gap Phenomenon has been shown to fail in general, it is not
clear whether this condition is necessary when D is an irreducible bounded sym-
metric domain of rank ≥ 2. For instance, if we take Ω to be a product of D × U ,
where U is an arbitrary bounded symmetric domain, and identify D with D × {o}
for any reference point o ∈ U , then a compact complex manifold S modelled on
(Ω, D) admits an integrable holomorphic G-structure (arising from D) by lifting to
the universal cover and taking the canonical projection from D × U onto D, and
must therefore be itself biholomorpically isometric to a compact quotient of the
bounded symmetic domain D, as a consequence of which S ⊂ Ω/Γ must be totally
geodesic by Hermitian metric rigidity.
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