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1 Introduction

Let X be a compact complex manifold with a holomorphic tangent bundle T (X).
An intrinsic complex analytic invariant attached to X is the cohomology groups Hi(X,

EndT ), 0 � i � n, where EndT is the endomorphism tangent bundle of X . The 1st
cohomology group H1(X, EndT ) is particularly important as it parametrizes the local
deformation space of the tangent bundle T (X) subject to constraint of the Kuranishi
obstruction. There is a decomposition H1(X, EndT ) = H1(θ)⊕H1(X, End0T ), where
θ is the sheaf of germs of complex analytic functions and End0T represents the bundle
of trace-free endomorphisms of T . The trace-free endomorphism cohomology group
H1(X, End0T ), subject to the Kuranishi obstruction, parametrizes the local deforma-
tion space of T (X) with a fixed determinant line bundle detT . This trace-free local
moduli space will be denoted by K0

(
T (X)

)
throughout this paper.

In ref. [1] we are interested in computing dimC K0

(
T (X)

)
and dimC H1(X, End0T )

when X is a compact complex two-fold of a general type. Some of the results obtained
in ref. [1] will be summarized in sec. 2. In sec. 3 we will prove certain homotopy
versions of the corresponding results. The attempt is to point out some observations
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to support our belief that the local moduli of tangent bundles of complex surfaces of a
general type might contain some interesting topological invariances that are worthy of
further studies. The claims presented in this paper can only be regarded as a report
at a preliminary stage of our project, a deeper investigation along this line is needed
in order to gain more concrete results.

2 K0

(
T (M)

)
and H1(M, End0T ) on a complex surface of general type

The Hirzebruch’s Riemann-Roch formula for the bundle End0T over a compact com-
plex two-fold X , after a rearrangement of the terms, can be written as

dimC H1(X, End0T ) − dimC H2(X, End0T ) = dimC H0(X, End0T ) +
5
4
(3C2 − C2

1 ),

where C2
1 and C2 are the 1st and 2nd Chern numbers of X .

Theorem 2.1.[1] Let M be a compact complex two-fold of a general type. Then
K0

(
T (M)

)
is non-trivial unless M is covered holomorphically by the Euclidean ball.

Proof. The expected dimension d0

(
T (M)

)
of K0

(
T (M)

)
is defined as the number

dimC H1(M, End0T )− dimC H2(M, End0T ). It is always true that dimC K0

(
T (M)

)
�

d0

(
T (M)

)
. The Miyaoka-Yau inequality of a complex surface of a general type says that

C2
1 � 3C2, with this one observes that d0

(
T (M)

)
� 0. Assuming dimC K0

(
T (M)

)
= 0

one obtains the equality C2
1 = 3C2. This equality implies that the canonical line bundle

must be ample. By the Yau’s uniformization[2] M is covered holomorphically by the
Euclidean ball. This completes the proof.

Theorem 2.2.[1] Let M be a compact complex two-fold of a general type. Then
the following statements are true:

(1) If M is not covered by the ball, then dimC H1(M, End0T ) �= 0.
(2) If M is covered by the ball with a non-trivial holomorphic one form, then

dimC H1(M, End0T ) �= 0.
Proof. The proof of statement (1) follows from Theorem 2.1 and the fact that

dimC H1(M, End0T ) � dimC K0

(
T (M)

)
� 0.

As for statement (2), the argument goes as follows. On a ball quotient the 1st and
2nd Chern numbers satisfy an equality C2

1 = 3C2. In this case the Hirzebruch formula
for End0T has the following simple form:

dimC H1(M, End0T ) = dimC H0(M, End0T ) + dimC H2(M, End0T ) .

The following facts are true, the proofs of which can be found in ref. [1].
(a) dimC H0(M, End0T ) = 0 if M is a ball quotient.
(b) dimC H2(M, End0T ) = dimC H0(M, S2T ∗) is ture for any compact complex two-

fold M , where S2T ∗ is the symmetric two tensor product of the cotangent bundle T ∗.
We note that H0(M, S2T ∗) is the space of all holomorphic symmetric two tensors on
M .

If M admits a non-trivial holomorphic one form ω, then the tensor product ω ⊗ ω

is a non-trivial holomorphic symmetric two tensor on M . Using (a) and (b) one can
conclude that H1(M, End0T ) �= 0.
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To conclude the discussion of this section we would like to mention that we cannot
determine whether H1(M, End0T ) vanishes or not on the ball quotient without the
holomorphic one form. An important example is an arithmetic surface constructed
by David Mumford which is a ball quotient with the same homology as the complex
projective space. Now we are unable to produce a non-trivial holomorphic symmetric
two-tensor on the Mumford surface.

3 Local moduli of the tangent bundle over complex surface as a topological
invariance

Theorem 3.1. Let M be a compact complex two-fold of a general type and
X be another compact complex two-fold. Suppose there exists an oriented homotopy
equivalence between M and X , then the following statements are true:

(a) If M is a ball quotient, then dimC K0

(
T (M)

)
= dimC K0

(
T (X)

)
.

(b) If M is not a ball quotient, then dimC K0

(
T (X)

)
> 0.

Proof. (a) This follows from the Yau’s global rigidity Theorem in ref. [2].
(b) Let the Chern numbers of M and X be {C2

1 , C2} and {C̃2
1 , C̃2}, respectively.

The index 1
3 (C2

1 − 2C2) = 1
3 (C̃2

1 − 2C̃2) is an invariance under an oriented homo-
topy equivalence for four manifolds. Since C2 = C̃2 one has the equality 3C̃2 − C̃2

1 =
3C2 − C2

1 . 3C̃2 − C̃2
1 is a positive number as a consequence of the Miyaoka-Yau in-

equality and the Yau’s uniformization theorem. It follows from the Hirzebruch for-
mula for End0

(
T (X)

)
that the expected dimension d0

(
T (X)

)
for K0

(
T (X)

)
must be

positive. Since dimC K0

(
T (X)

)
is never less than d0

(
T (X)

)
, one can conclude that

dimC K0

(
T (X)

)
> 0.

The following remark addresses the orientation reversed cases which are ample in
existence.

Theorem 3.2. Suppose there exists an orientation reversed homotopy equivalence
between two compact complex two-folds M and X . Assume that the Chern number
C2

1 − C2 of M is positive, then dimC K0

(
T (X)

)
> 0.

Proof. Using the same notation as in the proof of Theorem 3.1(b) one has 1
3 (C2

1 −
2C2) = − 1

3 (C̃2
1 − 2C̃2) as the indices of M and X have different signs if there is an

orientation reversed homotopy equivalence between them. Since C2 = C̃2 one has
3C̃2 − C̃2

1 = C2
1 −C2. From the Hirzebruch formula for End0T (X) and the assumption

C2
1 − C2 > 0 we obtain d0

(
T (X)

)
> 0. This proves dimC K0

(
T (X)

)
> 0 for the same

reason as before.
It is now known from the Donaldson and Seiberg-Witten invariants that the Kodaira

dimensions of complex surfaces are a diffeomorphic invariant. The following results are
the consequences along our path of discussion.

Theorem 3.3. Let M be a compact complex two-fold of a general type. Suppose
X is a compact complex two-fold diffeomorphic to M , then the following statements
are true:

(a) If M is a ball quotient and the diffeomorphism preserves the orientation, then
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dimC K0

(
T (M)

)
= dimC K0

(
T (X)

)
.

(b) If M is not a ball quotient and the diffeomorphism preserves the orientation,
then dimC K0

(
T (X)

)
> 0.

(c) If the diffeomorphism reverses the orientation, then dimC K0

(
T (X)

)
> 0.

Proof. (a) and (b) are contained in Theorem 3.1. We only have to prove statement
(c). X is of a general type as it is diffeomorphic to M . If dimC K0

(
T (X)

)
= 0, by

Theorem 2.1, X must be a ball quotient, hence its Chern numbers satisfy 3C̃2−C̃2
1 = 0.

The orientation of the diffeomorphism is reversed, thus 1
3 (C2

1 − 2C2) = − 1
3 (C̃2

1 − 2C̃2).
Since C2 = C̃2, this implies C2

1 − C2 = 3C̃2 − C̃2
1 , which is equal to zero. Nonetheless,

by a result in ref. [3] the index 1
3 (C2

1 − 2C2) of M must vanish if such an unoriented
diffeomorphism exists. This would imply C1 = 0 and C2 = 0. This is a contradiction
because C2 is always positive on a surface of a general type (in fact M and X are very
restrictive under the assumption that they are reversedly diffeomorphic[3,4]). Therefore
dimC K0

(
T (X)

)
has to be positive.

In the statements of Theorem 3.1(a),(b), Theorem 3.2, and Theorem 3.3(a),(b),(c),
one can make the same conclusions for the expected dimension d0

(
T (X)

)
and

dimC H1(X, End0T ) using more or less the same arguments. They are all bounded
below by the Chern number 5

4 (3C2 − C2
1 ) in the oriented cases and by 5

4 (C2
1 − C2) in

the unoriented cases.
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