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This paper considers a problem of finding control strategies for Boolean networks, where Boolean
networks have been used as a model of genetic networks. This paper shows that finding a control
strategy leading to the desired global state is NP-hard even if there is only one control node in the
network. This result justifies existing exponential time algorithms for finding control strategies for
probabilistic Boolean networks. On the other hand, this paper shows that the problem can be solved in
polynomial time if the network has a tree structure.

1. Introduction

One of the important future directions of bioinformatics and systems biology is to develop
a control theory for complex biological systems. For example, Kitano12,13 mentions that
identification of a set of perturbations that induces desired changes in cellular behaviors
may be useful for systems-based drug discovery and cancer treatment. Though many at-
tempts have been done based on control theory, existing theories and technologies are not
satisfactory. Many important results in control theory are based on linear algebra, but it
seems that biological systems contain many non-linear subsystems. Therefore, it is re-
quired to develop a control theory for complex biological systems.

Various mathematical models have been proposed for modeling complex and non-linear
biological systems. Among them, the Boolean network (BN)11 has been well-studied. BN
is a very simple model: each node (e.g., gene) takes either 0 (inactive) or 1 (active) and
the states of nodes change synchronously. Despite these simplicities, a lot of studies have
been done on BNs1,2,3,4,11. Amaral et al.4 wrote that the reason such a simple model may
be appropriate arises from the fact that Boolean variables provide good approximations to
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the nonlinear functions encountered in many control systems. Therefore, it is reasonable to
seek for a control theory for BNs. Even if a control theory for BNs may not be practical, it
may provide a new theoretical insight for systems biology.

Many studies have been done for understanding dynamical properties of BNs though
these remain largely unexplored. For example, distribution of attractors 2,11, relationship
between network topology and chaotic behavior3,4, and inference of BNs from gene ex-
pression data 1,14 have been extensively studied. However, not much attention has been
paid for finding control strategies on BNs. Recently, Datta et al.7,8,9 proposed methods for
finding a control strategy for probabilistic Boolean networks (PBNs), where a PBN16 is
an extension of a BN (therefore, a BN is a special case of a PBN). In their approach, it is
assumed that states of some nodes can be externally controlled and the objective is to find a
sequence of control actions with the minimum cost that leads to the desirable network state.
Their approach is based on the theory of controlled Markov chains and makes use of the
classical technique of dynamic programming. Since BNs are special cases of PBNs, their
methods can also be applied to finding a control strategy for BNs. However, their methods
require high computational costs: it is required to handle exponential size matrices. Thus,
their methods can only be applied to small biological systems. Therefore, it is reasonable
to ask how difficult it is to find control strategies for BNs.

In this paper, we show that the control problem on BNs is NP-hard in general. This
means that it is not plausible that there exists a polynomial time algorithm for solving the
control problem. This result justifies the use of exponential algorithms for general BNs
(and PBNs) as done by Datta et al. We further show that the control problem remains NP-
hard even for restricted cases of BNs. On the other hand, we show that the control problem
can be solved in polynomial time if a BN has a tree topology. We finally discuss biological
implications of the theoretical results.

2. Boolean Network and Its Control

First, we briefly review BN11. A BN is represented by a set of nodes and a set of regulation
rules for nodes, where each node corresponds to a gene if BN is treated as a model of a
genetic network. Each node takes either 0 (inactive) or 1 (active) at each discrete time t, a
regulation rule for each node is given by a Boolean function, and the states of nodes change
synchronously. An example of a BN is given in Fig. 1. In this case, the state of node v1

at time t + 1 is determined by the logical AND of the states of nodes v2 and v3 at time
t. Dynamics of a BN is well-described by a state transition table shown in Fig. 1. The
first row of the table means that if the state of BN is [0, 1, 1] at time t then the state will be
[1, 0, 0] at time t + 1. PBN16 is an extension of BN, in which multiple Boolean functions
are assigned to each node and one Boolean function is selected at each time t according to
a given probability distribution. Therefore, BN is considered as a special case of PBN in
which the same Boolean function is always selected for each node.

In order to consider the control problem, we add external control nodes to a BN (orig-
inal nodes are called internal nodes). The states of external nodes are not determined by
Boolean functions. Instead, these are given externally.
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v1(t+1) = v2(t) AND v3(t)
v2(t+1) = v1(t)
v3(t+1) = NOT v2(t)
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Figure 1. Example of a Boolean network. Dynamics of a Boolean network (left figure) is well-described by a
state transition table (right figure). For example, if the state of the network is [0, 1, 1] at time t, the state will be
[1, 0, 0] at time t + 1.

Now, we formally define the control problem. A BN with external control is represented
by a set V of n + m nodes V = {v1, . . . , vn, vn+1, . . . , vn+m}, where v1, . . . , vn are
internal nodes (corresponding to genes) and vn+1, . . . , vn+m are external control nodes.
We also use xi to denote an external node vn+i when it is convenient to distinguish external
nodes from internal nodes. Each node takes either 0 (inactive) or 1 (active) at each discrete
time t, and the state of node vi at time t is denoted by vi(t). The value of each vi (i =
1, . . . , n) is directly controlled by ki other nodes. Let IN(vi) = {vi1 , . . . , viki

} be the
set of controlling elements of vi, where 1 ≤ ij ≤ n + m. We assign to each vi a Boolean
function fi(vi1 , . . . , viki

). Then the dynamics of the system is given by

vi(t + 1) = fi(vi1(t), . . . , viki
(t)).

We define the set of edges E by E = {(vij , vi)|vij ∈ IN(vi)}. Then, G(V, E) is a
directed graph representing network topology of a BN. We let v(t) = [v1(t), . . . , vn(t)]
and x(t) = [x1(t), . . . , xm(t)]. It should be noted that a node without incoming edges is
either an external node or a constant node, where a constant node is a node with a constant
state for all t. We define the basic control problem for BN as follows.

Definition 2.1. (BN-CONTROL)
Suppose that for a BN, we are given an initial state of the network (for internal nodes)
v0 and the desired state of the network vM at the M -th time step. Then, the problem
(BN-CONTROL) is to find a sequence of 0-1 vectors 〈x(0), . . . ,x(M)〉 such that v(0) =
v0 and v(M) = vM . If there does not exists such a sequence, “No” should be the output.

In this paper, a control strategy denotes a sequence of states of control nodes
〈x(0),x(1), . . . ,x(M)〉. Fig. 2 illustrates BN-CONTROL. The left part is a BN, where
v1, v2, v3 are internal nodes, and x1, x2 are external nodes. We are also given initial and
final states as in the right top part of Fig. 2. Then, the problem is to find a sequence of
states of x1 and x2, If the sequence is given as in the shaded region of Fig. 2, the state of
BN will change as in the right bottom part of Fig. 2 and we will have the desired state of
BN at time t = 3.
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1 1 1 1 1
0 1 1 0 0

t

1
2
3v 3

v 2v 1

x 1 x 2
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OR

NOT

Figure 2. Example of the control problem (BN-CONTROL). In this problem, given initial and final states of
internal nodes (v1, v2, v3), it is required to compute a sequence of states of external nodes (x1, x2) that leads to
the final state.

The final states of all nodes are specified in the above. However, it may not be required
to specify states of all the nodes because we may be interested only in controlling several
important nodes (a set of these nodes is denoted by V ′ in this paper). We call this case
partial BN-CONTROL.

In this paper, we assume that the number of input variables for each Boolean function is
bounded by a constant. Otherwise, it is computationally difficult to find a control strategy
even for one Boolean function (for example, one can consider a function representing a
SAT formula). Due to this assumption, we can assume that enumeration of satisfying
assignments can be done in constant time per Boolean function.

3. Hardness of Finding Control Strategies

As mentioned before, Datta et al.7,8,9 proposed algorithms for finding control strategies
for PBN based on Markov chains and dynamic programming. However, their algorithms
were not efficient because it is required to consider all possible states of PBN (or BN) at
all time steps between the initial and final time steps. We need to consider matrices of
size O(2n × 2n) because there are O(2n) possible states and transitions among them must
be also considered. We show here that the control problem is NP-hard in general, which
implies that the approach by Datta et al. is reasonable.

Theorem 3.1. BN-CONTROL is NP-hard.

Proof. We present a simple polynomial time reduction from 3SAT10 to BN-CONTROL
(see Fig. 3), where a similar reduction was used in a study on Bayesian networks6.

Let y1, . . . , yN be Boolean variables (i.e., 0-1 variables). Let c1, . . . , cL be a set of
clauses over y1, . . . , yN , where each clause is a logical OR of at most three literals. It
should be noted that a literal is a variable or its negation (logical NOT). Then, 3SAT is a
problem of asking whether or not there exists an assignment of 0-1 values to y1, . . . , yN

which satisfies all the clauses (i.e., the values of all clauses are 1).
From an instance of 3SAT, we construct an instance of BN-CONTROL as follows. We

let the set of nodes V = {v1, . . . , vN , x1, . . . , xL} where each vi corresponds to ci and



July 10, 2005 14:25 Proceedings Trim Size: 9.75in x 6.5in boolcontrol

5
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v1 v2 v3

x1 x2 x3 x1 x3 x4 x2 x3 x4

Figure 3. Reduction from 3SAT to BN-CONTROL. An instance of 3SAT {y1 ∨ y2 ∨ y3, y1 ∨ y3 ∨ y4, y2 ∨
y3 ∨ y4} is transformed into an instance of BN-CONTROL in a simple way that external nodes correspond to
variables in 3SAT and internal nodes correspond to clauses.

each xj corresponds to yj . Suppose that fi(yi1 , . . . , yi3) is a Boolean function assigned
to ci in 3SAT. Then, we assign fi(xi1 , . . . , xi3) to vi in BN-CONTROL. Finally, we let
M = 1, v0 = [0, 0, . . . , 0] and vM = [1, 1, . . . , 1].

Then, it is obvious that there exists a sequence 〈x(0),x(1)〉 which makes v(1) =
[1, 1, . . . , 1] if and only if there exists an assignment which satisfies all the clauses (see
Fig. 3). Actually, a satisfying assignment for 3SAT corresponds to x(0). Since the above
reduction can be done in linear time, BN-CONTROL is NP-hard.

Since BN-CONTROL is a special case of partial BN-CONTROL, NP-hardness of par-
tial BN-CONTROL directly follows from the above result. We can still prove that partial
BN-CONTROL is NP-hard even if the final state of only one node is specified. For that
purpose, we simply add an internal node vN+1 to the BN in the above proof. Then, we let
fN+1 be the conjunction of v1, . . . , vN , and let M = 2, v0

N+1 = 0 and vM
N+1 = 1.

Corollary 3.1. Partial BN-CONTROL is NP-hard.

Datta et al.7 considered general cost functions Ck and CM . We can consider a special
case where Ck = 0 and CM is the Hamming distance between the specified final state
and the final state given by a control strategy. Then, BN-CONTROL corresponds to the
problem of asking whether or not the minimum cost is 0. Since BNs are special cases of
PBNs, it follows that finding an optimal control strategy for PBN is NP-hard.

Corollary 3.2. Finding an optimal control strategy for PBN is NP-hard.

It is also possible to show that approximation of the Hamming distance is quite hard.
For that purpose, we modify the network in the proof of Corollary 3.1. We add h nodes
vL+i (i = 2, . . . , h) with regulation rules vL+i(t + 1) = vL+1(t). Then, we let V ′ =
{vL+2, . . . , vL+h}, M = 3, v0

i = 0 and vM
i = 1 for all vi ∈ V ′. Then, the cost is either 0

or n− L− 1, which implies that obtaining approximate solutions (within a factor of O(n)
if we let h = O(n)) is still NP-hard.
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vL+2 vL+3

x1

Figure 4. The network constructed (in the proof of Thm. 3.2) from the same 3SAT instance as in Fig. 3.

In the above, we used many control nodes. However, it is not plausible that we can
control many genes simultaneously. Thus, it is worthy to consider a special case where
only a small number of nodes can be controlled.

Theorem 3.2. BN-CONTROL and partial BN-CONTROL are NP-hard even if there exists
only one control node and the network structure is an almost tree of bounded degree.

Proof. We give a proof for the partial control problem. Modification of the proof for BN-
CONTROL is not difficult and omitted in this version.

As in Thm. 3.1, we use a reduction from 3SAT (see also Fig. 4). In this case, we only
have one control node x1. For each clause ci, we construct two special nodes vi and vL+i.
Suppose that variables yi1 , yi2 , yi3 appear in clause ci in 3SAT. Then, we create 3 paths
from vi to vL+i, where the lengths of paths are i1, i2 and i3, respectively. The identify
function is assigned to each gene (except vL+i) in the paths, and a function corresponding
to ci is assigned for vL+i. Then, we let V ′ = {vL+1, . . . , v2L}, M = N + 1, v0

i = 0 and
vM

i = 1 for vi ∈ V ′.
Then, the state x1(N − i) corresponds to an assignment of 0-1 value to yi. From this,

there exists a sequence 〈x(0),x(1), . . . ,x(N + 1)〉 which makes vi(N + 1) = 1 for all
vi ∈ V ′ if and only if there exists an assignment which satisfies all the clauses. Therefore,
partial BN-CONTROL is NP-hard even if there is only one control input.

It should be noted that the network constructed above belongs to a very special class of
graphs (i.e., almost trees). Though the degree of x1 can be high, it can be reduced to 3 by
using a substructure like binary tree.

4. Algorithms for Trees

In this section, we present polynomial time algorithms for special cases of the control
problem. First, we consider the case where the network has a rooted tree structure (all paths
are directed from leaves to the root). In order to compute a control strategy, we employ
dynamic programming. Though dynamic programming is also employed in exponential
time algorithms7,8 for PBNs, it is used here in a significantly different way.
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v1 v2

v3

AND

Figure 5. Computation of S[v3, t, 1]. In this case, S[v3, t + 1, 1] = 1 if and only if S[v1, t, 1] = 1 and
S[v2, t, 1] = 1. S[v3, t + 1, 0] = 1 if and only if S[v1, t, 0] = 1 or S[v2, t, 0] = 1.

In order to apply dynamic programming, we define S[vi, t, b] as below, where vi is a
node, t is a time step and b is a Boolean value (i.e., 0 or 1). Here S[vi, t, b] is 1 if there
exists a control sequence (up to time t) that makes vi(t) = b.

S[vi, t, 1] =
{

1, if there exists 〈x(0), . . . ,x(t)〉 such that vi(t) = 1,

0, otherwise.

S[vi, t, 0] =
{

1, if there exists 〈x(0), . . . ,x(t)〉 such that vi(t) = 0,

0, otherwise.

Then, S[vi, t, 1] can be computed by the following dynamic programming procedure.

S[vi, t + 1, 1] =





1, if there exists a 0-1 vector [bi1 , . . . , bik
] such that fi(bi1 , . . . , bik

) = 1
holds and S[vij , t, bij ] = 1 holds for all j = 1, . . . , k,

0, otherwise.

S[vi, t, 0] can be computed in a similar way. It should be noted that each leaf is either a con-
stant node or an external node. For a constant node, either S[vi, t, 1] = 1 and S[vi, t, 0] = 0
hold for all t, or S[vi, t, 1] = 0 and S[vi, t, 0] = 1 hold for all t. For an external node,
S[vi, t, 1] = 1 and S[vi, t, 0] = 1 hold for all t.

In the control problems, states of some (or all) internal nodes at the M -th step (more
generally, at the t-th step) may be specified. Let C[vi, t, b] = 1 denotes the constraint that
the state of xi at the t-th step can be b (b ∈ {0, 1}), otherwise C[vi, t, b] = 0. For example,
if vi(M) = 1 must hold, we let C[vi,M, 1] = 1 and C[vi,M, 0] = 0. Then, we can modify
the recurrence in dynamic programming as:

S[vi, t + 1, 1] =





1, if C[vi, t + 1, 1] = 1 and there exists a 0-1 vector [bi1 , . . . , bik
] such that

fi(bi1 , . . . , bik
) = 1 holds and S[vij , t, bij ] = 1 holds for all j = 1, . . . , k,

0, otherwise.

Then, we can decide whether or not there exists a control sequence by checking whether
S[vr, M, 1] = 1 or S[vr,M, 0] = 1 holds for the root node vr. The required control
sequence can be obtained by using the well-known traceback technique5.

Based on the above algorithm, we have the following theorem where the proof is omit-
ted in this version.

Theorem 4.1. If a BN has a rooted tree structure, both BN-CONTROL and partial BN-
CONTROL can be solved in O((n + m)M) time.
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We can generalize Thm. 4.1 for the case of unrooted trees. We call vi a branching node
if vi has at least two outgoing edges. We call vi an outmost branching node if either vi is
the only one branching node, or all paths from vi to other branching nodes must pass the
same branching node vj . We denote such vj by nb(vi).

Then, we can determine S0[vi, t, b]’s by repeatedly removing outmost branching nodes
(see also Fig. 6 and Fig. 7), where we use S0[vi, t, b] to denote the required table. For an
outmost branching node v, we let

Γ+(v) = {w|(v, w) ∈ E} − {u} and Γ−(v) = {w|(w, v) ∈ E} − {u},
where u is the node adjacent to v and lying between v and nb(v). If there is only one
branching node, u can be empty. For each adjacent node w (except u) of v, we let Tv,w be
the subtree induced by {v, w}∪ {z|dist(v, z) < dist(nb(v), z)}, where dist(v, z) denotes
the number of edges of the path connecting v and z (without considering directions of
edges). If (u, v) ∈ E, Tv is the subtree induced by v, u and the nodes in ∪w∈Γ−Tv,w.
Otherwise (i.e., (v, u) ∈ E or u is empty), Tv is the subtree induced by v and the nodes in
∪w∈Γ−Tv,w. It is worthy to note that Tv,w is always a rooted tree and thus the algorithm for
rooted trees can be used as a subroutine. Using the following procedure, we can determine
S0[v, t, b].

Procedure BN-CONTROL-TREE
for all v, t and b ∈ {0, 1} do S0[v, t, b] ← 1; C[v, t, b] ← 1
while there exists a branching node do

Select an arbitrary outmost and non-processed branching node v

for all w ∈ Γ+(v) do
for all t0 and b0 do

if there does not exist a control strategy for Tv,w such that S[v, t0, b0] = 1
then S0[v, t0, b0] ← 0

Delete nodes in Tv,w (except v)
for all t and b do C[v, t, b] ← S0[v, t, b] ∧ C[v, t, b]
if (u, v) ∈ E then

for all t0 and b0 do
if there does not exist a control strategy for Tv such that S[u, t0, b0] = 1
then S0[u, t0, b0] ← 0

for all t and b do C[u, t, b] ← S0[u, t, b] ∧ C[u, t, b]
Delete nodes in Tv (including v)

else
for all t0 and b0 do

if there does not exist a control strategy for Tv such that S[v, t0, b0] = 1
then S0[v, t0, b0] ← 0

for all t and b do C[v, t, b] ← S0[v, t, b] ∧ C[v, t, b]
Delete nodes in Tv (except v)

Based on the above procedure, we have the following where the proof is omitted here.
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va

vb

vc

Figure 6. Illustration of the procedure for unrooted trees, where va, vb and vc are branching nodes. At the
beginning, va and vb are outmost branching nodes and nb(va) = nb(vb) = vc.

v
w3

Tv

nb(v)

w1

w2

u

Tv,w1

Tv,w2

v
w3

Tv

u

Figure 7. Example of Tv,w and Tv . It should be noted that Tv includes u if (u, v) ∈ E (left), whereas Tv does
not include u if (v, u) ∈ E (right). In both cases, Γ+(v) = {w1, w2} and Γ− = {w3}.

Theorem 4.2. If a BN has a tree structure, both BN-CONTROL and partial BN-CONTROL
can be solved in O((n + m)M2) time.

In a general case, we can use an O(22n+mM) time algorithm by Datta et al.7 However,
it is very time consuming even for small n (e.g., n = 10). Another possible approach is to
delete the smallest number of nodes (say, H nodes) so that the resulting network becomes a
forest. Then, we examine all possible time series for these H nodes and apply the algorithm
in Thm. 4.2. It is straight-forward to see that this approach takes O(2HM (m+n)M2) time.
This approach may be useful when HM is small enough.

5. Concluding Remarks

We have shown that finding a control strategy for Boolean networks is computationally
very hard. Hardness results still hold for other models of biological systems if those can
represent Boolean formula for 3SAT using control variables. Since close relationships
between biological systems and Boolean circuits are suggested15,17, it seems difficult to
find control strategies efficiently for all types of biological networks.

However, many biological sub-networks have special features. For example,
Kitano12,13 suggested that negative feedback loops play an important role in biological
systems: these contribute to keeping robustness of biological systems. Such sub-networks
are considered to be significantly different from the networks constructed in this paper be-
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cause it seems impossible to describe negative and robust feedback loops using Boolean
functions. Therefore, one of important future studies is to develop an efficient algorithm
for finding control strategies for such robust sub-networks.

References
1. T. Akutsu, S. Miyano and S. Kuhara, Inferring qualitative relations in genetic networks and

metabolic pathways. Bioinformatics, 16:727–734, 2000.
2. R. Albert and A-L. Barabási. Dynamics of complex systems: scaling laws for the period of

Boolean networks. Physical Review Letters, 84:5660-5663, 2000.
3. M. Aldana. Boolean dynamics of networks with scale-free topology. Physica D, 185:45–66,

2003.
4. L. A. Amaral, A. Diaz-Guilera, A. A. Moreira, A. K. Goldberger and L. A. Lipsitz. Emergence of

complex dynamics in a simple model of signaling networks. Proc. National Academy of Sciences
USA, 101:15551-15555, 2004.

5. P. Clote and R. Backofen. Computational Molecular Biology: An Introduction. John Wiley and
Sons Ltd., 2000.

6. G. Cooper. The computational complexity of probabilistic inference using Bayesian belief net-
works. Artificial Intelligence, 42:393-405, 1990.

7. A. Datta, A. Choudhary, M. L. Bittner and E. R. Dougherty. External control in Markovian
genetic regulatory networks. Machine Learning, 52:169-191, 2003.

8. A. Datta, A. Choudhary, M. L. Bittner and E. R. Dougherty. External control in Markovian
genetic regulatory networks: the imperfect information case. Bioinformatics, 20:924–930, 2004.

9. A. Datta, A. Choudhary, M. L. Bittner and E. R. Dougherty. Intervention in context-sensitive
probabilistic Boolean networks. Bioinformatics, 21:1211-1218, 2005.

10. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of NP-
Completeness. W.H. Freeman and Co., 1979.

11. S. A. Kauffman. The Origins of Order: Self-organization and Selection in Evolution. Oxford
Univ. Press, 1993.

12. H. Kitano. Computational systems biology. Nature, 420:206–210, 2002.
13. H. Kitano. Cancer as a robust system: implications for anticancer therapy. Nature Reviews Can-

cer, 4:227–235, 2004.
14. S. Liang, S. Fuhrman and R. Somogyi. REVEAL, a general reverse engineering algorithm for

inference of genetic network architectures. Proc. Pacific Symposium on Biocomputing, 3:18–29,
1998.

15. H. H. McAdams and L. Shapiro. Circuit simulation of genetic networks. Science, 269:650–656,
1995.

16. I. Shmulevich, E. R. Dougherty, S. Kim and W. Zhang. Probabilistic Boolean networks: a rule-
based uncertainty model for gene regulatory networks. Bioinformatics, 18:261–274, 2002.

17. C-H. Yuh, H. Bolouri and E. H. Davidson. Genomic Cis-regulatory logic: experimental and
computational analysis of a sea urchin gene. Science, 279:1896–1902, 1998.


