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Abstract. We develop a new method to deal with the Cancellation
Conjecture of Zariski in different environments. We prove the conjec-
ture for free associative algebras of rank two. We also produce a new
proof of the conjecture for polynomial algebras of rank two over fields
of zero characteristic.

1. Introduction and main results

There is a famous

Conjecture 1.1. (Concellation Conjecture of Zariski) Let R be
an algebra over a field K. If R[z] is K-isomorphic to K[x1, . . . , xn],
then R is isomorphic to K[x1, . . . , xn−1].

Conjecture 1.1 was proved for n = 2 by Abhyankar, Eakin and Heizer
[1], and Miyanishi [10]. For n = 3, the Conjecture was proved by Fujita
[5], and Miyanishi and Sugie [11] for zero characteristic, and by Russell
[12] for arbitrary fields K. For n ≥ 4, the Conjecture remains open to
the best of our knowledge. See [4, 6, 7, 8, 9, 14] for Zariski’s conjecture
and related topics.

Denote by A ∗B the free product of two K-algebras A and B. In view
of Conjecture 1.1, it is natural and interesting to raise

Conjecture 1.2. (Concellation Conjecture for Free Associative
Algebras) Let R be an algebra over a field K. If R ∗ K[z] is K-
isomorphic to K〈x1, . . . , xn〉, then R is K-isomorphic to K〈x1, . . . , xn−1〉.
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In this paper we develop a new method based on the conditions of
algebraic dependence, which can be used in different environments. In
particular, by this method we prove Conjecture 1.2 for n = 2:

Theorem 1.3. Let R be an algebra over an arbitrary field K. If R ∗
K[z] is K-isomorphic to K〈x, y〉, then R is K-isomorphic to K[x].

We also produce a new and simple proof for Conjecture 1.1 for n = 2
in the zero characteristic case [1]:

Proposition 1.4. Let R be an algebra over a field K of zero charac-
teristic. If R[t] is K-isomorphic to K[x, y], then R is isomorphic to
K[x].

2. Preliminaries

Call a set of elements of an associative K-algebra algebraically depen-
dent over K if the K-subalgebra generated by the elements is not free
on that generating set. To prove the main results, we need the well-
known necessary and sufficient conditions for algebraic dependence.

Lemma 2.1. Let K be an arbitrary field, f, g ∈ K〈x1, . . . , xn〉. Then
f and g are algebraically dependent over K if and only if [f, g] = 0,
where [f, g] = fg − gf is the commutator of f and g.

See, Corollary 6.7.4, p.338, Cohn [3].

Lemma 2.2. Let K be a field of zero characteristic, f, g ∈ K[x1, . . . , xn].
Then f and g are algebraically dependent over K if and only if Jxi,xj

(f, g)
= 0 for all 1 ≤ i < j ≤ n, where Jxi,xj

(f, g) is the Jacobian determinant
of f and g with respect to xi and xj.

See, for instance, Jie-Tai Yu [15], for a proof.

We also need a description of the subset of all elements of a polynomial
or free associative algebra which are algebraically dependent on a fixed
element. The following result is due to Bergman [2]. See also Cohn [3].

Lemma 2.3. Let K be an arbitrary field, f ∈ K〈x1, . . . , xn〉−K, C(f)
the subset of K〈x1, . . . , xn〉 such that for all g ∈ C(f), [f, g] = 0. Then
C(f) = K[u] for some u ∈ K〈x1, . . . , xn〉.

For polynomial algebras, the analogue of the above result has been
obtained by Shestakov and Umirbaev [13]:
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Lemma 2.4. Let K be a field of zero characteristic, f ∈ K[x1, . . . , xn]−
K, C(f) the subset of K[x1, . . . , xn] such that for all g ∈ C(f), Jxi,xj

(f, g)
= 0 for all 1 ≤ i < j ≤ n. Then C(f) = K[u] for some u ∈
K[x1, . . . , xn].

3. Proofs of the main result

Proof of Theorem 1.3. Let R ∗ K[z] ∼= K〈x, y〉 and let (z) be
the ideal of R ∗ K[z] generated by z. Clearly, (R ∗ K[z])/(z) ∼= R.
Since the algebra R ∗ K[z] is isomorphic to the free algebra of rank
2, it is two-generated and the same holds for its homomorphic image
(R∗K[z])/(z) ∼= R. Hence R is generated by v, w ∈ R. Now we use that
R is a subalgebra of the free associative algebra R ∗K[z] ∼= K〈x, y〉. If
v and w are algebraically independent over K, then R is isomorphic to
the free algebra K〈t1, t2〉 and R∗K[z] ∼= K〈t1, t2, z〉 is the free algebra of
rank 3, which is impossible. Hence v and w are algebraically dependent.
By Lemma 2.1, it’s easy to deduce that any element f = f(v, w) ∈ R
and v are algebraically dependent over K. By Lemma 2.1 and Lemma
2.3, R ⊂ K[u] for some u ∈ R∗K[z]. Write u = u0 +u1, where u0 ∈ R,
u1 contains only monomials occurring in u with z-degree at least 1.
For any f ∈ R, f = h(u) = h(u0 + u1), h is a polynomial over K in
one variable. Substituting z = 0, f = h(u0). Therefore R ⊂ K[u0].
Now K[u0] ⊂ R ⊂ K[u0]. This forces R = K[u0]. Therefore R is
K-isomorphic to K[x]. �

Proof of Proposition 1.4. As R[z] is K-isomorphic to K[x, y], it is
easy to deduce that R has transcendence degree 1 over K. There-
fore there exists a g ∈ R − K such that for all f ∈ R, f and g
are algebraically dependent over K. By Lemma 2.2 and Lemma 2.4,
R ⊂ K[u] for some u ∈ R[t]. Write u = u0 + u1, where u0 ∈ R,
u1 contains only monomials occurring in u with z-degree at least 1.
For any f ∈ R, f = h(u) = h(u0 + u1), h is a polynomial over K in
one variable. Substituting z = 0, f = h(u0). Therefore R ⊂ K[u0].
Now K[u0] ⊂ R ⊂ K[u0]. This forces R = K[u0]. Therefore R is
K-isomorphic to K[x]. �
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