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ABSTRACT

Motivation: Probabilistic Boolean networks (PBNs) have been

proposed to model genetic regulatory interactions. The steady-

state probability distribution of a PBN gives important information

about the captured genetic network. The computation of the steady-

state probability distribution usually includes construction of the

transition probability matrix and computation of the steady-state

probability distribution. The size of the transition probability matrix is

2n-by-2n where n is the number of genes in the genetic network.

Therefore, the computational costs of these two steps are very

expensive and it is essential to develop a fast approximation

method.

Results: In this article, we propose an approximation method for

computing the steady-state probability distribution of a PBN based

on neglecting some Boolean networks (BNs) with very small

probabilities during the construction of the transition probability

matrix. An error analysis of this approximation method is given and

theoretical result on the distribution of BNs in a PBN with at most

two Boolean functions for one gene is also presented. These give a

foundation and support for the approximation method. Numerical

experiments based on a genetic network are given to demonstrate

the efficiency of the proposed method.

Contact: sqzhang@hkusua.hku.hk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Mathematical modeling and computational study of regulatory

interactions between DNA, RNA, proteins and small molecules

based on the microarray data are hot topics in bioinformatics

and have been studied by a number of researchers (Celis et al.,

2000; Hughes et al., 2001; Lipshutz et al., 1999; Lockhart and

Winzeler, 2000; Schena et al., 1995). There have been many

formalisms proposed in the literatures to study the genetic

regulatory networks such as directed graphs, Bayesian net-

works, Boolean networks (BNs), probabilistic Boolean net-

works (PBNs), ordinary and partial differential equations and

many other mathematical models (Jong, 2002). Among these

models, BN and PBN (an extension from BN) attract much

attention in the biophysics community. Reviews of BN models

can be found in Huang (1999), Kauffman (1993) and Somogyi

and Sniegoski (1996). In a BN model, gene expression states are

quantified into two levels: on and off (represented as 1 and 0,

respectively). Even though most biological phenomena man-

ifest them in continuous domain, the binary expression can

capture the qualitative relationships, and show promising and

useful results (Shmulevich and Zhang, 2002; Szallasi and Liang,

1998; Wuensche, 1998). In a BN model, the target gene is

predicted by several genes called its input genes via a Boolean

function. Once the input genes and the Boolean functions are

known, the BN model is constructed deterministically.

However, genetic regulation exhibits uncertainty in the

biological level and microarray data for inferring the model

may have errors due to experimental noise in the complex

measurement processes. Thus, a deterministic model is not

favorable to such real situations and to develop a model

incorporating the uncertainty is needed, which results in the

development of PBNs. PBNs have been recently developed and

studied in the literatures. In a PBN, for each gene, there can be

more than one Boolean function. The state transits into a

number of states with certain probabilities according to the

realizations of all possible BNs. Thus, the dynamics (transi-

tions) of the system can be described by a Markov chain.

Detailed explanations of extending BN to the instantaneously

random PBN can be found in Shmulevich et al. (2002a). The

random gene perturbations are introduced into the PBN model

in the paper (Shmulevich et al., 2002b), where the perturbation

describes the random inputs from the outside. Introducing the

random gene perturbation into the system makes it stable in the

long run. Further extension of PBN model to the context-

sensitive PBN model was introduced by Pal et al. (2005).

A brief review of the PBN model based on mathematical

formulation will be given in the next section.
Given a PBN, a natural and important problem is to study

its steady-state probability distribution (Brun et al., 2005,

Shmulevich et al., 2003). It provides the first-order statistical

information of a PBN. Based on such information of a PBN,

one can understand a genetic network, and identify the

influence of different genes in a network. Furthermore, one

can figure out how to control some genes in a network, such*To whom correspondence should be addressed.
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that the whole system can evolve into a target state or desired
steady-state probability distribution. Therapeutic gene inter-

vention or gene control policy (Datta et al., 2003, 2004;

Ng et al., 2006; Shmulevich et al., 2002b) can then be developed
and studied.

Monte-Carlo simulation method has been proposed in
Shmulevich et al. (2003) to estimate the steady-state probability

distribution of a PBN. The idea is that, by simulating the

underlying Markov chain for a sufficiently long time until it

converges, one can get an approximation of the steady-state
probability distribution. Although it has been shown that

Monte-Carlo simulation method can perform well in a small

PBN, it can be successfully used only if we are sufficiently

confident that the system has evolved into its steady state
before the algorithm stops. Theoretically, a priori bound on the

number of iterations is too large to be useful even for a

moderate size network (Rosenthal, 1995). Thus in practice, only
empirical determination methods can be used to stop the chain

and get an estimate of the steady-state probability distribution

(Shmulevich et al., 2003). On the other hand, matrix-based

method, a deterministic method can be used to obtain the
steady-state probability distribution more accurately and

efficiently.
It is well known that in Markov chain theory, if a Markov

chain is irreducible and aperiodic, the steady-state probability

distribution is independent of the initial condition. We remark

that in a PBN with random gene perturbations (Shmulevich
et al., 2002b), the underlying transition probability matrix can

be shown to be irreducible and aperiodic. In Zhang et al.

(2007), power method has been successfully applied to compute
the steady-state probability distribution based on an efficient

construction of the transition probability matrix of a PBN

without random perturbation. The complexity of the construc-

tion of probability transition matrix is Oðn �N � 2nÞ, where N is
the total number of BNs and n is the number of genes.

The main aim of this article is to propose an efficient and
effective approximation method, based on the method pre-

sented in Zhang et al. (2007) to find the steady-state probability

distribution for the general PBN model. The rest of the article is

organized as follows. In Section 2.1, a brief review on the
mathematical formulation of the PBN model is given. In

Section 2.2, the methodology to compute the steady-state

probability is introduced with an error analysis. In Section 3.1,
numerical experiments are given to demonstrate the efficiency

and effectiveness of the proposed method. In Section 3.2, we

give the probability distribution of BNs in a PBN with at most

two Boolean functions for one gene. Finally, in Section 4,
we give a brief summary to conclude the article.

2 METHODS

2.1 A review of probabilistic Boolean networks

In this section, we give a brief review of the PBNs. A PBN is the

generalization of a BN. A BN G(V,F) consists of a set of nodes V and

Boolean functions F where

V ¼ fv1; v2, . . . ; vng and F ¼ f f1; f2, . . . ; fng:

Let vi(t) be the state of vi at time t, where vi¼ 0 represents that the

gene is unexpressed and vi¼ 1 means it is expressed. The overall

expression levels of all the genes in the network at time step t is given by

the following column vector

vðtÞ ¼ ½v1ðtÞ; v2ðtÞ, . . . ; vnðtÞ�
T:

This vector is called the gene activity profile (GAP) of the network at

time t. We note that when v(t) ranges from ½0; 0, . . . ; 0�T (all entries are

0) to ½1; 1, . . . ; 1�T (all entries are 1), it takes on all the 2n possible states

of the n genes. The list of Boolean functions represents the rules of the

regulatory interactions among the nodes (genes):

viðtþ 1Þ ¼ fiðvðtÞÞ; i ¼ 1; 2, . . . ; n:

Here, each gene will update its state according to the states of its

input genes in the previous step and its corresponding Boolean

function. Thus, a BN is a deterministic dynamical system.

In a PBN, for each target gene, instead of having only one single

Boolean function, it has a number of Boolean functions having

equivalent prediction abilities. All these Boolean functions can be

selected randomly with some probabilities. We assume that for the ith

gene, there are l(i) possible Boolean functions:

FðiÞ ¼ f
ðiÞ
j : for j ¼ 1, . . . ; lðiÞ

n o
and the probability of choosing function f

ðiÞ
j is c

ðiÞ
j , where f

ðiÞ
j is a

function with respect to the activity levels of n genes. A PBN is said to

be independent if the elements from different FðiÞ are independent

(Lähdesmäki et al., 2006). For an independent PBN of n genes, there

are at most

N ¼
Yn
i¼1

lðiÞ ð1Þ

different possible BNs. This means that there are totally N pos-

sible realizations of the genetic network. Suppose fj be the j-th possible

realization,

fj ¼ ½f
ð1Þ
j1
; f ð2Þj2 , . . . ; f ðnÞjn �; 1 � ji � lðiÞ; i ¼ 1; 2, . . . ; n;

The probability to choose the j-th realization is:

Pj ¼
Yn
i¼1

c
ðiÞ
ji
; j ¼ 1; 2, . . . ;N: ð2Þ

If the joint probability distribution of F ð1Þ;F ð2Þ, . . . ;F ðnÞ cannot be

factorized as the product of FðiÞ, then it is a dependent PBN. For a

dependent PBN, we use the same notations as those for independent

PBNs. But notice that now the expressions of N and Pj will be different

from (1) and (2).

Let a and b be any two column vectors with n entries being either 0 or

1, which represent the states of the system at time tþ 1 and t. Then

Prob fvðtþ 1Þ ¼ a j vðtÞ ¼ bg ¼XN
j¼1

Prob fvðtþ 1Þ ¼ a j vðtÞ ¼ b; the j-th BN is selectedgPj:

By letting a and b ranging from ½0; 0, . . . ; 0�T to ½1; 1, . . . ; 1�T

independently, one can get the transition probability matrix A with

size 2n � 2n. It can be expressed as:

A ¼
XN
j¼1

PjAj

where Aj is the transition matrix corresponding to the j-th BN.

Random gene perturbation is the description of the random inputs

from the outside due to external stimuli and this is meaningful in an

open genome system. The effect of the random gene perturbation is to

make the genes flip from state 1 to state 0 or vice versa. It makes the

underlying Markov chain of the PBN ergodic and therefore all the

2n states in the system are communicated (Shmulevich et al., 2002b).

W.-K.Ching et al.
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When random gene perturbation is included, the transition probability

matrix ~A is

~Aði; jÞ ¼ ð1� pÞnAði; jÞ

þ phðvðiÞ;vðjÞÞð1� pÞn�hðvðiÞ;vðjÞÞIvðiÞ6¼vðjÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
perturbation part

: ð3Þ

Here hðvðiÞ; vð jÞÞ is Hamming distance between the two vectors v(i)

and v( j), p is the perturbation probability of each gene and IvðiÞ6¼vð jÞ is the

indicator function.

The instantaneously random PBN was extended to the context-

sensitive PBN in Pal et al. (2005). In a context-sensitive PBN, at each

time step the BN will be changed with a probability q. The transition

probability matrix A without the gene perturbations can be obtained

from the following:

Prob vðtþ 1Þ ¼ a j vðtÞ ¼ b
� �

¼
XN
j¼1

Prob fvðtþ 1Þ ¼ a j vðtÞ ¼ b; b is in the j-th BNgPj

¼
XN
j¼1

XN
l¼1

Probfvðtþ 1Þ ¼ aþ 2nðl� 1Þj

vðtÞ ¼ bþ 2nðj� 1ÞgPj:

Here the probability

Probfvðtþ 1Þ ¼ aþ 2nðl� 1ÞjvðtÞ ¼ bþ 2nðj� 1Þg

describes the chance that state b will make a transition into state a in

network l when b belongs to network j. The difference between

a context-sensitive PBN and an instantaneously random PBN is

that the column vectors a and b are assumed to be in a certain BN

with some probability at each time point and it will change

to other BNs with a probability q. Similar to the instantaneously

random PBN, when the column vectors a and b run from state

½0; 0, . . . ; 0�T to ½1; 1, . . . ; 1�T, we can get the transition matrix A. It can

also be described as:

A ¼
XN
j¼1

ð1� qÞPjAj þ
X
k6¼j

qPj
PkP
l 6¼j Pl

Ak

 !

¼
XN
j¼1

Pj ð1� qÞ þ q
X
k6¼j

PkP
l 6¼k Pl

 !
Aj: ð4Þ

The random gene perturbations can be introduced into a context-

sensitive PBN similarly.

2.2 Computation of the steady-state probability

distribution

In this section, a computational method for approximating the steady-

state probability distribution is introduced. The computational method

consists of two steps: (i) the construction of the transition probability

matrix of the PBN without perturbation and the construction of

the perturbation matrix, with which we can get the final transition

matrix; (ii) computing the eigenvector corresponding to the maximum

eigenvalue. The eigenvector in the normalized form is the steady-

state probability vector. From Equation (3), we observe that the final

transition matrix ~A is the sum of the transition matrix without

perturbation A multiplied by ð1� pÞn and the perturbation matrix.

The perturbation matrix is same for different networks since it

only depends on the number of genes and the random gene

perturbation probability. Although the construction of this matrix

may cost much time, once the matrix is constructed, it can be used

later for all the networks with same number of genes and same

perturbation probability. When there is no perturbation, the transition

matrix is sparse, while it is dense if there is perturbation. In the

third step, the power method, an efficient and widely used method, is

applied to solve the dominant eigenvalue and the corresponding

eigenvector. We remark that in our case, the dominant eigenvector

is actually the steady-state probability vector. In our numerical tests,

the computation of the eigenvector can be finished within one minute.

When there are 12 genes, it cost �5 s and when there are 14 genes, it cost

�13 s only. Now our main aim is to reduce the computational cost for

construction of the transition matrix A for both the instantaneously

random PBN and the context-sensitive PBN without gene

perturbations.

In Shmulevich et al. (2002c), the transition probability matrix A is

constructed by computing all the entries one by one. For each entry, all

the BNs have to be considered so as to determine if the network

contributes to it or not. Take for example, if one wants to compute the

entry A(j, i), one needs to consider if the first BN is applied, whether

state j can be visited by i. And then consider the second network, and so

on. Since the matrix A is large and sparse in practice, much time was

wasted in computing the zero entries. In Zhang et al. (2007), an efficient

algorithm has been proposed to construct the transition probability

matrix. The idea is to consider the non-zero entries only. The method is

based on the state-space of the Markov chain. Given a state i, if a

specific Boolean function can lead it to state j, then A( j, i) will have

value corresponding to the probability of this BN. If another BN also

can lead state i to state j, then the probability will be greater by the

probability corresponding to the BN. Although this is only an

improvement in computing the transition probability matrix, it already

saves much time and makes significant progress in computing the

steady-state probability. We remark that the computational complexity

is Oðn �N � 22nÞ for method proposed in Shmulevich et al. (2002c), while

it is Oðn �N � 2nÞ in Zhang et al. (2007) where n is the number of genes

and N is the number of BNs in the PBN. Moreover if there are m states

for each gene, the computational complexity will change from

Oðn �N �m2nÞ to Oðn �N �mnÞ.

We observe that in many realizations of a PBN, a lot of BNs have

slim chances to be chosen. Therefore our proposed method here is

to consider only those BNs with probability greater than a given

threshold. This of course can save much time in the construction of

the transition probability matrix. Since the idea here only involves

the probabilities of choosing the BNs, it can be extended to the

PBNs having multiple values. Moreover, it can be applied to both

the dependent and independent PBNs. In the next section, we will

show some numerical experiments for the proposed method.

The following is a simple explanation of the error due to removal of

the BNs.

Suppose the steady-state probability vector of ~Ax ¼ x is X. There

are n0 BNs being removed whose corresponding transition matrix

are (A1;A2, . . . ;An0 ) and their probability of being chosen are given

by p1; p2, . . . ; pn0 , respectively. Then after the removal of these n0
BNs and making a normalization, the transition probability matrix

becomes

Â ¼ ð1� pÞn �
1

1� ðp1 þ p2 þ . . .þ pn0 Þ

� ðA� ðp1A1 þ p2A2 þ . . .þ pn0An0 ÞÞ þ
~P: ð5Þ

Here ~P is the perturbation matrix. Suppose that the steady-state

probability vector for the linear system Âx ¼ x is X̂, then from (5),

we have

ðð1� pÞnðA� p1A1 � p2A2 � � � � � pn0An0 Þ

þ ð1� ðp1 þ p2 þ � � � þ pn0 ÞÞ
~PÞX̂

¼ ð1� ðp1 þ p2 þ � � � pn0 ÞÞX̂: ð6Þ

Approximate computation of steady-state for PBNs
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Therefore we have,

k ~AX̂� X̂k1

¼ kðð1� pÞnAþ ~PÞX̂� X̂k1

¼ kð1� pÞnðp1A1 þ p2A2 þ � � � þ pn0An0 ÞX̂

þ ðp1 þ p2 þ � � � þ pn0 Þ
~PX̂� ðp1 þ p2 þ � � � pn0 ÞX̂k1

¼ kp1ðð1� pÞnA1 þ ~P� IÞX̂þ p2ðð1� pÞnA2 þ ~P� IÞX̂

þ � � � þ pn0 ðð1� pÞnAn0 þ
~P� IÞX̂k1

� p1kðð1� pÞnA1 þ ~P� IÞX̂k1

þ p2kðð1� pÞnA2 þ ~P� IÞX̂k1

þ . . .þ pn0kðð1� pÞnAn0 þ
~P� IÞX̂k1 ð7Þ

We note that in each column of Akðk ¼ 1; 2, . . . ; n0Þ, there is one non-

zero entry and it is equal to one. We do not know the exact form of each

Ak. Here, we assume that the position of the non-zero entry follows the

uniform distribution. Let

yi ¼
X2n
j¼1

½ð1� pÞnAk þ ~P�ij;Y ¼ maxfy1; y2, . . . ; y2n g:

Since the term ð1� pÞnAk þ ~P is the transition probability matrix

with perturbation corresponding to the k-th BN, EðyiÞ ¼ 1. We remark

that the Chernoff bound in Motwani and Rahavan (1995, p. 72)

states that:

Let Z1;Z2, . . . ;Zm be independent Poisson trials such that for

i ¼ 1, . . . ;m, ProbðZiÞ ¼ pi where 0 < pi < 1. Then, for

Z ¼
Xm
i¼1

Zi; � ¼ EðZÞ ¼
Xm
i¼1

pi

and � > 2e� 1,

ProbðZ > ð1þ �Þ�Þ < 2�ð1þ�Þ�:

By letting m ¼ 2n, � ¼ 2n and � ¼ 1, we can have

Probðyi > ð1þ 2nÞÞ <
1

21þ2n
;

ProbðY > ð1þ 2nÞÞ < 2n �
1

21þ2n
¼

1

21þn
:

We should note that n should be larger than 2 since n > ð2e� 1Þ=2 is

assumed (e is the base of natural log). However, if n � 2, Y � 1þ 2n

always holds.

Thus, we have

EðYÞ < maxð1þ 2n; 2n �
1

21þn
Þ ¼ 1þ 2n;

E kðð1� pÞnAk þ ~PÞX̂� X̂k1

� �
< ð1þ EðYÞÞkX̂k1

< ð2þ 2nÞkX̂k1:

Finally, from (7) and the above, the expected residual is bounded by

E k ~AX̂� X̂k1

� �
< ðp1 þ p2 þ � � � þ pn0 Þð2þ 2nÞkX̂k1:

If kXk1 is equal to or very close to kX̂k1, we can see

E
k ~AX̂� X̂k1
kXk1

 !
< ðp1 þ p2 þ � � � þ pn0 Þð2þ 2nÞ:

Since this error estimate only gives an expected upper error bound,

it cannot be applied for all the cases to estimate n0. From the

analysis, we can see generally, the error bound can be determined

by total probability of the removed BNs and the number of genes in

the PBN.

Take for example, if n¼ 10, the total probability of all the removed

BNs is 0.01 (the remaining networks is 0.99), and kX̂k1 < 0:05.

Then the expected residual norm k ~AX̂� X̂k1 of the new steady-state

probability vector is bounded by

22ðp1 þ p2 þ . . .þ pn0 ÞjjX̂jj1 < 0:011:

We remark that for the context-sensitive PBN, from (4), we can see

Pjðð1� qÞ þ q
X
k6¼j

PkP
l6¼k Pl

Þ

corresponds to Pj in the instantaneously random PBN. With the same

method, the error can be estimated.

3 RESULTS

3.1 Numerical experiments

In this section, we present some numerical experiments based

on a network described in Shmulevich et al. (2003). Gene

(TOP2A) is the only input gene of gene (SCYB10); (INP10);

(IP10) and the in-degree of it is zero, then it is not considered in

the tests. Thus, the total number of genes studied in the

network is 14 and the total number of possible states is equal to

214, i.e. 16 384. For simplicity of discussion, here we consider

independent PBNs only. The settings of the experiments are

the same as those in Zhang et al. (2007). The number of

Boolean functions of each gene is given by

2 2 2 1 1 3 1 2 2 2 2 1 2 2

and the probabilities for choosing the Boolean functions is

shown in Table 1. In the numerical experiment, the number of

input genes in a BN is set to be no more than three and the

input genes are randomly selected. The Boolean functions are

also generated randomly.
All the numerical experiments are done in a notebook

computer with the following configuration: Intel Pentium M

1.5GHz and RAM: 768MB. Figure 1 presents the distribution

of all the 1536 BNs. We observe that a relatively small number

of BNs with high probability constitute most of the total

probability. Table 2 shows the experimental results for the

instantaneously random PBNs and Table 3 shows the experi-

mental results for the context-sensitive PBNs. The perturbation

probability for each gene is set to be 0.01. In the results of the

Table 1. Selection probability of all the Boolean functions in the

network with 14 genes

f 1 f 2 f 3 f 4 f 5 f 6 f 7

0.8560 0.2768 0.6759 1.0000 1.0000 0.0264 1.0000

0.1440 0.7232 0.3241 0.4983

0.4754

f 8 f 9 f 10 f 11 f 12 f 13 f 14

0.0857 0.5595 0.0751 0.8508 1.0000 0.8697 0.6004

0.9143 0.4405 0.9249 0.1492 0.1303 0.3996

The column corresponding to each f i is the probability of choosing the

corresponding Boolean function f ij, where j is the row number of the probabilities

in the table.

W.-K.Ching et al.
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context-sensitive model, the probability of the transition from

one network to others is set to be 0.01. We set a lower bound of

all Pj. If Pj is less than the lower bound, the corresponding

network is not considered in the construction of the transition

probability matrix. We compute the error between the true

steady-state probability distribution and the approximate one

with the following vector norms: k � k1, k � k2 and k � k1 and

compare them with the infinity norm of the true steady-state

probability distribution by dividing the errors by it. We remark

that the error does not depend on the perturbation probability

much. For example, the proportion between the relative error

when p¼ 0.01 and p¼ 0.001 is between 0.97 and 1.03. The total

number of BNs removed is denoted by n0. We also give the

computational time of constructing the transition matrix with-

out perturbation. From the results in the tables, it is easy to see

that the computational time is linear with respect to the number

of BNs. The first 1000 states with largest probability are chosen

and compared with those in the true case. We find that even

though the lower bound is set to be 10�4, almost all of the 1000

states are from those in the true case (991 out of 1000). The total

probability of these 1000 states is about 0.8 in this test case.

The number of matched states is denoted by nmatch in the table.

3.2 Probability distribution of the Boolean networks

Since the number of input genes of one gene cannot be very

large (Guelzim et al., 2002), the number of Boolean functions

should be very small. For the independent PBN, if the

maximum number of Boolean functions for all the target

genes is two, and the probability of choosing one Boolean

function follows the uniform distribution, then the number of

BNs dropped given a threshold will follow some interesting

probability distribution.

We first consider the case that for any gene i the probability

that the first Boolean function is chosen is given by c. This

means that

cðiÞ1 ¼ c and cðiÞ2 ¼ 1� c:

We may further assume c > 0:5. In the case of c¼ 0.5, all

BNs have the same probability 2�n of being chosen. Thus given

a threshold, either all the BNs are removed or all are retained.

If the threshold level is given by �, then the condition that a BN

will be removed is given by

ckð1� cÞn�k < �

Table 2. Numerical results of the approximation method for the network using the instantaneously random PBN model

Lower bound of all Pj Errork�k1 Errork�k2 Errork�k1 n0 Time (s) nmatchout of 1000

10�4 1.68� 100 7.03� 10�2 2.61� 10�2 1009 1369 991

10�5 1.66� 10�1 6.60� 10�3 2.30� 10�3 535 2459 997

10�6 9.00� 10�3 3.47� 10�4 1.15� 10�4 182 3257 1000

The BNs with probabilities less than the lower bound of all Pj are removed during the construction process of the probability transition matrix. Three different vector

norms k � k1; k � k2; k � k1 are used to evaluate the relative errors to the maximum steady-state probability of the original system(divided by it). Here, n0 is the total number

of the BNs removed and there are nmatch states remaining in the 1000 states with highest probability of the original system after taking the approximation. The random

gene perturbation probability is 0.01. The total computational time for the construction of the true transition probability matrix without gene perturbation is 3727 s.
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Fig. 1. The distribution of all the BNs in a network taken from

Shmulevich et al. (2003) with total 1536 BNs.

Table 3. Numerical results of the approximation method for the network using the context-sensitive PBN model

Lower bound of all Pj Errork�k1 Errork�k2 Errork�k1 n0 Time (s) nmatchout of 1000

10�4 1.68� 100 7.04� 10�2 2.61� 10�2 1009 1380 991

10�5 1.66� 10�1 6.60� 10�3 2.30� 10�3 535 2493 997

10�6 9.00� 10�3 3.48� 10�4 1.15� 10�4 182 3333 1000

Explanations of the table is similar to that for Table 2. The transition probability of one BN to other BNs is 0.01. The random gene perturbation probability is 0.01.

The total computational cost for the construction of the true transition probability matrix without perturbation is 3782 s.
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or

k >
log �� n logð1� cÞ

log c� logð1� cÞ

Here, k is the number of first Boolean functions being chosen

in the BNs. Let k* be the minimum integer such that the above

inequality holds. Then the number of BNs being removed will

be given by Xn
j¼k�

n!

j!ðn� jÞ!
:

Therefore, the proportion of BNs being removed is given by

1

2n

Xn
j¼k�

n!

j!ðn� jÞ!
:

We then consider the following. We derive the probability

that a randomly chosen BN will be removed during the

construction of the transition matrix in the approximate

computation given that for any gene i, the probability of its

first Boolean function being chosen follows the uniform

distribution Uð0; 1Þ. We begin with the following lemma.
LEMMA 1. (Ross, 1997) If u follows the uniform distribution

U½0; 1� then 1� u also follows the uniform distribution and the

random variables

�1

�
lnðuÞ and

�1

�
lnð1� uÞ

follow the exponential distribution �e��x.
LEMMA 2. If X1;X2, . . . ;Xm are independent and identically

distributed, and follow the exponential distribution with �¼ 1,

then

� ¼ X1 þ X2 þ � � � þ Xm

has the following Erlangian distribution of m phases

Probð� < yÞ ¼ 1�
Xm�1
k¼0

yk

k!
e�y

Proof: We will prove this by using mathematical induction.

When � ¼ X1, Probð� < yÞ ¼ 1� e�y, the statement holds.

Suppose that for � ¼ X1 þ X2 þ � � � þ Xm, we have

Probð� < yÞ ¼ 1�
Xm�1
k¼0

yk

k!
e�y:

Then

ProbðX1 þ X2 þ � � � þ Xm þ Xmþ1 < yÞ

¼

Z y

0

e�Xmþ1ProbðX1 þ X2 � � � þ Xm < y� Xmþ1ÞdXmþ1

¼

Z y

0

e�Xmþ1 ð1�
Xm�1
k¼0

ðy� Xmþ1Þ
k

k!
e�ðy�Xmþ1ÞÞdXmþ1

¼

Z y

0

e�Xmþ1dXmþ1 �

Z y

0

Xm�1
k¼0

ðy� Xmþ1Þ
k

k!
e�ydXmþ1

¼ 1� e�y �
Xm
k¼1

yk

k!
e�y ¼ 1�

Xm
k¼0

yk

k!
e�y:

Here the proposition follows.
PROPOSITION 1. Given that the threshold level is � and

there are n genes, the probability distribution function of all the

BNs is given by

fð�Þ ¼
ð� ln�Þn�1

ðn� 1Þ!
for � 2 ð0; 1Þ:

Proof: Assume there are n genes and for each

gene i there correspondingly li¼ 2 Boolean

functions: f
ðiÞ
1 ; f

ðiÞ
2 ; i ¼ 1; 2, . . . ; n. Let the probability of

choosing f ðiÞj be cðiÞj , cðiÞj � U½0; 1�. Suppose that Pj is the

probability of choosing the j-th BN,

Pj ¼
Yn
i¼1

c
ðiÞ
ji
; ð8Þ

Given a constant �,

ProbðPj < �Þ ¼ Prob
Yn
i¼1

c
ðiÞ
ji
< �

 !

¼ Prob �
Xn
i¼1

ln cðiÞji > � ln �

 !

¼ 1� Prob �
Xn
i¼1

ln c
ðiÞ
ji
� � ln �

 !
:

Since c
ðiÞ
j � U½0; 1�, � ln c

ðiÞ
j follows the exponential distribu-

tion. According to the above lemmas,

ProbðPj < �Þ ¼
Xn�1
j¼0

�ð� ln �Þj

j!
: ð9Þ

Then by differentiating (9) with respect to �, the probability

density function is got as

fð�Þ ¼
ð� ln�Þðn�1Þ

ðn� 1Þ!
for � 2 ð0; 1Þ:

We use a simple randomly generated network to illustrate the

results. There are 12 genes in the network, each gene has 2

Boolean functions, and therefore there are totally 4096 BNs.

For each gene there are 4 input genes, which are the input of

one of the two Boolean functions. Figure 2 shows the

distribution of all BNs. Figure 3 gives a close picture to

the distribution of the first 500 BNs with highest probability.

Table 4 shows the selection probabilities of all the Boolean

Table 4. Selection probability of the Boolean functions in the simulated

network

f 1 f 2 f 3 f 4 f 5 f 6

0.7038 0.0093 0.0199 0.3280 0.8615 0.3421

0.2962 0.9907 0.9801 0.6720 0.1385 0.6579

f 7 f 8 f 9 f 10 f 11 f 12

0.0759 0.0331 0.9006 0.8244 0.6970 0.3603

0.9241 0.9669 0.0994 0.1756 0.3030 0.6397

The column corresponding to each f i is the probability of choosing the

corresponding Boolean function f ij, where j is the row number of the probabilities

in the table.

W.-K.Ching et al.

1516



functions. Tables 5 and 6 show the details of this experiment

for both the instantaneously random PBN model and the

context- sensitive PBN model. The notations are same as those

in the previous section. The perturbation probability is 0.03

here. In the context-sensitive PBN, the transition probability

of a BN to other BNs is set to be 0.5. From the errors, it can

be seen that the approximate method can give a reasonable

explanation of the original system after dropping some BNs.

The total probability of the first 500 states with highest

probability is about 0.88. We note that almost all of these states

appear in the approximate solution depending on the require-

ment of the error. The computational time for constructing the

transition matrix are recorded in the tables. It decreased much

in our approximation method depending on the requirement of

the error tolerance.

4 CONCLUSION

In this article, we presented a matrix-based approximation

method for computing the steady-state probability distribution

of PBNs. This method works in the construction of the

transition probability matrix, which is of complexity OðnN2nÞ

in the original system, where N is the total number of BNs and

n is the number of genes. In our method, N can be smaller by

neglecting some BNs with little probability based on the

Table 5. Numerical results of the approximation method for the PBNs with number of Boolean functions equal to two for the instantaneously

random PBN with 12 genes

Lower bound of p Errork�k1 Errork�k2 Errork�k1 n0 Time (s) nmatchout of 500

10�4 9.21� 10�1 6.54� 10�2 2.91� 10�2 3646 326 495

10�5 1.55� 10�1 1.04� 10�2 4.50� 10�3 3052 663 498

10�6 2.05� 10�2 1.30� 10�3 5.36� 10�4 2261 1115 500

Explanations of the table is similar to that for Table 2. The random gene perturbation probability is 0.03. The total computational time for the construction of the true

transition probability matrix without perturbation is 2395 s.

Table 6. Numerical results of the approximation method for the PBNs with number of Boolean functions equal to 2 for the context-sensitive PBN

with 12 genes

Lower bound of p Errork�k1 Errork�k2 Errork�k1 n0 Time (s) nmatchout of 500

10�4 9.27� 10�1 6.55� 10�2 2.91� 10�2 3646 750 495

10�5 1.57� 10�1 1.04� 10�2 4.50� 10�3 3052 1060 500

10�6 2.07� 10�2 1.30� 10�3 5.37� 10�4 2261 1475 500

Explanations of the table is similar to that for Table 2. The transition probability of one BN to other BNs is 0.5. The random gene perturbation probability is 0.03.

The total computational time for the construction of the true PBN transition matrix without perturbation is 2620 s.
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Fig. 3. Distribution of the first 500 BNs with highest probability in the

randomly generated network with 12 genes.
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Fig. 2. Distribution of all the BNs in the randomly generated network

with 12 genes, totally 4096 BNs.
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probability distribution of all BNs and error evaluation.
Furthermore, we gave the theoretical results on the probability
distribution of number (proportion) of BNs dropped given a
threshold level with at most two Boolean functions for one

gene. Numerical experiments are given to demonstrate both the
efficiency and effectiveness of the proposed method. Since the
total number of states increases exponentially with respect to

the number of genes, it is still a problem to compute the steady-
state probability distribution for a general large network.
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