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Abstract

Estimating and forecasting the unobservable states of an economy are important and

practically relevant topics in economics. Central bankers and regulators can use informa-

tion about the market expectations on the hidden states of the economy as a reference for

decision and policy makings, for instance, deciding monetary policies. Spot interest rates

and credit ratings of bonds contain important information about the hidden sequence of

the states of the economy. In this paper, we develop double higher-order hidden Markov

chain models (DHHMMs) for extracting information about the hidden sequence of the

states of an economy from the spot interest rates and credit ratings of bonds. We con-

sider a discrete-state model described by DHHMMs and focus on the qualitative aspect
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of the unobservable states of the economy. The observable spot interest rates and credit

ratings of bonds depend on the hidden states of the economy which are modelled by DHH-

MMs. The DHHMMs can incorporate the persistent phenomena of the time series of spot

interest rates and the credit ratings. We employ the maximum likelihood method and

the EM algorithm, namely Viterbi’s algorithm, to uncover the optimal hidden sequence

of the states of the economy which can be interpreted the “best” estimate of the sequence

of the underlying economic states generating the spot interest rates and credit ratings

of the bonds. Then, we develop an efficient maximum likelihood estimation method to

estimate the unknown parameters in our model. Numerical experiment will be conducted

to illustrate the implementation of the model.

Key words: Spot Interest Rates, Credit Ratings, Optimal Hidden Economic States, Double

Higher-Order Hidden Markov Model, Long Range Dependence

1 Introduction

Estimating and forecasting the hidden states of the economy are important and practically rele-

vant research topics in economics, in particular macroeconomics analysis. Economic agents can

infer the hidden states of the economic conditions from some observable economic information,

such as stock indices, interest rates and price indices. The information about the states of the

economy may be useful for economic policy making. Gerlach and Yiu (2004) mentioned that

many central bankers, regulators and economic researchers are routinely and regularly produc-

ing estimates and indicators that are important measures to summarize the hidden states of the

macroeconomic activity in a certain region. These estimates and indicators provide them with

an important piece of information to forecast future economic growth. They also pointed out

that the states of the economy can be used to form reliable estimates and forecasts of business

cycles since the evolution of the states of the economy are in cycles.

Broadly speaking, business cycles can be defined as the recurring growths and recessions

in overall economy or economic activity as reflected in some macroeconomic series, such as

production, employment, prices and wages, etc. According to Kennedy (2001), a “stylised”
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presentation of the business cycle consists of six phases, namely “Peak”, “Recession”, “Con-

traction”, “Trough”, “Recovery” and “Expansion”. “Peak-to-Peak” or “Trough-to-Trough”

forms ome complete cycle. The pioneering work of Burns and Mitchell (1946) developed var-

ious indices of business cycles using a large numbers of economic variables and applied these

indices to summarize the states of an economy in the United States. Stock and Watson (1989,

1991, 1998) introduced a single-index model or a dynamic factor model to provide a formal

definition of the hidden states of the economy, which is then used to investigate business cycles

and fluctuations. They supposed that the co-movements among observable economic variables

are driven by a common element, which is described by a single dynamics of hidden states of

the economy. Many economic researchers have adopted the dynamic factor model by Stock and

Watson to compute various economic indicators of the hidden states of the economy in various

regions or countries, for instance, Camba-Mendaz (2001) and Garcia-Ferrer and Poncela (2002)

for European countries, Bandholz and Funke (2003) for Germany, Chen and Lin (2000) for

Taiwan, Fukuda and Onodera (2001) for Japan and Gerlach and Yiu (2004) for Hong Kong

SAR. Gerlach and Yiu (2004) adopted the dynamic factor model to construct quarter estimates

of the states of the economy in Hong Kong using some observable economic variables, such as

the Hang Seng Index, a residential property price index, retail sales and total exports. They

supposed that the dynamics of the hidden states of the economy is the common driver of the

four economic variables and adopted the Principal Component Analysis (PCA) to get some

insights in the unobservable common component. Then, they formulated the dynamic factor

model in a state-space form and used the Kalman filtering technique and maximum likelihood

method to extract the unobservable common component, which represents the unobservable

state of the economy in Hong Kong.

In this paper, we develop discrete-time double higher-order hidden Markov chain models

(DHHMMs) for extracting information about the hidden states of an economy from spot interest

rates and credit ratings of bonds in the economy. We may interpret the hidden states of the

economy as different phases of business cycles. In general, the hidden states of the economy may

be interpreted as the hidden states of economic activity, growth, technology and inflationary

level, etc. We employ DHHMMs for specifying the dependence between the hidden states of

3



the economy and observable economic variables. The basic idea of DHHMMs is to describe

both the observable and hidden sequences as higher-order Markov chains models (HHMMs).

Our model has similar spirit with that of using of Kalman filtering for extracting the hidden

states of the economy in Gerlach and Yiu (2004). The dynamic factor model in the literature

focuses on the quantitative aspect of the analysis. There is relatively little amount of work

that concerns qualitative analysis of the hidden states of the economy. It might be beneficial

to consider both qualitative and quantitative aspects of the hidden states of the economy for

analysing the issue. Here, we focus on qualitative aspect of the analysis and describe the hidden

states of the economy as discrete variables using DHHMMs. In particular, the hidden states are

described by a higher-order hidden Markov chain model (HHMM) with discrete state space.

One example of such discrete hidden economic states can be the six phases of a “stylised”

presentation of business cycles described in above. Spot interest rates and credit ratings of

bonds contain important information about the hidden states of the economy.

Using spot interest rates for extracting information about the hidden states of the economy

is supported by some literature. Thomas, Allen and Morkel-Kingsbury (2002) explored the

dependency between spot interest rates and the hidden states of the economy by using a hidden

Markov chain model. One can infer the hidden states of the economy from observable spot

interest rates. Gerlach (2003) investigated and interpreted the informational content of term

structures of interest rates and its impact on the states of the economy. Ang and Bekaert

(2002) adopted the regime switching interest rate models to explain the U.S. business cycles

and explore their potential implications on macro-economic activity. Wilkie (1986) discussed

the importance of introducing the level of inflation as a driving factor for interest rates and

term structures. He supposed that the yield on Consols, which are long-term government

securities, responds to the changes in the inflation rate evaluated from observable Retail Prices

Index series. His viewpoint is in line with the methods adopted by economists, such as Sargent

(1973) and Friedman and Schwartz (1982). He also postulated that inflation is the driving

force for the other investment variables, such as interest rates, but not vice versa. Using credit

ratings for extracting information about the hidden states of an economy is also supported by

the literature (see, for instance, Bangia, Diebold and Schuermann (2000) Monfort and Mulder
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(2000) and Thomas, Allen and Morkel-Kingsbury (2002)). In general, one may consider other

observable economic and investment variables to infer or learn the hidden states of an economy.

Brandt, Zeng and Zhang (2004) considered an economy in which agents need to learn the hidden

states of the economy in the context of Bayesian and alterative learning rules. They postulated

that the dividend growth rate follows a Markov mean-switching process driven by a hidden

Markov chain process, which presents the hidden states of an economy, and investigated the

properties of equilibrium stock returns. The model in Brandt, Zeng and Zhang (2004) belongs

to the class of incomplete information models, which include the models in Detemple (1986),

Wang (1993), Moore and Schaller (1996) and Brennan and Xia (1998), etc.

We describe the dependency of the spot interest rates and credit ratings of bonds on the

hidden states of the economy by the DHHMMs. In this way, we can incorporate the long-

range dependence of spot interest rates, credit ratings and the states of the economy since both

the observable and hidden sequences in DHHMMs are described by high-order Markov chain

models. We adopt the maximum likelihood method and an EM algorithm, called Viterbi’s

algorithm developed in Viterbi (1967), to uncover the optimal hidden sequence of the states of

the economy which can be interpreted as the “best” estimate of the sequence of the underlying

economic states that generate the observable spot interest rates and credit ratings of the bonds.

We develop a method based on maximum likelihood metbod for estimating the model parame-

ters in the transition probability matrices, which provide important information about market

expectations on future states of the economy based on the states in the past. Our model can

provide some insights in interpreting the informational content of spot interest rates and credit

ratings of bonds for estimating and forecasting the states of an economy. Numerical experiment

for the implementation of the model will be presented. We organize our paper in the following

way.

Section 2 presents the main idea of DHHMMs for spot interest rates, credit ratings and

the hidden states of the economy. We discuss the maximum likelihood method and Viterbi’s

algorithm for extracting information on the hidden states of the economy from spot interest

rates and credit ratings in Section 3. An optimal hidden sequence of the states of the economy

will be found. Section 4 provides the maximum likelihood estimates for the unknown parameters
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of the transition probabilities based on the optimal hidden economic states. We show that

these maximum likelihood estimates are unbiased. We also determine the “optimal” order of

the long-range dependence of the spot interest rates, the credit ratings of the bonds and the

hidden economic states by maximizing the log-likelihood function. In Section 5, we present the

numerical results for the implementation of our models. The final section concludes this paper

and proposes some possible topics for further investigation.

2 The Model

We consider a discrete-time economy consisting of several bonds. As in Thomas, Allen and

Morkel-Kingsbury (2002), we suppose that spot interest rates and credit ratings of the bonds are

observable and that their transition probabilities depend on the hidden states of the economy. It

has been documented that spot interest rates may exhibit long-range dependence (see Duan and

Jacobs (1996) and Meade and Maier (2003)). We assume that the spot interest rates process is

governed by a DHHMM with its transition probabilities matrix depending on the long-memory

economic conditions described by a higher-order hidden Markov chain model (HHMM). Then,

we adopt the DHHMM to describe the long-range dependence of the credit ratings. There is

some evidence that ratings agencies behave cyclically when they set credit ratings for debts (see

Monfort and Mulder (2000), Reisen (2000) and Allen and Saunders (2003)). As a consequence,

the credit ratings respond to the changes in cyclical conditions in business cycles and may

exhibit the effect of long-range dependence. Bangia, Diebold and Schuermann (2000) and

Nickell, Perraudin and Varotto (2000) provided evidence on the impact of macroeconomic and

industry conditions on the transitions of credit ratings. Although the basic idea of our model is

similar with that of Thomas, Allen and Morkel-Kingsbury (2002), we concern different aspects

of the economic issue. They focused on pricing bonds and determining the term structures of

credit risk spreads and the risk premiums while we concern extracting information about the

hidden states of an economy based on the observable market variables, such as spot interest

rates and credit ratings of bonds. Our model is described as follows:

First, write T for the time index set {0, 1, . . . } of the economy. Let {Vt}t∈T denote a process
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representing the hidden states of an economy. We assume that {Vt}t∈T is an nth-order discrete-

time homogeneous Markov chain process taking values in the state space V := {v1, v2, . . . , vM}.
We may interpret v1 as the “best” economic condition, v2 as the second “best” economic

condition and vM as the “worst” economic condition. This provides a qualitative description to

the economic situation. The state transition probabilities matrix A = {a(it+n)} of the nth-order

Markov chain {Vt}t∈T are given by:

a(it+n) = P [Vt+n = vit+n |Vt = vit , · · · , Vt+n−1 = vit+n−1 ] , 1 ≤ it, . . . , it+n−1 ≤ M . (2.1)

The order n represents the degree of the long-range dependence of the hidden states of the

economy. The following example illustrate the basic idea of the nth-order Markov chain process

for the hidden states of the economy.

Example 2.1: Suppose that the state of the economy in the next period depends on the

current state and the state in the previous period (i.e. n = 2). There are three possible states

of the economy {v1, v2, v3}, where v1, v2 and v3 represent the “Good” state, the “Neutral” state

and the “Bad” state, respectively. Suppose further that the current state of the economy is

“Neutral” and the state in the previous period is “Bad”. Then, a(1) represents the transition

probability that the state of the economy in the next period is “Good” given that the current

state of the economy is “Neutral” and the state in the previous period is “Bad”.

¤
In general, we assume that the transition probabilities are unknown and we will discuss

the estimation of the transition probabilities in Section 4. The nth-order Markov property of

{Vt}t∈T can describe the long-range dependence of the states of the economy induced by different

periods of business cycles. We also need to specify the initial state conditional probabilities

Π := {π(ij)} for the nth-order Markov chain as follows:

π(ij) = P [Vj = vij |V1 = vi1 , V2 = vi2 , . . . , Vj−1 = vij−1
] , 1 ≤ j ≤ n . (2.2)

In particular, when n = 2, we need to specify the following initial state conditional probabilities:

π(i1) = P [V1 = vi1|V0 = vi0 ] , (2.3)
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and

π(i2) = P [V2 = vi2|V0 = vi0 , V1 = vi1 ] , (2.4)

for any vi0 , vi1 , vi2 ∈ V .

Then, we modify the Markov chain lattice model for spot interest rates described by Pliska

(2003) (Chapter 6 therein), which has been employed in Thomas, Allen and Morkel-Kingsbury

(2002). In particular, we assume that the one-step-ahead spot interest rate has three possible

states given the current level of the spot interest rate, one going up, one staying the same

and one going down. We further suppose that the time series of spot interest rates follows a

DHHMM. In this way, the dynamics of spot interest rates follows a higher-order Markov chain

model. This can incorporate the long-range dependence of spot interest rates.

Following Pliska (2003) and Thomas, Allen and Morkel-Kingsbury (2002), we define a state

process {It}t∈T , which governs the movements of spot interest rates {rt}t∈T . In particular,

given the value taken by It and the current hidden state Vt, the current spot interest rate rt

can be determined. For each t ∈ T , we suppose that It can take values in the state space I =

{0, 1, . . . , H}. In order to take into account the long-range dependence of both the dynamics

of spot interest rates and the hidden states of economy, we model the state process {It}t∈T for

spot interest rates as a (l, n)-order double hidden Markov chain process. The orders l and n

describe the degrees of the long-range dependence of spot interest rates and the hidden states of

the economy, respectively. To highlight the main idea of the model, we simplify our discussion

by considering the case that there is only one sequence of spot interest rates with one driving

state process at this moment. We will then consider the case that there are several bonds

and each of them has a driving state process. The main idea of the (l, n)-order DHHMM is

presented in the sequel.

Let ~It := (It, It−1, . . . , It−l+1) and ~it := (it, it−1, . . . , it−l+1). Then, we assume that the

transition probabilities matrix B1 := {b~it,v(j)} of the state process {It}t∈T for spot interest
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rates when ~It =~it and the hidden state Vt+1 = v satisfy:

b~it,v(it + 1) := P [It+1 = it + 1|~It =~it, Vt+1 = v] := pu(~it, v)

b~it,v(it) := P [It+1 = it|~It =~it, Vt+1 = v] := pm(~it, v)

b~it,v(it − 1) := P [It+1 = it − 1|~It =~it, Vt+1 = v] = 1− pu(~it, v)− pm(~it, v) := pd(~it, v) ,

(2.5)

where v ∈ V and i ∈ I.

Note that pu(~it, v), pm(~it, v) and 1−pu(~it, v)−pm(~it, v) are the conditional probabilities that

the spot interest rate at time t + 1 goes up, that it stays the same as the spot interest rate at

time t and that it goes down, when the state process for the current and the past spot interest

rates ~It is ~it and the hidden state Vt+1 of the economy is v.

In addition, we need to impose the following conditions:

pu(~it, v) = 0 if it = H

pd(~it, v) = 0 if it = 0 . (2.6)

The first condition avoids the situation that the spot interest rate goes up at time t + 1 when

the spot interest rate at time t is at the greatest level it = H while the second conditon avoids

the situation that the spot interest rate goes down at time t + 1 when the spot interest rate at

time t is at the lowest level it = 0.

Example 2.2: Consider the dynamics of the hidden states of the economy with n = 2 and

three possible economic states, say “Good”, “Neutral” and “Bad” in Example 2.1. Assume that

the state process {It}t∈T for spot interest rates can take values in the state space I := {1, 2, 3}
and l = 2. In this case, the state process follows a (2, 2)-order DHHMM. Let t denote the

current time. Suppose further that the hidden state of the economy at time t + 1 is “Neutral”

(i.e. Vt+1 = v2) and that the values of the state process for spot interest rates at time t− 1 and

time t are given by:

It−1 = 1 , It = 2 .
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Given this information, the conditional probabilities that the spot interest rate at time t + 1

goes up, that it stays the same as the spot interest rate at time t and that it goes down are

given by b(2,1),v2(3), b(2,1),v2(2) and b(2,1),v2(1), respectively.

¤
The initial distribution Π1 for {It}t∈T is specified as follows:

b~ij−1,v(ij−1 + 1) := P [Ij = ij−1 + 1|~Ij−1 =~ij−1, Vj = v] := pu(~ij−1, v)

b~ij−1,v(ij−1) := P [Ij = ij−1|~Ij−1 =~ij−1, Vj = v] := pm(~ij−1, v)

b~ij−1,v(ij−1 − 1) := P [Ij = ij−1 − 1|~Ij−1 =~ij−1, Vj = v] := 1− pu(~ij−1, v)− pm(~ij−1, v)

:= pd(~ij−1, v), 1 ≤ j ≤ l. (2.7)

In the DHHMMs, the dynamics of spot interest rates depends on the hidden states of the

economy, but not vice versa. This is in line with the models in Thomas, Allen and Morkel-

Kingsbury (2002) and Wilkie (1986). However, one can infer the hidden states of the economy

from observable dynamics spot interest rates in the context of the DHHMMs since the latter

contains information about the former. In practice, it is more realistic to consider the case that

there are several bonds instead of one in an economy. We shall adopt the above DHHMM for

the state process for spot interest rate to model the dynamics of spot interest rates for several

bonds in the economy.

The DHHMM can be specified given appropriate values for the order n of the HHMM for

the hidden states of the economy, the number of hidden economic states M , the order l of the

higher-order Markov model for the state process of spot interest rates, the number of possible

values H taken by the state process, the initial conditional probabilities Π and the transition

probabilities A for the hidden economic states, the initial conditional probabilities Π1 and

transition probabilities B1 for the state process. Suppose I = I1I2 . . . IT are the observable

sequence generated from the DHHMM, where T is the number of observations in the sequence

of spot interest rates. Now, for each q = 1, 2, . . . , Q, we suppose that the qth sequence Iq :=

{Iq
t }t∈T follows the above DHHMM and that I1, I2, . . . , IQ are independent sequences, which

represent the state processess for the Q bonds in the economy. We further suppose that the

spot interest rate rq
t at time t of the qth bond is a function rq(t, Iq

t , Vt) of time t, the level of Iq
t

10



and the level of Vt at time t. If we know that Iq
t = iqt and Vt = v, then the spot interest rate for

the qth bond rq
t can be determined completely as rq(t, iqt , v). If we are given that the historical

values of the state process ~Iq
t =~iqt and that Vt = v, the three possible values of the spot interest

rate for the qth bond in the next period are rq(t+1, iqt +1, v), rq(t+1, iqt , v) and rq(t+1, iqt−1, v)

with probabilities pu(~it, v), pm(~it, v) and pd(~it, v). To simplify our notations, we write Λ1 for

(A,B1, Π1), which represents the set of unknown parameters of the DHHMM for spot interest

rates and hidden economic states. In practice, the transition probabilities pu(~it, v), pm(~it, v)

and pd(~it, v) are unknown to market participants. We shall discuss the estimation issue of the

transition probabilities in Section 4.

Similar method can be employed to model the dynamics of credit ratings of the bonds in

the economy. We shall employ the DHHMM to model the dependence of the dynamics of

credit ratings on the hidden states of the economy. For each q = 1, 2, . . . , Q, let Cq := {Cq
t }t∈T

denote the process of credit ratings for the qth bond. We suppose that C1, C2, . . . , CQ are

independent and identically distributed random sequences and that the evolution of the credit

ratings {Cq
t }t∈T for the qth bond is described by a (m,n)-order DHHMM. The orders m and

n represent the degrees of the long-range dependence of the dynamics of credit ratings and

the hidden states of the economy. For each q = 1, 2, . . . , Q and t ∈ T , Cq
t can take values

in X := {0, 1, 2, . . . , N}, where the rating 0 is given to the bonds with no credit risk. The

most secure rating is 1 and the least secure rating is N − 1. The rating N represents that the

bond issuer goes bankrupt. Note that both 0 and M are absorbing states since the bond issuer

remains credit risk-free (or bankrupt) once it becomes credit risk-free (or bankrupt)

Let ~cq
t denote the vector (cq

t−m+1, c
q
t−m+2, . . . , c

q
t−1, c

q
t ). We assume that the common condi-

tional probability b~cq
t ,v(c

q
t+1) that the credit rating Cq

t+1 of the qth bond is in state cq
t+1 at time

t + 1 given that the hidden state of the economy Vt+1 is v ∈ V and that the current and the

past credit ratings Cq
t = cq

t , C
q
t−1 = cq

t−1, . . . , C
q
t−m+1 = cq

t−m+1 is given by:

b~cq
t ,v(c

q
t+1) = P [Cq

t+1 = cq
t+1 | Cq

t = cq
t , C

q
t−1 = cq

t−1, . . . , C
q
t−m+1 = cq

t−m+1, Vt+1 = v] , (2.8)

where m ≤ t ≤ T − 1.

Let B2 denote the transition probabilities {b~cq
t ,v(c

q
t+1)}. Note that the transition probabilities
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B2 do not depend on the index q for distinguishing different bonds and are common transition

probabilities for the credit ratings processes C1, C2, . . . , CQ.

In order to determine the DHHMM for the credit ratings {Cq
t }t∈T of the qth bond, we assume

that the conditional probability distributions for the initial credit ratings are given by:

b~cq
j−1,v(c

q
j) = P [Cq

j = cq
j | Cq

j−1 = cq
j−1, C

q
j−2 = cq

j−2 . . . , Cq
1 = cq

1, Vj = v] , 1 ≤ j ≤ m , (2.9)

where
∑N

cq
j=0 b~cq

j−1,v(c
q
j) = 1, for each v ∈ V .

To simplify the notations, we write Π2 for the initial conditional probabilities {b~cq
j−1,v(c

q
j)}

for the credit ratings process {Cq
t }t∈T . Note also that the initial conditional probabilities Π2 are

the same for all credit ratings processes C1, C2, . . . , CQ. Again, we may use Λ2 := (A,B2, Π2) to

indicate the set of unknown parameters of the DHHMM for credit ratings and hidden economic

states.

For each q = 1, 2, . . . , Q, the multivariate processes (Cq
t , t, Vt) and (Cq

t , I
q
t , t, Vt) are finite-

state time-homogeneous HHMMs. The credit rating model considered by Jarrow et al. (1997)

assumed that the credit rating Cq
t and the state of the spot interest rate Iq

t are independent.

See Jarrow et al. (1997) and Thomas, Allen and Morkel-Kingsbury (2002) for discussion. As

in Thomas, Allen and Morkel-Kingsbury (2002), the dependence of the credit rating Cq
t and

the state of the spot interest rate Iq
t for the qth bond are described by their mutual dependency

on the underlying hidden state of the economy Vt, for each q = 1, 2, . . . , Q. Thomas, Allen

and Morkel-Kingsbury (2002) also pointed out that the spot interest rate process driven by

the underlying hidden states of the economy can be reduced to the Markov lattice interest

rate model by Pliska (2003) when there is only one economic state for the hidden economic

conditions. For further simplifying our notations, we adopt Λ := (Λ1, Λ2) to indicate the

complete set of unknown parameters of our model. For each q = 1, 2, . . . , Q, let Oq denote the

bivariate observation (Iq, Cq) about the dynamics of spot interest rates and credit ratings of the

qth bond. That is, Oq = Oq
1O

q
2 . . . Oq

T = (Iq
1 , C

q
1)(I

q
2 , C

q
2) . . . (Iq

T , Cq
T ), where T is the number of

observations. Based on the observations {Oq|q = 1, 2, . . . , Q}, we determine the optimal hidden

economic states and the estimates of unknown model parameters by the method of maximum

likelihood estimation and Viterbi’s algorithm. We also determine the orders of the long-range
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dependence of the spot interest rates and the credit ratings of the bonds from the observations

by maximizing the log-likelihood function.

3 The Optimal Hidden Economic Conditions

In this section, we attempt to uncover an optimal hidden sequence of the states of economy

which can be interpreted the “best” estimate of the dynamics of the underlying economic states

that generates the observable dynamics of spot interest rates and credit ratings of the bonds.

The model provide a general and flexible way to facilitate the filtering of the time-varying

dynamics of the hidden states of the economy using the observable dynamics of spot interest

rates and credit ratings of the bonds. The optimal hidden dynamics of the states of the economy

can provide regulators and market participants with an important piece of information about

the temporal behavior of the evolution of the states of the economy. It also serves as an

indicator to describe the economic condition of a certain region which is of practical interest

to regulators and central bankers. Gerlach and Yiu (2004) mentioned that it is important to

adopt the information about the “true” states of economy for economic policy making. The

optimal hidden dynamics of the states of the economy is also very useful for forecasting the

future states of the economy, future spot interest rates and credit ratings of the bonds (see

Nagayasu (2004)). Central bankers or monetary authorities can also use the optimal hidden

dynamics of the states of the economy as a reference to decide future monetary policies. The

optimal hidden dynamics of the states of the economy may also be used to detect business

cycles and the turning points of business cycles.

We employ the method of maximum likelihood estimation and Viterbi’s algorithm to uncover

the optimal hidden dynamics of the states of the economy. The optimality criteria is given by

the likelihood function which is the probability of obtaining a hidden sequence of the states

of economic conditions given observations about the spot interest rates and credit ratings of

the bonds. The idea behind this estimation method for the hidden dynamics of the economic

states resembles the maximum likelihood estimation in the statistical literature. We will use

the optimal hidden dynamics of the states of the economy obtained in this section to estimate

13



the unknown parameters in our model, including the unknown parameters in the transition

probabilities in both the hidden and observable sequences. The estimated model can then be

used for forecasting future spot interest rates and credit ratings of the bonds.

First, we use the likelihood function P [V |Λ,O1,O2, . . . ,OQ] as the optimality criteria; that

is, we find the optimal hidden sequence of the states of the economy that P [V |Λ,O1,O2, . . . ,OQ]

can be maximized. Note that P [V |Λ,O1,O2, . . . ,OQ] is the conditional probability for the

dynamics of the hidden economic states V given the information about the prior estimates

of the unknown parameters Λ and observable credit ratings and spot interest rates for the Q

bonds, namely O1,O2, . . . ,OQ. By Bayes’ rule, we have:

P [V |Λ,O1,O2, . . . ,OQ] =
P [V,O1,O2, . . . ,OQ|Λ]

P [O1,O2, . . . ,OQ|Λ]
. (3.1)

Then, maximizing P [V |Λ,O1,O2, . . . ,OQ] is equivalent to maximizing P [V,O1,O2, . . . ,OQ|Λ].

Suppose we are given the observationsOq := Oq
1, O

q
2, . . . , O

q
T of the spot interest rates and the

credit ratings of the qth bond, where Oq
t = (jq

t , c
q
t ), for t ∈ T , q = 1, 2 . . . , Q and T is the number

of the observations. A formal technique in the optimization literature, namely the Viterbi

algorithm proposed in Viterbi (1967), can be used to find an optimal “best” hidden sequence

of the states of the economy V := V1, V2, . . . , VT that maximizes P [V,O1,O2, . . . ,OQ|Λ]. The

Viterbi algorithm can be described as follows:

First, we define the quantity δt(it−n+1, · · · , it) , namely the best score with the highest

probability, of the first t − n hidden economic states along the “best” hidden states of the

economy at time t, which accounts for the first t observations and ends in state vit , as follows:

δt(it−n+1, · · · , it) = max
v1,v2,··· ,vt−n

P [V1 = vi1 , · · · , Vt = vit , O
1
1, · · · , O1

t , · · · , OQ
1 , · · · , OQ

t |Λ] , (3.2)

where n + 1 ≤ t ≤ T .

Let ~jq
t = (jq

1 , j
q
2 , . . . , j

q
t ) denote the observed spot interest rates of the qth bond up to and

including time t, q = 1, 2, . . . , Q. By the method of induction, we obtain:

δt+1(it−n+2, · · · , it+1) = max
vt−n+1

δt(it−n+1, . . . , it)a(it+1)

Q∏
q=1

{b~jq
t ,vit+1

(jq
t+1)b~cq

t ,vit+1
(cq

t+1)} , (3.3)

where jq
t+1 = jq

t − 1, jq
t , j

q
t + 1 and q = 1, 2, . . . , Q.
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In order to find the optimal sequence of the hidden states of the economy, we have to keep

track of the argument that maximizes the function δt(it−n+1, · · · , it), for each t and it−n+1, · · · ,
it. To simplify the matter, we do the optimization by considering the following array:

ψt(it−n+1, · · · , it). (3.4)

We adopt the three procedures of Viterbi’s algorithm for finding the “best” or “optimal”

state sequence of the economy, namely initialization, recursion and termination. We describe

the main idea of the procedures as follows:

• (U1) Initialization:

δn(i1, . . . , in) = P [V1 = vi1 , . . . , Vn = vin , O1
1, . . . , O

1
n, . . . , OQ

1 , . . . , OQ
n | Λ]

=
n∏

j=1

Q∏
q=1

b~cq
j−1,vij

(cq
j)b~kq

j−1,vij
(kq

j )π(ij) ,

where kq
j = kq

j−1 − 1, kq
j−1, k

q
j−1 + 1 and 1 ≤ i1, i2, · · · , in ≤ N .

• (U2) Recursion:

δt+1(it−n+2, . . . , it+1)

= max
v1,...,vt−n+1

P [V1 = vi1 , . . . , Vt+1 = vit+1 , O
1
1, . . . , O

1
t+1, . . . , O

Q
1 , . . . , OQ

t+1 | Λ]

= max
vt−n+1

δt(it−n+1, . . . , it)a(it+1)

Q∏
q=1

{b~jq
t ,vit+1

(jq
t+1)b~cq

t ,vit+1
(cq

t+1)} ,

where jq
t+1 = jq

t − 1, jq
t , j

q
t + 1 and q = 1, 2, . . . , Q.

Then, we set

ψt+1(it−n+2, · · · , it+1) = argmaxVt−n+1
{δt(it−n+1, · · · , it)× a(it+1)}.

• (U3) Termination

P ∗ = max
1≤iT−n+1,...,iT≤N

{δT (iT−n+1, . . . , iT )}

and

(i∗T−n+1, · · · , i∗T ) = argmax1≤iT−n+1,··· ,iT≤N{δT (iT−n+1, . . . , iT )}
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4 Estimation of Model Parameters

We consider the estimation of the unknown parameters in our model given the “optimal” hidden

sequence of the states of the economy in the last section by adopting the maximum likelihood

method given the values of the initial distributions of the hidden sequence and observable

sequences. First, we provide initial values to all relevant parameters and estimate the “optimal”

hidden sequence of states of the economy by the procedures (U1), (U2) and (U3) in the last

section. All of the model parameters are then re-estimated again. For double higher-order

Markov chain Models, we develop the maximum likelihood estimates for the unknown model

parameters and show that these estimators are unbiased. We present the main idea of our

approach in the sequel.

First, there is no doubt that the “true” hidden sequence of the states of economy is not

observable, and hence, it is not possible to measure how accurate the resulting “optimal” hidden

sequence of the states of economy as a proxy for the “true” one is. By using the “optimal”

hidden sequence of the states of economy, we can provide a possible way to construct the model

parameters. For each state of the economy vi ∈ V (i = 1, 2, . . . ,M), we develop DHHMMs

for the observable spot interest rates and credit ratings of the Q bonds. Hence, there are

2QM double higher-order observable Markov chain models for the spot interest rates and the

credit ratings of the Q bonds. We assume that all observable double higher-order Markov

chain models are independent with each other. From the observable sequence of the spot

interest rates and credit ratings Oq := Oq
1O

q
2 . . . Oq

T of the qth bond, we have (T − m) sub-

sequences in the form of Oq
t O

q
t+1 . . . Oq

t+m, for t = 1, 2, . . . , T −m and q = 1, 2, . . . , Q. If two

sub-sequences are generated by the same current hidden state of the economy Vt+m, they will

be put into the same Markov chain models for the spot interest rates and the credit ratings

since they are generated from the same model. It can be shown that under our estimation

procedure, the conditional probability of the observation and hidden sequence given by new

model parameters Λ̄, P [O1,O2, . . . ,OQ, V |Λ̄], is always greater than or equal to that of old

parameters P [O1,O2, . . . ,OQ, V |Λ′]. This is a desirable result since the estimation of the

model parameters Λ can always be improved by more iterations in terms of maximizing the
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likelihood function. One can then use the new parameters Λ̄ to re-estimate the hidden sequence

of states of the economy, and this process can be done iteratively. The procedures of the iterative

estimation method stops when the conditional probability P [O1,O2, . . . ,OQ, V |Λ] converge and

satisfy the following stopping criterion:

|P [O1,O2, . . . ,OQ, V |Λ̄]− P [O1,O2, . . . ,OQ, V |Λ′]| < ε , (4.1)

for some ε which is the upper bound for the degree of accuracy.

The stopping criterion stops the iterative estimation procedure when the increase or im-

provement in the likelihood function by generating one more iteration for the estimates is less

than a given small positive number ε.

Now, we are going to present the convergence criterion for the model parameters Λ. Recall

that oq
t := (jq

t , c
q
t ) (q = 1, 2, . . . , Q) is the realization of the observation Oq

t at time t. For a given

hidden sequence of states of the economy V1V2 . . . VT , we can define the following quantities:

1. A(~v, vj) denote the transition frequency from hidden state sequence ~v = (vi1 , vi2 , · · · , vin)

to vj is occurred.

2. For each q = 1, 2, . . . , Q, let Eq
l (

~i, h, vj) be the transition frequency of the q-th spot interest

rate from ~i = (ij1 , ij2 , · · · , ijl
) to ijl+1

= ih given the current hidden state vjl+1
= vj. Let

El(~i, h, vj) =

Q∑
q=1

Eq
l (

~i, h, vj), which represents the sum of transition frequencies of the

observable sequences of spot interest rates for all of the Q bonds from~i = (ij1 , ij2 , · · · , ijl
)

to ijl+1
= ih given the current hidden state vjl+1

= vj.

3. For each q = 1, 2, . . . , Q, let Eq
m(~c, u, vj) be the transition frequency of the q-th credit

rating from ~c = (cj1 , cj2 , · · · , cjm) to cjm+1 = cu given the current hidden state vjl+1
= vj.

Let Em(~c, u, vj) =

Q∑
q=1

Eq
m(~i, u, vj), which represents the sum of transition frequencies of

the observable sequences of credit ratings for all of the Q bonds from ~c = (cj1 , cj2 , · · · , cjm)

to cjm+1 = cu given the current hidden state vjl+1
= vj

Then, we present the convergence criteria in the following proposition:
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Proposition 1 For a given optimal hidden states of the economy V = V1 . . . VT , if the esti-

mated parameters satisfy the following criteria,

1. A(~v, vj) =
A(~v, vj)

M∑
j=1

A(~v, vj)

, ~v = (vi1 , vi2 , · · · , vin)

2. b~i,vj
(h) =

El(~i, h, vj)
min{ijn+1}∑

h=max{0,ijn−1}
El(~i, h, vj)

, ~i = (ij1 , ij2 , · · · , ijl
)

3. b~c,vj
(u) =

Em(~c, u, vj)
N∑

u=0

Em(~c, u, vj)

, ~c = (cj1 , cj2 , · · · , cjm)

Then, given the values of the initial parameters π(ij), b~cj−1,vij
(cj) and b~kj−1,vij

(kj), the estimators

maximize the following likelihood function:

L(l, m, n) =

( n∏

k=1

π(ik)

)( T∏

h=n+1

a(ih)

)( Q∏
q=1

T∏
t=1

b~cq
t−1,vit

(cq
t )b~jq

t−1,vit
(jq

t )

)
. (4.2)

Hence, the estimation procedure converges to a local maximum, i.e.,

P [O1,O2, . . . ,OQ, V |Λ̄] ≥ P [O1,O2, . . . ,OQ, V |Λ′].

Proposition 1 says that if the estimators given by (1), (2) and (3), they maximize the

likelihood function and the estimation procedure converges; that is, more iterations can improve

the estimation results until the stopping criterion is satisfied.

The next proposition shows that these estimators are unbiased.

Proposition 2 The estimators satisfy the following unbiased conditions:

(i) E(A(~v, vj)) = a(~v, vj)E

(
M∑

j=1

A(~v, vj)

)
.

(ii) E(El(~i, h, vj)) = b~i,vj
(h)E

(
M∑

j=1

El(~i, h, vj)

)
.
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(iii) E(Em(~c, q, vj)) = b~c,q,vj
(q)E

(
M∑

j=1

Em(~c, q, vj)

)
.

where E(X) is the expectation of a random variable X.

The unbiasedness of an estimator is a desirable statistical property of an estimator. It means

that the long-run average of the estimator is equal to the target parameter to be estimated.

Based on these results, we show how to determine the orders of long-range dependence for

credit ratings, spot interest rates and the hidden economic states. ¿From the results of the two

propositions equation (4.1), we notice that the stopping criterion can be re-defined as:

log(L(l, m, n|Λ̄))− log(L(l, m, n|Λ̄′)) < σ , (4.3)

where σ := logε.

Recall that the likelihood function L(l,m, n) in our context is determined as follows:

L(l, m, n) =

( n∏

k=1

π(ik)

)( T∏

h=n+1

a(ih)

)( Q∏
q=1

T∏
t=1

b~cq
t−1,vit

(cq
t )b~jq

t−1,vit
(jq

t )

)
, (4.4)

where ~cq
t−1 := (cq

max(1,t−m), ..., c
q
t−1) and ~jq

t−1 := (jq
max(1,t−l), ..., j

q
t−1), t = 2, 3, . . . , T . The log-

likelihood function l̃(l, m, n) is given by:

l̃(l, m, n) =
n∑

k=1

log π(ik) +
T∑

h=n+1

log a(ih) +

Q∑
q=1

T∑
t=1

log b~cq
t−1,vit

(cq
t ) + log b~jq

t−1,vit
(jq

t ) . (4.5)

We consider some possible models with orders l,m, n ∈ {1, 2, 3} and select the “best” one

with the maximum the log-likelihood. That is, the “optimal” orders l∗,m∗, n∗ are determined

by:

(l∗,m∗, n∗) = arg max
l,m,n∈{1,2,3}

l̃(l, m, n) . (4.6)

These optimal orders are useful in determining the degrees of the long-range dependence of

spot interest rates, credit ratings and the hidden states of economy.

The numerical results will be presented and discussed in the next section.
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5 An Example

We adopt an example to illustrate the estimation method in our model. The following scenario

is considered.

1. There is only one bond in the economy. (i.e. Q=1)

2. The hidden states of the economy follow a second-order Markov chain model with two

different states, namely ”Good” and ”bad”. (I.e., n=2 and M=2).

3. The time series of credit rating f the bond follows a second-order DHHMM with two

states, namely ”default” or ”no default”. (i.e., m=2, N=1).

4. The time series of spot interest rates follows a first-order DHHMM with two states, namely

”up” or ”down”. (i.e., l=1, H=1).

Since we consider Q=1, we omit the superscript q in both credit rating and spot interest rates.

Once we have above information, we can randomly generate the initial distributions and the

transition probabilities matrices for both hidden sequence and observable sequences. Based on

the values of those parameters, we can further generate the hidden sequence and observable

sequences. Note that we do not have any prior information on the hidden sequence and all

transition probabilities matrices and that we can only observe the initial distributions and

observable sequences. We suppose that the following initial distributions are given:

π(i1) =


 0.5752

0.4248




T

, π(i2) =


 0.938 0.062

0.1315 0.8685


 b~i0,1 =


 0.8551

0.1449




T

, b~i0,2 =


 0.9218

0.0782




T

b~c0,1(c1) =


 0.6668

0.3332




T

b~c0,2(c1) =


 0.6017

0.3983




T

b~c1,1(c2) =


 0.4168 0.5832

0.7243 0.2757


 b~c1,2(c2) =


 0.4592 0.5408

0.6728 0.3272




and observable sequences of credit ratings and spot interest rate of the bonds are given by:

C = {2, 1, 2, 2, 1, 1, 2, 1, 2, 2}, I = {1, 2, 2, 1, 2, 1, 1, 1, 2, 1}.
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Initially, there is no prior knowledge on all state transition probabilities, a(it+n), b~ij−1,v(ij)

and b~ct,v(ct+1). Therefore, we initialize them by random generations and the results are as

follows:

ã(it+n) =




0.8623 0.1377

0.1183 0.8817

0.9496 0.0504

0.1091 0.8909




,

b̃~ct,1(ct+1) =




0.4073 0.5927

0.5263 0.4737

0.0096 0.9904

0.9952 0.0048




, b̃~ct,2(ct+1) =




0.7846 0.2154

0.5394 0.4606

0.7540 0.2460

0.4740 0.5260




,

b̃~ij−1,1(ij) =


 0.6906 0.3094

0.4608 0.5392


 , b̃~ij−1,2(ij) =


 0.2472 0.7528

0.6386 0.3614


 .

¿From above information, we can employ procedures (U1), (U2) and (U3) to estimate the

optimal hidden sequence of the states of the economy:

Ṽ = 2, 2, 2, 2, 2, 2, 1, 1, 1, 1

¿From the optimal hidden sequence, we can see that the dynamics of the hidden states of the

economy are persistent.

The log-likelihood can be obtained by:

l̃(1, 2, 2) =
2∑

k=1

log π(ik) +
10∑

h=3

log a(ih) +
10∑

t=1

log b~ct−1,vit
(ct) +

10∑
t=1

log b~jt−1,vit
(jt)

= (log 0.4248 + log 0.8685) + (4 log(0.8909) + log 0.1091 + log 0.9496 + 2 log 0.8623)

+(log 0.3983 + log 0.6728 + log 0.246 + log 0.4606 + log 0.474 + log 0.754 + log 0.5927

+ log 0.5263 + log 0.9904 + log 0.4737) + (log 0.9218 + log 0.7528 + log 0.3614

+ log 0.6386 + log 0.7528 + log 0.6386 + log 0.6906 + log 0.6906 + log 0.3094 + log 0.4608)

= −15.6238
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¿From the optimal hidden sequence of the states of the economy, we can re-estimate all the

state transition probabilities matrices by Proposition 1. Then, the states of the economy are

given by:

ã(it+n) =




1.0 0.0

0.5 0.5

1.0 0.0

0.2 0.8




, b̃~ct,1(ct+1) =




0.0 1.0

0.5 0.5

0.0 1.0

0.5 0.5




, b̃~ct,2(ct+1) =




0.5 0.5

0.0 1.0

0.5 0.5

1.0 0.0




,

and

b̃~ij−1,1(ij) =


 0.6667 0.3333

1.0000 0.0000


 , b̃~ij−1,2(ij) =


 0.0000 1.0000

0.6667 0.3333


 .

Again, we can re-estimate the optimal hidden sequence of the states of the economy based on

above transition probabilities matrices and re-estimate the log-likelihood function until conver-

gence occurs. We found that the log-likelihood function converges when it is equal to -11.4891.

6 Numerical Experiment

We present a numerical experiment to illustrate the implementation of our model to estimate

the “optimal” hidden sequence of the states of economy using simulated data on the spot

interest rates and credit ratings of the bonds. In this experiment, we suppose that there are

two bonds in the economy. We assume that the credit rating and the spot interest rate for each

bond at each fixed time period can take five possible states and six possible states, respectively.

We further suppose that there are three possible hidden states of the economy, namely “good”,

“neutral” and “bad”. First, we specify the model parameters in the DHHMMs and assume

that the specified parameters are “true” model parameters. The hypothetical DHHMMs with

specified parameters are then considered as the “true” underlying model that are used for

simulating the realizations of the spot interest rates and the credit ratings of the two bonds.

Hence, the simulated data for the spot interest rates and the credit ratings of the bonds are

assumed to be the observations in our model. They are then used to investigate the model and

the estimators of the model parameters. Since there are no prior information about the order
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of hidden sequence, credit ratings as well as spot interest rates, we simulate 27 scenarios with

different l=1,2,3, m=1,2,3 and n=1,2,3. We simulate each scenario 1000 times and the average

results are presented in Table 1.

l 1 1 1 1 1 1 1 1 1

n 1 1 1 2 2 2 3 3 3

m 1 2 3 1 2 3 1 2 3

Iteration 2.29 2.30 2.11 2.01 2.02 2.01 2.01 2.01 2.02

Time (sec.) 0.05 0.05 0.07 0.11 0.12 0.14 0.50 0.52 0.54

Log-likelihood -34.57 -26.68 -26.32 -34.76 -26.78 -26.44 -34.99 -26.73 -26.34

l 2 2 2 2 2 2 2 2 2

n 1 1 1 2 2 2 3 3 3

m 1 2 3 1 2 3 1 2 3

Iteration 2.17 2.20 2.11 2.01 2.20 2.09 2.00 2.00 2.00

Time (sec.) 0.05 0.06 0.08 0.12 0.14 0.15 0.52 0.53 0.56

Log-likelihood -31.65 -24.04 -24.00 -31.88 -23.74 -23.71 -31.76 -24.05 -23.59

l 3 3 3 3 3 3 3 3 3

n 1 1 1 2 2 2 3 3 3

m 1 2 3 1 2 3 1 2 3

Iteration 2.22 2.19 2.08 2.01 2.21 2.12 2.00 2.00 2.09

Time (sec.) 0.10 0.11 0.12 0.17 0.19 0.20 0.57 0.58 0.62

Log-likelihood -31.49 -23.95 -23.87 -31.79 -23.50 -23.65 -31.72 -23.94 -23.49

Table 1. Various log-likelihood results with Q=2

For providing a graphical analysis of the results, we visualize the results by creating the

two-dimensional plots for the above results for the values of the log-likelihood functions against

the orders m and displaying the case of n=1, n=2 and n=3 in the plots of Figure 1, Figure

2 and Figure 3 respectively. In each Figure, we plot 3 different curves for representing the

log-likelihood result of each l. From these Figures, we observe that the value of a log-likelihood

function increases as either m or l does. This indicates that the higher the degree of the
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long-range dependence of either the credit ratings and the spot interest rate, the higher the

value of the log-likelihood function. In particular, there is a sharp increase in the value of the

log-likelihood function when either m or l increases from 1 to 2 in all cases while there is only

a very small increase in the value of the log-likelihood function when either m or l increases

from 2 to 3. This reveals that it is not unreasonable to determine the degree of the long-range

dependence for the dynamics of both credit rating and spot interest rate as 2.

In our setting, we assume that the “true” orders of hidden sequences of the states of the

economy, the credit ratings and the spot interest rates are all equal to 2. From the above

numerical results, we notice that the value of the log-likelihood function corresponding to the

the “true” orders of hidden and observable sequences is very close to the maximum value

of the log-likelihood functions for all 27 scenarios. This illustrates the ability of our model

in recovering the “true” orders of the hidden and observable sequences. To illustrate this

graphically, we visualize the results by plotting the number of iterations, computational time

and the values of the log-likelihood function against each simulation in Figure 4, Figure 5 and

Figure 6, respectively. To provide more information in the stability of our results, we report

the average result for the Markov transition probability matrix for credit ratings based on

1000 simulation runs when the hidden state of the economy is 2. We also report the result

for the estimated stationary probability vector for credit ratings. We compare the estimated

Markov transition probability matrix b̃~ct,2(ct+1) with the “true” one b~ct,2(ct+1) and the estimated

stationary probability vector Ĉ with the “true” one C.
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b̃~ct,2(ct+1) =




0.139 0.139 0.444 0.139 0.139

0.2 0.2 0.2 0.2 0.2

0.1382 0.1382 0.1382 0.1382 0.4472

0.1552 0.1552 0.1552 0.3792 0.1552

0.2 0.2 0.2 0.2 0.2

0.1676 0.1676 0.1676 0.3296 0.1676

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2967 0.1282 0.3187 0.1282 0.1282

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2646 0.1198 0.2646 0.1198 0.2311

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.2 0.2 0.2 0.2 0.2

0.1474 0.1474 0.1474 0.1474 0.4104

0.1434 0.4264 0.1434 0.1434 0.1434

0.4312 0.1422 0.1422 0.1422 0.1422

0.132 0.132 0.132 0.132 0.472

0.1382 0.1382 0.1382 0.1382 0.4472

0.2 0.2 0.2 0.2 0.2

0.1552 0.3792 0.1552 0.1552 0.1552




, b~ct,2(ct+1) =




0.0263 0.2703 0.2367 0.2741 0.1926

0.2835 0.1278 0.0977 0.2612 0.2297

0.2366 0.2245 0.2001 0.252 0.0868

0.0957 0.2178 0.3366 0.3162 0.0337

0.2527 0.1496 0.202 0.2514 0.1443

0.0956 0.1233 0.2311 0.2013 0.3486

0.1231 0.0494 0.3436 0.3048 0.1791

0.1948 0.1569 0.0146 0.3558 0.2779

0.094 0.2314 0.231 0.0847 0.3589

0.1762 0.3753 0.1791 0.0346 0.2348

0.1863 0.1583 0.2187 0.3631 0.0737

0.0269 0.2519 0.4684 0.2233 0.0295

0.0707 0.3396 0.168 0.0781 0.3435

0.3784 0.176 0.2463 0.0755 0.1237

0.2774 0.2081 0.141 0.3312 0.0423

0.2259 0.1959 0.1207 0.2842 0.1733

0.0938 0.3027 0.1454 0.4036 0.0545

0.1188 0.21 0.3964 0.0203 0.2545

0.2053 0.2248 0.3093 0.2272 0.0334

0.2376 0.127 0.2095 0.2148 0.211

0.3012 0.1807 0.2536 0.0495 0.2149

0.3237 0.0332 0.0384 0.3262 0.2785

0.0492 0.2381 0.0237 0.3494 0.3396

0.2411 0.1361 0.2554 0.1321 0.2353

0.0052 0.3049 0.4705 0.0912 0.1282




and

Ĉ =




0.3000 0.3001

0.2999 0.3002

0.3000 0.3000

0 0.3000

0.3001 0.3001




, C =




0.3000 0.1000

0.1000 0.2000

0.2000 0.2000

0 0.2000

0.4000 0.3000




where Ĉ.j is the average of 1000 simulated stationary vectors of the jth credit rating while C.j

is the “true” stationary vector of the jth credit rating. We observe that both of the estimated

transition probability matrix and the estimated stationary probability vector are not very close

to their corresponding “true” values. This may be attributed to the limited length of the sample

data sequence, say T = 10, in our numerical results, which leads to the situation that some of

the unknown model parameters have not been fully recovered.

The numerical experiment in this section was done by a PC with CPU=1.2Ghz and RAM=512Mb.

The computational time of generating the numerical results is less than 1 second for each sce-

nario. This illustrates the effectiveness of the proposed model. Also, from the numerical results,

we can see that the dynamics of credit ratings, spot interest rates and the hidden economic

states exhibit some degrees of long-range dependence with order 2 or 3.
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Figure 1: Various log-likelihood results with Q=2 and n=1
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Figure 2: Various log-likelihood results with Q=2 and n=2
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Figure 3: Various log-likelihood results with Q=2 and n=326
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Figure 4: The simulation result for l=2, n=2 and m=2
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Figure 5: The simulation result for l=2, n=2 and m=2
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7 Conclusion and Further Research

We have developed DHHMMs for extracting information about the unobservable states of the

economy from the spot interest rates and credit ratings of bonds. The dependency of the

spot interest rates and the economic states and the relationship between the credit ratings and

economic states were modelled by the DHHMMs. We have adopted the maximum likelihood

estimation and Viterbi’s algorithm to uncover the optimal hidden sequence of the states of

economy. An efficient maximum likelihood estimation method has been developed to estimate

the model parameters in the transition probability matrices. We have also employed the max-

imum of log-likelihood function to determine the orders of the DHHMMs. We have provided

numerical examples that illustrate the implementation of our model.

For further investigation, it may be interesting to adopt our model to investigate the rela-

tionship between other observable economic or indicator variables and the unobservable states

of the economy. We may develop some statistical tests for the hypotheses about the significance

of the impact of various observable economic variables or indicator variables on the unobserv-

able states of the economy. The model we have developed in this paper assumed that the

spot interest rates and the credit ratings are conditionally independent given the current level

of hidden economic state. It is very interesting to develop a simple model to incorporate the

conditional dependency of the spot interest rates and the credit ratings. In this case, we can

provide a more general and flexible model to describe the impact of the levels of the hidden

economic states on the dependency or the (non-linear) association of the spot interest rates

and the credit ratings. One possible way to model the impact of the unobservable states of the

economy on the conditional dependency of the observable economic variables is to consider the

modification of the multivariate Markov chain model by Ching et el. (2002). Another way is

to modify the DHHMM we adopted in this paper and provide parameterizations for describing

the conditional dependency. From the perspective of corporate finance, it is very interesting

to adopt our idea for extracting the unobservable dynamics of the market values of a corpora-

tion from the observable spot interest rates and credit ratings. Finally, it is also interesting to

further explore the applications of our model for investigating business cycles and fluctuations
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and its implications of macroeconomic analysis.
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Proof of Preposition 1: First, we notice that

L(l,m, n) =

( n∏

k=1

π(ik)

)( T∏

h=n+1

a(ih)

)( Q∏
q=1

T∏
t=1

b~cq
t−1,vit

(cq
t )b~jq

t−1,vit
(jq

t )

)

=

( n∏

k=1

π(ik)

)( T∏

h=n+1

a(ih)

)[ Q∏
q=1

( m∏

k=1

b~cq
k−1,vik

(cq
k)

T∏

h=m+1

b~cq
h−1,vih

(cq
h)

)

( l∏

k=1

b~jq
k−1,vik

(jq
k)

T∏

h=l+1

b~jq
h−1,vih

(jq
h)

)]

=

( n∏

k=1

π(ik)

)[ Q∏
q=1

( m∏

k=1

b~cq
k−1,vik

(cq
k)

)( l∏

k=1

b~jq
k−1,vik

(jq
k)

)]

( T∏

h=n+1

a(ih)

)[ Q∏
q=1

( T∏

h=m+1

b~cq
h−1,vih

(cq
h)

)( T∏

h=l+1

b~jq
h−1,vih

(jq
h)

)]
,

where ~cq
t−1 := (cq

max(1,t−m), ..., c
q
t−1) and ~jq

t−1 := (jq
max(1,t−l), ..., j

q
t−1), t = 2, 3, . . . , T .

For estimating the model parameters, we suppose that the initial distributions π(ij), b~cq
k−1,vik

(cq
k)

and b~jq
k−1,vik

(jq
k) for the hidden economic states, spot interest rates and credit ratings are known

in advance. Hence, the estimators obtained by maximizing L(l, m, n) are the same as those

obtained by maximizing the following likelihood:

L̂(l, m, n) =

( T∏

h=n+1

a(ih)

)[ Q∏
q=1

( T∏

h=m+1

b~cq
h−1,vih

(cq
h)

)( T∏

h=l+1

b~jq
h−1,vih

(jq
h)

)]
.

We can rewrite the likelihood L̂(l,m, n) and formulate the problem of maximum likelihood

estimation as follows:
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L̂(l, m, n) =
M∏

v1=1

M∏
v2=1

...

M∏
vn=1

M∏
j=1

a(~v, vj)
A(~v,vj)

[ Q∏
q=1

(
M∏

j=1

N∏
c1=0

N∏
c2=0

...

N∏
cm=0

N∏
u=0

b~c,vj
(u)Eq

m(~c,u,vj)

) ]

[ Q∏
q=1




M∏
j=1

H∏
i1=0

min{i1+1,H}∏

i2=max{0,i1−1}
...

min{il−1+1,H}∏

il=max{0,il−1−1}

min{il+1,H}∏

h=max{0,il−1}
b~i,vj

(h)Eq
l (~i,h,vj)




]

=
M∏

v1=1

M∏
v2=1

...

M∏
vn=1

M∏
j=1

a(~v, vj)
A(~v,vj)

(
M∏

j=1

N∏
c1=0

N∏
c2=0

...

N∏
cm=0

N∏
u=0

b~c,vj
(u)

PQ
q=1 Eq

m(~c,u,vj)

)




M∏
j=1

H∏
i1=0

min{i1+1,H}∏

i2=max{0,i1−1}
...

min{il−1+1,H}∏

il=max{0,il−1−1}

min{il+1,H}∏

h=max{0,il−1}
b~i,vj

(h)
PQ

q=1 Eq
l (~i,h,vj)




=
M∏

v1=1

M∏
v2=1

...

M∏
vn=1

M∏
j=1

a(~v, vj)
A(~v,vj)

(
M∏

j=1

N∏
c1=0

N∏
c2=0

...

N∏
cm=0

N∏
u=0

b~c,vj
(u)Em(~c,u,vj)

)




M∏
j=1

H∏
i1=0

min{i1+1,H}∏

i2=max{0,i1−1}
...

min{il−1+1,H}∏

il=max{0,il−1−1}

min{il+1,H}∏

h=max{0,il−1}
b~i,vj

(h)El(~i,h,vj)


 ,

subject to the following constraints:

M∑
j=1

a(~v, vj) = 1, ∀~v,

max{il+1,H}∑

h=min{0,il−1}
b~i,vj

(h) = 1, ∀~i, vj

N∑
u=0

b~c,vj
(u) = 1, ∀~c, vj ,

where ~v = [v1, v2, ..., vn], ~i = [i1, i2, ..., il] and ~c = [c1, c2, ..., cm]. Here, we assume 00 = 1.

Furthermore, maximizing the likelihood L̂(l, m, n) is equivalent to maximizing the log-

likelihood l̃=log L̂(l, m, n). The corresponding log-likelihood l̃ is given by:

l̃ =
M∑

v1=1

M∑
v2=1

...

M∑
vn=1

M∑
j=1

A(~v, vj) log a(~v, vj) +
M∑

j=1

N∑
c1=0

N∑
c2=0

...

N∑
cm=0

N∑
u=0

Em(~c, u, vj) log b~c,vj
(u)

+
M∑

j=1

H∑
i1=0

min{i1+1,H}∑

i2=max{0,i1−1}
...

min{il−1+1,H}∑

il=max{0,il−1−1}

min{il+1,H}∑

h=max{0,il−1}
El(~i, h, vj) log b~i,vj

(h) .

By considering both the log-likelihood function and the constraints, we maximize the following

function:
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l̃c =
M∑

v1,...,vn=1

M∑
j=1

A(~v, vj) log a(~v, vj) +
M∑

j=1

∑
i1,...,il

min{il+1,H}∑

h=max{0,il−1}
El(~i, h, vj) log b~i,vj

(h)

+
M∑

j=1

N∑
c1,...,cm=0

N∑
u=0

Em(~c, u, vj) log b~c,vj
(u) +

M∑
v1,...,vn=1

µ(~v)

(
1−

M∑
j=1

a(~v, vj)

)

+
M∑

j=1

∑
i1,...,il

ρ(~i, vj)


1−

min{il+1,H}∑

h=max{0,il−1}
b~i,vj

(h)


 +

M∑
j=1

N∑
c1,...,cm=0

σ(~c, vj)

(
1−

N∑
u=0

b~c,vj
(u)

)
,

where µ(~v), ρ(~i, vj) and σ(~c, vj) are the Lagrange multipliers.

Since

∂2l̃c
∂(a(~v, vj))

= − A(~v, vj)

(a(~v, vj))2
< 0,

∂2l̃c
∂(b~i,vj

(h))2
= −El(~i, h, vj)

(b~i,vj
(h))2

< 0,
∂2l̃c

∂(b~c,vj
(u))2

= −Em(~c, u, vj)

(b~c,vj
(u))2

< 0 ,

the function L̂ is concave in a(~v, vj), b~i,vj
(h) and b~c,vj

(u). By solving the following equations

∂l̃c
∂a(~v, vj)

= 0 ,
∂l̃c

∂b~i,vj
(h)

= 0 and
∂l̃c

∂b~c,vj
(u)

= 0 ,

we obtain:
A(~v, vj)

a(~v, vj)
− µ(~v) = 0 or a(~v, vj)µ(~v) = A(~v, vj).

El(~i, h, vj)

b~i,vj
(h)

− ρ(~i, vj) = 0 or b~i,vj
(h)ρ(~i, vj) = El(~i, h, vj).

Em(~c, u, vj)

b~c,vj
(u)

− σ(~c, vj) = 0 or b~c,u,vj
(u)σ(~c, vj) = Em(~c, u, vj).

Therefore,
M∑

j=1

a(~v, vj)µ(~v) = µ(~v) =
M∑

j=1

A(~v, vj) .

min{il+1,H}∑

h=max{0,il−1}
b~i,vj

(h)ρ(~i, vj) = ρ(~i, vj) =

min{il+1,H}∑

h=max{0,il−1}
El(~i, h, vj) .

N∑
u=0

b~c,vj
(u)σ(~c, vj) = σ(~c, vj) =

N∑
u=0

Em(~c, u, vj) .

Hence, the result follows. ¤
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Proof of Preposition 2: (i) Let T denote the length of the sequence and a(~v, vj) the transition

probability matrix. Suppose Xj denotes the steady state probability that the process is in state

j. Then,

E(A(~v, vj)) = T ·Xj · a(~v, vj) ,

and

E

( M∑
j=1

A(~v, vj)

)
= T ·Xj ·

( m∑
j=1

a(~v, vj)

)
= T ·Xj .

Therefore,

E(A(~v, vj)) = a(~v, vj) · E
( m∑

j=1

A(~v, vj)

)
.

Condition (ii) and (iii) can be done in a similar way. Hence, we omit the proof here. ¤
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