ON THE COMPLEXITY OF FINDING CONTROL STRATEGIES FOR BOOLEAN NETWORKS

TATSUYA AKUTSU * MORIHIRO HAYASHIDA

Bioinformatics Center, Institute for Chemical Research, Kyoto University Uji-city, Kyoto 611-0011, Japan E-mail: {takutsu, morihiro}@kuicr.kyoto-u.ac.jp

MICHAEL M. NG ^{\dagger} WAI-KI CHING ^{\dagger}

Department of Mathematics, The University of Hong Kong Pokfulam Road, Hong Kong, China E-mail: {mng,wkc}@maths.hku.hk

This paper considers a problem of finding control strategies for Boolean networks, where Boolean networks have been used as a model of genetic networks. This paper shows that finding a control strategy leading to the desired global state is NP-hard even if there is only one control node in the network. This result justifies existing exponential time algorithms for finding control strategies for probabilistic Boolean networks. On the other hand, this paper shows that the problem can be solved in polynomial time if the network has a tree structure.

1. Introduction

One of the important future directions of bioinformatics and systems biology is to develop a control theory for complex biological systems. For example, Kitano^{12,13} mentions that identification of a set of perturbations that induces desired changes in cellular behaviors may be useful for systems-based drug discovery and cancer treatment. Though many attempts have been done based on control theory, existing theories and technologies are not satisfactory. Many important results in control theory are based on linear algebra, but it seems that biological systems contain many non-linear subsystems. Therefore, it is required to develop a control theory for complex biological systems.

Various mathematical models have been proposed for modeling complex and non-linear biological systems. Among them, the *Boolean network* (BN)¹¹ has been well-studied. BN is a very simple model: each node (e.g., gene) takes either 0 (inactive) or 1 (active) and the states of nodes change synchronously. Despite these simplicities, a lot of studies have been done on $BNs^{1,2,3,4,11}$. Amaral et al.⁴ wrote that the reason such a simple model may be appropriate arises from the fact that Boolean variables provide good approximations to

^{*}Work partially supported by Grant-in-Aid "Genome Information Science" from MEXT, Japan.

[†]Work partially supported by RGC Grant Nos. HKU 7126/02P, 7130/02P, 7046/03P, 7035/04P, and HKU CRGC Grant Nos. 10203919, 10203907, 10204437, 10203501.

the nonlinear functions encountered in many control systems. Therefore, it is reasonable to seek for a control theory for BNs. Even if a control theory for BNs may not be practical, it may provide a new theoretical insight for systems biology.

Many studies have been done for understanding dynamical properties of BNs though these remain largely unexplored. For example, distribution of attractors ^{2,11}, relationship between network topology and chaotic behavior^{3,4}, and inference of BNs from gene expression data ^{1,14} have been extensively studied. However, not much attention has been paid for finding control strategies on BNs. Recently, Datta et al.^{7,8,9} proposed methods for finding a control strategy for probabilistic Boolean networks (PBNs), where a PBN¹⁶ is an extension of a BN (therefore, a BN is a special case of a PBN). In their approach, it is assumed that states of some nodes can be externally controlled and the objective is to find a sequence of control actions with the minimum cost that leads to the desirable network state. Their approach is based on the theory of controlled Markov chains and makes use of the classical technique of dynamic programming. Since BNs are special cases of PBNs, their methods can also be applied to finding a control strategy for BNs. However, their methods require high computational costs: it is required to handle exponential size matrices. Thus, their methods can only be applied to small biological systems. Therefore, it is reasonable to ask how difficult it is to find control strategies for BNs.

In this paper, we show that the control problem on BNs is NP-hard in general. This means that it is not plausible that there exists a polynomial time algorithm for solving the control problem. This result justifies the use of exponential algorithms for general BNs (and PBNs) as done by Datta et al. We further show that the control problem remains NP-hard even for restricted cases of BNs. On the other hand, we show that the control problem can be solved in polynomial time if a BN has a tree topology. We finally discuss biological implications of the theoretical results.

2. Boolean Network and Its Control

First, we briefly review BN¹¹. A BN is represented by a set of *nodes* and a set of regulation rules for nodes, where each node corresponds to a gene if BN is treated as a model of a genetic network. Each node takes either 0 (inactive) or 1 (active) at each discrete time t, a regulation rule for each node is given by a Boolean function, and the states of nodes change synchronously. An example of a BN is given in Fig. 1. In this case, the state of node v_1 at time t + 1 is determined by the logical AND of the states of nodes v_2 and v_3 at time t. Dynamics of a BN is well-described by a state transition table shown in Fig. 1. The first row of the table means that if the state of BN is [0, 1, 1] at time t then the state will be [1, 0, 0] at time t + 1. PBN¹⁶ is an extension of BN, in which multiple Boolean functions are assigned to each node and one Boolean function is selected at each time t according to a given probability distribution. Therefore, BN is considered as a special case of PBN in which the same Boolean function is always selected for each node.

In order to consider the control problem, we add *external control nodes* to a BN (original nodes are called *internal nodes*). The states of external nodes are not determined by Boolean functions. Instead, these are given externally.

Figure 1. Example of a Boolean network. Dynamics of a Boolean network (left figure) is well-described by a state transition table (right figure). For example, if the state of the network is [0, 1, 1] at time t, the state will be [1, 0, 0] at time t + 1.

Now, we formally define the control problem. A BN with external control is represented by a set V of n + m nodes $V = \{v_1, \ldots, v_n, v_{n+1}, \ldots, v_{n+m}\}$, where v_1, \ldots, v_n are internal nodes (corresponding to genes) and v_{n+1}, \ldots, v_{n+m} are external control nodes. We also use x_i to denote an external node v_{n+i} when it is convenient to distinguish external nodes from internal nodes. Each node takes either 0 (inactive) or 1 (active) at each discrete time t, and the state of node v_i at time t is denoted by $v_i(t)$. The value of each v_i ($i = 1, \ldots, n$) is directly controlled by k_i other nodes. Let $IN(v_i) = \{v_{i_1}, \ldots, v_{i_{k_i}}\}$ be the set of controlling elements of v_i , where $1 \le i_j \le n + m$. We assign to each v_i a Boolean function $f_i(v_{i_1}, \ldots, v_{i_{k_i}})$. Then the dynamics of the system is given by

$$v_i(t+1) = f_i(v_{i_1}(t), \dots, v_{i_{k_i}}(t)).$$

We define the set of edges E by $E = \{(v_{i_j}, v_i) | v_{i_j} \in IN(v_i)\}$. Then, G(V, E) is a directed graph representing network topology of a BN. We let $\mathbf{v}(t) = [v_1(t), \ldots, v_n(t)]$ and $\mathbf{x}(t) = [x_1(t), \ldots, x_m(t)]$. It should be noted that a node without incoming edges is either an external node or a *constant node*, where a constant node is a node with a constant state for all t. We define the basic control problem for BN as follows.

Definition 2.1. (BN-CONTROL)

Suppose that for a BN, we are given an initial state of the network (for internal nodes) \mathbf{v}^0 and the desired state of the network \mathbf{v}^M at the *M*-th time step. Then, the problem (BN-CONTROL) is to find a sequence of 0-1 vectors $\langle \mathbf{x}(0), \ldots, \mathbf{x}(M) \rangle$ such that $\mathbf{v}(0) = \mathbf{v}^0$ and $\mathbf{v}(M) = \mathbf{v}^M$. If there does not exists such a sequence, "No" should be the output.

In this paper, a *control strategy* denotes a sequence of states of control nodes $\langle \mathbf{x}(0), \mathbf{x}(1), \ldots, \mathbf{x}(M) \rangle$. Fig. 2 illustrates BN-CONTROL. The left part is a BN, where v_1, v_2, v_3 are internal nodes, and x_1, x_2 are external nodes. We are also given initial and final states as in the right top part of Fig. 2. Then, the problem is to find a sequence of states of x_1 and x_2 , If the sequence is given as in the shaded region of Fig. 2, the state of BN will change as in the right bottom part of Fig. 2 and we will have the desired state of BN at time t = 3.

4

Figure 2. Example of the control problem (BN-CONTROL). In this problem, given initial and final states of internal nodes (v_1, v_2, v_3) , it is required to compute a sequence of states of external nodes (x_1, x_2) that leads to the final state.

The final states of all nodes are specified in the above. However, it may not be required to specify states of all the nodes because we may be interested only in controlling several important nodes (a set of these nodes is denoted by V' in this paper). We call this case *partial BN-CONTROL*.

In this paper, we assume that the number of input variables for each Boolean function is bounded by a constant. Otherwise, it is computationally difficult to find a control strategy even for one Boolean function (for example, one can consider a function representing a SAT formula). Due to this assumption, we can assume that enumeration of satisfying assignments can be done in constant time per Boolean function.

3. Hardness of Finding Control Strategies

As mentioned before, Datta et al.^{7,8,9} proposed algorithms for finding control strategies for PBN based on Markov chains and dynamic programming. However, their algorithms were not efficient because it is required to consider all possible states of PBN (or BN) at all time steps between the initial and final time steps. We need to consider matrices of size $O(2^n \times 2^n)$ because there are $O(2^n)$ possible states and transitions among them must be also considered. We show here that the control problem is NP-hard in general, which implies that the approach by Datta et al. is reasonable.

Theorem 3.1. BN-CONTROL is NP-hard.

Proof. We present a simple polynomial time reduction from $3SAT^{10}$ to BN-CONTROL (see Fig. 3), where a similar reduction was used in a study on Bayesian networks⁶.

Let y_1, \ldots, y_N be Boolean variables (i.e., 0-1 variables). Let c_1, \ldots, c_L be a set of clauses over y_1, \ldots, y_N , where each clause is a logical OR of at most three literals. It should be noted that a literal is a variable or its negation (logical NOT). Then, 3SAT is a problem of asking whether or not there exists an assignment of 0-1 values to y_1, \ldots, y_N which satisfies all the clauses (i.e., the values of all clauses are 1).

From an instance of 3SAT, we construct an instance of BN-CONTROL as follows. We let the set of nodes $V = \{v_1, \ldots, v_N, x_1, \ldots, x_L\}$ where each v_i corresponds to c_i and

Figure 3. Reduction from 3SAT to BN-CONTROL. An instance of 3SAT $\{y_1 \lor y_2 \lor y_3, \overline{y_1} \lor y_3 \lor \overline{y_4}, \overline{y_2} \lor \overline{y_3} \lor y_4\}$ is transformed into an instance of BN-CONTROL in a simple way that external nodes correspond to variables in 3SAT and internal nodes correspond to clauses.

each x_j corresponds to y_j . Suppose that $f_i(y_{i_1}, \ldots, y_{i_3})$ is a Boolean function assigned to c_i in 3SAT. Then, we assign $f_i(x_{i_1}, \ldots, x_{i_3})$ to v_i in BN-CONTROL. Finally, we let $M = 1, \mathbf{v}^0 = [0, 0, \ldots, 0]$ and $\mathbf{v}^M = [1, 1, \ldots, 1]$.

Then, it is obvious that there exists a sequence $\langle \mathbf{x}(0), \mathbf{x}(1) \rangle$ which makes $\mathbf{v}(1) = [1, 1, ..., 1]$ if and only if there exists an assignment which satisfies all the clauses (see Fig. 3). Actually, a satisfying assignment for 3SAT corresponds to $\mathbf{x}(0)$. Since the above reduction can be done in linear time, BN-CONTROL is NP-hard.

Since BN-CONTROL is a special case of partial BN-CONTROL, NP-hardness of partial BN-CONTROL directly follows from the above result. We can still prove that partial BN-CONTROL is NP-hard even if the final state of only one node is specified. For that purpose, we simply add an internal node v_{N+1} to the BN in the above proof. Then, we let f_{N+1} be the conjunction of v_1, \ldots, v_N , and let M = 2, $v_{N+1}^0 = 0$ and $v_{N+1}^M = 1$.

Corollary 3.1. Partial BN-CONTROL is NP-hard.

Datta et al.⁷ considered general cost functions C_k and C_M . We can consider a special case where $C_k = 0$ and C_M is the Hamming distance between the specified final state and the final state given by a control strategy. Then, BN-CONTROL corresponds to the problem of asking whether or not the minimum cost is 0. Since BNs are special cases of PBNs, it follows that finding an optimal control strategy for PBN is NP-hard.

Corollary 3.2. Finding an optimal control strategy for PBN is NP-hard.

It is also possible to show that approximation of the Hamming distance is quite hard. For that purpose, we modify the network in the proof of Corollary 3.1. We add h nodes v_{L+i} (i = 2, ..., h) with regulation rules $v_{L+i}(t+1) = v_{L+1}(t)$. Then, we let $V' = \{v_{L+2}, ..., v_{L+h}\}, M = 3, v_i^0 = 0$ and $v_i^M = 1$ for all $v_i \in V'$. Then, the cost is either 0 or n - L - 1, which implies that obtaining approximate solutions (within a factor of O(n) if we let h = O(n)) is still NP-hard.

6

Figure 4. The network constructed (in the proof of Thm. 3.2) from the same 3SAT instance as in Fig. 3.

In the above, we used many control nodes. However, it is not plausible that we can control many genes simultaneously. Thus, it is worthy to consider a special case where only a small number of nodes can be controlled.

Theorem 3.2. BN-CONTROL and partial BN-CONTROL are NP-hard even if there exists only one control node and the network structure is an almost tree of bounded degree.

Proof. We give a proof for the partial control problem. Modification of the proof for BN-CONTROL is not difficult and omitted in this version.

As in Thm. 3.1, we use a reduction from 3SAT (see also Fig. 4). In this case, we only have one control node x_1 . For each clause c_i , we construct two special nodes v_i and v_{L+i} . Suppose that variables y_{i_1} , y_{i_2} , y_{i_3} appear in clause c_i in 3SAT. Then, we create 3 paths from v_i to v_{L+i} , where the lengths of paths are i_1 , i_2 and i_3 , respectively. The identify function is assigned to each gene (except v_{L+i}) in the paths, and a function corresponding to c_i is assigned for v_{L+i} . Then, we let $V' = \{v_{L+1}, \ldots, v_{2L}\}$, M = N + 1, $v_i^0 = 0$ and $v_i^M = 1$ for $v_i \in V'$.

Then, the state $x_1(N-i)$ corresponds to an assignment of 0-1 value to y_i . From this, there exists a sequence $\langle \mathbf{x}(0), \mathbf{x}(1), \dots, \mathbf{x}(N+1) \rangle$ which makes $v_i(N+1) = 1$ for all $v_i \in V'$ if and only if there exists an assignment which satisfies all the clauses. Therefore, partial BN-CONTROL is NP-hard even if there is only one control input.

It should be noted that the network constructed above belongs to a very special class of graphs (i.e., almost trees). Though the degree of x_1 can be high, it can be reduced to 3 by using a substructure like binary tree.

4. Algorithms for Trees

In this section, we present polynomial time algorithms for special cases of the control problem. First, we consider the case where the network has a rooted tree structure (all paths are directed from leaves to the root). In order to compute a control strategy, we employ dynamic programming. Though dynamic programming is also employed in exponential time algorithms^{7,8} for PBNs, it is used here in a significantly different way.

boolcontrol

Figure 5. Computation of $S[v_3, t, 1]$. In this case, $S[v_3, t+1, 1] = 1$ if and only if $S[v_1, t, 1] = 1$ and $S[v_2, t, 1] = 1$. $S[v_3, t+1, 0] = 1$ if and only if $S[v_1, t, 0] = 1$ or $S[v_2, t, 0] = 1$.

In order to apply dynamic programming, we define $S[v_i, t, b]$ as below, where v_i is a node, t is a time step and b is a Boolean value (i.e., 0 or 1). Here $S[v_i, t, b]$ is 1 if there exists a control sequence (up to time t) that makes $v_i(t) = b$.

$$S[v_i, t, 1] = \begin{cases} 1, \text{ if there exists } \langle \mathbf{x}(0), \dots, \mathbf{x}(t) \rangle \text{ such that } v_i(t) = 1, \\ 0, \text{ otherwise.} \end{cases}$$
$$S[v_i, t, 0] = \begin{cases} 1, \text{ if there exists } \langle \mathbf{x}(0), \dots, \mathbf{x}(t) \rangle \text{ such that } v_i(t) = 0, \\ 0, \text{ otherwise.} \end{cases}$$

Then, $S[v_i, t, 1]$ can be computed by the following dynamic programming procedure.

 $S[v_i, t+1, 1] = \begin{cases} 1, \text{ if there exists a 0-1 vector } [b_{i_1}, \dots, b_{i_k}] \text{ such that } f_i(b_{i_1}, \dots, b_{i_k}) = 1 \\ \text{holds and } S[v_{i_j}, t, b_{i_j}] = 1 \text{ holds for all } j = 1, \dots, k, \\ 0, \text{ otherwise.} \end{cases}$

 $S[v_i, t, 0]$ can be computed in a similar way. It should be noted that each leaf is either a constant node or an external node. For a constant node, either $S[v_i, t, 1] = 1$ and $S[v_i, t, 0] = 0$ hold for all t, or $S[v_i, t, 1] = 0$ and $S[v_i, t, 0] = 1$ hold for all t. For an external node, $S[v_i, t, 1] = 1$ and $S[v_i, t, 0] = 1$ hold for all t.

In the control problems, states of some (or all) internal nodes at the M-th step (more generally, at the t-th step) may be specified. Let $C[v_i, t, b] = 1$ denotes the constraint that the state of x_i at the t-th step can be b ($b \in \{0, 1\}$), otherwise $C[v_i, t, b] = 0$. For example, if $v_i(M) = 1$ must hold, we let $C[v_i, M, 1] = 1$ and $C[v_i, M, 0] = 0$. Then, we can modify the recurrence in dynamic programming as:

$$S[v_i, t+1, 1] = \begin{cases} 1, \text{ if } C[v_i, t+1, 1] = 1 \text{ and there exists a } 0\text{-}1 \text{ vector } [b_{i_1}, \dots, b_{i_k}] \text{ such that} \\ f_i(b_{i_1}, \dots, b_{i_k}) = 1 \text{ holds and } S[v_{i_j}, t, b_{i_j}] = 1 \text{ holds for all } j = 1, \dots, k, \\ 0, \text{ otherwise.} \end{cases}$$

Then, we can decide whether or not there exists a control sequence by checking whether $S[v_r, M, 1] = 1$ or $S[v_r, M, 0] = 1$ holds for the root node v_r . The required control sequence can be obtained by using the well-known traceback technique⁵.

Based on the above algorithm, we have the following theorem where the proof is omitted in this version.

Theorem 4.1. If a BN has a rooted tree structure, both BN-CONTROL and partial BN-CONTROL can be solved in O((n + m)M) time.

boolcontrol

We can generalize Thm. 4.1 for the case of unrooted trees. We call v_i a branching node if v_i has at least two outgoing edges. We call v_i an outmost branching node if either v_i is the only one branching node, or all paths from v_i to other branching nodes must pass the same branching node v_j . We denote such v_j by $nb(v_i)$.

Then, we can determine $S_0[v_i, t, b]$'s by repeatedly removing outmost branching nodes (see also Fig. 6 and Fig. 7), where we use $S_0[v_i, t, b]$ to denote the required table. For an outmost branching node v, we let

$$\Gamma^+(v) = \{ w | (v, w) \in E \} - \{ u \} \text{ and } \Gamma^-(v) = \{ w | (w, v) \in E \} - \{ u \},\$$

where u is the node adjacent to v and lying between v and nb(v). If there is only one branching node, u can be empty. For each adjacent node w (except u) of v, we let $T_{v,w}$ be the subtree induced by $\{v, w\} \cup \{z | dist(v, z) < dist(nb(v), z)\}$, where dist(v, z) denotes the number of edges of the path connecting v and z (without considering directions of edges). If $(u, v) \in E$, T_v is the subtree induced by v, u and the nodes in $\bigcup_{w \in \Gamma^-} T_{v,w}$. Otherwise (i.e., $(v, u) \in E$ or u is empty), T_v is the subtree induced by v and the nodes in $\bigcup_{w \in \Gamma^-} T_{v,w}$. It is worthy to note that $T_{v,w}$ is always a rooted tree and thus the algorithm for rooted trees can be used as a subroutine. Using the following procedure, we can determine $S_0[v, t, b]$.

Procedure BN-CONTROL-TREE

for all v, t and $b \in \{0, 1\}$ do $S_0[v, t, b] \leftarrow 1; C[v, t, b] \leftarrow 1$ while there exists a branching node do Select an arbitrary outmost and non-processed branching node vfor all $w \in \Gamma^+(v)$ do for all t_0 and b_0 do if there does not exist a control strategy for $T_{v,w}$ such that $S[v, t_0, b_0] = 1$ then $S_0[v, t_0, b_0] \leftarrow 0$ Delete nodes in $T_{v,w}$ (except v) for all t and b do $C[v, t, b] \leftarrow S_0[v, t, b] \land C[v, t, b]$ if $(u, v) \in E$ then for all t_0 and b_0 do if there does not exist a control strategy for T_v such that $S[u, t_0, b_0] = 1$ then $S_0[u, t_0, b_0] \leftarrow 0$ for all t and b do $C[u, t, b] \leftarrow S_0[u, t, b] \land C[u, t, b]$ Delete nodes in T_v (including v) else for all t_0 and b_0 do if there does not exist a control strategy for T_v such that $S[v, t_0, b_0] = 1$ then $S_0[v, t_0, b_0] \leftarrow 0$ for all t and b do $C[v, t, b] \leftarrow S_0[v, t, b] \land C[v, t, b]$ Delete nodes in T_v (except v)

Based on the above procedure, we have the following where the proof is omitted here.

Figure 6. Illustration of the procedure for unrooted trees, where v_a , v_b and v_c are branching nodes. At the beginning, v_a and v_b are outmost branching nodes and $nb(v_a) = nb(v_b) = v_c$.

Figure 7. Example of $T_{v,w}$ and T_v . It should be noted that T_v includes u if $(u, v) \in E$ (left), whereas T_v does not include u if $(v, u) \in E$ (right). In both cases, $\Gamma^+(v) = \{w_1, w_2\}$ and $\Gamma^- = \{w_3\}$.

Theorem 4.2. If a BN has a tree structure, both BN-CONTROL and partial BN-CONTROL can be solved in $O((n+m)M^2)$ time.

In a general case, we can use an $O(2^{2n+m}M)$ time algorithm by Datta et al.⁷ However, it is very time consuming even for small n (e.g., n = 10). Another possible approach is to delete the smallest number of nodes (say, H nodes) so that the resulting network becomes a forest. Then, we examine all possible time series for these H nodes and apply the algorithm in Thm. 4.2. It is straight-forward to see that this approach takes $O(2^{HM}(m+n)M^2)$ time. This approach may be useful when HM is small enough.

5. Concluding Remarks

We have shown that finding a control strategy for Boolean networks is computationally very hard. Hardness results still hold for other models of biological systems if those can represent Boolean formula for 3SAT using control variables. Since close relationships between biological systems and Boolean circuits are suggested^{15,17}, it seems difficult to find control strategies efficiently for all types of biological networks.

However, many biological sub-networks have special features. For example, Kitano^{12,13} suggested that negative feedback loops play an important role in biological systems: these contribute to keeping robustness of biological systems. Such sub-networks are considered to be significantly different from the networks constructed in this paper be-

boolcontrol

10

cause it seems impossible to describe negative and robust feedback loops using Boolean functions. Therefore, one of important future studies is to develop an efficient algorithm for finding control strategies for such robust sub-networks.

References

- T. Akutsu, S. Miyano and S. Kuhara, Inferring qualitative relations in genetic networks and metabolic pathways. *Bioinformatics*, 16:727–734, 2000.
- R. Albert and A-L. Barabási. Dynamics of complex systems: scaling laws for the period of Boolean networks. *Physical Review Letters*, 84:5660-5663, 2000.
- 3. M. Aldana. Boolean dynamics of networks with scale-free topology. *Physica D*, 185:45–66, 2003.
- L. A. Amaral, A. Diaz-Guilera, A. A. Moreira, A. K. Goldberger and L. A. Lipsitz. Emergence of complex dynamics in a simple model of signaling networks. *Proc. National Academy of Sciences* USA, 101:15551-15555, 2004.
- P. Clote and R. Backofen. *Computational Molecular Biology: An Introduction*. John Wiley and Sons Ltd., 2000.
- G. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42:393-405, 1990.
- 7. A. Datta, A. Choudhary, M. L. Bittner and E. R. Dougherty. External control in Markovian genetic regulatory networks. *Machine Learning*, 52:169-191, 2003.
- A. Datta, A. Choudhary, M. L. Bittner and E. R. Dougherty. External control in Markovian genetic regulatory networks: the imperfect information case. *Bioinformatics*, 20:924–930, 2004.
- 9. A. Datta, A. Choudhary, M. L. Bittner and E. R. Dougherty. Intervention in context-sensitive probabilistic Boolean networks. *Bioinformatics*, 21:1211-1218, 2005.
- M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., 1979.
- 11. S. A. Kauffman. *The Origins of Order: Self-organization and Selection in Evolution*. Oxford Univ. Press, 1993.
- 12. H. Kitano. Computational systems biology. Nature, 420:206-210, 2002.
- H. Kitano. Cancer as a robust system: implications for anticancer therapy. *Nature Reviews Cancer*, 4:227–235, 2004.
- S. Liang, S. Fuhrman and R. Somogyi. REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. *Proc. Pacific Symposium on Biocomputing*, 3:18–29, 1998.
- H. H. McAdams and L. Shapiro. Circuit simulation of genetic networks. *Science*, 269:650–656, 1995.
- I. Shmulevich, E. R. Dougherty, S. Kim and W. Zhang. Probabilistic Boolean networks: a rulebased uncertainty model for gene regulatory networks. *Bioinformatics*, 18:261–274, 2002.
- C-H. Yuh, H. Bolouri and E. H. Davidson. Genomic Cis-regulatory logic: experimental and computational analysis of a sea urchin gene. *Science*, 279:1896–1902, 1998.