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Abstract

In this paper, we introduce a discrete-time higher-order Markov-switching (HMS) model for

measuring the risk of a portfolio. We suppose that the logarithmic returns from a risky

portfolio is governed by a HMS model with the drift and the volatility switch over time

according to the states of a discrete-time higher-order hidden Markov model (HHMM). We

interpret the states of the HHMM as unobservable states of an economy. The HHMM can

incorporate the persistence or the long-range dependence of the economic states, which may

due to business cycles. We adopt Value-at-Risk (VaR) as proxies of risk and investigate the

impact of long-range dependence on risk measurement by comparing the VaR obtained from

the HMS model and those evaluated from the first-order Markov-switching model through

back-testing.

Keywords: Value at Risk; Long-range Dependence; Higher-order Markov Chain; Regime

Switching.

1 Introduction

Value at Risk (VaR) has emerged as one of the most prominent tools in finance and

insurance industries. Many regulatory bodies, financial institutions and insurance compa-

nies adopt VaR as a benchmark in their practices of risk measurement and management.

VaR is a statistical estimation of a portfolio’s loss in such a way that the owner of the

portfolio prepares to incur that loss or more with a given (small) probability level over

a given (short) time horizon for risk measurement. Jorion [19], Duffie and Pan [8], Best
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[5] and Embrechts [17] and J.P. Morgan’s RiskMetrics - Technical Document for excellent

and comprehensive accounts on the concept of VaR and its practical implementation.

Basically, there are two common approaches to the VaR implementation, namely (i) the

historical simulation and (ii) the model-based approach. The historical simulation is to

calculate VaR based on the empirical distribution of historical data by bootstrapping

it which is rather non-parametric in nature while the model-based method assumes a

particular parametric form for the distributions of financial returns and estimate the cor-

responding unknown parameters from historical data. Although VaR remains as a popular

and prominent tools for risk measurement and management in both the finance and insur-

ance industries, some of the literature, including Artzner et al. [3, 4], Acerbi et al. [1, 2]

and Yamai and Yoshiba [22], point out the theoretical shortcomings of VaR. Despite some

theoretical shortcomings, VaR still remains its prominent role as a popular measure of

risk in practice due to its simplistic interpretation which makes it a easily communicated

risk measure in financial reporting and its computational tractability under some specific

parametric assumptions, such as multivariate normality assumption.

Recently, there has been considerable interest in the applications of hidden Markov

model (HMM) in finance. Elliott et al. [10] and Elliott and Kopp [15] provide an excellent

overview of hidden Markov chain and its applications in finance. Some works on exploring

the financial applications of hidden Markov chain include Elliott and van der Hoek [11]

for portfolio optimization, Pliska [20] and Elliott et al. [13] for modelling short rate

dynamics, Guo [18] and Elliott et al. [16] for option pricing under market incompleteness,

Buffington and Elliott [6, 7] for pricing European and American options, Elliott et al. [14]

for volatility estimation. There is a relatively little amount of work on exploring the use

of the hidden Markov chain for risk measurement.

In this paper, we introduce a discrete-time higher-order Markov-switching (HMS)

model for measuring the risk of a portfolio. We suppose that the logarithmic returns from

a risky portfolio is governed by a HMS model with the drift and the volatility switch over

time according to the states of a discrete-time higher-order hidden Markov chain model

(HHMM). We interpret the states of the HHMM as unobservable states of an economy.

Recently a double higher-order hidden Markov model has been proposed for extracting

information from spot interest rates and credit ratings [21]. The HHMM can incorporate

the persistence or the long-range dependence of the economic states, which may be due

to business cycles. We adopt Value-at-Risk (VaR) as proxies of risk. We investigate the

impact of long-range dependence on risk measurement by comparing the VaR evaluated

from the HMS model and that obtained from the first-order hidden Markov chain model.

In particular, we perform back-testing for the VaR obtained from the two models using

simulated data.

The rest of the paper is organized as follows. In Section 2, we present the higher-order

Markov-switching model for modelling the market values of a market portfolio and the

corresponding risk measurement framework. In Section 3, we perform back-testing for
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the VaR evaluated from the the first-order and the second-order Hidden Markov chain

models using simulated data. Finally, concluding remarks are given in Section 4.

2 A Higher-Order Markov-Switching Model for Portfolio Re-

turns

In this section, we present a discrete-time Higher-order Markov-Switching (HMS)

model for portfolio returns. First, we write T for the time index set

{0, 1, . . .}

of the economy. Fix a complete probability space (Ω,F ,P), where P is a real-world

probability. We note that for risk measurement, we are working with the real-world

probability P instead of the risk-neutral one. We suppose that the probability space is

rich enough to incorporate the uncertainties due to the evolution of the hidden economic

states and the fluctuations of market values of the risky portfolio.

In the sequel, we shall define a higher-order hidden Markov chain model for describing

the hidden states of an economy. Let {Vt}t∈T be a process representing the hidden states

of an economy. We then assume that {Vt}t∈T is an lth-order discrete-time homogeneous

Markov chain process taking values in the state space

V := {v1, v2, . . . , vM}.

We may interpret v1 as the “best” economic condition, v2 as the second “best” economic

condition and vM as the “worst” economic condition, etc. Now we let

i(t, l) := (it, it−1, . . . , it−l),

where t ≥ l, l = 1, 2, . . . and it, it−1, . . . , it−l ∈ {1, 2, . . . ,M}. Then, the state transition

probabilities of the lth-order hidden Markov chain process V are given by:

P (it+1|i(t, l)) := P [Vt+1 = Vit+1
|Vt = vit , . . . , Vt−l = vit−l

] , it+1 = 1, . . . ,M. (2.1)

The order l represents the degree of the long-range dependence of the hidden states of

the economy. When l = 1, the lth-order hidden Markov chain process V reduces to a

first-order hidden Markov chain process.

In order to determine the HHMM completely, we need to specify the following initial

distributions:

P (il+1|i(l, l)) := πil+1|i(l,l), it+1 = 1, 2, . . . ,M. (2.2)

We shall then describe the higher-order Markov-switching (HMS) model for portfolio
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returns. The main idea of the HMS model is that the drift and the volatility of the

portfolio returns switch over time according to the states of the economy described by the

HHMM.

Let {Yt}t∈T denote a stochastic process on (Ω,F ,P) such that Yt represents the loga-

rithmic return of a risky portfolio in the tth period. We write Vt,l for (Vt, Vt−1, . . . , Vt−l),

for each t ≥ l, l = 1, 2, . . . . Let

µt := µ(Vt,l)

and

σt := σ(Vt,l)

be the drift and the volatility of the portfolio return in the tth period respectively. We

note that both the drift and the volatility depend on the current value and the past values

of the HHMM up to lag l. In particular,

µ(vit , vit−1
, . . . , vit−l+1

) = µi(t,l), (2.3)

and

σ(vit , vit−1
, . . . , vit−l+1

) = σi(t,l), (2.4)

where µi(t,l) ∈ R and σi(t,l) > 0.

Let {ξt}t=1,2,... denote a sequence of i.i.d. random variables with common distribution

N(0, 1), a standard normal distribution with zero mean and unit variance. We suppose

that ξ and V are independent. Then, we suppose that the dynamics of the logarithmic

returns of the portfolio are evoluted according to the following HMS model:

Yt = µ(Vt,l) + σ(Vt,l)ξt, t = 1, 2, . . . (2.5)

By convention, Y0 = 0, P-a.s.

The structure of the HMS model resembles the continuous-state observation process

in Elliott et al. [10]and Elliott et al. [12], in which first-order HMMs were considered and

the drift and the volatility depend on the state Vt−1.

In the sequel, for simplicity of discussion, we shall consider the case when l = 2 (i.e., a

second-order HMM). In this case, the dynamics of the logarithmic returns of the portfolio

are given by:

Yt = µ(Vt, Vt−1) + σ(Vt, Vt−1)ξt, t = 1, 2, . . . (2.6)

Now, we define a two-dimensional first-order HMM X embedding the second-order HMM

V as follows:

Xt := (Vt, Vt−1). (2.7)
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Write X for a (M ×M)-matrix with the (i, j)-element

xij := (vi, vj),

for each i, j = 1, 2, . . . ,M . We note that X represents the state space of the two-

dimensional first-order HMM X. Let

X̃ := vec(X ),

where vec(·) denotes the column-by-column vectorization function. We note that X̃ de-

notes a M2-dimensional vector. In particular, the ((j−1)M + i)th-element x̃(j−1)M+i of X̃

is given by xij := (vi, vj). Then, we define a one-dimensional first-order HMM X̃ induced

by the two-dimensional first-order HMM X such that

X̃t = x̃(j−1)M+i

if Xt = xij . The state space of X̃ is given by X̃ . Following Elliott [9], we consider a

function ψj(·) (j = 1, 2, . . . ,M2) defined by

ψj(x̃k) := δjk, where k = 1, 2, . . . ,M2.

We define a vector function

ψ(x̃) := (ψ1(x̃), ψ2(x̃), . . . , ψM2(x̃)),

for each x̃ ∈ X̃ . Then, ψ(·) is a bijection of X̃ and the set of unit basis vectors

E := {e1, e2, . . . , eM2}

with

ej := (0, 0, . . . , 1
︸︷︷︸

jth entry

, . . . , 0, 0) ∈ RM2

,

where j = 1, 2, . . . ,M2 and the “1” is in the jth position of ej . Without loss of generality,

the state space of X̃ can be taken to be the set E . This is called the canonical representa-

tion of the state space of a Markov chain process. Let A be a (M2 ×M2)-matrix, which

represents the time-independent transition probability matrix of the first-order Markov

chain X̃. The (j, k)-element ajk of A (j, k = 1, 2, . . . ,M2) is given by:

ajk := P (X̃t = ej |X̃t−1 = ek). (2.8)

Following Elliott et al. [10], the semi-martingale representation for X̃ is given by:

X̃t := AX̃t−1 + Lt, (2.9)
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where {Lt} is a RM2

martingale increment process with respect to the complete filtration

F X̃ generated by the process X̃ and the measure P.

Then, we specify the information structure of the model. Let FY
t and FV

t denote the

information set generated by the logarithmic return process Y and the hidden Markov

chain process V up to and including time t, respectively, for each t ∈ T . For the purpose

of adaptive risk measurement, one is interested in computing the predictive distribution

FYt+1
(·|FY

t ) of Yt+1 given the observable information FY
t .

For each i, j = 1, 2, . . . ,M , let

φij(x) :=
1

√

2πσ2
ij

exp(−
1

2σ2
ij

x2),

which is the probability density function of a normal distribution N(0, σ2
ij) with mean

zero and variance σ2
ij . Then,

FYt+1
(y|FY

t ) =

M∑

i=1

M∑

j=1

P [(Vt, Vt−1) = (vi, vj)|F
Y
t ]

∫ y−µij

−∞

φij(x)dx. (2.10)

The predictive density fYt+1
(y|FY

t ) of Yt+1 given FY
t is given by:

fYt+1
(y|FY

t ) =
M∑

i=1

M∑

j=1

P [(Vt, Vt−1) = (vi, vj)|F
Y
t ]φij(y − µij). (2.11)

In order to compute either FYt+1
(y|FY

t ) or fYt+1
(y|FY

t ), one needs to determine

P [(Vt, Vt−1) = (vi, vj)|F
Y
t ].

We note that

P [(Vt, Vt−1) = (vi, vj)|F
Y
t ] = P (Xt = xij|F

Y
t ) = P (X̃t = x̃(j−1)M+i|F

Y
t ). (2.12)

Hence,

FYt+1
(y|FY

t ) =
M∑

i=1

M∑

j=1

P (X̃t = x̃(j−1)M+i|F
Y
t )

∫ y−µij

−∞

φij(x)dx,

and

fYt+1
(y|FY

t ) =
M∑

i=1

M∑

j=1

P (X̃t = x̃(j−1)M+i|F
Y
t )φij(y − µij).

Both FYt+1
(y|FY

t ) and fYt+1
(y|FY

t ) can be determined by the conditional probability dis-

tribution of X̃t given FY
t .
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Let X̃Y
t := EP(X̃t|F

Y
t ). Then,

FYt+1
(y|FY

t ) =

M∑

i=1

M∑

j=1

〈

X̃Y
t , e(j−1)M+i

〉∫ y−µij

−∞

φij(x)dx,

and

fYt+1
(y|FY

t ) =

M∑

i=1

M∑

j=1

〈

X̃Y
t , e(j−1)M+i

〉

φij(y − µij),

where 〈·, ·〉 denotes an inner product in RM2

.

Then, following Elliott et al. (1994) (Chapter 3, Theorem 3.3) and the Bayes rule, we

can get a recursive filter for X̃Y
t as follows:

X̃Y
t+1 := EP(X̃t+1|F

Y
t+1)

=

∑M

i=1

∑M

j=1

〈

X̃Y
t , e(j−1)M+i

〉

φij(yt+1 − µij)Ae(j−1)M+i

∑M

i=1

∑M

j=1

〈

X̃Y
t , e(j−1)M+i

〉

φij(yt+1 − µij)
. (2.13)

Let qt+1|t(α) denote the α-quantile of the predictive distribution of Yt+1 given FY
t . Then,

FYt+1
(qt+1|t(α)|FY

t ) = α. (2.14)

Let Pt denote the market value of the portfolio at time t. We suppose that the constant

risk-free interest rate over a period is 5%. Then, the Value-at-Risk V aRt+1|t(α) for the

long position of the portfolio with probability level α is given by:

V aRt+1|t(α) = Pt[1 − exp(qt+1|t(α) − r)]. (2.15)

Now, we present the case of the first-order hidden Markov chain Z := {Zt}t∈T with

state space Z := {e1, e2, . . . , eM} ⊂ RM . Write P := [pij ]i,j=1,2,...,M , which represents the

transition probability matrix for Z. That is,

pij := P (Zt = ei|Zt−1 = ej). (2.16)

We suppose that the drift µ(Zt) and the volatility σ(Zt) of the logarithmic return from

the portfolio are given by:

µ(Zt) = 〈µ, Zt〉 , (2.17)

and

σ(Zt) = 〈µ, Zt〉 , (2.18)
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where µ := (µ1, µ2, . . . , µM) and σ := (σ1, σ2, . . . , σM). with µi ∈ R and σi > 0 for each

i = 1, 2, . . . ,M .

In this case, we assume that the logarithm return is given by:

Yt = µ(Zt) + σ(Zt)ξt, (2.19)

Following Elliott et al. (1994), it can be shown that the probability distribution function

of Yt+1 given FY
t is:

GYt+1
(y|FY

t ) =
M∑

i=1

〈

Z̃Y
t , ei

〉∫ y−µi

−∞

φi(x)dx, (2.20)

where φi(x) is defined as above and Ṽ Y
t is evaluated from the following recursive formula:

Z̃Y
t+1 =

∑M

i=1

〈

Z̃Y
t , ei

〉

φi(yt+1 − µi)Pei

∑M

i=1

〈

Z̃Y
t , ei

〉

φi(yt+1 − µi)
. (2.21)

Then, the α-quantile q̄t+1|t(α) of Yt+1 given FY
t is determined by:

GYt+1
(q̄t+1|t(α)|FY

t ) = α. (2.22)

Then, the VaR in this case is given by:

V aRt+1|t(α) = Pt[1 − exp(q̄t+1|t(α) − r)]. (2.23)

3 Back-testing

In this section, we shall investigate consequences for risk measurement of the pres-

ence of the long-range dependence in the price dynamics of the portfolio described by

the higher-order Hidden Markov chain. In particular, we study the impact of the mis-

specification of the order of the hidden Markov chain (i.e. different levels of long-range

dependence) on the performance of VaR forecasts via back-testing. We suppose that the

order of HHMM under the “true” model is two and the length of the sequence T is chosen

as 1000. We simulate the logarithmic returns from the “true” model and consider them as

if they were the observed logarithmic returns from the portfolio. For simplicity, we assume

the interest rate r is equal to 0. Then, we evaluate forecasting performances of the VaR

obtained from the second-order HHMM and that obtained from its first-order counter-

part. Here, we assume that the economy has two states, namely, “Good” state and “Bad”

state. State “1” and State “2” represent “Good” state and “Bad” state. The numerical

results were computed using CPU=2.66Ghz, Ram=1Ghz with Matlab environment.

8



First, we assume the specimen values of the “true” model. Here, we define

P (i|j, k) = P (Vt+1 = i|Vt = j, Vt = k).

In particular, we suppose that the transition probabilities of the second-order HHMM are

given:

P =
{
[P ](j−1)∗l+k,i

}
=








P (1|, 1, 1) P (2|1, 1)

P (1|, 1, 2) P (2|1, 2)

P (2|2, 1) P (2|2, 1)

P (2|2, 2) P (2|2, 2)








=








0.7 0.3

0.3 0.7

0.6 0.4

0.3 0.7







.

Then, we assume that

µ =

(

µ11 µ12

µ21 µ22

)

=

(

0.3968 0.1984

0.3175 0.1190

)

× 10−3

and

σ =

(

σ11 σ12

σ21 σ22

)

=

(

0.63 1.57

0.94 2.52

)

× 10−2.

Based on these parameter values, one can obtain the transition probability matrix A for

the first order HMS as follows:

A = P

and the transition probability matrix A for the second-order HMS as follows:

A =








0.7 0.0 0.3 0.0

0.3 0.0 0.7 0.0

0.0 0.6 0.0 0.3

0.0 0.4 0.0 0.7







.

We then assume that the initial values of the second-order HHMM are V0 = 2 and V1 = 2.

We further assume that Y (0) = 0 and X̃Y
0 = (0, 0, 0, 1)T . Based on these parameters

and the initial conditions, we shall simulate the second-order HHMM {Vt}t∈T and the

logarithmic returns of the portfolio {Yt}t∈T . These simulated data will be used to perform

back-testing for the second-order HMS and the first-order HMM.

Based on these parameter values, we can obtain the transition probability matrix A

for the first order HMM as follows:

A = P
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and the transition probability matrix A for the second order as follows:

A =








0.7 0.0 0.3 0.0

0.3 0.0 0.7 0.0

0.0 0.6 0.0 0.3

0.0 0.4 0.0 0.7








Now, for the first-order HMM, we suppose that

µ1 = µ11, µ2 = µ12, σ1 = σ11, σ2 = σ12,

p11 = P (1|1, 1), p21 = P (1|2, 1) and X̃Y
0 = (0, 1)T .

In the sequel, we shall present the numerical results on the second-order and the first-

order cases, In practice, the probability level α for VaR computation is usually set to be

either 5% or 1% depending on various practical purposes. Here, we consider two scenarios,

namely, Case I: α = 1% and Case II: α = 5%.

3.1 Case I: α = 1%

Figure 1 displays the plots of the daily change in the market values of the portfolio and

the 1% daily VaR obtained from the first-order HMM against the back-testing periods.

Figure 2 presents the plots of the daily change in the market values of the portfolio and

the 1% daily VaR obtained from the second-order HMM against the back-testing periods.

From these figures, we can see that the proportions of violations of the VaR obtained

from the first-order and the second-order models are 4.1% and 1.3%, respectively. Hence

this reveals that the first-order model seriously underestimates the VaR if the “true”

model is the second-order one.

3.2 Case II: α = 5%

Figure 3 presents the plots of the daily change in the market values of the portfolio and

the 5% daily VaR obtained from the first-order HMM against the back-testing periods.

Figure 4 displays the plots of the daily change in the market values of the portfolio and

the 5% daily VaR obtained from the second-order HMM against the back-testing periods.

From these figures, we observe that the proportions of violations of the VaR obtained

from the first-order and the second-order models are 8.8% and 5.5%, respectively. This

shows that the first-order model also seriously underestimates the VaR if the “true” model

is the second-order one.

Based on these numerical results, we observe that the mis-specification of the order of

the hidden Markov chain has significant impact on the VaR estimation. In particular, if

the level of the long-range dependence is underestimated, the VaR will also be underes-

timated substantially. We also note that the computational time for both the first-order
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and the second-order models are less than one minute in an standard PC. Both models

are computationally efficient.

4 Conclusion

In this paper, we proposed a discrete-time higher-order Markov-switching (HMS)

model for measuring the risk of a portfolio. We adopt Value-at-Risk (VaR) as proxies

of risk and investigate the impact of the long-range dependence on risk measurement by

comparing the risk measures obtained from the HMS model and those evaluated from the

first-order Markov-switching model through back-testing. Numerical results are given to

illustrate that the mis-specification of the order of the hidden Markov chain has significant

impact on VaR estimation. We have found that the underestimation of the level of the

long-range dependence will lead to underestimation of the VaR.
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Figure 1: Back-testing for the first-order HHMM with α = 1%

0 200 400 600 800 1000
−40

−30

−20

−10

0

10

20

30

Simulation

V
al

ue

VaR(alpha)
P(t+1)−P(t)

Figure 2: Back-testing for the second-order HHMM with α = 1%
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Figure 3: Back-testing for the first-order HHMM with α = 5%
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Figure 4: Back-testing for the second-order HHMM with α = 5%
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