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Abstract

Missing values often exist in the data of gene expression microarray
experiments. A number of methods such as the Row Average (RA) method,
KNNimpute algorithm and SVDimpute algorithm have been proposed to esti-
mate the missing values. Recently, Kim et al. proposed a Local Least Squares
Imputation (LLSI) method for estimating the missing values. In this paper,
we propose a Weighted Local Least Square Imputation (WLLSI) method
for missing values estimation. WLLSI allows training on the weighting and
therefore can take advantage of both the LLSI method and the RA method.
Numerical results on both synthetic data and real microarray data are given
to demonstrate the effectiveness of our proposed method. The imputation
methods are then applied to a breast cancer dataset.

Keywords: Missing values, Microarray data, Row average method, Local least
squares imputation method, Weighted local least squares imputation method.

I. INTRODUCTION

Microarray data analysis is a successful method in genomic research. Many
clustering techniques and classification methods for analyzing the microarray
data such as Support Vector Machines (SVMs) [15], Principal Component Anal-
ysis (PCA) [3], [16], Singular Value Decomposition (SVD) [2] require a com-
plete data set. However, very often gene expression data sets contain missing
values, due to various reasons such as insufficient resolution, image corruption,
dust or scratches on the slides or experimental errors [9]. Therefore the treatment
of missing values is an important step in the preprocessing of the data. It is
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expensive and also time consuming to repeat the experiment. Therefore a number
of imputation methods have been developed for estimating the missing values.
For example, the SVD based method (SVDimpute) and the weighted k-Nearest
Neighbors Imputation (KNNimpute) have been introduced by Troyanskaya et
al. [14].

The KNN-based method actually chooses genes with expression profiles sim-
ilar to the gene having missing value. Suppose that Gene 1 has one missing
value in Experiment 1, this method will find k other genes having no missing
values in Experiment 1 and their expressions are most similar (in the sense of
Pearson correlation coefficient) to Gene 1 in the rest of the experiments. Then
a weighted average of values in Experiment 1 from the k selected genes is used
as an estimate for the missing value in Gene 1, see for instance [14]. In the
SVDimpute method, SVD is employed to obtain a set of mutually orthogonal
expression patterns that can be linearly combined to approximate the expression
of all genes in the data set. These patterns are referred to as eigengenes [1]. The
k most significant eigengenes are then identified by sorting the eigengenes based
on their corresponding singular values. The missing values can then be obtained
by first regressing the corresponding gene against the k eigengenes and then
using the coefficients of the regression to reconstruct the missing value from
a linear combination of the k eigengenes [14]. It is known that KNNimpute
method gives better results on noisy time series data and SVDimpute method
performs well on time series data with low noise levels. Nevertheless, estimating
unknown values in a given data set has many potential applications in the other
fields such as survey sampling [6].

The remainder of the paper is organized as follows. In Section two, we briefly
describe the Local Least Squares Imputation (LLSI) method proposed by Kim
et al. [4]. In Section three, we present our proposed Weighted Local Least
Squares Imputation (WLLSI) method. In Section four, numerical results on both
synthetic data and real gene expression microarray data are given to demonstrate
the effectiveness of our proposed method when compared with LLSI method
and the RA method. We then apply the imputation methods to a breast cancer
dataset and interesting results are obtained. Finally, concluding remarks are
given in Section five to address further research issues.

II. LOCAL LEAST SQUARE IMPUTATION METHOD

In this section, we briefly describe the LLSI method proposed by Kim et al.
[4]. We will use the matrix G ∈ Rm×n to denote a gene expression data matrix
with m genes and n experiments. Very often, m is much bigger than n, i.e,
n << m and we assume this in our discussion. We adopt the notations in [4].
In the matrix G, a row gi

T ∈ R1×n represents the expressions of the ith gene
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in the n experiments. For simplicity of discussion, we assume that there is a
missing value in the first experiment of the first gene, i.e., G(1, 1) = g1(1) = α.
There are two steps in the LLSI method. The first step is to choose k genes by
the L2-norm or by Pearson correlation coefficients [11]. The second step is to
conduct a regression analysis and estimation. To recover a missing value in the
first location g1(1) of g1 in the matrix G ∈ Rm×n, the k-nearest neighbor gene
vectors for g1, gT

si
∈ R1×n, 1 ≤ i ≤ k are found for LLSimpute based on the

L2-norm. Here the first component of each gene is ignored as g1(1) is missing.
The LLSimpute based on the Pearson correlation coefficient takes the advantage
of the coherent genes. When there is a missing value in the first location of g1,
the Pearson correlation coefficient between two genes (both with first entries
removed) is computed. We remark that the components of g1 corresponding to
the missing values are not considered in computing the coefficients. All Pearson
correlation coefficients between g1 and the other genes are computed. To recover
a missing value in the first location of the gene g1, G(1, 1) = g1(1) = α, the k
genes gs1 , . . . ,gsk

with the largest Pearson correlation coefficients in magnitude
are found.

Now if the missing value is to be estimated by the k similar genes, the matrix
A, and vectors b and w can be constructed as follows:




gT
1

gT
s1
...

gT
sk


 =




α w1 w2 · · · wn−1

b1 A1,1 A1,2 · · · A1,n−1
...

...
...

...
...

bk Ak,1 Ak,2 · · · Ak,n−1




where α is the missing value and gT
s1

, . . . ,gT
sk

are genes similar to gT
1 . We then

solve the following minimization problem:

min
x
||ATx−w||2 (1)

to get x. It is well known that the least squares solution x to Problem (1) is
given by x = (AT)†w where A† is the pseudo-inverse of A. Since we assume
that (w1,w2, . . . ,wn−1) ≈

∑k
i=1 xi(Ai,1, Ai,2, . . . , Ai,n−1), then the missing

value α can be estimated as follows: α =
∑k

i=1 xibi = bTx = bT (AT )†w.
Finally we remark that the method can be easily extended to the case of multiple
missing values as discussed in [4].

III. WEIGHTED LOCAL LEAST SQUARES IMPUTATION

In this section, we present our Weighted Local Least Squares Imputation
(WLLSI) method for missing value estimation. We assume that there are p
missing values a ∈ Rp×1 in the first gene of the data. The motivation of our
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proposed WLLSI method is the following. We observe that the RA method can
be efficient when the gene expression data follows certain probability distribu-
tion, while LLSI method can be efficient and outperforms the other methods [4]
when the rows of the data are strongly correlated. Thus it is natural to consider
a method which can take advantage of the two methods. Before proposing our
method, we first give some assumptions. In the following, we assume that there
are p missing entries in the first p positions of the gene gT

1 in the matrix
G ∈ Rm×n. The k genes most similar to g1 in the sense of Pearson correlation
coefficient or L2-norm are gT

si
∈ R1×n, 1 ≤ i ≤ k. Then we construct the

matrices A and B,and the vectors a and w as follows:



gT
1

gT
s1
...

gT
sk


 =

(
aT wT

B A

)
=




α1 · · · αp w1 · · · wn−p

B1,1 · · · B1,p A1,1 · · · A1,n−p
...

...
...

...
Bk,1 · · · Bk,p Ak,1 · · · Ak,n−p


 .

Here A is a k× (n− p) matrix, B is a k× p matrix, a is a p× 1 column vector
and w is an (n− p)× 1 column vector.

To implement our idea above, we combine the RA method and the LLSI
method by the following objective function:

min
y∈R(n−p)×p

{
λ‖yTw − efTw

n− p
‖2
2 + (1− λ)‖Ay −B‖2

2

}
, (2)

where e = (1, 1, . . . , 1)T is a p-dimensional column vector and f = (1, 1, . . . , 1)T

is the (n− p)-dimensional column vector of all ones. The parameter λ ∈ [0, 1]
is the weighting factor which can be obtained by training on the known data.
The first term of the function (2) corresponds to the objective function (to be
minimized) of the RA method and the second term corresponds to the objective
function of the LLSI method (compare (1) and (2)). For simplicity, we define
the column vector c = efT w

n−p ∈ Rp×1, then the problem can be formulated as
follows:

min
y

{
λ‖yTw − c‖2

2 + (1− λ)‖Ay −B‖2
2

}
. (3)

To solve the minimization problem (3), we begin with the following proposition.

Proposition 1: If Ã = λwwT + (1 − λ)AT A is positive definite, then the
optimal solution y∗ of the above minimization problem (3) is given by y∗ =
Ã†B̃ where A† is the pseudo-inverse of A and B̃ = λwcT + (1− λ)AT B.

Proof: We note that

f(y) = λ‖yTw − c‖2
2 + (1− λ)‖Ay −B‖2

2

= λ(wTyyTw − 2cTyTw + cTc) + (1− λ)(yT AT Ay − 2yT AT B
+BT B).
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Then we can easily get
1
2∇yf = λ(wwTy −wcT ) + (1− λ)(AT Ay −AT B)

= (λwwT + (1− λ)AT A)y − (λwcT + (1− λ)AT B) = Ãy − B̃.

Since Ã is positive definite, the optimal solution of the original problem is given
by y∗ = Ã†B̃.

We remark that if A is a matrix with full column rank, then AT A is positive
definite. The matrix Ã is a rank one perturbation of the positive definite matrix
(1− λ)AT A. We note that for z 6= 0 and λ ∈ [0, 1), we have

zT Ãz = λ(zTw)2 + (1− λ)zT AT Az ≥ (1− λ)zT AT Az > 0.

Thus Ã is positive definite for λ ∈ [0, 1). If we fix the parameter λ, then we can
obtain the optimal solution of the minimization problem. Then the p missing
values a ∈ Rp×1 in the Gene g1 can be estimated by a = y∗Tw. If there are
missing values in other genes, we can estimate them one by one.

Before giving a method for choosing the parameter λ, we first introduce the
Normalized Root Mean Squared Error (NRMSE). NRMSE is used to evaluate
the performance of the estimation methods for missing values, see for instance
[10]. The NRMSE is defined as follows:

NRMSE =

√
mean(aguess − aans)

std(aans)

where aguess and aans are vectors containing the estimated values and the true
values for all missing entries respectively. The mean and the standard deviation
are then calculated over missing entries in the entire matrix. For a given gene
expression data with missing values, the smaller the value of NRMSE, the better
the method will be.

The model parameter λ remains to be determined. In our experiments, the
following heuristic grid search algorithm is used to obtained the best parameter
λ∗. We divide the interval [0, 1] into N (say N = 100) sub-intervals. Then
we get N + 1 values of λ as follows: λj = j

N , for j = 0, 1, . . . , N . If
there are missing values in the Gene gi, then we pretend one or two existing
values in this gene to be missing. Then for different λj , j = 0, 1, . . . , N , we
use our WLLSI method to estimate these pretended missing values, thereby
calculate the NRMSEs over the entire matrix. Finally we choose the optimal λ∗

corresponding to the smallest NRMSE as the best weighting for our model. We
then use this model to estimate the missing values. In Proposition 1, we have
described our proposed method by formulating the model and giving a feasible
solution to it. In the following section we will give some numerical experiments
to illustrate the effectiveness of our proposed method.



6 THE INTERNATIONAL SYMPOSIUM ON OPTIMIZATION AND SYSTEMS BIOLOGY (OSB 2007)

TABLE I
NRMSE WHEN THE NUMBER OF MISSING VALUES IS 132 (0.2%)

w RA Method LLSI Method WLLSI Method λ∗

1.0 1.01 1.03 1.01 0.98
0.9 0.98 1.03 0.99 0.94
0.8 0.98 1.03 0.98 0.94
0.7 0.98 1.03 0.99 0.92
0.6 0.98 1.02 0.98 0.92
0.5 0.98 1.02 0.99 0.89
0.4 0.98 1.01 0.98 0.90
0.3 0.98 1.00 0.98 0.80
0.2 1.00 0.98 0.98 0.45
0.1 1.05 0.75 0.75 0.00
0.0 1.10 0.00 0.00 0.00

IV. NUMERICAL RESULTS

In this section, we compare our proposed WLLSI method with the Row
Average method and LLSI method in both synthetic data and real data. For the
synthetic data, it is generated by combining a matrix with entries following
the uniform distribution U(0, 1), and another matrix having strongly linear
dependent rows. The real data set comes from the yeast gene expression data
[16]. We then consider a breast cancer dataset. Interesting results are obtained in
the clustering analysis when different imputation methods are used in recovering
the missing values in the dataset.

For the synthetic data, we generate data in the form of G = (1−w)P + wQ
where w ∈ [0, 1]. Here P is a 474 × 15 matrix such that its ith row is given
by the (i mod 15)th row of the matrix M = (I − zzT ) ∈ R15×15 where z =
(−1/7,−1/6, . . . ,−1, 0, 1, . . . , 1/6, 1/7)T and Q is a random matrix whose
entries follow the uniform distribution U(0, 1). Here a mod b is the remainder
when a is divided by b. We then randomly pick 0.2% of the entries of G and
assume they are missing. Then we apply the Row Average method, the LLSI
method and our WLLSI method to estimate these missing entries and the results
of their NRMSEs are reported in Tables I. We observe that our WLLSI method
is robust and has the best performance in general.

For the real data example, we use a practical data set taken from yeast data set
(Yeung and Ruzzo [16]). The raw matrix is available at http://hkumath.hku.hk/
∼wkc/yeast.xls. The gene expression data is a 384 × 17 matrix. We randomly
pick 0.1%, 0.05%, 0.02% of the entries of the matrix and assume that they are
missing. We then use the three different methods to estimate the missing values.
Table II reports the results of NRMSEs, and our WLLSI method is the best.

We then apply the imputation methods to a published breast cancer gene
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TABLE II
NRMSE OF DIFFERENT METHODS

Number of Missing Values 65 (0.1%) 33 (0.05%) 8 (0.02%)
RA Method 0.66 0.38 0.52
LLSI Method 0.47 0.40 0.15
WLLSI Method 0.47 0.33 0.08
optimal λ∗ 0.00 0.03 0.45

expression dataset (Sortlie et al., [12]) to recover the missing data. In general,
there are more genes being identified after the missing data analysis. Using the
original data, we have identified 89 differentially expressed genes between nor-
mal and breast cancer sample. With the aid of missing data analysis, 9 additional
genes were identified. Among them, 3 genes (PPAP2N, CD01, CDKN1C) are
common among all missing value estimation methods, whereas LLSI method or
WLLSI method and RA method specifically identify 1 (CCNA2) and 5 (PTPN1,
LEPROTL1, CCNF, CCL7 and C21orf45) additional genes, respectively.

We remark that some of the genes that are identified after data preprocessing
by using our imputation methods do have pathological significance. In fact,it
is well known that cell division cycle is tightly controlled by activation and
inactivation of cyclin-dependent kinases (CDKs), which trigger the transition to
subsequent phases of the cycle. CDKs are small serine/threonine protein kinases
that require association with a cyclin subunit for their activation. CDK inhibitors
(CKIs) can prevent cell cycle progression by negatively regulating cyclin-CDK
complexes ([8] and [13]). Interestingly, many of the differential expressed genes,
such as CCNA2 (cyclin A2), CCNF (cyclin F), and CDKN1C (p57 Kip2), as
well as those from the original data (CDC2, CDKN2C, p18 CDK4) are known
to regulate cell cycle progression, in particular G1-S and G2-M transitions.

V. CONCLUDING REMARKS

In this paper, we proposed the WLLSI method for missing value estimation.
The WLLSI method is a combination of the Row Average method and the LLSI
method. The method allows the model parameter λ to be trained. Numerical
results based on synthetic data and real yeast data show that our method is more
effective and robust in general. We remark that WLLSI can be easily extended
to the case when we consider the combination of “Column Average method”
and LLSI method.

We observe that when the number of missing entries in the matrix are rela-
tively too large (e.g. more than 10%), the information which can be used in the
genes with missing values is very limited, so hence making it difficult to obtain
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a good model parameter λ through training. The success of our WLLSI method
also relies on the process of choosing the k most similar genes. Therefore we
need a good measurement to measure the similarity of two genes. We will
further develop our method so as to cope with the above two difficulties.
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