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1 Introduction

A rich variety of combinatorial optimization problems falls within the general framework of packing and

covering in hypergraphs. A hypergraph is a pair H = (V, E), where V is a finite set and E is a family of

subsets of V . Elements of V and E are called the vertices and edges of H, respectively. A vertex cover of H
is a vertex subset that intersects all edges of H. Let w be a nonnegative integral weight function defined

on V . A family S of edges (repetition is allowed) of H is called a w-packing of H if each v ∈ V belongs

to at most w(v) members of S. Let νw(H) denote the maximum size of a w-packing of H, and let τw(H)

denote the minimum total weight of a vertex cover. Clearly νw(H) ≤ τw(H); this inequality, however,

need not hold equality in general. We say that H is Mengerian if the min-max relation νw(H) = τw(H) is

satisfied for any nonnegative integral function w defined on V . Many celebrated results and conjectures

in combinatorial optimization can be rephrased by saying that certain hypergraphs are Mengerian (See

Section 79.1 of [19]), so Mengerian hypergraphs have been subjects of extensive research. As conjectured

by Edmonds and Giles [9, 18] and proved recently by Ding, Feng, and Zang [4], the problem of recognizing

Mengerian hypergraphs is NP -hard in general, and hence it cannot be solved in polynomial time unless

NP = P . In this paper we study a special class of Mengerian hypergraphs; our work is a continuation of

those done in [1, 2, 3, 5, 6].

Let G = (V,E) be a graph (directed or undirected) and let CG = (V, E), where E consists of V (C),

for all induced cycles C in G. Throughout this paper, by a cycle in a digraph we always mean a directed

one. In [6], Ding and Zang obtained a structural description of all undirected graphs G for which CG is

Mengerian. Due to the long list of forbidden structures, to find a good characterization of all digraphs G

with Mengerian CG seems to be extremely difficult. While this characterization problem remains open in

general, it was completely solved on tournaments by Cai, Deng, and Zang [1], where a tournament is an

orientation of an undirected complete graph.

Theorem 1.1 [1] Let T be a tournament. Then hypergraph CT is Mengerian if and only if T has no

subtournament isomorphic to F1 nor F2.

Figure 1. Forbidden subtournaments F1 and F2, where the two arcs not shown in F1 may take any directions.

(Note that F2 is the tournament in which every vertex is incident with precisely two incoming arcs and

two outgoing arcs.) One objective of this paper is to establish a closely related min-max relation which

is motivated as follows.
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Every hypergraph H = (V, E) is naturally associated with another hypergraph b(H) = (V, E ′), where

E ′ consists of all minimal (with respect to set inclusion) vertex covers of H. Usually b(H) is called the

blocker of H. Although in general the blocker of a Mengerian hypergraph does not have to be Mengerian

(see Section 79.2 of [19]), the famous max-flow-min-cut theorem and a Fulkerson theorem [11] (see Page

115 of [18]) assert that both the hypergraph of r-s paths in a graph and its blocker are Mengerian; so

are the hypergraph of r-arborescences and its blocker by Edmond’s disjoint arborescence theorem [7] and

Fullerson’s optimum arborescence theorem [12]. Recently, Chen et al. [3] managed to characterize all

undirected graphs G for which b(CG) is Mengerian; it turns out that b(CG) is Mengerian if and only if CG

is. So a natural question is to ask: what is the blocker version of Theorem 1.1?

Theorem 1.2 Let T be a tournament. Then hypergraph b(CT ) is Mengerian if and only if T has no

subtournament isomorphic to F1 nor F2.

An immediate corollary of Theorem 1.1 and Theorem 1.2 is the following.

Corollary 1.3 Let T be a tournament. Then b(CT ) is Mengerian if and only if CT is.

Let us define a few terms before presenting an equivalent of the above statements. Let G = (V, E)

be a digraph with a nonnegative integral weight w(v) on each vertex v. A feedback vertex set (FVS)

of G is a vertex subset that intersects each cycle in G, and a w-FVS packing of G is a collection F of

minimal FVS’s (repetition is allowed) such that each vertex v is contained in at most w(v) members of

F . Similarly, a w-cycle packing of G is a collection C of induced cycles (repetition is allowed) such that

each vertex v is contained in at most w(v) members of C. The weight of a cycle (resp. an FVS) is the

sum of weights of all vertices in this cycle (resp. FVS). Observe that every minimal FVS of G uniquely

corresponds to an edge of b(CG), and vice versa. So there is 1 − 1 correspondence between a w-FVS

packing of G and a w-packing of b(CG), and 1 − 1 correspondence between a w-cycle packing of G and

a w-packing of CG. Moreover, if G is a tournament, then every cycle in a cycle packing is a triangle (a

cycle of length three), and hence a cycle packing is actually a triangle packing.

Let Z+ denote the set of nonnegative integers. Then Theorem 1.1 and Theorem 1.2 can be restated

as follows.

Theorem 1.4 The following three statements are equivalent for a tournament T = (V, A):

(i) For any weight function w ∈ ZV
+, the minimum weight of an FVS in T is equal to the maximum

size of a w-triangle packing of T ;

(ii) For any weight function w ∈ ZV
+, the minimum weight of a triangle in T is equal to the maximum

size of a w-FVS packing of T ;

(iii) T has no subtournament isomorphic to F1 nor F2.

It is worthwhile pointing out that the above statement (i) is closely related to the famous Lucchesi-

Younger theorem [15] which, when restricted to a planar digraph G = (V,E), is equivalent to saying
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that for any w ∈ ZE
+, the minimum weight of a feedback arc set in G is equal to the maximum size of

a cycle packing of G, where a feedback arc set of G is a set of arcs that intersects each cycle in G; and

statement (ii) is closely related to the well-known Woodall conjecture [20] on packing feedback arc sets

and Edmonds-Giles conjecture [8, 17] on packing directed cut covers.

Given a digraph G = (V, E) with a nonnegative integral weight w(v) on each vertex v, the FVS

packing problem is to find a w-FVS packing of maximum size in G. In connection with this problem,

Frank suggested the following question.

Question 1.5 [10] Given a digraph G, can we decide in polynomial time whether each vertex of G can

be colored by red or blue so that every cycle contains at least one red vertex and at least one blue vertex?

Or is this an NP-complete problem?

Our next theorem states that Frank’s problem is NP -complete even when G is restricted to a tour-

nament.

Theorem 1.6 It is NP-complete to decide whether the vertex set of a given tournament can be partitioned

into two feedback vertex sets.

We shall also present algorithms for the FVS packing problem.

Theorem 1.7 The FVS packing problem on a tournament T = (V, A) with no F1 nor F2 can be solved

exactly in O(|V |4) time.

For the problem on a general tournament, we shall give an approximation algorithm.

Theorem 1.8 The FVS packing problem on a general tournament can be approximated within a factor

of 2/5.

The remainder of this paper is organized as follows: In Section 2, we give a proof of Theorem 1.2,

which relies heavily on the structural description of tournaments with no F1 nor F2 obtained in [1]. In

Section 3, we prove Theorem 1.6 by using the so-called Not-All-Equal 3-Satisfiability problem

as the source problem. In section 4, we present an exact algorithm for the FVS packing problem on

tournaments with no F1 nor F2, and describe a 2/5-approximation algorithm for the problem on general

tournaments. In Section 5, we conclude this paper with some open problems.

2 Min-max relation

The purpose of this section is to prove Theorem 1.2. We break the proof into a series of lemmas, and

shall implicitly and frequently use the fact that a vertex subset of a tournament is an FVS if and only

if it intersects every triangle. As usual, a digraph G is called strongly connected if for any two vertices x

and y, there exist a (directed) path from x to y and a (directed) path from y to x in G. Our proof relies

heavily on the following structural description obtained in [1].
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Lemma 2.1 [1] Let T = (V,A) be a strongly connected tournament. Then T has no subtournament

isomorphic to F1 nor F2 if and only if V can be partitioned into V1, V2, . . . , Vk for some 3 ≤ k ≤ |V |,
which have the following properties:

(i) For any i, j with 1 ≤ i ≤ j − 2 ≤ k − 2, each arc between Vi and Vj is directed from Vj to Vi.

(ii) For any triangle xyzx in T , there exists an i with 1 ≤ i ≤ k − 2 such that x ∈ Vi, y ∈ Vi+1, and

z ∈ Vi+2 (renaming x, y, and z if necessary).

We make two remarks on the above lemma: First, for notational convenience, the order of the indices

used in the above partition V1, V2, . . . , Vk is precisely the reverse of the one used in [1]. Second, as

depicted in Figure 2, the vertices of both F1 and F2 can be labeled as u1, u2, . . . , u5 such that {u1, u2, u3},
{u2, u3, u4}, and {u1, u4, u5} are vertex sets of three triangles. Using these triangles, we can immediately

see the sufficiency.

F1

u1

u4u5

u2 u3

F1

u1

u5

u2

u4

u3

F2

u5

u3

u2

u4

u1

Figure 2. Three triangles u1u2u3u1, u2u3u4u2, u1u4u5u1 in F1 and F2.

Let T = (V, A) be a tournament and u, v ∈ V . The arc in T with tail u and head v is written as (u, v)

and called the arc from u to v. For any subtournament K of T , let V (K) and A(K) denote the vertex

set and arc set of K, respectively. For any vertex u of T , let T\u denote the tournament obtained from

T by deleting u, and let T 〈u〉 denote the tournament obtained from T by introducing a new vertex u′

and then adding arcs in such a way that

for each v ∈ V − {u}, (u′, v) is an arc in T 〈u〉 iff (u, v) is an arc in T . (1*)

(There is no direction constraint on the arc between u and u′.) We propose to call u′ the image of u and

call T 〈u〉 an augmentation of T (with respect to u). It can be seen from (1*) that

No triangle in T 〈u〉 contains {u, u′}. (2*)

Lemma 2.2 Let T 〈u〉 be an augmentation of a tournament T = (V, A). If T contains no F1 nor F2,

then neither does T 〈u〉.

Proof. Assume the contrary: T 〈u〉 contains a subtournament F isomorphic to F1 or F2. Let u′ be

the image of u. Then F contains both u and u′, for otherwise, by (1*), V (F\u′) ∪ {u} would induce a

subtournament in T isomorphic to F , a contradiction.
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(1) We may assume that T is strongly connected.

Suppose not, let K be the strongly connected component of T 〈u〉 that contains F (such K is available

since F is strongly connected). Then K\u′ is strongly connected, for otherwise the vertex set of K\u′
can be partitioned into X and Y such that all arcs between X and Y are directed to Y . Without loss

of generality, we assume that u ∈ X. Since u′ is the image of u, all arcs in K between X ∪ {u′} and Y

are directed to Y , contradicting the strong connectivity of K. Since K is an augmentation of K\u′ (with

respect to u), we get (1), otherwise replace T by K\u′ and T 〈u〉 by K.

It follows from (1) that the vertex set V of T admits a partition V1, V2, . . . , Vk with properties (i)

and (ii) as described in Lemma 2.1. Suppose u ∈ Vh. Let us partition the vertex set V ∪ {u′} of T 〈u〉
into k sets V ′

i such that V ′
h = Vh ∪ {u′} and V ′

j = Vj for all other j with 1 ≤ j ≤ k. From (1*), we see

that the partition V ′
1 , V ′

2 , . . . , V ′
k satisfies (i) in Lemma 2.1 with respect to T 〈u〉. Since F is contained in

T 〈u〉, Lemma 2.1 guarantees the existence of a triangle xyzx in T 〈u〉 that violates (ii) in the lemma with

respect to the partition V ′
1 , V ′

2 , . . . , V ′
k. Note that {x, y, z} contains at most one of u and u′ by (2*). Set

Q = {x, y, z} if u′ 6∈ {x, y, z} and Q = ({x, y, z}−{u′})∪{u} otherwise. Then Q would induce a triangle

in T that violates Lemma 2.1(ii) with respect to the partition V1, V2, . . . , Vk, a contradiction. 2

Let T = (V, A) be a tournament and let S ⊆ V . We shall use the following notations in our proof:

DS := {C : C is a triangle in T and |V (C) ∩ S| = 2} (3*)

FS := {C : C is a triangle in T, V (C) ⊆ S and |V (C) ∩ V (C ′)| ≤ 1 for every C ′ ∈ DS} (4*)

F+
S := {C : C is a triangle in T, V (C) ⊆ S and |V (C) ∩ V (C ′)| = 2 for some C ′ ∈ DS} (5*)

Let C be a collection of some triangles in T . Write V (C ) = ∪C∈C V (C). It follows from the definition

that V (DS)− S 6= ∅ if DS 6= ∅ and that V (FS) ∪ V (F+
S ) ⊆ S.

Lemma 2.3 Let T = (V,A) be a tournament with no subtournament isomorphic to F1 nor F2. Suppose

S is a subset of V such that DS 6= ∅ and that |S ∩V (C)| ≥ 2 for every triangle C of T . Then there exists

R ⊆ S such that |R ∩ V (C)| = 1 for every triangle C ∈ DS. Moreover, given S, such an R can be found

in O(|V |3) time.

Proof. Let us first construct an undirected graph G with vertex set S as follows: uv is an edge of

G if and only if there is a triangle C in T such that {u, v} = S ∩ V (C). If G is a bipartite graph, let R

be one color class of G, then R is as desired. So we assume that G is nonbipartite and aim to reach a

contradiction. To this end, let x1x2 . . . x2l+1x1 be a shortest odd cycle of G. From the construction of

G, we see that for every i with 1 ≤ i ≤ 2l + 1, there exists a vertex yi in V − S such that {xi, xi+1, yi}
induces a triangle, denoted by 4i, in DS . Note that yi’s may not be distinct.

Let T0 denote the subtournament of T induced by vertex subset {xi, yi : 1 ≤ i ≤ 2l + 1}. Then

(1) 4i, for i = 1, 2, . . . , 2l + 1, are 2l + 1 triangles in T0, where x2l+2 = x1.

Let us perform a sequence of 2l+1 augmentations in the following iterative way: Ti := Ti−1〈yi〉; that is,

Ti is an augmentation of Ti−1 with respect to yi, for i = 1, 2, . . . , 2l+1. Let y′i be the image of yi involved
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in the construction of Ti, and let Ci denote the triangle y′ixixi+1y
′
i if 4i = yixixi+1yi and y′ixi+1xiy

′
i

otherwise. Since {x1, x2, . . . , x2l+1} ∩ {y1, y2, . . . , y2l+1} = ∅ = {y′1, y′2, . . . , y′2l+1} ∩ {y1, y2, . . . , y2l+1},
and since x1, x2, . . . , x2l+1, y

′
1, y

′
2, . . . , y

′
2l+1 are distinct vertices, by (1) we have

(2) Ci, for i = 1, 2, . . . , 2l + 1, are 2l + 1 triangles in T2l+1, with the property that no vertex of T2l+1

is contained in more than two of them.

Since T0 is a subtournament of T , it contains no F1 nor F2. Repeated applications of Lemma 2.2

yield the following.

(3) For any 0 ≤ i ≤ 2l + 1, tournament Ti contains no F1 nor F2.

Let us make one more simple observation.

(4) For any 0 ≤ i ≤ 2l + 1, every triangle in Ti contains at least two vertices from {x1, x2, . . . , x2l+1}.
To justify (4), we apply induction on i. For i = 0, since S ∩ V (T0) = {x1, x2, . . . , x2l+1} and

|S ∩ V (C)| ≥ 2 for every triangle C of T0 (by hypothesis), the desired statement follows. Suppose we

have established the assertion for Ti−1. Let us proceed to the induction step for Ti. Let xyzx be an

arbitrary triangle in Ti. Set Q = {x, y, z} if y′i /∈ {x, y, z} and Q = ({x, y, z} − {y′i}) ∪ {yi} otherwise. It

follows from (1*) and (2*) that Q induces a triangle in Ti−1. So it contains at least two vertices from

{x1, x2, . . . , x2l+1} by induction hypothesis. We can thus deduce that the triangle xyzx also contains

at least two vertices from {x1, x2, . . . , x2l+1} as yi and y′i are both outside {x1, x2, . . . , x2l+1}. So (4) is

proved.

It can be seen from (2) that the minimum size of an FVS of T2l+1 is at least l + 1. In view of (3),

Theorem 1.1 (which is equivalent to Theorem 1.4(i)) guarantees the existence of at least l + 1 vertex-

disjoint triangles in T2l+1. By (4), each of these l + 1 triangles contains at least two vertices from

{x1, x2, . . . , x2l+1}. Hence the size of {x1, x2, . . . , x2l+1} is at least 2(l + 1), a contradiction.

Since there are O(|V |3) triangles altogether in T , it takes O(|V |3) time to find the edge set of G .

From the proof we see that G is a bipartite graph. Since the two color classes of G can be obtained in

linear time by using depth first search, R can be found in O(|V |3) time. 2

Lemma 2.4 Let T = (V,A) be a tournament with no subtournament isomorphic to F1 nor F2. Suppose

S is a subset of V that contains at least two vertices from every triangle in T . Then V (C) * V (DS) for

every triangle C ∈ FS.

Proof. We may assume that T is strongly connected, otherwise we turn to consider the strongly con-

nected components of T separately. Thus V admits a partition V1, V2, . . . , Vk as described in Lemma 2.1.

For every v ∈ V , we use l(v) to denote the index i such that v ∈ Vi. Let D = (V,B) be the digraph

obtained from T by deleting all arcs from Vj to Vi with i ≤ j − 2; in other words, (u, v) ∈ B if and only

if (u, v) ∈ A and |l(u) − l(v)| ≤ 1. So each arc (u, v) in D falls into precisely one of the following three

categories: we call (u, v) an upward arc if l(u) = l(v) − 1, a downward arc if l(u) = l(v) + 1, and a level

arc if l(u) = l(v). By Lemma 2.1(ii), we have
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(1) D contains no triangle.

A (directed) path in D is called upward if it consists of three vertices and two upward arcs. It follows

from Lemma 2.1 that an upward path P in D corresponds to a triangle in T (induced by V (P )), and

vice versa. By the hypothesis on S, we get

(2) |V (P ) ∩ S| ≥ 2 for any upward path P in D.

We prove the lemma by contradiction. Assume the contrary: {a, b, c} ⊆ V (DS) for some triangle

abca ∈ FS . Suppose i = l(a) = l(b) − 1 = l(c) − 2 for some 1 ≤ i ≤ k − 2. Then (4*) guarantees the

existence of three triangles xx′x′′x, yy′y′′y, and zz′z′′z in DS such that a ∈ {x, x′, x′′}, b ∈ {y, y′, y′′},
and c ∈ {z, z′, z′′} and that

(3) xx′x′′, yy′y′′, and zz′z′′ are upward paths; that is, l(x) = l(x′)− 1 = l(x′′)− 2, l(y) = l(y′)− 1 =

l(y′′)− 2, and l(z) = l(z′)− 1 = l(z′′)− 2.

Since each upward path in D corresponds to a triangle in T , it follows from (4*) that

(4) No upward path in D can go through two vertices in {a, b, c} and a vertex in V −S. In particular,

for any u ∈ V − S and v ∈ {a, b, c} with |l(u) − l(v)| = 1, the arc between u and v is downward unless

v ∈ {a, c} and l(u) = i + 1.

Using (1), (3), (4), and the fact |{x, x′, x′′} ∩ S| = |{y, y′, y′′} ∩ S| = |{z, z′, z′′} ∩ S| = 2 (by (3*)),

we can enumerate all possible configurations of the three triangles xx′x′′x, yy′y′′y, and zz′z′′z, which

are described in (5), (6), and (7), respectively; see Figure 3 for an illustration, where vertices in S are

indicated by black points and those outside S by small circles.

(5) For triangle xx′x′′x, exactly one of the following holds:

(5.1) x ∈ Vi−2 − S, x′ ∈ Vi−1 ∩ S, x′′ = a ∈ Vi ∩ S;

(5.2) x ∈ Vi−1 ∩ S, x′ = a ∈ Vi ∩ S, x′′ ∈ Vi+1 − S, and downward (c, x′′) ∈ B, level (b, x′′) ∈ B;

(5.3) x = a ∈ Vi ∩ S, x′ ∈ Vi+1 − S, x′′ ∈ Vi+2 ∩ S, and downward (c, x′) ∈ B, level (b, x′) ∈ B;

(5.4) x = a ∈ Vi ∩ S, x′ ∈ Vi+1 ∩ S, x′′ ∈ Vi+2 − S, and downward (x′′, b) ∈ B, level (x′′, c) ∈ B.

(6) For triangle yy′y′′y, exactly one of the following holds:

(6.1) y ∈ Vi−1 − S, y′ ∈ Vi ∩ S, y′′ = b ∈ Vi+1 ∩ S, and downward (a, y) ∈ B;

(6.2) y = b ∈ Vi+1 ∩ S, y′ = Vi+2 ∩ S, y′′ ∈ Vi+3 − S, and downward (y′′, c) ∈ B.

(7) For triangle zz′z′′z, exactly one of the following holds:

(7.1) z ∈ Vi − S, z′ ∈ Vi+1 ∩ S, z′′ = c ∈ Vi+2 ∩ S, and downward (b, z) ∈ B, level (a, z) ∈ B;

(7.2) z ∈ Vi ∩ S, z′ ∈ Vi+1 − S, z′′ = c ∈ Vi+2 ∩ S, and downward (z′, a) ∈ B, level (z′, b) ∈ B;

(7.3) z ∈ Vi+1 − S, z′ = c ∈ Vi+2 ∩ S, z′′ ∈ Vi+3 ∩ S, and downward (z, a) ∈ B, level (z, b) ∈ B;

(7.4) z = c ∈ Vi+2 ∩ S, z′ ∈ Vi+3 ∩ S, z′′ ∈ Vi+4 − S.
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b

a

Figure 3. Possible configurations of triangles xx′x′′x, yy′y′′y, and zz′z′′z.

(8) The following statements hold:

(8.1) Either (5.1) or (6.1) fails;

(8.2) Either (6.2) or (7.4) fails;

(8.3) Either (5.4) or (6.2) fails;

(8.4) Either (6.1) or (7.1) fails.

To justify (8.1), suppose to the contrary that both (5.1) and (6.1) hold. Using (1) and path x′x′′y =

x′ay, we get level (x′, y) ∈ B, which in turn gives upward (x, y) ∈ B (as path xx′y does not correspond

to a triangle in D). Thus xyy′ is an upward path with x, y outside S, contradicting (2). Hence we

have (8.1). Similarly, the violation of (8.2) (resp. (8.3), (8.4)) would give {(y′′, z′), (y′′, z′′)} ⊆ B (resp.

{(x′′, y′), (x′′, y′′)} ⊆ B, {(y′, z), (y, z)} ⊆ B) and upward path y′y′′z′′ (resp. x′x′′y′′, yzz′), contradicting

(2) again.

(9) The following statements hold:

(9.1) Either (5.1) or (7.1) fails;

(9.2) Either (5.4) or (7.4) fails.

Indeed, if both (5.1) and (7.1) hold then, using (1) and path x′az, we have upward (x′, z) ∈ B, and

hence have the upward path xx′z with {x, z} ⊆ V − S, contradicting (2). Similarly, if both (5.4) and

(7.4) hold then (x′′, z′) ∈ B, and so the upward path x′′z′z′′ contradicts (2).

(10) The following statements hold:

(10.1) Either (5.4) or (7.2) fails;

(10.2) Either (5.3) or (7.1) fails.
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Indeed, if both (5.4) and (7.2) hold then, using (1) and path z′ax′, we have level (z′, x′) ∈ B. In view

of path z′x′x′′, we further have upward (z′, x′′) ∈ B. Thus zz′x′′ contradicts (2). Similarly, if both (5.3)

and (7.1) hold then we have level (z′, x′) ∈ B and upward (z, x′) ∈ B. It follows that the upward path

zx′x′′ contradicts (2).

(11) The following statements hold:

(11.1) Either (5.4) or (7.3) fails;

(11.2) Either (5.2) or (7.1) fails.

Indeed, if both (5.4) and (7.3) hold then, using (1) and paths x′′cz′′ and zax′, we have upward

(x′′, z′′) ∈ B and level (z, x′) ∈ B, respectively. Using path zx′x′′, we obtain upward (z, x′′) ∈ B.

Thus the upward path zx′′z′′ contradicts (2). Similarly, if both (5.2) and (7.1) hold then we have

{(x, z), (z′, x′′), (z, x′′)} ⊆ B. Thus the upward path xzx′′ contradicts (2).

(12) Either (5.4) or (6.2) holds.

Suppose otherwise, then from (6) and (5), we see that (6.1) and one of (5.1)-(5.3) hold. In view

of (8.1), we further conclude that (5.2) or (5.3) holds. From (5.2) and (5.3), it follows that {u} =

{x′, x′′} ∩ Vi+1 ⊆ V − S and (b, u) ∈ B is level. Using (1) and path y′y′′u, we have upward (y′, u) ∈ B

and hence the upward path yy′u with {y, u} ⊆ V − S, contradicting (2).

(13) Either (6.1) or (7.1) holds.

Suppose otherwise, then (6) and (7) imply that (6.2) and one of (7.2)-(7.4) hold. Using (8.2), we

further conclude that (7.2) or (7.3) holds. By (7.2) and (7.3), we have {u} = {z, z′} ∩ Vi+1 − S and level

(u, b) ∈ B. Using (1) and path uby′ = uyy′, we get upward (u, y′) ∈ B and hence upward path uy′y′′,

which contradicts (2).

(14) (6.2) holds (so (6.1) fails).

Suppose otherwise, (6.2) fails (so (6.1) holds by (6)). It follows from (12) and (8.4) that (5.4) holds

and (7.1) fails. Hence, by (7), one of (7.2), (7.3), and (7.4) holds, which leads to a contradiction to one

of (10.1), (11.1), and (9.2).

It follows from (14) and (13) that (7.1) holds, which, together with (9.1) and (10.2), implies that

neither (5.1) nor (5.3) holds. Moreover, the combination of (14) and (8.3) yields the failure of (5.4). Thus

from (5) we see that (5.2) holds, contradicting (11.2). 2

Lemma 2.5 Let T = (V,A) be a tournament with no subtournament isomorphic to F1 nor F2. Suppose

S is a subset of V such that DS ∪FS 6= ∅ and that |S ∩ V (C)| ≥ 2 for every triangle C of T . Then there

exists R ⊆ S such that |R ∩ V (C)| = 1 for every triangle C in DS ∪FS. Moreover, given S, such an R

can be found in O(|V |3) time.

Proof. We prove by contradiction. Assume (T, S) is a counterexample with minimum |S|. It follows

instantly from Lemma 2.3 that FS 6= ∅. Let C0 be a triangle in FS . Then Lemma 2.4 guarantees

the existence of some v ∈ V (C0) with v 6∈ V (DS). By considering (T, S − {v}), we deduce from the
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minimality of S that there exists R ⊆ S − {v} which contains exactly one vertex from each triangle in

DS−{v} ∪ FS−{v}. Note that C0 ∈ DS−{v}. So |R ∩ V (C)| = 1 for every triangle C in DS ∪ FS , a

contradiction.

Let s1, s2, . . . , sk be all the vertices in S. We apply the following algorithm to S. While i ≤ k do: set

S = S − {si} if si is contained in no triangle C such that |V (C) ∩ S| = 2.

Since there are O(|V |2) triangles altogether in T containing si, each iteration takes O(|V |2) time and

hence the whole algorithm runs in O(|V |3) time. Let S′ denote the resulting S. From the above proof,

we see that FS′ = ∅ and that DS′ = DS ∪FS , where S is the initial one. By Lemma 2.3 (with S′ in

place of S over there), we can find a subset R of S′ in O(|V |3) time, such that |R ∩ V (C)| = 1 for every

triangle C ∈ DS′ . This R is clearly as desired. 2

Now we are ready to establish the min-max relation.

Proof of Theorem 1.2. We shall actually show that statements (ii) and (iii) in Theorem 1.4 are

equivalent. For convenience, we use the following notations in our proof. Given a tournament T = (V,A)

and a weight function w ∈ ZV
+, let τw denote the minimum weight of a triangle in T and let νw denote

the maximum size of a w-FVS packing of T . Recall that we always have

(1) νw ≤ τw.

(ii)⇒(iii) Suppose the contrary: T = (V,A) contains a subtournament F isomorphic to F1 or F2.

Define w ∈ ZV
+ as w(v) = 1 for each v ∈ V . Then τw = 3. It is easy to see that each FVS of T contains

at least two vertices in F . Since |V (F )| = 5, we have νw ≤ 2. Hence τw 6= νw, contradicting (ii).

(iii)⇒(ii) Let T = (V, A) be a tournament with no F1 nor F2. To prove that νw = τw for any w ∈ ZV
+,

we apply induction on |V |.
The min-max relation holds trivially when |V | ≤ 3. So we proceed to the induction step and assume

that we have already proved the assertion for any tournament with no F1 nor F2 and with fewer vertices

than T .

To establish the induction step, we apply induction on τw. Clearly, τw = νw if τw = 0. So we assume

τw > 0 and distinguish between two cases.

Case 1. w(z) ≥ τw for some vertex z ∈ V .

Set w′ = w|V−{z}. By the induction hypothesis on T\z (with respect to the weight function w′), we

get νw′ = τw′ . So it can be seen that

• either T\z is acyclic

• or there exists a w′-FVS packing S ′ of T\z with size τw (for τw′ ≥ τw).

In the former case, define S to be the multiset consisting of τw copies of {z}; in the latter case, define

S := {S′∪{z} : S′ ∈ S ′}. Then S is a collection of FVS’s of T with size τw, which clearly yields a w-FVS

packing of T with size τw (by the assumption of case 1). So by (1) we have νw = τw.

Case 2. w(z) < τw for any vertex z ∈ V .

Set S := {v ∈ V : w(v) ≥ 1}. It follows from the assumption of the present case that

11



(2) |S ∩ V (C)| ≥ 2 for every triangle C in T .

In view of (2), the set of triangles of T is the disjoint union of three sets DS , FS , and F+
S (recall

(3*)-(5*)). It follows from the definition of F+
S that

(3) All triangles C with
∑

v∈V (C) w(v) = τw are contained in DS ∪FS .

By Lemma 2.5, there exists R ⊆ S such that |R ∩ V (C)| = 1 for every triangle C in DS ∪FS . From

the definition of F+
S , we see that R is an FVS of T . Set δ = min{w(v) : v ∈ R}. Then δ ≥ 1. Define

w′ ∈ ZV
+ as w′(v) = w(v)− δ|R ∩ {v}| for all v ∈ V .

(4) τw′ = τw − δ.

To justify (4), it suffices to show that |R ∩ V (C)| ≤ 2 for every C ∈ F+
S (by (3) and the selection of

R). It is the case since any such C shares with some triangle in DS two vertices, one of which is in S−R.

So (4) follows.

By the induction hypothesis on τw′ and by (4), T has a w′-FVS packing S of size τw − δ. Clearly,

{R, R, . . . , R} ∪ S is a collection of FVS’s of T with size τw, where the multiplicity of R is δ. This

collection clearly yields a w-FVS packing of T with size τw. So by (1) we have νw = τw.

Combining the above two cases, we complete the proof of the induction step and hence our min-max

theorem. 2

3 NP-completeness

For convenience, let us call the problem addressed in Theorem 1.6 the partition problem. We show its

NP -completeness in this section.

Proof of Theorem 1.6. Clearly, the partition problem is in NP . To prove the assertion, we

appeal to the following Not-All-Equal 3-Satisfiability problem (Not-All-Equal-3SAT): Given

n Boolean variables λ1, λ2, . . . , λn and m clauses c1, c2, . . . , cm in CNF, each of which contains exactly

three literals (variables or their negation), determine whether there exists an assignment of Boolean values

to the variables such that for each clause at least one literal is true and at least one literal is false. It

was shown by Schaefer [16] that Not-All-Equal-3SAT is NP -complete. Our objective is to reduce

Not-All-Equal-3SAT to the partition problem.

For this purpose, let λ1, λ2, . . . , λn be the set of variables and let c1, c2, . . . , cm be the set of clauses

in an arbitrary instance of Not-All-Equal-3SAT. We propose to construct a tournament T with

5n + 3m + 3 vertices such that the vertex set of T can be partitioned into two FVS’s if and only if

c1∧c2∧· · ·∧cm is satisfiable (with respect to Not-All-Equal-3SAT). The construction goes as follows

(see Figure 4 and Figure 5 for an illustration):

(i) To every variable λi, 1 ≤ i ≤ n, we associate a tournament Xi with vertex set

V (Xi) = {xh
i : h = 1, 2, 3, 4, 5}
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and arc set

A(Xi) = {(xg
i , x

h
i ) : 1 ≤ g < h ≤ 5 and (g, h) 6∈ {(1, 5), (2, 4)}} ∪ {(x5

i , x
1
i ), (x

4
i , x

2
i )};

(ii) To every clause cj = c1
j ∨ c2

j ∨ c3
j , 1 ≤ j ≤ m, we associate a triangle Zj = z1

j z2
j z3

j z1
j ;

(iii) Let V := (∪n
i=1V (Xi)) ∪ V (Y ) ∪ (∪m

j=1V (Zj)), where Y = y1y2y3y1 is a triangle, and all Xi’s, Y ,

and Zj ’s are pairwise disjoint;

(iv) To every z = zk
l ∈ ∪m

j=1V (Zj), 1 ≤ k ≤ 3, 1 ≤ l ≤ m, we associate an arc αz from zk
l to x1

i if

ck
l = λi and from zk

l to x5
i if ck

l = λ̄i;

Zj

xi
1 xi

2 xi
3 xi

4 xi
5

z j
1 z j

2 z j
3

Xi

z  z= k
l

az

z  z= p
q

az'

'

y
1

y
2

y
3

Y

...... ......

......

Figure 4. An illustration of constructions (i)-(iv), where ck
l = λi and cp

q = λ̄i.

(v) Let A be the disjoint union of ∪n
i=1A(Xi), A(Y ), ∪m

j=1(A(Zj) ∪ {αz : z ∈ V (Zj)}), and

{(u, v) : u and v satisfy one of (a)-(e)}:
(a) u ∈ V (Xi), v ∈ V (Xi′), and i < i′;
(b) u ∈ ∪n

i=1V (Xi) and v ∈ V (Y );
(c) u ∈ ∪n

i=1V (Xi), v ∈ ∪m
j=1V (Zj), and αv is not directed to u;

(d) u ∈ V (Y ) and v ∈ ∪m
j=1V (Zj);

(e) u ∈ V (Zj), v ∈ V (Zj′), and j < j′.

.
.

.

.
.
.

.
.
.

Y

Z1

X1 X2x2

1

X3x1
3
1 X4x4

1

z1 z2 z3
11 1

Z2

z1 z2 z3
22 2

.
.

.

.

.

.

.

.

.

x11

1 x5x5

1 x5

2 x5x5
3 x5

4

Figure 5. Tournament T resulting from the instance (λ1 ∨ λ̄3 ∨ λ̄4) ∧ (λ̄1 ∨ λ2 ∨ λ̄4).
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The construction is completed. It is easy to see that the construction can be accomplished in poly-

nomial time and the resulting digraph T = (V,A) is a tournament. The tournament T resulting from

the Not-All-Equal-3SAT instance with n = 4, m = 2, c1 = λ1 ∨ λ̄3 ∨ λ̄4, and c2 = λ̄1 ∨ λ2 ∨ λ̄4 is

illustrated in Figure 5.

Let us define a linear order ≺ on the vertex set of T as follows: x1
1 ≺ x2

1 ≺ x3
1 ≺ x4

1 ≺ x5
1 ≺ x1

2 ≺ x2
2 ≺

x3
2 ≺ x4

2 ≺ x5
2 ≺ · · · ≺ x1

n ≺ x2
n ≺ x3

n ≺ x4
n ≺ x5

n ≺ y1 ≺ y2 ≺ y3 ≺ z1
1 ≺ z2

1 ≺ z3
1 ≺ z1

2 ≺ z2
2 ≺ z3

2 ≺ · · · ≺
z1
m ≺ z2

m ≺ z3
m. Observe that

(1) Set

B := {(x5
i , x

1
i ), (x

4
i , x

2
i ) : 1 ≤ i ≤ n} ∪ {(y3, y1)} ∪ {(z3

j , z1
j ) : 1 ≤ j ≤ m} ∪ {αz : z ∈ ∪m

j=1V (Zj)}.

(In Figure 4, the arcs in B are bold lined.) Then for any u, v ∈ V with u ≺ v, arc (v, u) ∈ A if and

only if (v, u) ∈ B;

(2) For every 1 ≤ i ≤ n, there are four triangles

X1
i = x2

i x
3
i x

4
i x

2
i and Xh

i = x1
i x

h
i x5

i x
1
i , h = 2, 3, 4,

altogether in tournament Xi; and

(3) For every z ∈ ∪m
j=1V (Zj), there are three triangles Y i

z , i = 1, 2, 3, altogether in T through αz and

yi.

It follows from (1) that every triangle in T contains one or two arcs in B. Furthermore, since no two

arcs in B − {αz : z ∈ ∪m
j=1V (Zj)} have a common end, from the construction of T and (2) we see that

(4) Every triangle of T is either in {Xh
i : 1 ≤ h ≤ 4, 1 ≤ i ≤ n} ∪ {Y } ∪ {Zj : 1 ≤ j ≤ m} or contains

αz for some z ∈ ∪m
j=1V (Zj).

Now we are ready to show that the vertex set of T can be partitioned into two FVS’s if and only if

the Not-All-Equal-3SAT instance c1 ∧ c2 ∧ · · · ∧ cm is satisfiable.

Sufficiency. Suppose there is a truth assignment for {λ1, λ2, . . . , λn} such that each clause cj ,

1 ≤ j ≤ m, contains at least one true literal and at least one false literal. Set

• X := {x1
i : λi is true, 1 ≤ i ≤ n} ∪ {x5

i : λi is false, 1 ≤ i ≤ n};
• X̄ := {x1

i : λi is false, 1 ≤ i ≤ n} ∪ {x5
i : λi is true, 1 ≤ i ≤ n};

• Z := {z ∈ ∪m
j=1V (Zj) : αz = (z, x), x ∈ X}; and

• Z̄ := ∪m
j=1V (Zj)− Z = {z ∈ ∪m

j=1V (Zj) : αz = (z, x), x ∈ X̄}.
It is easy to see that

(5) |X ∩ V (Xh
i )| = |X̄ ∩ V (Xh

i )| = 1 for every h = 2, 3, 4 and 1 ≤ i ≤ n;

(6) For every z ∈ ∪m
j=1V (Zj), if the head of αz is in X (resp. X̄) then its tail is in Z (resp. Z̄); and

(7) V is the disjoint union of two sets
• S1 := X ∪ Z̄ ∪ {x2

i : 1 ≤ i ≤ n} ∪ {y1} and
• S2 := X̄ ∪ Z ∪ {x3

i , x
4
i : 1 ≤ i ≤ n} ∪ {y2, y3}.
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We claim that both S1 and S2 are FVS’s of T . To justify this, let C be an arbitrary triangle C of

T . Let us show that C meets both S1 and S2. By (5) and (6), the statement holds if C ∈ {Xh
i : h =

2, 3, 4; 1 ≤ i ≤ n} or if C contains some αz. If C = X1
i for some 1 ≤ i ≤ n, then we derive from (2) and

(7) that x2
i ∈ V (C) ∩ S1 and x3

i ∈ V (C) ∩ S2. If C = Y , then y1 ∈ V (C) ∩ S1 and y2 ∈ V (C) ∩ S2. So

by (4) it remains to consider the case when C = Zj for some 1 ≤ j ≤ m. Recall that ch
j is true and ci

j

is false for some 1 ≤ h 6= i ≤ 3. From (iv) and the definitions of X and X̄, we deduce that x ∈ X and

x′ ∈ X̄, where (zh
j , x) and (zi

j , x
′) are arcs associated to zh

j and zi
j , respectively, as described in (iv). It

follows from (6) and (7) that zh
j ∈ Z ∩ V (C) ⊆ S2 ∩ V (C) and zi

j ∈ Z̄ ∩ V (C) ⊆ S1 ∩ V (C). Therefore

both S1 and S2 are FVS’s of T , as claimed. By (7), we are done.

Necessity. Suppose the vertex set of T can be partitioned into two FVS’s S1 and S2. For 1 ≤ i ≤ n,

set λi to be true if x1
i ∈ S1 and false otherwise. Let us show that this assignment enables every cj ,

1 ≤ j ≤ m, to contain at least one true literal and at least one false literal. To this end, we first show

that

(8) |{x1
i , x

5
i } ∩ S1| = |{x1

i , x
5
i } ∩ S2| = 1 for all 1 ≤ i ≤ n.

Indeed, by (2), we have xg
i ∈ S1 ∩ V (X1

i ) and xh
i ∈ S2 ∩ V (X1

i ) for some 2 ≤ g 6= h ≤ 4. This, in

turn, implies that {x1
i , x

5
i } ∩ S2 6= ∅ and {x1

i , x
5
i } ∩ S1 6= ∅ by considering triangles Xg

i = x1
i x

g
i x

5
i x

1
i and

Xh
i = x1

i x
h
i x5

i x
1
i . So (8) is established.

Next we observe that

(9) |{x, z}∩S1| = |{x, z}∩S2| = 1 for all αz = (z, x) with z ∈ ∪m
j=1V (Zj) and x ∈ {x1

i , x
5
i : 1 ≤ i ≤ n}.

Indeed, by (iii) and the definition of S1 and S2, triangle y1y2y3y1 contains yg ∈ S1 and yh ∈ S2 for

some 1 ≤ g 6= h ≤ 3. Recall (3), T contains triangles Y i
z = xyizx, i = 1, 2, 3. Now using triangles Y g

z and

Y h
z , we obtain {x, z} ∩ S2 6= ∅ and {x, z} ∩ S1 6= ∅. Hence (9) holds.

For 1 ≤ j ≤ m, by (ii) triangle Zj contains some zg
j ∈ S1 and zh

j ∈ S2. Suppose (zg
j , x) and (zh

j , x′)

are arcs associated to zg
j and zh

j , respectively, as described in (iv), where {x, x′} ⊆ {x1
i , x

5
i : 1 ≤ i ≤ n}.

It follows from (9) that x ∈ S2 and x′ ∈ S1. Suppose x ∈ {x1
i , x

5
i } for some 1 ≤ i ≤ n.

• If x = x1
i then, by (iv), cg

j = λi is false as x1
i 6∈ S1;

• If x = x5
i then, by (8), x1

i ∈ S1. So λi is true and hence, by (iv), cg
j = λ̄i is false.

Therefore cg
j is false (in either case). Similarly, it can be deduced from x′ ∈ S1 that ch

j is true. Hence cj

contains both false literal cg
j and true literal ch

j ; equivalently, c1 ∧ c2 ∧ · · · ∧ cm is satisfiable, completing

the proof. 2

4 Algorithms

For simplicity, we use the same notations as introduced before. In particular, given a tournament T =

(V, A) and a weight function w ∈ ZV
+, let τw denote the minimum weight of a triangle in T and let νw

denote the maximum size of a w-FVS packing of T .
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For the case when T contains no F1 nor F2, we present the following algorithm for finding an optimal

w-FVS packing of size νw.

Algorithm Opt Pack Optimal FVS Packing

Input A tournament T = (V,A) with no F1 nor F2 and a weight w ∈ ZV
+

Output A maximum w-FVS packing S of T with |S| = νw

1. τw ← the minimum weight of a triangle in T

2. if τw = 0 or T is acyclic then return S ← ∅
3. if ∃ z ∈ V with w(z) ≥ τw then

4. if T\z is acyclic then return S ← {Si : Si = {z}, i = 1, 2, . . . , τw}
5. else {Si : 1 ≤ i ≤ τw|V−{z}} ← Opt Pack(T\z, w|V−{z})

return S ← {{z} ∪ Si : 1 ≤ i ≤ τw}
6. S ← {v ∈ V : w(v) ≥ 1}, R ← a subset of S with |R ∩ V (C)| = 1 for all C ∈ DS ∪FS

7. δ ← min{w(v) : v ∈ R}, w′(v) ← w(v)− δ|R ∩ {v}| for all v ∈ V

8. return S ← {Si : Si = R, i = 1, 2, . . . , δ}∪ Opt Pack(T,w′)

Remark. Note that S is a collection of FVS’s of T with size νw, which obviously yields a w-FVS packing

of T with the same size.

Theorem 4.1 Let T = (V, A) be a tournament with no F1 nor F2. Then Algorithm Optimal FVS Packing

solves the FVS packing problem on T exactly in O(|V |4) time.

Proof. The correctness of the algorithm follows instantly from the proof of Theorem 1.2. Let us now

estimate the time complexity of the algorithm.

Note that either in Steps 3-5 one vertex z is eliminated from our consideration or in Step 7 the weight

of at least one vertex becomes zero (from nonzero one). So the whole algorithm takes O(|V |) iterations.

From Lemma 2.5, we can conclude that each iteration takes O(|V |3) time. Hence the total running time

of the algorithm is O(|V |4). 2

Let us proceed to the FVS packing problem on a general tournament T . For this general case, we

can easily obtain a 1/3-approximation algorithm: Set R = ∅. While T contains a triangle C do: let v

be a vertex in V (C) of maximum weight. Set R = R ∪ {v} and T = T\v. Obviously, {R,R, . . . , R},
where the multiplicity of R is min{w(v) : v ∈ R}, is an FVS packing the original T with size at least
1
3νw. By exploiting the structural characterization given in our min-max theorem and using the above

exact algorithm as a subroutine, we can obtain a better approximation algorithm based on the subgraph

removal technique.
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Algorithm Apx Pack Approximate FVS Packing

Input A tournament T = (V,A) and a weight w ∈ ZV
+

Output A w-FVS packing S of T with |S| ≥ 2
5νw

1. τw ← the minimum weight of a triangle in T , R ← ∅
2. if τw = 0 or T is acyclic then return S ← ∅
3. while T contains a subtournament F isomorphic to F1 or F2 do

4. v ← a vertex in V (F ) of maximum weight, R ← R ∪ {v}, T ← T\v
5. end-while

6. S ′ = {Si : 1 ≤ i ≤ τw|V (T )
} ← Opt Pack(T, w|V (T )), δ ← min{w(v) : v ∈ R}

7. if S ′ = ∅ then return S ← {Si : Si = R, i = 1, 2, . . . , δ}
8. else return S ← {Si ∪R : i = 1, 2, . . . , min{τw|V (T )

, δ}}

Remark. Again S is a collection of FVS’s of T , which obviously yields a w-FVS packing of T with the

same size.

Theorem 4.2 Let T = (V, A) be an arbitrary tournament. Then Algorithm Approximate FVS Packing

approximates the FVS packing problem on T within a factor of 2/5 in O(|V |4) time.

Proof. Clearly, S is a collection of FVS’s of T . To get the approximation ratio, it suffices to prove

that

(1) |S| ≥ 2
5νw.

For this purpose, we turn to show that

(2) δ ≥ 2
5νw if δ > 0.

To justify (2), let u be a vertex in R with w(u) = δ. Suppose u is added to R because of subtournament

F (recall the while-loop of the algorithm), and suppose S∗ is a w-FVS packing of T with size νw. Since we

need to delete at least two vertices in F in order to destroy all triangles in F , each FVS in S∗ contains at

least two vertices in F . From the definition of a w-FVS packing, we deduce that 2|S∗| ≤ ∑
v∈V (F ) w(v).

Since u is a vertex with maximum weight in F and |V (F )| = 5, we have 2νw = 2|S∗| ≤ 5w(u) = 5δ,

yielding (2).

To establish (1), we may assume τw > 0, for otherwise the statement holds trivially. So we have δ > 0

when R 6= ∅. If S ′ = ∅, then it follows from (2) and the first line of Step 7 of the algorithm that (1)

holds. Otherwise, τw|V (T )
in Step 6 of the algorithm is at least τw(≥ νw). Thus from the second line of

Step 7 of the algorithm we can also conclude (1).

It was shown in [1] that F in Step 3 can be obtained in O(|V |2) time if it exists. Thus we deduce

from Theorem 4.1 that Approximate FVS Packing runs in O(|V |4) time. 2

It is easy to see that Theorems 1.7 and 1.8 follow from the above two theorems, respectively.
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5 Concluding remarks

In this paper we have characterized all tournaments T with Mengerian hypergraph b(CT ). Coincidently,

b(CT ) is Mengerian if and only if CT is. Major open problems in this research direction are to characterize

all digraphs G with Mengerian CG and those with Mengerian b(CG). The arc versions of these problems

are equally interesting. While these problems are extremely hard in general, Guenin and Thomas [14]

successfully characterized all digraphs that pack, where a digraph G packs if for any subdigraph H of G,

the maximum number of disjoint cycles is equal to the minimum number of vertices in a feedback vertex

set in H. Guenin strongly believes that the blocker version of their theorem holds on exactly the same

digraphs.

Conjecture 5.1 [13] A digraph G packs if and only if for any subdigraph H of G, the maximum number

of disjoint feedback vertex sets is equal to the length of a shortest cycle in H.

We close this paper by the aforementioned Woodall’s conjecture on packing feedback arc sets.

Conjecture 5.2 [20] In any planar digraph the maximum number of disjoint feedback arc sets is equal

to the length of a shortest cycle.

Certainly, these two beautiful conjectures deserve arduous research efforts.

Acknowledgments. The authors are grateful to two anonymous referees for their invaluable com-

ments and suggestions.
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[20] D. R. Woodall, Menger and Kőnig systems, Lecture Notes in Math. 642 (1978), 620-635.

19


